
Distributed Resource Allocation in SINR Models

A Project Report

submitted by

VINOD S

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2014



THESIS CERTIFICATE

This is to certify that the thesis titled Distributed Resource Allocation in SINR Models,

submitted by Vinod S, to the Indian Institute of Technology, Madras, for the award of

the degree of Master of Technology, is a bona fide record of the research work done by

him under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Dr Srikrishna Bashyam
Research Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr.Krishna Jagganathan
Research Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 4th June 2014



ACKNOWLEDGEMENTS

I would like to express my gratitude to my project advisers, Dr. Srikrishna Bhashyam

and Dr. Krishna Jagannathan, for this wonderful opportunity of working with them

for the project. It is their guidance, support and encouragement that motivated me to

work and come up with solutions to the problems we faced during the course of the

research work. The confidence I gained over the last year by working with them has

been tremendous and I would treasure the same.

I also thank Dr. Venkatesh Ramaiyan for the course "Communication Networks" and

Dr. Radha Krishna Ganti for the course "Convex Optimization". These two courses

were very relevant for the project. I also thank our faculty adviser Dr. T.G. Venkatesh

for helping us with all the administrative formalities during the last two years.

I thank my friends Akhil C, Aseem, Debayani, Geetha C, Gopal, Jose T, Ravi Kiran,

Ravi Kolla, Reshma K B, Sudarshan P and Swamy P S who have helped me a lot during

my stay at IIT.

i



ABSTRACT

KEYWORDS: SINR Model; Throughput Optimal Resource Allocation

We study the problem of distributed resource allocation in the SINR model. Our model

consists of a fixed number of transmitters and their distinct receivers. In the models

that we consider, the data rate a transmitter gets depends on the SINR at the receiver.

The objective is to allocate the resource in such a way that the queue lengths at the

transmitter remains bounded in a probabilistic sense. We consider two SINR models.

The first model we consider is called SINR threshold model in which the data rate is 1

or 0 depending upon the SINR being above a predefined threshold or not. The second

model we consider is the SINR adaptation model in which the data rate is a concave

function of SINR. By distributed we mean that every transmitter must take decisions

only by using local information of SINR at the receiver. In this thesis, we propose

distributed algorithms that are throughput optimal for the first model under joint power

control and scheduling and for the second model under scheduling case.
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CHAPTER 1

INTRODUCTION

Effective resource allocation among a set of interfering users is important so as to

achieve fairness amongst the users. There are different notions of fairness found in

literature. A particular notion of fairness dictates what the objective must be for all the

users. Once the notion of fairness is decided, a resource allocation algorithm will de-

cide how exactly the users go about sharing the resource so as to achieve the objective

set forth by the fairness criteria. One such notion of fairness is to share the resource in

such a way so that the users will be able to support an arrival process meaning that the

queue lengths of all the users remain bounded in some probabilistic sense. A resource

allocation algorithm that achieves this objective whenever at all this is possible is called

a throughput optimal algorithm.

But what exactly is the resource and what do we mean by interfering users? The re-

source could refer to the transmission data rate in a wireless channel and the users in-

terfere because increasing data rate of a user could decrease the date rate of other users.

Since a wireless channel in it’s full generality is too complicated to study, researchers

make simplifying assumptions for the wireless channel and come up with resource al-

location algorithms for such simplified models. Different assumptions leads to different

network models. The most commonly encountered network model is the independent

set model in which the independent sets of the network are specified explicitly. An inde-

pendent set is a set of users that do not interfere with each other meaning that if the set

of users that are transmitting at some time form an independent set, then all of them will

be having a data rate of 1 unit. So the throughput optimal resource allocation problem

reduces to a problem of sharing of the channel in time (scheduling) between the inde-



pendent sets. Further simplification of this independent set model leads to a conflict

graph interference model. For this model, the interference relations can be represented

using a graph called conflict graph. In a conflict graph the users form the vertices and

an undirected edge between the users indicate that these two users cannot transmit suc-

cessfully at the same time. So from a conflict graph interference model, we can deduce

the independent sets by selecting users that do not share an edge in the conflict graph.

There are other simple network models in which the network connectivity is expressed

as a graph. In such models the users can transmit directly only to their neighbors subject

to other interference constraints. For example, in a primary interference model, the

only interference constraint is that the user cannot transmit or receive at the same time.

Similarly in a K-Hop interference model, the transmission is free of interference if all

the users in K-Hop neighborhood are silent.

In this report, we consider two interference models in which the transmission data rate

is a function of the Signal to Interference and Noise Ratio (SINR). A user in this model

refers to a transmitter and its distinct receiver. The transmitter transmits at some power

level to its corresponding receiver and this power decays as a function of distance. At

the receiver, the transmission of all other transmitters other than its corresponding trans-

mitter will be perceived as additive receiver noise. The first model we consider is called

SINR threshold model in which the transmission rate is 1 if the SINR is greater than

or equal to a predefined threshold and 0 otherwise. The second model we consider is

called SINR adaptation model in which the transmission rate is a concave function of

the SINR. Depending on the parameters taken into account, we can study these models

under three different contexts. They are (a) Power control, (b) Scheduling and (c) Joint

Power Control and Scheduling. In power control case, the users share the resource only

by limiting their transmission power. In scheduling case, the users share the channel

in time between different subsets of users with the users transmitting at same common
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power level whenever they are active. In the most general case of joint power control

and scheduling, the users while sharing the resource in time between different subsets of

users, they are also allowed to adapt their transmission power depending on the subset

of active users.

A resource allocation algorithm decides how at each instant of time, the resource is

shared among the interfering users to meet the network objective. The Maxweight algo-

rithm introduced in (Tassiulas and Ephremides, 1992) is a throughput optimal algorithm

for the independent set model. However as the Maxweight algorithm computes the

schedule by comparing the sum of queue length of independent sets, it does not lend it-

self easily to a distributed implementation. A distributed algorithm would be preferable

as it eliminates the need to have a centralized controller and the associated overheads.

In this report we propose distributed algorithms for the two SINR models mentioned

above. The distributed algorithm we propose is throughput optimal in the following

cases, (a) SINR threshold model under joint power control and scheduling and (b) SINR

adaptation model under scheduling.

1.1 Related Work

In Jiang and Walrand (2010a), a continuous time distributed throughput optimal algo-

rithm was proposed for a conflict graph based interference model. In Ni et al. (2012),

a discrete time distributed throughput optimal algorithm for the same model was pro-

posed which had better delay performance and also was able to account for collisions

and other issues such as hidden nodes, exposed nodes. In Lee et al. (2012) an algorithm

was proposed which was shown to be throughput optimal for the SINR adaptation model

under joint power control and scheduling. However this algorithm required the users to

exchange control information between them and hence cannot be called distributed in a
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strict sense. In (Chaporkar and Proutiere, 2013) a distributed algorithm was proposed

for the SINR adaptation model under scheduling. In Yi and Veciana (2007) a distributed

algorithm was proposed for the SINR threshold model under scheduling.

