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ABSTRACT

KEYWORDS: Sum capacity, Interference channel, MIMO, X channel, MAC,

TIN.

The two-user Gaussian X channel is similar to the Gaussian interference channel con-

sisting of two transmitters and two receivers, but with each transmitter having an inde-

pendent message to each receiver. Sum-rate capacity of Gaussian X channel is investi-

gated in this work. The sum-rate capacity of scalar Gaussian X channel is determined

to within constant number of bits in a sub-region of the mixed interference regime. It is

shown that using Gaussian codebooks and Multiple Access channel(MAC) scheme at

either receiver achieves the sum rate within constant number of bits to the sum capacity

of scalar Gaussian X channel in this sub-region of the mixed interference regime. In

mixed interference regime, regions corresponding to n bits gap from MAC scheme are

also determined.

The sum capacity of the two-user MIMO Gaussian X channel is determined in the

noisy interference regime. This sum capacity is achieved by using Gaussian codebooks

for the messages on both the direct links (or both the cross links) and treating the in-

terference from the cross links (or direct links) as noise. The sufficient conditions for a

MIMO Gaussian X channel to be in noisy interference regime are obtained. The dual

channel of a GXC is defined and used in proving the results. The sum capacity for

MISO and SIMO GXC’s, which are special cases of MIMO GXC, are also obtained.
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CHAPTER 1

Introduction

In multi-user wireless networks, nodes are distributed spatially and share the same com-

munication medium. When the nodes send information to the intended receivers, they

cause interference to the unintended receivers. As a result the performance of the entire

network is limited by the interference. So, interference networks have become the sub-

ject of interest and many efforts have been made trying to characterize and to improve

the performance of the network by establishing different optimal strategies.

A simple interference network is an interference channel (IC), whose capacity re-

gion is still an open problem. The capacity region is known only in few special cases.

Interestingly, [1] showed that the interference does not affect the capacity region of

Gaussian interference channel (GIC), if it is sufficiently high. The best known achiev-

able inner bound is the Han-Kobayashi (HK) region [19], whose calculation is practi-

cally impossible. It uses message splitting (common and private) and joint decoding at

the receivers. Chong et al., [7] simplified the description of the HK region. Various

outer bounds on IC and GIC were proposed by [2], [4], [15], [20]. Sato [10] determined

the capacity region of a GIC in strong interference regime and defined the strong and

very strong interference regimes for a general IC. Costa and El Gamal [13] established

the capacity region in strong interference regime for a general IC. Sato [8] described the

outer bound on degraded GIC. In [12], Costa showed the equivalence between the class

of Gaussian Z interference channel (GZIC) and the degraded GIC. Kramer [5] obtained

two outer bounds to the GIC, one by using genie aided method and optimizing over it

and the other by using [8], [12] results. Etkin et al., [15] showed that the HK inner

bound is to within 1 bit to the capacity region of GIC and also obtained the Generalized

Degrees of Freedom (GDOF), which is defined for SNR approaching infinity. Sum-rate

optimality of treating interference as noise for a GIC in low interference regime was

shown by [20], [25]. Sason [11] obtained an achievable rate region and proved that in

high power regime TDMA/FDMA is a suboptimal strategy for sum-rate.



Shang et al., [23] have generalized the known capacity results of scalar GIC to vec-

tor (MIMO) GIC. [26] introduced the concept of generally strong interference where

the capacity is achieved by jointly decoding the signal and the interference at receivers

and it is only required for the capacity achieving input distribution. Optimality of treat-

ing interference as noise in the low interference regime for MIMO GIC was discussed

in [21].

“Z” channel, which was introduced in [18], is another simple interference network.

An achievable rate region of Gaussian Z Channel (GZC) with very strong crossover link

gain was established in [18]. The inner and outer bounds for GZC with weak crossover

link gain and the capacity region of GZC with unity crossover link gain were derived in

[14]. Chong et al., in [6], derived the capacity region of GZC with moderately strong

crossover link gain and obtained outer bounds for strong crossover link gain. Degrees

of freedom results on MIMO IC, ZC, X channel under certain conditions were obtained

in [17], [3], [16]. In [3], Huang et al., showed the achievability of the sum capacity by

treating interference as noise for scalar Gaussian X channel (GXC) in noisy interference

regime, which is same as for GIC.

In this work, we obtain sum capacity of vector Gaussian X channel in the noisy

interference by using the similar genie chosen in [3] along with the proof technique

used in [21] for the MIMO Gaussian IC. Results for the SIMO and MISO GXC in the

noisy interference are obtained. We also show the sum capacity of scalar GXC to be

within a 1 bit gap to the sum rate achieved by the MAC at either receiver in a sub-region

of the mixed interference regime. Genie aided method is used in proving these results.

The main motive for considering simple networks is that intuition gained from their

analysis can be generalized later to multi-terminal networks.

1.1 Organization of Thesis

The organization of thesis is as follows.

• Chapter 2 summarizes the known capacity results of Gaussian interference chan-
nels, Z interference channel and Z channel.

• Chapter 3 describes the sum capacity of scalar X channel to be within constant

2



gap from sum-rate achieved by the MAC at either receiver in a sub-region of the
mixed interference regime.

• Chapter 4 describes the sum capacity of MIMO X channel in the noisy interfer-
ence regime.

• Chapter 5 presents the simulation and numerical results of sum capacity of X
channel.

• Chapter 6 concludes the thesis by discussing the scope for future work.

3



CHAPTER 2

Gaussian Interference Channel and “Z” Channel

In this chapter we discuss the known capacity results of two user Gaussian interference

channel, Z interference channel and Z channel. We also provide few results on Degrees

of Freedom (DOF) of MIMO channels.

2.1 System Model of Gaussian Interference Channel

Let us consider a two user scalar Gaussian IC given by (2.1), (2.2). It is shown in the

Fig. 2.1.

Y
′

1 = h11X
′

1 + h12X
′

2 + V1, (2.1)

Y
′

2 = h21X
′

1 + h22X
′

2 + V2, (2.2)

where X ′
i is the transmitted signal of transmitter i, hij is the channel coefficient from

transmitter j to receiver i and Y ′
i is the received signal at receiver i. Vi ∼ N (0, σ2

i ) and

is i.i.d. across time. Assume X ′
i , Y

′
i , hij and Vi to be real valued scalars. The average

power constraint on transmitter i over an n length block is 1
n

∑n
k=1E

[
X

′

ik

2
]
≤ P

′
i .

X
′
1

h11

h22

h12

h21

V1

V2

X
′
2

Y
′

1

Y
′

2

Figure 2.1: Two user Gaussian interference channel



2.1.1 Standard GIC

In [1], it is shown that a GIC can be transformed into a standard GIC of the form (2.3),

(2.4). Both channels are equivalent in the sense of achieving same capacity region. This

can be achieved using scaling transformations.