1.2 Our Contributions

In this report, we present throughput optimal algorithms for the SINR threshold model

under joint power control and scheduling and also for the SINR adaptation model under

scheduling. We first describe the capacity region for the models which specify the

conditions on the arrival process so that there exists some resource allocation policy that

will stabilize all the queues. Our approach is to invert the capacity region conditions to

find out the unknown parameters that come up in these conditions that will make the

queues stable.

1.3 Organization of Thesis

This thesis is organized as follows. In chapter 2, we describe the network model that we

consider. In chapter 3 we describe the stability criterion and also present the capacity

region for the models we consider. In chapter 4, we describe the distributed algorithm

for the SINR threshold model under joint power control and scheduling. In chapter 5

we briefly describe how the approach used in chapter 4 can be used for obtaining a

distributed throughput optimal algorithm for the SINR adaptation model. In chapter 6

we present the simulation results of our algorithm and in chapter 7 we conclude the

thesis.
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CHAPTER 2

NETWORK MODEL

The network we consists of N transmitter nodes and N receiver nodes whose locations

are fixed. Each transmitter node intends to communicate to a distinct receiver node. A

link will denote a transmitter and its corresponding receiver. The term network config-

uration will denote the location of the different transmitters and receivers. We assume

an ergodic arrival process for the network with arrival rate vector λ = [λ1, λ2, ..., λN ]T

units, where λi is the arrival rate to the transmitter of link i. For the SINR threshold

model the unit of arrival rate is packets/secs and for the SINR adaptation model it will

be bits/sec. The time average service rate of link i is denoted as Si. The queue length of

transmitter iwill be denoted asQi. Pi will denote the transmission power of ith transmit-

ter. We define a set P called the power constraint set such that the transmission power

of link i, Pi satisfies the condition Pi ∈ P ,∀i ∈ {1, 2, ..., N}. P = [P1, P2, ..., PN ]T

will be called the power vector. gij, i, j ∈ {1, 2, ..., N} will denote the constant gain

coefficient between jth transmitter and ith receiver. Let Ii denote the interference power

at the receiver of link i. Then Ii =
N∑

j=1, j 6=i
Pj gij . N0 is the additive receiver noise power.

So the SINR at the receiver of link i, with a power vector of P denoted as SINRi[P ]

is given by

SINRi[P ] =
Pi gii

N0 +
N∑

j=1, j 6=i
Pj gij

(2.1)

Define anN×N matrixG such thatG(i, j), the (i, j)th entry inG, is given byG(i, j) =

gij,∀i, j ∈ {1, 2, ..., N}. G will be called link gain matrix. We will assume that the

matrix G is a full rank matrix. Also define another N × N matrix Z such that Z(i, j),



the (i, j)th entry in Z is zij , where zij is given by zij =
gij
gii

,∀i, j ∈ {1, 2, ..., N}. Z is

called the normalized link gain matrix. Note that both Z and G are positive matrices.

2.1 SINR Threshold Model

In the SINR threshold model, the transmission rate can take on only two values depend-

ing upon the SINR at the receiver. The transmission rate for a link i, using a power

vector P denoted as Ratei[P ] is given by

Ratei[P ] =

 1 ifSINRi[P ] ≥ β

0 ifSINRi[P ] < β
(2.2)

β in the above expression is called the threshold SINR. The transmission rate is normal-

ized to the packet size.

2.1.1 Feasibility of SINR Constraint

To maintain successful transmission for all the links in the network, we should be able

to find a power vector that satisfies the SINR constraint for all the links simultaneously.

We will say that a threshold SINR of β is feasible for the network if there exists a

power vector that can simultaneously achieve the SINR constraint for all the links. The

question of finding such a power vector that satisfies the SINR constraints is addressed

in this section.

Let κ1
Z , κ

2
Z , ..., κ

N
Z , be the N eigen values of the matrix Z. In particular, let κ1

Z be the

dominant eigen vector of the matrix Z, i.e., |κ1
Z | > |κiZ | , ∀i ∈ {2, 3, ..., N}. The

dominant eigen value κ1
Z satisfies κ1

Z ∈ R+ and using eigen value bounds for positive
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matrices, (κ1
Z ≥ min

i∈{1,2,...,N}

∑
j∈{1,2,...,N}

zij) we have the result κ1
Z > 1. Let J1

Z , J
2
Z , ..., J

N
Z

be the N eigen vectors corresponding to the eigen values κ1
Z , κ

2
Z , ..., κ

N
Z respectively.

For this network of interfering links, there exits a parameter called maximum balanced

SINR denoted as β0, which is the maximum common value of SINR for all links that

can be attained by using any power vector P . β0 is given by the following expression

(Zander, 1992b)

β0 =
1

κ1
Z − 1

(2.3)

The power vector that achieves this maximum balanced SINR (β0) is the eigen vector

J1
Z corresponding to the eigen value κ1

Z . The result in Eq: 2.3 is derived using the

assumption of receiver noise power being zero (N0 = 0). So this quantity would serve

as an upper bound for the achievable threshold SINR (β) values. In the rest of the paper,

we will assume that the transmitter can use any positive power value or in other words

that the power constraint set P = (0,∞). We remark that this assumption would only

mean that the additive receiver noise (N0) is sufficiently low when compared with the

maximum transmission power limit for the links.

For maintaining successful transmission for all the links, we need to find a power vector

P that satisfies

SINRi[P ] ≥ β, ∀i ∈ {1, 2, ..., N} (2.4)

=⇒ Pi gii −
N∑

j=1, j 6=i

Pj β gij ≥ βN0, ∀i ∈ {1, 2, ..., N} (2.5)

The above N constraints can be expressed in matrix form as
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
g11 −βg12 ... −βg1N

−βg21 g22 ... −βg2N

... ... ... ...

−βgN1 −βgN2 ... gNN




P1

P2

...

PN

 ≥

βNo

βNo

...

βNo


Define a new parameter for the network, an N × N matrix G̃. The entries of G̃ are as

follows G̃(i, i) = gii,∀i ∈ {1, 2, ..., N} and G̃(i, j) = −β gij, ∀i, j ∈ {1, 2, ..., N}, i 6=

j. Also define an N × 1 matrix B = [βN0, βN0, ..., βN0]T . Then the above SINR

constraints on the power vector can be compactly expressed as G̃P ≥ B.