Y1 = X1 + aX2 + Z1, (2.3)

Y2 = bX1 +X2 + Z2, (2.4)

where a = h12σ2
h22σ1

, b = h21σ1
h11σ2

and h11, h22 6= 0 with the power constraints on each

transmitter are given by P1 =
h211
σ2
1
P

′
1, P2 =

h222
σ2
2
P

′
2. Xi is the transmitted signal of

transmitter i, a, b are channel coefficients and Yi is the received signal at receiver i.

Zi ∼ N (0, 1) and is i.i.d. across time. In the rest of discussion GIC will refer only to

the standard form.

X1

1

1

a

b

Z1

Z2

X2

Y1

Y2

Figure 2.2: Two user standard Gaussian interference channel

Messages are uniformly generated at independent sources. Rate Ri is defined as

Ri = log2Mi

n
, where Mi is the cardinality of message set at the encoder of transmitter

i and n is the symbol duration. A code (2nR1 , 2nR2 , n) has two encoding and two de-

coding functions. Encoder of transmitter i has an encoding function fi that maps the

message into a codeword. The decoder of receiver i has a decoding function gi that

maps the received codeword into a message.

fi : {1, 2, ..., 2nRi} 7→ X n
i

5



gi : Yni 7→ {1, 2, ..., 2nRi}

The probability of error in decoding the transmitted message at receivers is

P
(n)
e1 =

1

M1M2

M1∑
j=1

M2∑
k=1

Pr {g1(Y n
1 ) 6= j|W1 = j,W2 = k} ,

P
(n)
e2 =

1

M1M2

M1∑
j=1

M2∑
k=1

Pr {g2(Y n
2 ) 6= k|W1 = j,W2 = k} .

Define λ(n) = max{P (n)
e1 , P

(n)
e2 }. A rate pair (R1, R2) is achievable if there exists a

sequence of codes (2nR1 , 2nR2 , n) such that λ(n) → 0 as n → ∞. Capacity region is

defined as the closure of all achievable rate pairs.

2.2 Interference Regimes

The capacity results of GIC are broadly divided based on the parameter values (a, b).

2.2.1 Very Strong Interference Regime

A discrete memoryless IC is said to be in very strong interference regime if it satisfies

the conditions

I(X1;Y2) ≥ I(X1;Y1|X2), (2.5)

I(X2;Y1) ≥ I(X2;Y2|X1), (2.6)

for all input product distributions p(x1)p(x2). The capacity region is given by,

R1 ≤ I(X1;Y1|X2, Q), (2.7)

R2 ≤ I(X2;Y2|X1, Q), (2.8)

for some pmf p(q)p(x1|q)p(x2|q), whereQ is a time sharing random variable . A similar

condition for GIC (but not equivalent) is a2 ≥ 1+P1, b ≥ 1+P2 and the capacity region

6



is given by

R1 ≤
1

2
log(1 + P1), (2.9)

R2 ≤
1

2
log(1 + P2). (2.10)

The capacity is achieved using the scheme successive decoding of interference and

cancelling it out. Carleial proved, in [1, Theorem 7], that interference doesnot reduce

the capacity if it is sufficiently high, then the capacity region is same as that of no

interference case.

Remark 1 The GIC with very strong interference may not satisfy the conditions (2.5), (2.6).

2.2.2 Strong Interference Regime

A discrete memoryless IC is said to be in strong interference regime if it satisfies the

conditions

I(X1;Y2|X2) ≥ I(X1;Y1|X2), (2.11)

I(X2;Y1|X1) ≥ I(X2;Y2|X1), (2.12)

for all input product distributions p(x1)p(x2). Costa et al., in [13], proved the capacity

region of DMIC with strong interference to be

R1 ≤ I(X1;Y1|X2, Q), (2.13)

R2 ≤ I(X2;Y2|X1, Q), (2.14)

R1 +R2 ≤ min {I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)} , (2.15)

for some pmf p(q)p(x1|q)p(x2|q), where Q is a time sharing random variable. It is the

intersection region of two MAC capacity regions at receiver 1 and 2. An equivalent

7



condition for GIC is a2 ≥ 1, b ≥ 1 and the capacity region is given by

R1 ≤
1

2
log(1 + P1), (2.16)

R2 ≤
1

2
log(1 + P2), (2.17)

R1 +R2 ≤ min

{
1

2
log(1 + P1 + a2P2),

1

2
log(1 + b2P1 + P2)

}
. (2.18)

The capacity is achieved using the scheme joint decoding of both interference and signal

at each receiver. Sato proved, in [10], the above result on GIC.

Remark 2 The very strong interference is the subregime of strong interference. It can

be observed that any channel that satisfies the very strong interference conditions also

satisfies strong interference conditions.

2.2.3 Mixed Interference Regime

A GIC is said to be in mixed interference if a2 > 1, b2 < 1 or a2 < 1, b2 > 1. Consider

the case a2 < 1, b2 > 1 without loss of generality and the sum-rate capacity is known

in this regime which is given by

Csum = min

{
1

2
log

(
1 +

P1

1 + a2P2

)
+

1

2
log(1 + P2),

1

2
log
(
1 + b2P1 + P2

)}
(2.19)

The sum-rate capacity is achieved by the scheme joint decoding of interference and

signal at receiver 2 and treating interference as noise at receiver 1. Converse part of

the result is proved using Gaussian Z interference channel (GZIC). Refer to section 2.3

for results of GZIC. Two GZIC’s can be formed by removing interference links. Each

GZIC will perform better than the underlying GIC because of the lack of interference

link. So the sum-rate capacity of each GZIC is an outer bound (2.19) to GIC.

For the case a2 > 1, b2 < 1, the sum capacity result is obtained by interchanging a, b

and also the indices.

8



2.2.4 Noisy Interference Regime

It is the sub-regime of weak interference regime (a2 < 1, b2 < 1). It is defined as

the regime in which treating interference as noise is sum-rate optimal. The sufficient

condition is given by

∣∣a (1 + b2P1

)∣∣+
∣∣b (1 + a2P2

)∣∣ ≤ 1, (2.20)

and the sum capacity is given by

Csum =
1

2
log

(
1 +

P1

1 + a2P2

)
+

1

2
log

(
1 +

P2

1 + b2P1

)
. (2.21)

This result was proved in [21] by giving the appropriate side information to the re-

ceivers. The genie is chosen to satisfy usefulness and smartness conditions given in

[21] and showed that (2.21) is the outer bound if (2.20) is satisfied. The same result was

also proved independently in [25] by deriving the outer bound.