Among the possible power vectors that satisfy the SINR constraint, we define an optimal

power vector as the one with least l1 norm. Then the optimal power vector is the optimal

point of the following linear program (LP).

minimize L(P ) =
N∑
i=1

Pi

subject to G̃P ≥ B , P ≥ 0

Theorem 1 The optimal power vector P ∗ satisfies G̃P ∗ = B. Hence the threshold

SINR is attainable if and only if the power vector P ∗ satisfying G̃P ∗ = B also satisfies

P ∗ > 0.

Proof 1 Following terminology in (Luenberger and Ye, 2008), we first convert the LP

into standard form by adding N surplus variables β′ = [β′1, β
′
2, ...β

′
N ]T . Now the LP

can be written as

minimize L(P ) =
N∑
i=1

Pi

subject to [G̃ − I]

 P

β′

 = B , [P β′] ≥ 0

To find the optimal power vector, it is enough to search over basic feasible solutions. The
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absence of any basic feasible solution will indicate that the LP is infeasible (Luenberger

and Ye, 2008, Section 2.4). From the 2N variables, a basic solution is obtained by set-

tingN variables to be zero and solving the equality constraints for the restN variables.

Note that since G was assumed to be a full rank matrix, the matrix [G̃ − I] is also of

rank N . Now observe that any basic solution having Pi = 0, for some i ∈ {1, 2, ..., N}

cannot be feasible as the SINR constraint for the ith link will fail otherwise. So the only

basic solution that can be feasible corresponds to β′i = 0,∀i = 1, 2, ..., N . Hence the

optimal power vector P ∗ satisfies G̃P ∗ = B. This optimal power vector is feasible if

and only if P ∗ > 0. Hence the result.

With an optimal power vector of P ∗, the SINR for all the links is exactly equal to β. In

general it may not be possible for the network to maintain successful transmission for

all the links in the network. This situation is characterized by using the two equivalent

conditions (β > β0) or (P ∗ ≯ 0).

2.1.2 FM-PCA in the feasible case

When the SINR threshold of β is feasible, the Foschini Miljanic-Power Control Algo-

rithm (FM-PCA) (Foschini and Miljani, 1993) can be used to find the optimal power

vector of P ∗ in a distributed manner. In FM-PCA, the power Pi of a link i is updated

every discrete time slots as follows

Pi ← (1− ε)Pi + ε Pi
β

SINRi[P ]
, ε ∈ (0, 1] (2.6)

Starting from any power vector, the above iteration when executed for all the links, was

proved to make the power vector converge to the optimal power vector P ∗ in case the

SINR threshold of β is feasible.

9



2.1.3 FM-PCA in the infeasible case

In this section, we analyze the FM-PCA in the infeasible scenario (β > β0), to study

how the power and SINR evolves in this case. We first prove that the transmission

power for all links diverges in this case as the algorithm evolves. As a consequence of

diverging powers, the interference power at the receiver for all links also diverges and

then we will analyze the algorithm after neglecting the finite receiver noise term N0 to

establish a useful result for FM-PCA in the infeasible case. Here we will consider the

step size ε ∈ (0, 1). The case of ε = 1 can be worked out similarly.

Plug Eq: (2.1) into Eq: (2.6) and the evolution of power of link i according to FM-PCA

can be expressed as

Pi ← (1− ε)Pi + ε Pi
β

giiPi

N0 +
N∑

j=1, j 6=i
gijPj

(2.7)

Pi ← (1− ε)

(
Pi +

εβ

1− ε

N∑
j=1, j 6=i

zijPj

)
+
εβN0

gii
(2.8)

So the evolution of power vector P can be expressed as

P ← (1− ε) A P + C (2.9)

where A is an N × N matrix such that A(i, i) = 1,∀i ∈ {1, 2, ..., N} and A(i, j) =

c Z(i, j) , ∀i, j ∈ {1, 2, ..., N}, i 6= j, and c =
εβ

1− ε
. C is anN×1 matrix with entries

C(i, 1) =
εβN0

gii
, i = 1, 2, ..., N

We first prove two lemmas relating the eigen pairs of the matrices Z and A.
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Lemma 1 The matrices Z and A have the same set of eigen vectors.

Proof 1 Let κ1
Z , κ

2
Z ,...,κNZ be the eigen values of the positive matrixZ and let J1

Z , J
2
Z , ..., J

N
Z

be the corresponding eigen vectors. Let κ1
A, κ

2
A, ..., κ

N
A be the eigen values of the posi-

tive matrix A and let J1
A, J

2
A, ..., J

N
A be the corresponding eigen vectors. Let us express

the matrix Z as Z = I +Z ′, where I is the N ×N Identity matrix and Z ′ is an N ×N

matrix such that Z ′(i, i) = 0,∀i and Z ′(i, j) = Z(i, j), ∀i, j, i 6= j.

The matrix A can be expressed as A = I + c Z ′, where I is the N ×N Identity matrix.

For some i ∈ {1, 2, ..., N}, we have ZJ iZ = κiZJ
i
Z =⇒ (I + Z ′)J iZ = κiZJ

i
Z

=⇒ J iZ + Z ′J iZ = κiZJ
i
Z =⇒ Z ′J iZ = (κiZ − 1)J iZ .

Thus J iZ is an eigen vector of Z ′ also. We have,

AJ iZ = (I + c Z ′)J iZ = (1 + c (κiZ − 1))J iZ (2.10)

So J iZ is an eigen vector of matrixA also with the eigen value (1+c (κiZ−1)). Similarly

for every eigen vector J iA of A with eigen value κiA, J iA is also an eigen vector of matrix

Z with eigen value (1 +
(κiA − 1)

c
). Thus we can conclude that the matrices A and Z

have the same set of eigen vectors. Hence the lemma.

Henceforth, J iZ , i ∈ {1, 2, ..., N} will denote the eigen vector of matrices Z and A with

eigen values κiZ and κiA respectively.

Lemma 2 κ1
A = 1 + c (κ1

Z − 1) is the dominant eigen vector for the matrix A. i.e.

|κ1
A| > |κiA| ,∀i ∈ {2, 3, ..., N}.

Proof 2 Assume that for some j ∈ {2, 3, ..., N}, κjA is the dominant eigen value of

the positive matrix A. So κjA satisfies |κjA| > |κiA| ∀i ∈ {1, 2, ..., N}\{j}. As κjA is

the dominant eigen value of A, κjA satisfies κjA ∈ R+ and κjA > 1. Also as κ1
Z is the

dominant eigen value of Z, κ1
Z satisfies κ1

Z ∈ R+ and κ1
Z > 1.
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Consider κ1
A = 1 + c(κ1

Z − 1). We have κ1
A ∈ R+ and κ1

A > 1.