2.2.5 Other Known Results

• In [5], Kramer derived two outer bounds for the Gaussian interference channel.
First outer bound is derived by giving genie to receiver 1 and optimizing it. Sec-
ond one is derived using GZIC outer bound, results of [9], [12]. Proving it re-
quires transmitter cooperation with power constraint P1 +P2. It also showed that
second bound is better than the first in weak interference regime.

• Etkin et al., in [15], showed that capacity region of Gaussian interference channel
is within one bit to the simple Han-Kobayashi scheme. In this genie aided outer
bound was derived and showed the gap between outer and the inner bound is
within one bit.

• A few other improved outer bounds were derived in [25], [20].

• Sason, in [11], proved that in high power regime with moderate interference
TDM/FDM scheme is sum capacity sub optimal.

9
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2.3 Gaussian Z Interference Channel

The system model of Gaussian Z interference channel is same as the Gaussian interfer-

ence channel with b = 0 and is given by

Y1 = X1 + aX2 + Z1, (2.22)

Y2 = X2 + Z2. (2.23)

X1

1

1

a

Z1

Z2

X2

Y1

Y2

Figure 2.3: Two user Gaussian Z interference channel

Table 2.2: Summarized capacity results of Gaussian Z interference channel.

Parameter range Capacity region Sum-rate capacity

1 a2 ≥ 1 + P1

R1 ≤ 1
2

log(1 + P1)

R2 ≤ 1
2

log(1 + P2)

1
2

log(1 + P1) + 1
2

log(1 + P2)

2 1 ≤ a2 ≤ 1 + P1

R1 ≤ 1
2

log(1 + P1)

R2 ≤ 1
2

log(1 + P2)

R1 +R2 ≤
1
2

log(1 + P1 + a2P2)

1
2

log(1 + P1 + a2P2)

3 a2 ≤ 1 —– 1
2

log
(

1 + P1

1+a2P2

)
+ 1

2
log(1 + P2)

First two cases in the table 2.2 are similar to GIC very strong interference and strong

interference respectively. So the same arguments of GIC can be applied to GZIC in de-

riving the results. For the case a2 < 1, Costa , in [12], showed the equivalence between
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GZIC and degraded GIC. Sato [9] determined the outer bound and sum capacity of de-

graded GIC. So GZIC with a2 < 1 should have the same sum capacity as degraded

GIC.

2.4 MIMO Gaussian IC

The system model for MIMO Gaussian IC is given as following.

y1 = H11x1 + H12x2 + z1, (2.24)

y2 = H21x1 + H22x2 + z2. (2.25)

where xi is a ti× 1 vector, yi, zi are ri× 1 vectors, Hij is ri× tj channel matrix and ti,

rj are the number of antennas at the transmitter i, receiver j respectively. Noise vector

zi ∼ CN (0, Iri×ri) and is i.i.d. across time. The average covariance constraint on the

ith transmitter over an n symbol duration is

1

n

n∑
k=1

E
[
xikx

†
ik

]
� Si. (2.26)

x1

H11

H22

H12

H21

z1

z2

x2

y1

y2

Figure 2.4: MIMO Gaussian interference channel

The following results on MIMO GIC were stated and proved in [23]. Let us define

Bi = {B|all columns of B†are in the null space of Si}.
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2.4.1 Very Strong Interference

The conditions for very strong interference MIMO IC are derived in the same way as

scalar GIC . If a MIMO IC with H12 6= 0,H21 6= 0 satisfies

log
∣∣∣I + H11S1H

†
11 + H12S2H

†
12

∣∣∣ ≥ log
∣∣∣I + H11S1H

†
11

∣∣∣+ log
∣∣∣I + H12S2H

†
12

∣∣∣(2.27)

log
∣∣∣I + H21S1H

†
21 + H22S2H

†
22

∣∣∣ ≥ log
∣∣∣I + H21S1H

†
21

∣∣∣+ log
∣∣∣I + H22S2H

†
22

∣∣∣(2.28)

then the capacity region is given by

R1 ≤ log
∣∣∣I + H11S1H

†
11

∣∣∣ , (2.29)

R2 ≤ log
∣∣∣I + H22S2H

†
22

∣∣∣ . (2.30)

The capacity region is achieved by successive decoding of interference and signal at

receivers.

2.4.2 Aligned Strong Interference

The conditions for aligned strong interference are that H11,H22 should be linear trans-

formations of H21,H12. The capacity region is similar to scalar GIC with strong inter-

ference, where joint decoding at receivers is used to achieve the capacity. If there exist

matrices A1,A2,B1 and B2 such that

H11 = A1H21 + B1, (2.31)

H22 = A2H12 + B2, (2.32)

where AiA
†
i � I and B ∈ Bi, i = 1, 2 then the capacity region of a MIMO IC is

R1 ≤ log
∣∣∣I + H11S1H

†
11

∣∣∣ , (2.33)

R2 ≤ log
∣∣∣I + H22S2H

†
22

∣∣∣ , (2.34)

R1 +R2 ≤ log
∣∣∣I + H11S1H

†
11 + H12S2H

†
12

∣∣∣ , (2.35)

R1 +R2 ≤ log
∣∣∣I + H21S1H

†
21 + H22S2H

†
22

∣∣∣ . (2.36)

13



2.4.3 Noisy Interference

A MIMO IC is said to have noisy interference if sum-rate capacity is achieved as by

treating interference as noise. If there exist matrices Ai,B ∈ Bi and Hermitian positive

definite matrices Σi, i = 1, 2 such that

A†1A1 � Σ1 � I−A2Σ
−1
2 A†2, (2.37)

A†2A2 � Σ2 � I−A1Σ
−1
1 A†1, (2.38)

H21 = A†1

(
I + H12S2H

†
12

)−1

H11 + B1, (2.39)

H12 = A†2

(
I + H21S1H

†
21

)−1

H22 + B2, (2.40)

then the sum capacity of a MIMO IC with noisy interference is

log

∣∣∣∣I + H11S1H
†
11

(
I + H12S2H

†
12

)−1
∣∣∣∣+ log

∣∣∣∣I + H12S2H
†
12

(
I + H21S1H

†
21

)−1
∣∣∣∣

(2.41)

Similar conditions on MIMO IC with noisy interference under average power constraint

were derived in [21, Theorem 1], by using useful and smart genie for finding an outer

bound on sum capacity.

2.4.4 Mixed Aligned Interference

In mixed aligned interference MIMO IC one link satisfies strong aligned interference

condition and other satisfies weak interference condition. If there exist matrices A1,A2,

B1 and B2 such that

H11 = A1H21 + B1, (2.42)

H12 = A†2H22 + B2, (2.43)
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where AiA
†
i � I and B ∈ Bi, i = 1, 2 then the sum capacity of a MIMO IC with mixed

aligned interference is

min


log
∣∣∣I + H21S1H

†
21 + H22S2H

†
22

∣∣∣ ,
log

∣∣∣∣I + H11S1H
†
11

(
I + H12S2H

†
12

)−1
∣∣∣∣+ log

∣∣∣I + H22S2H
†
22

∣∣∣ .
 (2.44)

This result is proved similar to scalar GIC by bounding the sum capacity of MIMO GIC

by two MIMO GZIC’s and showing the achievability of it.