Now we have, |κjA| > |κ1
A| =⇒ κjA > κ1

A

=⇒ 1 + c(κjZ − 1) > 1 + c(κ1
Z − 1)

=⇒ κjZ > κ1
Z =⇒ |κjZ | > |κ1

Z |

But this is not possible as κ1
Z is the dominant eigen value of positive matrix Z. Hence

our assumption is wrong and κ1
A indeed is the dominant eigen value of the positive

matrix A.

Let us ignore the matrix C in the iteration given by Eq: (2.9) and consider the evolution

of power according to the following update rule

P ← (1− ε) A P (2.11)

Say the update occurs at time t = 0, 1, 2, .... Let P (0), P (1), P (2), ... denote the power

vector at times t = 0, 1, 2, ... due to iteration given by (2.9), where P (0) is the initial

power vector. Starting from the same power vector P (0) as above let P̃ (1), P̃ (2), ...

be the sequence of power vectors due to iteration given by Eq: (2.11). As C contains

entries that are strictly positive, it is clear that for all t = 1, 2, ... we have P̃ (t) < P (t).

Let us decompose the initial power vector P (0) as P (0) =
N∑
i=1

pi0 J
i
Z .

Assume that the starting power vector P (0) has entries that are strictly positive. Then

from Zander (1992a), we have

lim
t→∞

P̃ (t) = p1
0 (1− ε)t (κ1

A)t J1
Z , where p1

0 > 0. (2.12)

Now (1 − ε)κ1
A = (1 − ε)(1 +

εβ

1− ε
(κ1

Z-1)) = 1 − ε +
εβ

β0

> 1 as β > β0 due to

infeasibility.
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So as t → ∞, P̃i(t) → ∞, ∀i ∈ {1, 2, ..., N}. Now since P̃i(t) → ∞, we have

Pi(t) → ∞, ∀i ∈ {1, 2, ..., N} Hence in the infeasble scenario, the interference power

at the receiver of all links grows without bounds and hence we can ignore the finite

receiver noise term of N0.

Let us say that at some finite time T ≥ 1, we ignore the term N0. For any starting power

vector P (0) with non negative components, note that the power vector at time T , P (T )

will have entries that are strictly positive. Let us decompose the power vector P (T ) as

P (T ) =
N∑
i=1

piT J
i
Z . With the term N0 ignored, the power evolves according to FM-PCA

as

P ← (1− ε) A P (2.13)

Then similar to above section, we have

lim
t→∞

P (t) = p1
T (1− ε)t (κ1

A)t J1
Z , where p1

T > 0 (2.14)

Hence from (Zander, 1992a), we have as t → ∞ , SINRi[P (t)] → β0. Thus when the

SINR threshold of β is not feasible for the network, FM-PCA will make the SINR for all

the links converges to β0 given by Eq: (2.3).

We illustrate these ideas using simulations of FM-PCA done in MATLAB. Figure: 2.1

shows the location of links for the network we consider. For this network, we first

execute FM-PCA using a threshold SINR β of 1, which is infeasible. From Figure:

2.2 we see that the power of all the users diverges and from Figure: 2.3 we see that

the SINR for all the links converges a constant (β0). We then execute FM-PCA using

a threshold SINR β of 0.1 which is feasible. From Figure: 2.4 we see that the power

vector converges to a constant (P ∗) and from Figure: 2.5 we see that the SINR for all

the links converges to the threshold SINR.
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Figure 2.1: Tx-Rx Locations

Figure 2.2: Threshold SINR infeasible scenario
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Figure 2.3: Threshold SINR infeasible scenario

Figure 2.4: Threshold SINR feasible Scenario
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Figure 2.5: Threshold SINR feasible scenario

2.2 SINR Adaptation Model

In this channel model, the transmission rate is a concave function of SINR. The trans-

mission rate for link i is given by the following expression

Ratei[P ] = C log (1 + SINRi[P ]) ,where C > 0 (2.15)

2.3 Activation Vector

For both the channel models sharing of channel in time between the different users

could be necessary so as to achieve data rates that are not possible otherwise. For a
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network of N links we have 2N − 1 possible non-idle transmission states. Define a set

E = {0, 1}N\(0, 0, ..., 0) that will be used to denote the set of all non-idle transmission

states. An element e ∈ E will be called an activation vector and is a 0 − 1 vector of

length N such that the ith component of e, ei is 1 if link i is transmitting in this state

and 0 otherwise. We will also refer the activation vector e as a set e such that i ∈ e

iff ei = 1. The power vector corresponding to an activation vector will be denoted as

P e = [P e
1 , P

e
2 ...., P

e
N ] where P e

i is the transmission power of link i while in activation

vector e. The transmission power P e
i satisfies the following constraint P e

i ∈ P if i ∈ e

and P e
i = 0 if i /∈ e.

So an activation vector partitions a network into many sub-networks. We can extend

the ideas related to the SINR threshold model for a network to these sub-networks as

follows

2.3.1 Activation Vector in SINR Threshold Model

We define a feasible activation vector as an activation vector e ∈ E such that there exists

a power vector P e that satisfies SINRi[P
e] ≥ β and P e

i ∈ P ∀i ∈ e and P e
i = 0 ∀i /∈

e. Then similar to the above section, we define P e∗ as the optimal power vector for

activation vector e. So SINRi[P
e∗] = β ∀i ∈ e. Then we have the condition that the

activation vector e is feasible iff P e∗
i > 0 ∀i ∈ e. Also βe0 will denote the maximum

achievable maximum common value of SINR for all links in e that can be attained by

using any power vector P e.
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CHAPTER 3

RATE STABILITY AND CAPACITY REGIONS

In this chapter, we discuss the notion of stability that we consider and also the capacity

region for the SINR models that under the three different resource allocation schemes.

3.1 Stability of Queues

The criteria for stability we consider is rate stability. According to this criterion of

stability, the queue of link i is said to be stable if the time average service rate of link i

denoted as Si satisfies the condition, Si > λi. In this report we will consider the fluid

model for queues, meaning that the data can be split into packets of arbitrarily small

units send across the channel. We will also assume that the arrival process is finitely

bounded. Using these assumptions, it was shown in (Chaporkar and Proutiere, 2013)

that the queue length of user i, Q(i) will hit zero infinitely often if link i is rate stable.

3.2 Capacity Regions

In this section we present the capacity region for the two SINR models that we consider

under the three different resource allocation schemes. The proof of these arguments

follows from the condition of rate stability that requires us to be able to find parameters

that make the time average service rate for a link strictly greater than its arrival rate.