2.4.5 Generally Strong Interference

As we discussed in the section 2.3, the very strong interference is the subregime of

strong interference for scalar Gaussian IC but this is not the case with MIMO IC. There

exists channels that satisfy very strong interference conditions but not strong aligned

interference conditions. The very strong interference condition for GIC is more general

than DMIC condition, which is stringent requiring all input distributions to satisfy. But

very strong interference condition is to be satisfied only by the capacity achieving dis-

tribution. This kind of condition also relaxes the strong interference condition, where

jointly decoding interference and signal achieves the capacity. With the above moti-

vation Shang et al.,, in [26], introduced the concept of generally strong interference,

which includes both strong and very strong interference cases as subcases.

Definition 1 An IC is said to have generally strong interference if the capacity region is

achieved by jointly decoding the signal and the interference at each receiver or equiv-

alently if its capacity region is given as follows

R1 ≤ I(X1;Y1|X2, Q), (2.45)

R2 ≤ I(X2;Y2|X1, Q), (2.46)

R1 +R2 ≤ min {I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)} , (2.47)

where Q is a time sharing random variable

Definition 2 An IC is said to have generally strong interference at (R1, R2) if (R1, R2)

15



is on the boundary of the capacity region and it satifies (2.45),(2.46),(2.47) for some

input distributions of X1 and X2 or equivalently if (R1, R2) is achieved by jointly de-

coding the signal and the interference at each receiver.

For any further reading refer to [26], [22]

2.5 Gaussian Z Channel

The channel model of Gaussian Z channel is same as GZIC (2.22), (2.23) but the re-

ceiver 2 has independent message to each receiver. Fig. 2.5 indicates the GZC. Wij is

W11

W12

W22

Enc.1

Enc.2

X1 1

1

a

Z1

Z2

Dec.1

Dec.2

Ŵ11

Ŵ12

Ŵ22
X2

Y1

Y2

Figure 2.5: Gaussian Z channel

the message from transmitter j to receiver i.The rate triplet (R11, R12, R22) is said to

be achievable if there is a reliable transmission of all messages. The capacity region

is defined as closure of achievable rate triplets . This channel was first introduced and

studied in [18]. Inner bounds, outer bounds and sum capacity are known for this chan-

nel. The capacity results are classified based on the crossover link gain and are given as

follows. We will define γ(x) = 1
2

log(1 + x)

2.5.1 Weak Crossover Link

GZC’s with crossover link gain a2 < 1 are defined to have weak crossover link. Liu,

Ulukus studied this channel in [14] and derived inner and outer bounds. The achievable

16



region, which is an inner bound, is given as follows. For any 0 ≤ β ≤ 1

R11 ≤ γ

(
P1

a2βP2 + 1

)
, (2.48)

R12 ≤ γ

(
a2(1− β)P2

a2βP2 + 1

)
, (2.49)

R22 ≤ γ(βP2), (2.50)

R11 +R12 ≤ γ

(
P1 + a2(1− β)P2

a2βP2 + 1

)
. (2.51)

This inner bound is derived using superposition coding at transmitter 2 with Gaussian

codebooks and βP2 power allocated to W22 and also using successive decoding at both

the receivers. The outer bound is given by proving the converse. For some 0 ≤ β ≤ 1,

achievable rate triplet (R11, R12, R22) has to satisfy the following conditions

R12 ≤ γ

(
a2(1− β)P2

a2βP2 + 1

)
, (2.52)

R22 ≤ γ(βP2), (2.53)

R11 +R12 ≤ γ

(
P1 + a2(1− β)P2

a2βP2 + 1

)
. (2.54)

The sum capacity of GZC with weak crossover link is 1
2

log(1+P2)+ 1
2

log(1+ P1

1+a2P2
).

It is achieved by setting R12 = 0 and treating interference as noise at receiver 1.

2.5.2 Unity Crossover Link Gain

This is the case when a2 = 1. The capacity region of GZC with unity crossover link

gain is

R11 ≤
1

2
log(1 + P1), (2.55)

R12 +R22 ≤
1

2
log(1 + P2), (2.56)

R11 +R12 +R22 ≤
1

2
log(1 + P1 + P2). (2.57)

This was also proved in [14] by finding an equivalent channel and using the arguments

of [12]. In the equivalent channel the receivers are able to decode all the messages

forming MAC.
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2.5.3 Strong Crossover Link

A GZC is said to have a strong crossover link if a2 > 1. Chong et al., in [6], derived the

inner and outer bounds for this case. The achivable rate region is given as the convex

closure of all rate triplets satisfying

R11 ≤ γ (P1) , (2.58)

R12 ≤ γ
(
a2βP2

)
, (2.59)

R22 ≤ γ

(
(1− β)P2

1 + βP2

)
, (2.60)

R11 +R12 ≤ γ
(
a2βP2 + P1

)
, (2.61)

R11 +R12 +R22 ≤ γ
(
a2P2 + P1

)
. (2.62)

for any 0 ≤ β ≤ 1. This is derived in [6] by showing the correspondence between GZC

with strong crossover link and degraded ZC of type II. Rate splitting, superposition

coding at transmitters and joint decoding at receivers is used in deriving the achievable

rate region. The outer bound is given by proving the converse. For some 0 ≤ β ≤ 1,

achievable rate triplet (R11, R12, R22) has to satisfy the following conditions

R11 ≤ γ (P1) , (2.63)

R12 ≤ γ
(
a2βP2

)
, (2.64)

R22 ≤ γ

(
(1− β)P2

1 + βP2

)
, (2.65)

R11 +R12 +R22 ≤ γ
(
a2P2 + P1

)
. (2.66)

The sum capacity for GZC with strong crossover link is 1
2

log(1 + P1 + a2P2). This is

achieved by setting R22 = 0, which forms a MAC at receiver 1. Then the sum capacity

achieved by MAC is the sum capacity of GZC.