3.2.1 SINR Threshold Model

Power Control

The condition on the network configuration, arrival rate vector λ and the power con-

straint set P is the following

∃ P such that

SINRi[P ] ≥ β, ∀i ∈ {1, 2, ..., N} (3.1)

Pi ∈ P ,∀i ∈ {1, 2, ..., N} (3.2)

λi < 1, ∀i ∈ {1, 2, ..., N} (3.3)

Scheduling

Then the conditions on the network configuration, arrival rate vector λ and the power

constraint set P is the following

∃ E(f) = {e1, e2, ..., eK} ⊆ E

such that ∀ek ∈ E(f) and with P ek = Pt [I{ek1=1}, I{ek2=1}, ..., I{ekN=1}]
T

we have ,

SINRi[P
ek ] ≥ β, ∀i ∈ ek (3.4)

Pt ∈ P (3.5)

∃µ = [µ1, µ2, ..., µK ]T
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such that

λi =
K∑
k=1

µk I{eki =1}, ∀i ∈ {1, 2, ..., N} (3.6)

0 ≤ µk < 1, ∀k ∈ {1, 2, ..., K} (3.7)

K∑
k=1

µk < 1 (3.8)

µk is the fraction of time activation vector ek ∈ E(f) will be used by the network.

Joint Power Control and Scheduling

The the conditions on the network configuration, arrival rate vector and the power

constraint set P is the following

∃ E(f) = {e1, e2, ..., eK} ⊆ E

such that ∀ek ∈ E(f), ∃ P ek such that

SINRi[P
ek ] ≥ β, ∀i ∈ ek (3.9)

P ek

i ∈ P ∀ek ∈ E(f) and ∀i ∈ ek (3.10)

∃ µ = [µ1, µ2, ..., µK ]T

such that

λi =
K∑
k=1

µk I{eki =1}, ∀i ∈ {1, 2, ..., N} (3.11)
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0 ≤ µk < 1, ∀k ∈ {1, 2, ..., K} (3.12)

K∑
k=1

µk < 1 (3.13)

3.2.2 SINR Adaptation Model

Power Control

∃ P such that

λi < Ratei[P ], i = 1, 2, ..., N (3.14)

Pi ∈ P ,∀i ∈ {1, 2, ..., N} (3.15)

Scheduling

∃ E(f) = {e1, e2, ..., eK} ⊆ E

and ∃µ = [µ1, µ2, ..., µK ]T

such that

∀ek ∈ E(f) and with P ek = Pt [Iek1=1, Iek2=1, ..., IekN=1]

we have

λi =
K∑
k=1

µk Ratei[P
ek ], i = 1, 2, ..., N (3.16)

0 ≤ µk < 1, ∀k ∈ {1, 2, ..., K} (3.17)
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K∑
k=1

µk < 1 (3.18)

µk is the fraction of time activation vector ek ∈ E(f) will be used by the network.

Joint Power Control and Scheduling

∃ E(f) = {e1, e2, ..., eK}

and ∃ P ek , and ∃µ = [µ1, µ2, ..., µK ]T

such that

λi =
K∑
k=1

µk Ratei[P
ek ], i = 1, 2, ..., N (3.19)

P ek

i ∈ P ∀i ∈ ekand∀ek ∈ E(f) (3.20)

0 ≤ µk < 1, ∀k ∈ {1, 2, ..., K} (3.21)

K∑
k=1

µk < 1 (3.22)

µk is the fraction of time activation vector ek ∈ E(f) will be used by the network.
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CHAPTER 4

DISTRIBUTED ALGORITHM FOR SINR

THRESHOLD MODEL UNDER JOINT POWER

CONTROL AND SCHEDULING

4.1 Throughput Optimal Resource Allocation

In this section, we discuss how, from the capacity region conditions, a distributed

throughput optimal algorithm can be obtained for the SINR threshold model under joint

power control and scheduling. From the capacity region, we see that to be able to

support an arrival process with arrival rate vector λ, we are required to solve a power

problem and a scheduling problem. In this section we describe how these two problems

can be solved.

4.1.1 Power Problem

Power problem constitutes of finding the set of all feasible activation vectors E(f) =

{e1, e2, ..., eK} and a power vector P ek that satisfies the SINR constraints for all the

users in activation vector ek simultaneously. However using Theorem:1 the feasibility

or infeasibility of activation vector is decided by the optimal power vector P ek∗. Hence

by executing FM-PCA for a link i in activation vector e ∈ E, we can determine if the

activation vector is feasible or not as follows

• Power P e
i converges to a constant P e∗

i and SINR converges to β. In this case
activation vector e is feasible.



• Power P e
i diverges and SINR converges to βe0 < β. In this case activation vector e

is infeasible.

4.1.2 Scheduling Problem

The scheduling problem constitutes finding a parameters µ that will make the time aver-

age service rate for a link i greater than its time average arrival rate. We first formulate

a Linear Program whose optimal point will be shown to satisfy this service rate require-

ment for any arrival rate vector in the capacity region.

Consider the following Linear Program (LP) in variables ν = [ν1, ν2, ..., νk]
T

minimize

L(ν) =
K∑
k=1

νk

subject to

si ≥ λi , i = 1, 2, ..., N

νk ≥ 0 , k = 1, 2, ..., K

where, si =
K∑
k=1

νk I{eki =1} , i = 1, 2, ..., N

Let ν∗ be the optimal point for the above LP.

In the above formulation νk is the duration of time feasible activation vector ek ∈ E(f)

will be used by the network exactly once before being taken up again. If the channel is

24



never left idle, then we have the following relation between the variable µk and νk

µk =
νk
K∑
l=1

νl

(4.1)

The term si will be called virtual service rate of link i and it is related to the time average

service rate Si as

Si =
si
K∑
l=1

νl

(4.2)

Theorem 2 If the arrival rate vector λ lies in the capacity region, then at ν∗ we have

Si > λi ,∀i ∈ {1, 2, ..., N}.

Proof 2 Since the arrival rate vector λ lies in the capacity region, we have from capac-

ity region equation a point µ′ = [µ′1 , µ
′
2 , ..., µ

′
K ] that satisfies ,

λi =
K∑
k=1

µ′k I{eki =1}, ∀i ∈ {1, 2, ..., N} =⇒ si = λi , ∀i ∈ {1, 2, ..., N}

0 ≤ µ′k < 1, ∀k ∈ {1, 2, ..., K} =⇒ µ′k ≥ 0 ,∀k ∈ {1, 2, ..., K}

From the above two conditions, we see that the point µ′ lies in the feasible set of the

Linear Program.

Now since ν∗ is the optimal point of the LP, we have

K∑
k=1

ν∗k ≤
K∑
k=1

µ′k < 1 =⇒
K∑
k=1

ν∗k < 1

Also we have
K∑
k=1

ν∗k > 0, or else si ≥ λi condition cannot be met for any link i with a

strictly positive arrival rate λi.

Now we have at ν∗

si ≥ λi, ∀i ∈ {1, 2, ..., N}
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=⇒ Si =
si
K∑
l=1

νl

> si ≥ λi.

Hence to solve the LP, every link tries to minimize their channel usage while maintain-

ing their virtual service rate greater than or equal to their arrival rate.

Theorem 3 Any arrival rate λ in the capacity region can be supported by using at most

N activation vectors.

Proof 3 Similar to Theorem: 1 we can convert the LP into standard form and then the

result follows from (Luenberger and Ye, 2008, Section 2.4)

It turns out that the above LP cannot be solved directly in a distributed manner. Hence,

to find the optimal point ν∗ in a distributed manner, we formulate the following un-

constrained convex optimization problem parameterized by a scalar Θ. This convex

program is an approximation to the above linear program. Θ > 0 is called the penalty

factor and the approximation gets better as Θ ↓ 0.

Barrier Program

minimize

L(ν,Θ) =
K∑
k=1

νk −Θ
N∑
i=1

log(si − λi)−Θ
K∑
k=1

log(νk)

where, si =
K∑
k=1

νk I{eki =1}, i = 1, 2, ..., N and Θ > 0.

Let ν∗(Θ) be the solution to Barrier Program. From (Boyd and Vandenberghe, 2004,

Section 11.2.1), we have the relation,

ν∗ = lim
Θ↓0

ν∗(Θ) (4.3)
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We show later that the point ν∗(Θ) can be reached in a distributed manner as the gradient

of the objective function L(ν,Θ) can be computed in a distributed manner thus enabling

us to solve the scheduling problem in a distributed manner by choosing an appropriately

small enough value for penalty factor Θ.

Solving barrier program using gradient descent

As the objective function in barrier program, L(ν,Θ) is a convex function, its optimal

point can be reached using gradient descent. The gradient for the objective function

L(ν,Θ) is given by

∇νL(ν,Θ) =

[
∂L(ν,Θ)

∂ν1

,
∂L(ν,Θ)

∂ν2

, ...,
∂L(ν,Θ)

∂νK

]T
(4.4)

where
∂L(ν,Θ)

∂νk
= 1−Θ

1

νk
−Θ

N∑
i=1

I{eki =1}

si − λi
, k = 1, 2, ..., K (4.5)

The gradient descent algorithm for finding the parameters ν works as follows. Every

discrete time slot indexed by t, update the parameter ν as

ν(t+ 1)← ν(t)− α(t) ∇ν(t) L(ν(t),Θ) (4.6)

Where α(t), t = 1, 2, ... is a sequence such that α(t) > 0,
∞∑
t=1

α(t) =∞,
∞∑
k=1

α(t)2 <∞.

4.2 Distributed Algorithm

In this section we present our distributed algorithm for the SINR threshold model under

joint power control and scheduling. We assume that there is a feedback channel from
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the receiver to the transmitter that reports the SINR at the receiver and that this feedback

is instantaneous. We also assume that the receiver will be able to detect any infinitesi-

mal change in interference in the network. We also assume that the propagation delay,

sensing delay etc is zero. We also assume that the transmitter i knows its own arrival

rate λi.

We describe our algorithm below

The Distributed algorithm has the following phases.
A Initialization Phase (IP).

B Activation Vector and
Transmit Power Identification Phase (AVTPIP).

C Activation Vector Indexing Phase (AVIP).

D Data Frame Phase (DFP).

4.2.1 Initialization Phase

In this phase, the objective is to establish a unique index for all the links in the network

and also to identify the total number of links in the network. We present an algorithm

that every link will execute in the beginning. We assume that time is divided into slots

of length σ. The odd slots will be used for capturing the channel in order to obtain an

index for the link. A link that has not been indexed so far, will choose to transmit a

message to all the links in the network with some probability p > 0. The other links in

the network will listen to this message and increment the number of indexed links. The

index of the link will be the order in which it’s timer fired with respect to other links.

In case of a collision in an odd slot, the links that are involved in the collision will use

the next even slot and transmit a message to inform other links in the network about the

collision so that they can decrement the number of indexed links. We also keep an upper

limit on the number of consecutive idle odd slots W , so that all the unindexed links will
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transmit message in the W th consecutive odd slot with probability 1. So W consecutive

idle slots would indicate the links to exit the IP.

Assume that the update occurs at discrete time slots indexed by t = 1, 2, .... Link i

executes the following algorithm.

IP ALGORITHM

Link i initializes the following
• The number of Links that hasn’t been indexed so far,
index = 0

• Link i indexed status, indexedi = No

• The no. of consecutive odd idle slots before the current odd slot, idle_slots = 0

• The variable that indicates if Link i has suffered a collision in the odd slot,
collide = 0

every time slot t, do

1) if t is an odd slot
1.1) if indexedi = No. Link i hasn’t been indexed so far and will try to use the

channel in this slot with probability p given by

p =
idle_slots+ 1

W

1.1.1) Choose Ui = unif(0, 1). Link i chooses the value of random variable Ui
uniformly at random from (0, 1) interval.

1.1.2) if Ui ≤ p. Link i will then use the channel in the current time slot to get an
index.

1.1.2.1) Transmit Intent

1.1.2.2) Update the following

idle_slots = 0 , index = index+ 1

1.1.2.3) if collision occurs. Two or more links tried to use the channel.

1.1.2.3.1) Update

collide = 1 , index = index− 1
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1.1.2.4) if collision did not occur. Indexing is done in the current time slot.

1.1.2.4.1) Update

Link_indexi = index , indexed = Y es

1.1.3) if Ui > p. Link i will not use the channel in the current time slot to get an
index.

1.1.3.1) if channel is Busy. At least one link in the network tried to get an index
in the current time slot.

1.1.3.1.1) Update the following

index = index+ 1 , idle_slots = 0

1.1.3.2) if channel is Idle. None of the links that are unindexed so far tried to
get an index in the current time slot.

idle_slots = idle_slots+ 1

1.2) if indexedi = Y es. Link i has been indexed.

1.2.1) if channel is Busy. At least one link in the network tried to get an index in
the current time slot.

1.2.1.1) Update the following

idle_slots = 0 , index = index+ 1

1.2.2) if channel is Idle. None of the links that are unindexed so far tried to get an
index in the current time slot.

1.2.2.1) Update the following

idle_slots = idle_slots+ 1

1.2.2.2) if idle_slots = W

1.2.2.2.1) Set

N = index

1.2.2.2.2) Exit IP

2) if t is an even slot
2.1) if collide = 1. Link i encountered a collision in the previous odd slot.

2.1.1) Transmit Intent

2.1.2) Update
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collide = 0

2.2) if collide = 0. Link i did not encounter a collision in the previous odd slot.