2.5.4 Moderately Strong Crossover Link

The condition for moderately strong crossover link GZC is 1 < a2 < 1 + P1. It is a

special case of strong crossover link GZC (a2 > 1) for which the capacity region is
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known. The capacity region is the convex closure of rate triplets satisfying

R11 ≤ γ (P1) , (2.67)

R12 ≤ γ
(
a2βP2

)
, (2.68)

R22 ≤ γ

(
(1− β)P2

1 + βP2

)
, (2.69)

R11 +R12 +R22 ≤ γ
(
a2P2 + P1

)
. (2.70)

for some 0 ≤ β ≤ 1. It is derived in [6, Theorem 8] by showing that all rate triplets in

the outer bound of strong crossover link GZC are achievable. If a2 > 1 + P1 then GZC

is known as very strong crossover link GZC. The achievable rate region is given by the

achievable rate region of strong crossover link GZC without (2.62), which is redundant.

This region was determined in [18] using superposition coding and successive decoding.

2.6 Degrees of Freedom

Degrees of Freedom (DOF) of a channel is defined as

η = lim
ρ→∞

CΣ(ρ)

log ρ
, (2.71)

where CΣ(ρ) is the sum capacity for a signal to noise ratio (SNR) (ρ). The basic idea

behind degrees of freedom is that how the sum capacity scales with SNR as it tends

to infinity. Etkin et al., in [15] determined the DOF of scalar Gaussian interference

channel. For various MIMO systems DOF results can be found in [17], [16] and they

are summarized below. Assume full rank channel matrices.

For point to point channel with M inputs and N outputs the DOF is

η(PTP ) = min(M,N).

For MAC channel with M1, M2 inputs at respective transmitters and N outputs at the

receiver the DOF is

η(MAC) = min(M1 +M2, N).
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Similarly for a broadcast channel with M inputs at the transmitter and N1, N2 outputs

at respective receivers the DOF is

η(BC) = min(M,N1 +N2).

For an interference channel with M1, M2 inputs at respective transmitters and N1, N2

outputs at respective receivers the DOF is

η(IC) = min{M1 +M2, N1 +N2,max(M1, N2),max(M2, N1)}.

Outer bound on the DOF of MIMO Z channel was derived in [17]. Consider a MIMO

Z channel with M1, M2 inputs at transmitters 1, 2 respectively and N1, N2 outputs at

receivers 1, 2 respectively , the bound on DOF is given by

η(Z) ≤ min(N1,M2).

In [17], Jafar and Shamai determined the DOF of MIMO X channel for a special case

of all nodes having equal number of antennas M , M 6= 1, to be 4
3
M . Interference

alignment was used in proving the result. Degree of freedom was generalized to degrees

of freedom region in [15],[17].
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CHAPTER 3

Sum Capacity of Scalar “X” Channel to within a

Constant Gap

“ How close is the sum rate achieved by the MAC at either receiver 1 or 2 to the sum

capacity of the Gaussian X channel? ” is the question we will answer in this chapter.

We will prove the results for a sub-region of the mixed interference regime

3.1 System Model

A scalar Gaussian X channel in the standard form is given by

Y1 = X1 + aX2 + Z1, (3.1)

Y2 = bX1 +X2 + Z2, (3.2)

where Z1, Z2 ∼ N (0, 1) and i.i.d in time. Transmitter i has an average power constraint

Pi i.e., 1
n

∑n
k=1E [X2

ik] ≤ Pi. In the X channel each transmitter is having separate and

independent messages for receivers. See Fig. 3.1.

W11

W21

W12

W22

Enc.1

Enc.2

X1 1

1

a

b

Z1

Z2

Dec.1

Dec.2

Ŵ11

Ŵ12

Ŵ21

Ŵ22
X2

Y1

Y2

Figure 3.1: Two user scalar Gaussian X channel



3.1.1 MAC Strategy

The MAC strategy at a receiver i is obtained by setting Wj1,Wj2 = φ, where j 6= i, at

transmitters 1, 2 and decoding Wi1,Wi2 at receiver i. MAC strategy at receiver 1 is sum

rate optimal for Gaussian Z channel with strong crossover link gain. So it’s natural to

think whether MAC strategy is sum-rate optimal or not.

3.2 On the Sum Rate Achieved by MAC at Receiver 1

Theorem 1 For a Gaussian X channel with a2 ≥ 1, η2 ≤ 1 and ηρ = b(a2P2 + 1)

the sum-rate capacity will be within the the gap 1
2

log2

(
1− ρ2

a2P2+1

1−ρ2

)
bits to the sum rate

achieved by using MAC at receiver 1.

Proof: Consider the genie-aided X channel with the side information S1 given

to the receiver 1. See Fig. 3.2. Let the side information be S1 = bX1 + ηW where

W ∼ N (0, 1) is correlated with Z1 and ρ is the correlation coefficient. We will find the

outer bound on the sum capacity of the genie-aided channel which in turn is an outer

bound to the original X channel.

n(R11 +R12 +R21 +R22) = H(W11,W12,W21,W22) (3.3)

= I(W11,W12,W21,W22;Y n
1 , S

n
1 )

+H(W11,W12,W21,W22|Y n
1 , S

n
1 ) (3.4)

W11

W21

W12

W22

Enc.1

Enc.2

X1 1

1

a

b

Z1

Z2

Dec.1

Dec.2

Ŵ11

Ŵ12

Ŵ21

Ŵ22
X2

Y1

Y2

S1

Figure 3.2: Genie-aided scalar Gaussian X channel
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Let us bound the term H(W11,W12,W21,W22|Y n
1 , S

n
1 ) using Fano’s inequality and

also derive the required conditions.

H(W11,W12,W21,W22|Y n
1 , S

n
1 ) = H(W11|Y n

1 , S
n
1 ) +H(W12|Y n

1 , S
n
1 ,W11)

+H(W21|Y n
1 , S

n
1 ,W11,W12)

+H(W22|Y n
1 , S

n
1 ,W11,W12,W21) (3.5)

(a)

≤ H(W11|Y n
1 , S

n
1 ) +H(W12|Y n

1 , S
n
1 ) +H(W21|Sn1 )

+H(W22|Y n
1 ,W11,W21) (3.6)

Step (a) follows from the fact that conditioning reduces the entropy. The first two terms

in (3.6) can be bounded by n(ε1 + ε2). The next two terms can be bounded if certain

conditions are met. Let us consider the fourth term, as we know H(W22|Y n
2 ) ≤ nε4 at

receiver 2.

H(W22|Y n
2 ) ≤ nε4 ⇒ H(W22|Y n

2 ,W11,W21) ≤ nε4 (3.7)

⇒ H(W22|bXn
1 +Xn

2 + Zn
2 ,W11,W21) ≤ nε4 (3.8)

⇒ H(W22|Xn
2 + Zn

2 ,W11,W21) ≤ nε4 (3.9)

H(W22|Y n
1 ,W11,W21) = H(W22|Xn

1 + aXn
2 + Zn

2 ,W11,W21) (3.10)

= H(W22|Xn
2 +

Zn
2

a
,W11,W21) (3.11)

If a2 ≥ 1, Xn
2 +

Zn2
a

is less noisy version than Xn
2 + Zn

2 , then (3.11) is bounded by nε4.