2.2.1) if channel is Busy

2.2.1.1) Update

index = index− 1

———————————————————————————————————

After the execution of this algorithm, link iwill have a unique index given byLink_indexi

and all links will infer the value of N . They would then execute the next phase in the

distributed algorithm.

4.2.2 Activation Vector and Transmit Power Identification Phase

For E(f) ⊆ E define for i ∈ {1, 2, ..., N} a set Ei(f) ⊆ E(f) such that Ei(f) =

{e ∈ E(f)|ei = 1}. So Ei(f) is the set of all feasible activation vectors that link i is

contained in. In this phase, every link i in the network tries to figure out the set Ei(f)

and also the transmission power P e
i , ∀e ∈ Ei(f). For m ∈ {0, 1, ..., 2N −1}, {m}2 will

denote the N length binary equivalent of decimal number m. Assume that the update

occurs at discrete time slots indexed by t = 1, 2, .... We will abuse the notation and let

SINRi[t] and Ii[t] to denote SINRi[P (t)] and Ii[P (t)] where P(t) is the power vector

at time t. Link i executes the following algorithm.

AVTPIP ALGORITHM

Link i initializes the following
• activation vector e = {m}2, where m = 2N − 1

• The transmission power of Link i at the beginning of every slot, pi = 0

31



• The initial value of SINR at the receiver of link i, SINRi[0] = 0

every time slot t, do

1) if t is an odd slot
1.1) if link i is contained in activation vector e

1.1.1) Update power pi as

pi ← (1− ε)pi + ε pi
β

SINRi[t− 1]

1.1.2) Transmit with power pei

1.1.3) Update Ii[t] , SINRi[t] from channel

1.1.4) if {Ii[t]} has converged. Activation vector e is feasible

1.1.4.1) Update the following

exiti = 1

P e
i = pi , pi = 0 , Ei(f) = Ei(f) ∪ e

1.1.5) if {Ii[t]} has not converged but {SINRi[t]} has converged. Activation vec-
tor e is infeasible

1.1.5.1) Update the following

pi = 0 , exiti = 1

1.2) if Link i is not contained in activation vector e

1.2.1) Update Ii[t] from channel

2) if t is an even slot
2.1) if Link i is contained in activation vector e

2.1.1) Transmit with power pi

2.1.2) if exiti = 0

2.1.2.1) Update Ii[t] from channel

2.1.2.2) if Ii[t] is less than Ii[t− 1]

2.1.2.2.1) if SINRi[t− 1] ≥ β. Activation vector e is feasible
2.1.2.2.1.1) Update the following
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P e
i = pi , pi = 0 , Ei(f) = Ei(f) ∪ e

2.1.2.2.2) if SINRi[t− 1] < β. Activation vector e is infeasible
2.1.2.2.2.1) Update the following

pi = 0

2.1.2.3) Update the following

m = m− 1 , e = {m}2 , SINRi[t] = 0

2.1.3) if exiti = 1

2.1.3.1) Update the following

exiti = 0

m = m− 1 , e = {m}2 , SINRi[t] = 0

2.2) if Link i is not contained in activation vector e

2.2.1) Update Ii[t] from the channel

2.2.2) if Ii[t] is less than Ii[t− 1]

2.2.2.1) Update the following

m = m− 1 , e = {m}2 , SINRi[t] = 0

2.3) if m = 0

2.3.1) Exit AVTPIP

———————————————————————————————————

4.2.3 Activation Vector Indexing Phase

In this phase, the objective is to figure out the set E(f) from the knowledge of the set

Ei(f), ∀i ∈ {1, 2, ..., N}. Assume that the update occurs at discrete time slots indexed

by t = 1, 2, .... Link i executes the following algorithm.

AVIP ALGORITHM
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Link i initializes the following
• activation vector e = {m}2, where m = 2N − 1

• set of all feasible activation vectors E(f) = φ

every time slot t, do

1) if Link i is contained in activation vector e
1.1) if e ∈ Ei(f). Activation vector e is feasible, and hence Channel will taken up by

the Link.

1.1.1) Transmit using Power P e
i

1.1.2) Update the following as

k = k + 1 , ek = e , E(f) = E(f) ∪ {ek}

2) if Link i is not contained in activation vector e
2.1) if channel is Busy. This indicates that activation vector e is feasible.

2.1.1) Update the following as

k = k + 1 , ek = e , E(f) = E(f) ∪ {ek}

3) Update the following as

m = m− 1 , e = {m}2

4) if m = 0

4.1) set K = k

4.2) Exit AVIP

———————————————————————————————————

4.2.4 Data Frame Phase

After executing the Initialization Phase, Activation Vector and Transmit Power Identifi-

cation Phase, Activation Vector Indexing Phase, link i becomes aware of the set E(f)
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and their corresponding optimal Power P e∗
i corresponding to each of these activation

vectors e ∈ E(f). Now they must figure out the parameters ν∗k ,∀k ∈ {1, 2, ..., K}.

We will call data frame as the period of time during which all the activation vectors

e ∈ E(f) will be executed once sequentially. In a data frame, one link will update

the parameters νk,∀k ∈ {1, 2, ..., K} which will be observed from the channel by other

links and stored. After N data frames, the links update the parameters based on the

updated parameters in previous N data frames.

Link i executes the following algorithm

DFP ALGORITHM

Link i initializes the following parameters

m = 0 , Big_µ = [1, 1, ..., 1] , si = |Ei(f)|

scale_1 = 1 , scale_2 = 1 , Θ = Θ0

for each data frame m, do

1) Update the following

m = m+ 1

2) Deterministically choose a Link to update the parameters in the current data frame

whose index is idx, given by

idx = 1 +mod(m− 1, N)

3) Link i now proceeds to transmit data in the data frame according to the following rule

3.1) if idx = Link_indexi. Link i is responsible for updating the parameter ν in the
current data frame

for each e1, e2, ..., eK in E(f)
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• Transmit Data with Power P ek

i for duration νk, where

νk = Big_uk −
ε1

scale_1
(1− Θ

Big_uk
− ΘN

(si − λi)
I{eki =1}) (4.7)

• Wait for σ amount of time

• Store

uidxk = νk

end for

3.2) if idx 6= Link_indexi. Link i is not responsible for updating the parameter ν in
the current data frame

for each e1, e2, ..., eK in E(f)

• Transmit Data with Power P ek

i for duration ν̂k, where

ν̂k = Big_uk −
ε1

scale_1
(1− Θ

Big_uk
) (4.8)

• Observe νk from the Channel

• Wait for σ amount of time

• Store

uidxk = νk

end for

4) if idx = N . After every N data frames, the parameter Big_u is updated as follows

Big_u = (1− ε2)Big_u+ ε2
1

N
(
N∑
i=1

ui) (4.9)

si =
K∑
k=1

Big_uk I{eki =1}

scale_1 = scale_1 + 1
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5) if mod(m−1,MN) = MN −1. After every MN data frames check if convergence

has occurred.

if Big_u has converged. The penalty factor Θ is updated as follows

scale_1 = 1

scale_2 = scale_2 + 1

Θ =
Θ0

scale_2

———————————————————————————————————

Theorem 4 The distributed algorithm makes the parameters ν converge to ν∗.

Proof 4 Plug Eq: (4.7) into Eq: (4.9) through Eq: (4.8) and we have, after N data

frames, the kth component of Big_u, Big_uk updated as

Big_uk ← (1− ε2)Big_uk+

ε2
N

(
N∑
i=1

Big_uk −
ε1

scale_1
(1− Θ

Big_uk
− ΘN

(si − λi)
I{eki =1})) (4.10)

=⇒ Big_uk ← Big_uk−

ε2 ε1
scale_1

(1− Θ

Big_uk
−

N∑
i=1

Θ

(si − λi)
I{eki =1}) (4.11)

From the above update equation, we can see that the distributed algorithm behaves

similar to gradient descent algorithm that minimizes the Loss function L(ν,Θ). So the

distributed algorithm drives the parameter Big_u to ν∗(Θ). After MN data frames the
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parameter Θ is decremented if the variable Big_u has converged. Hence for appropri-

ately small step size parameters for the gradient descent algorithm, we have as Θ ↓ 0,

ν∗(Θ)→ ν∗ as desired.
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CHAPTER 5

DISTRIBUTED ALGORITHM FOR SINR

ADAPTATION MODEL UNDER SCHEDULING

In this chapter we show how the framework proposed developed for the SINR threshold

model can be used for the SINR adaptation model under scheduling.

In this physical layer model, as the rate is a continuous function of SINR, we will be

able to get a non-zero transmission rate for any activation vector e ∈ E. Hence we will

consider each of the activation vectors e ∈ E to be a feasible activation vector. Let

e1, e2, .., eK be the elements of E where K = 2N − 1. For this channel model, as the

users will be transmitting at fixed power levels, we only have to solve the scheduling

problem. Similar to the SINR threshold model, we formulate the problem of finding

a point µ that makes all the queues rate stable from the knowledge of the arrival rate

vector λ as an LP. A barrier problem is then formulated which is then solved using

gradient descent algorithm in a distributed manner. We highlight only the key steps in

this section.

5.1 Scheduling Problem

The problem of finding a parameter µ that makes all the links from the knowledge of

the arrival rate vector λ can be posed as an optimization problem given below. Then a

barrier problem can be formulated which is then solved in a distributed manner.



minimize

L(ν) =
K∑
k=1

νk

subject to

si ≥ λi , i = 1, 2, ..., N

νk ≥ 0 , k = 1, 2, ..., K

where, si =
K∑
k=1

νk Ratei[P
ek ] where P ek = Pt [I{ek1=1}, I{ek2=1}, ..., I{ekN=1}]

T and

Ratei[P ] is computed according to Eq: (2.15).

5.2 Distributed Algorithm

We know describe the distributed algorithm below

5.2.1 Initialization Phase

The links execute the IP algorithm.

5.2.2 Transmission Rate Identification Phase

In this phase the objective is to find the transmission rate Ratei[P ek ] a link gets while

in activation vector ek. In this phase we have 2N − 1 time slots, one corresponding to

each of the activation vectors ek ∈ E. In the kth time slot, links in activation vector
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ek will transmit with power Pt and other links will remain silent. So in the kth time

slot, each transmitter can figure out the parameter Ratei[P ek ] by knowing the value of

SINRi[P
ek ] which is fed back by its corresponding receiver.

5.2.3 Data frame phase

The links execute the DFP algorithm similar to the SINR threshold case but here the

difference will be that the virtual service rate for link i, si will be calculated as si =
K∑
k=1

νk Ratei[P
ek ]. The rest of the algorithm and proof remains same.
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CHAPTER 6

SIMULATIONS

Simulations were done in MATLAB for the above distributed algorithm for the SINR

threshold model. We consider a network of 10 links. Figure: 6.1 shows the location

of links. The gain coefficients were computed using the standard path loss function

gij = α rij
−η ∀ i, j ∈ {1, 2, ..., N}. Queue lengths plot vs time for the links is shown

in Figure: 6.2. Note that t = 0 in the plot corresponds to the starting point for the

DFP, with the initial queue lengths being non-zero due to the data arrivals during the

first three phases of the algorithm. A loading factor of 0.99 was used for the simulation

and the arrival rate was chosen randomly using this loading factor. Table: 6.1 lists the

different parameters and results of the simulation.

Table 6.1: Simulation Parameters

Parameter Value Parameter Value Parameter Value
N 10 W 12 M 10
α 1 η 3 N0 10−9

Θ0 5 ε1 0.001 ε2 1
σ 10−4 β 1 ε 0.50

Parameter Value

E(f)

{6, 8} {6, 7} {5, 10} {5, 8}
{5, 7} {3, 5} {1, 10} {1, 9}
{1, 8} {1, 7} {1, 4} {1, 3}
{1, 2} {1} {2} {3}
{4} {5} {6} {7}
{8} {9} {10}

From Figure: 6.2 we see that the queue length of users initially increases till the algo-

rithm reaches the stopping criteria. From that point onwards the queue lengths stabi-

lizes. This illustrates that our algorithm makes the queues bounded.



Figure 6.1: Link locations on a 20 × 12 grid

Figure 6.2: Queue length evolution
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CHAPTER 7

CONCLUSION

In this thesis we proposed distributed throughput optimal algorithms for two SINR mod-

els. The first model we studied is the SINR threshold model. The proposed algorithm

was proved to be throughput optimal under joint power control and scheduling scheme.

We first formulated the capacity region and showed that to support an arrival process,

we need to know quantities such as the set of all feasible activation vectors, the power

vector (optimal) for the feasible activation vectors and the fraction of time each of the

activation vectors must be used. We decoupled such a problem in that we first solved

the problem of finding the optimal power vectors for each of the feasible activation vec-

tors and then solved the problem of finding the fraction of time each of these activation

vectors has to be used. A similar approach was used to propose a throughput optimal

algorithm for second channel model under scheduling.

Although our algorithms require an exponential amount of time in number of users for

convergence, we emphasize that throughput optimal algorithms are always NP-Hard

in general and hence this complexity would be reflected in the queue lengths or in the

computational complexity. One of the drawbacks of this work is that the algorithm needs

to be restarted whenever a user joins/leaves the network. However if the timescale in

which changes occur in the network is slow compared to the timescale required for

convergence this will not be a major problem.
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