Now consider the third term, as we know H(W21|Y n
2 ) ≤ nε3 at receiver 2.

H(W21|Y n
2 ) ≤ nε3 ⇒ H(W21|Y n

2 ,W12,W22) ≤ nε3 (3.12)

⇒ H(W21|bXn
1 +Xn

2 + Zn
2 ,W12,W22) ≤ nε3 (3.13)

⇒ H(W21|bXn
1 + Zn

2 ) ≤ nε3 (3.14)

H(W21|Sn1 ) = H(W21|bXn
1 + ηW n) (3.15)
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If η2 ≤ 1, bXn
1 + ηW n is less noisy version than bXn

1 + Zn
2 , then (3.15) is bounded by

nε3. As a result H(W11,W12,W21,W22|Y n
1 , S

n
1 ) ≤ n(ε1 + ε2 + ε3 + ε4).

n(R11 +R12 +R21 +R22 − ε) ≤ I(W11,W12,W21,W22;Y n
1 , S

n
1 ) (3.16)

= h(Y n
1 , S

n
1 )− h(Y n

1 , S
n
1 |W11,W12,W21,W22)

(b)

≤ nh(Y1G, S1G)− nh(Z1,W ) (3.17)

= nI(X1G, X2G;Y1G, S1G) (3.18)

= nI(X1G, X2G;Y1G) + nI(X1G, X2G;S1G|Y1G)

(3.19)

Step (b) is due to Gaussian distribution maximizes the entropy.

Now consider I(X1G, X2G;S1G|Y1G) = I(X1G;S1G|Y1G) + I(X2G;S1G|Y1G, X1G),

where first term on R.H.S can be made zero iff ηρ = b(a2P2 + 1).

I(X1G; bX1G + ηW |X1G + aX2G + Z1) = 0 (3.20)

⇔ E

[
ηW (aX2G + Z1)

b

]
= E

[
(aX2G + Z1)2

]
(3.21)

The second term on R.H.S I(X2G;S1G|Y1G, X1G) corresponds to the gap between the

sum capacity and sum rate achieved by MAC at receiver 1.

I(X2G;S1G|Y1G, X1G) = I(X2G; bX1G + ηW |X1G + aX2G + Z1, X1G) (3.22)

= h(bX1G + ηW |X1G + aX2G + Z1, X1G) (3.23)

− h(bX1G + ηW |X1G + aX2G + Z1, X1G, X2G)(3.24)

= h(ηW |aX2G + Z1)− h(ηW |Z1) (3.25)

=
1

2
log2

(
1− ρ2

a2P2+1

1− ρ2

)
bits (3.26)

The sum capacity of genie-aided X channel, which is the outer bound on the sum capac-

ity of original X channel, is given by (3.27). I(X1G, X2G;Y1G) is the achievable sum

rate of original X channel using the MAC strategy at receiver 1 and 1
2

log2

(
1− ρ2

a2P2+1

1−ρ2

)
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is the atmost gap between the sum capacity and sum rate achieved by MAC at receiver 1.

CGA−X
sum = I(X1G, X2G;Y1G) +

1

2
log2

(
1− ρ2

a2P2+1

1− ρ2

)
(3.27)

3.2.1 Region Corresponding to n bits Gap from MAC at Receiver 1

by Theorem 1

ρ correspondindg to the n bits gap is given as follows

1

2
log2

(
1− ρ2

a2P2+1

1− ρ2

)
≤ n (3.28)

ρ2 ≤ (22n − 1)

(22n − 1
a2P2+1

)
(3.29)

The region corresponding to the n bits gap is given by a2 ≥ 1, b2 ≤ (22n−1)
(22n(a2P2+1)−1)(a2P2+1)

3.2.2 Another Set of Conditions by Giving Different S1

Theorem 2 For a Gaussian X channel with b2 ≤ 1, η2 ≤ 1 and ηρ = P1+1
a

the sum-rate

capacity of X channel will be within the the gap 1
2

log2

(
1− ρ2

P1+1

1−ρ2

)
bits to the sum rate

achieved by using MAC at receiver 1.

Proof: Consider the side information S1 = X2 + ηW , where W ∼ N (0, 1)

is correlated with Z1 and ρ is the correlation coefficient. Let us expand the term

H(W11,W12,W21,W22|Y n
1 , S

n
1 ) little differently from (3.5) and bound it using Fano’s
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inequality by deriving the required conditions.

H(W11,W12,W21,W22|Y n
1 , S

n
1 ) = H(W11|Y n

1 , S
n
1 ) +H(W12|Y n

1 , S
n
1 ,W11)

+H(W22|Y n
1 , S

n
1 ,W11,W12)

+H(W21|Y n
1 , S

n
1 ,W11,W12,W22) (3.30)

(a)

≤ H(W11|Y n
1 , S

n
1 ) +H(W12|Y n

1 , S
n
1 ) +H(W22|Sn1 )

+H(W21|Y n
1 ,W12,W22) (3.31)

Step (a) follows from the fact that conditioning reduces the entropy. The first two terms

in (3.31) can be bounded by n(ε1 + ε2). The next two terms can be bounded if certain

conditions are met. Let us consider the fourth term, as we know H(W21|Y n
2 ) ≤ nε4 at

receiver 2.

H(W21|Y n
2 ) ≤ nε4 ⇒ H(W21|Y n

2 ,W12,W22) ≤ nε4 (3.32)

⇒ H(W21|bXn
1 +Xn

2 + Zn
2 ,W12,W22) ≤ nε4 (3.33)

⇒ H(W21|Xn
1 +

Zn
2

b
,W12,W22) ≤ nε4 (3.34)

H(W21|Y n
1 ,W12,W22) = H(W21|Xn

1 + aXn
2 + Zn

2 ,W12,W22) (3.35)

= H(W21|Xn
1 + Zn

2 ,W12,W22) (3.36)

If b2 ≤ 1, Xn
1 + Zn

2 is less noisy version than Xn
1 +

Zn2
b

, then (3.36) is bounded by nε4.

Now consider the third term, as we know H(W22|Y n
2 ) ≤ nε3 at receiver 2.

H(W22|Y n
2 ) ≤ nε3 ⇒ H(W22|Y n

2 ,W11,W21) ≤ nε3 (3.37)

⇒ H(W22|bXn
1 +Xn

2 + Zn
2 ,W11,W21) ≤ nε3 (3.38)

⇒ H(W22|Xn
2 + Zn

2 ) ≤ nε3 (3.39)

H(W22|Sn1 ) = H(W22|Xn
2 + ηW n) (3.40)
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If η2 ≤ 1, Xn
2 + ηW n is less noisy version than Xn

2 + Zn
2 , then (3.40) is bounded by

nε3. As a result H(W11,W12,W21,W22|Y n
1 , S

n
1 ) ≤ n(ε1 + ε2 + ε3 + ε4).

n(R11 +R12 +R21 +R22 − ε) ≤ I(W11,W12,W21,W22;Y n
1 , S

n
1 ) (3.41)

= h(Y n
1 , S

n
1 )− h(Y n

1 , S
n
1 |W11,W12,W21,W22)

(b)

≤ nh(Y1G, S1G)− nh(Z1,W ) (3.42)

= nI(X1G, X2G;Y1G, S1G) (3.43)

= nI(X1G, X2G;Y1G) + nI(X1G, X2G;S1G|Y1G)

(3.44)

Step (b) is due to Gaussian distribution maximizes the entropy.

Consider I(X1G, X2G;S1G|Y1G) = I(X2G;S1G|Y1G) + I(X1G;S1G|Y1G, X2G), where

first term on R.H.S can be made zero iff ηρ = P1+1
a

.

I(X2G;X2G + ηW |X1G + aX2G + Z1) = 0 (3.45)

⇔ E

[
ηW (X1G + Z1)

a

]
= E

[(
X1G + Z1

a

)2
]

(3.46)

The second term on R.H.S I(X2G;S1G|Y1G, X1G) corresponds to the gap between the

sum capacity and sum rate achieved by MAC at receiver 1.

I(X1G;S1G|Y1G, X2G) = I(X1G;X2G + ηW |X1G + aX2G + Z1, X2G) (3.47)

= h(X2G + ηW |X1G + aX2G + Z1, X2G) (3.48)

− h(X2G + ηW |X1G + aX2G + Z1, X1G, X2G) (3.49)

= h(ηW |X1G + Z1)− h(ηW |Z1) (3.50)

=
1

2
log2

(
1− ρ2

P1+1

1− ρ2

)
bits (3.51)

The sum capacity of genie-aided X channel, which is the outer bound on the sum capac-

ity of original X channel, is given by (3.52). I(X1G, X2G;Y1G) is the achievable sum

rate of original X channel using MAC strategy at receiver 1 and 1
2

log2

(
1− ρ2

P1+1

1−ρ2

)
is the

27



atmost gap between the sum capacity and sum rate achieved by MAC at receiver 1.

CGA−X
sum = I(X1G, X2G;Y1G) +

1

2
log2

(
1− ρ2

P1+1

1− ρ2

)
(3.52)

3.2.3 Region Corresponding to n bits Gap from MAC at Receiver 1

by Theorem 2

ρ correspondindg to the n bits gap is given as follows

1

2
log2

(
1− ρ2

P1+1

1− ρ2

)
≤ n (3.53)

ρ2 ≤ (22n − 1)

(22n − 1
P1+1

)
(3.54)

The region corresponding to the n bits gap is given by b2 ≤ 1, a2 ≥ (22n(P1+1)−1)(P1+1)
(22n−1)

3.3 On the Sum Rate Achieved by MAC at Receiver 2

Theorem 3 For a Gaussian X channel with b2 ≥ 1, η2 ≤ 1 and ηρ = a(b2P1 + 1) the

sum capacity of X channel will be within the the gap 1
2

log2

(
1− ρ2

b2P1+1

1−ρ2

)
bits to the sum

rate achieved by using MAC at receiver 2.

Proof: The side information S2 = aX2 + ηW is given to receiver 2 instead of

S1 to receiver 1, where W ∼ N (0, 1) is correlated with Z2 and ρ is the correlation

coefficient. By following the same approach of section 3.2 but at receiver 2 will prove

the theorem.
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3.3.1 Region Corresponding to n bits Gap from MAC at Receiver 2

by Theorem 3

ρ correspondindg to the n bits gap is given as follows

1

2
log2

(
1− ρ2

b2P1+1

1− ρ2

)
≤ n (3.55)

ρ2 ≤ (22n − 1)

(22n − 1
b2P1+1

)
(3.56)

The region corresponding to the n bits gap is given by b2 ≥ 1, a2 ≤ (22n−1)
(22n(b2P1+1)−1)(b2P1+1)

Theorem 4 For a Gaussian X channel with a2 ≤ 1, η2 ≤ 1 and ηρ = P2+1
b

the sum

capacity of X channel will be within the the gap 1
2

log2

(
1− ρ2

P2+1

1−ρ2

)
bits to the sum rate

achieved by using MAC at receiver 2.

Proof: The side information S2 = X1 + ηW is given to receiver 2 instead of

S1 to receiver 1, where W ∼ N (0, 1) is correlated with Z2 and ρ is the correlation

coefficient. By following the same approach of section 3.2.2 but at receiver 2 will prove

the theorem.

3.3.2 Region Corresponding to n bits Gap from MAC at Receiver 2

by Theorem 4

ρ correspondindg to the n bits gap is given as follows

1

2
log2

(
1− ρ2

P2+1

1− ρ2

)
≤ n (3.57)

ρ2 ≤ (22n − 1)

(22n − 1
P2+1

)
(3.58)
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The region corresponding to the n bits gap is given by a2 ≤ 1, b2 ≥ (22n(P2+1)−1)(P2+1)
(22n−1)

Remark 3 Both theorem 3 and 4 can be proved by applying theorem 1 and 2 respec-

tively to the standardized dual channel. Refer to chapter 4 for the definition of dual

channel.
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CHAPTER 4

Noisy Interference Regime: Sum Capacity of MIMO

“X” Channel

In this chapter we will derive sufficient conditions for sum-rate optimality of treating

interference as noise for MIMO X channel.

4.1 System Model

We consider the two user MIMO Gaussian XC in Fig. 4.1, which is same as the MIMO

Gaussian IC except that each transmitter has separate independent messages for both

receivers. The MIMO Gaussian XC is described by the following equations:

y1 = H11x1 + H12x2 + z1, (4.1)

y2 = H21x1 + H22x2 + z2, (4.2)

where xi is a ti× 1 vector, yi, zi are ri× 1 vectors, Hij is ri× tj channel matrix and ti,

rj are the number of antennas at the transmitter i, receiver j respectively. Noise vector

zi ∼ N (0, Iri×ri) and is i.i.d. across time. The average power constraint on the ith

transmitter over an n symbol duration is

1

n

n∑
k=1

E
[
xikx

T
ik

]
∈ Qi, (4.3)

where

Qi = {Qi : Qi � 0, tr(Qi) ≤ Pi} . (4.4)

Rate Rij is the rate of reliable transmission from transmitter j to receiver i. An

achievable rate over the MIMO Gaussian XC is charaterized by (R11, R21, R12, R22) .
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Figure 4.1: Two user MIMO Gaussian X channel

The capacity region is defined as the closure of all achievable rate tuples, and the sum

capacity is the maximum achievable sum rate R11 +R21 +R12 +R22.

4.2 Sum Capacity in the Noisy Interference Regime

The MIMO Gaussian X channel is defined by the parameters {H11,H21,H12,H22} and

the power constraints {P1, P2}. Let us denote the channel in Fig. 4.1 by GXC(H11,H21,

H12,H22, P1, P2).

Definition 3 (Dual Channel) GXC(H21,H11,H22,H12, P1, P2) is the dual channel of

GXC(H11,H21,H12,H22, P1, P2) and is shown in Fig. 4.2. It is obtained by inter-

changing the receivers and is described by the following equations:

y
′

1 = H21x
′

1 + H22x
′

2 + z
′

1

y
′

2 = H11x
′

1 + H12x
′

2 + z
′

2.

Messages W
′
11,W

′
21,W

′
12,W

′
22 in the dual channel are the same as messages W21,W11,

W22,W12 respectively, for the original channel.

Remark 4 (R11, R21, R12, R22) is achievable in the channel GXC(H11,H21,H12,H22,

P1, P2) if and only if (R
′
11, R

′
21, R

′
12, R

′
22) = (R21, R11, R22, R12) is achievable in the

channel GXC(H21,H11,H22,H12, P1, P2).
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Ŵ
′
11

Ŵ
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Figure 4.2: GXC (H21,H11,H22,H12, P1, P2)

Remark 5 GXC(H11,H21,H12,H22, P1, P2) and the dual channel GXC(H21,H11,H22,

H12, P1, P2) have the same sum capacity.

4.2.1 Treating Interference as Noise (TIN) scheme

In the Treating Interference as Noise (TIN) scheme for GXC(H11,H21,H12,H22, P1,

P2), only the two direct messages W11,W22 are sent using Gaussian codebooks and the

interference is treated as noise at both receivers. Let RX
TIN be the achievable sum rate

by treating interference as noise for given Q1,Q2 and

(Q∗1,Q
∗
2) = arg max

Qi∈Qi,i∈{1,2}
RX
TIN(Q1,Q2). (4.5)

Another TIN scheme would be to send only the two cross messages W12,W21 using

Gaussian codebooks and treat interference as noise at the receivers. This is the same as

using the TIN scheme with direct messages for the dual channel GXC(H21,H11,H22,

H12, P1, P2).

4.2.2 Noisy interference regime

First, we determine the noisy interference regime where the TIN scheme with direct

messages is sum capacity optimal. The noisy interference regime where the TIN scheme

with cross mesages is sum capacity optimal follows directly by applying the result for

direct messages to the dual channel.
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Theorem 5 If there exist matrices A1, A2, Σ1 � 0, Σ2 � 0, full rank matrices

(Q∗1,Q
∗
2) that solve problem (4.5), and they satisfy the following conditions:

Σ1 � I −A2Σ
−1
2 AT

2 (4.6)

Σ2 � I −A1Σ
−1
1 AT

1 (4.7)

(AT
1 (H12Q

∗
2H

T
12)−1H11 −H21)Q∗1 = 0 (4.8)

(AT
2 (H21Q

∗
1H

T
21)−1H22 −H12)Q∗2 = 0, (4.9)

the sum capacity of the MIMO Gaussian X channel GXC(H11,H21,H12,H22, P1, P2)

is achieved by the TIN scheme with direct messages only, and is given by:

CX
sum = RX

TIN(Q∗1,Q
∗
2) (4.10)

= max
Qi∈Qi,i∈{1,2}

1

2
log
∣∣∣I + H11Q1H

T
11

(
I + H12Q2H

T
12

)−1
∣∣∣

+
1

2
log
∣∣∣I + H22Q2H

T
22

(
I + H21Q1H

T
21

)−1
∣∣∣ . (4.11)

Proof: Consider the genie-aided channel in Fig. 4.3 with a genie providing side

information s1, W21 to receiver 1 and s2, W12 to receiver 2, where

s1 = H21x1 + w1

s2 = H12x2 + w2

and

zi
wi

 ∼ N
0,

 I Ai

AT
i Σi

.
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Ŵ11
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y2

W21 s1

s2W12

Figure 4.3: Genie-aided MIMO Gaussian X channel
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Here, s1 and s2 are chosen as for the MIMO-IC in [21], and W21 and W12 are

provided to receivers 1 and 2 respectively as in [3] for the SISO XC. Using Fano’s

inequality, we have

n(R11 +R12 − ε)

≤ I(W11,W12;yn1 , s
n
1 ,W21) (4.12)

= I(W11,W12;yn1 , s
n
1 |W21) + I(W11,W12;W21) (4.13)

(a)
= I(W11,W12; sn1 |W21) + I(W11,W12;yn1 |sn1 ,W21) (4.14)

= h(sn1 |W21)− h(sn1 |W11,W12,W21)

+ h(yn1 |sn1 ,W21)− h(yn1 |sn1 ,W11,W12,W21) (4.15)

= h(sn1 |W21)− h(H21x
n
1 + wn

1 |W11,W12,W21)

+ h(yn1 |sn1 ,W21)

− h(H11x
n
1 + H12x

n
2 + zn1 |sn1 ,W11,W12,W21) (4.16)

(b)
= h(sn1 |W21)− h(wn

1 ) + h(yn1 |sn1 ,W21)

− h(H12x
n
2 + zn1 |wn

1 ,W12) (4.17)
(c)

≤ h(sn1 |W21)− h(wn
1 ) + h(yn1 |sn1 )

− h(H12x
n
2 + zn1 |wn

1 ,W12) (4.18)

= h(sn1 |W21)− nh(w1) + h(yn1 |sn1 )

− h(H12x
n
2 + zn1 |wn

1 ,W12) (4.19)
(d)

≤ h(sn1 |W21)− nh(w1) + nh(y1G|s1G)

− h(H12x
n
2 + zn1 |wn

1 ,W12) (4.20)

where step (a) follows from the independence of the messages, step (b) follows from

the deterministic encoding of W11,W21 to xn1 , step (c) follows from the fact that condi-

tioning reduces the entropy, and step (d) is because the Gaussian distribution maximizes

the conditional entropy [21, Lemma 7].

Similarly, we have

n(R21 +R22 − ε) ≤ h(sn2 |W12)− nh(w2) + nh(y2G|s2G)

− h(H21x
n
1 + zn2 |wn

2 ,W21). (4.21)
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Adding (4.20) and (4.21), we have

n(CGA−X
sum − 2ε) ≤ [h(sn1 |W21)− h(H21x

n
1 + zn2 |wn

2 ,W21)]

+ [h(sn2 |W12)− h(H12x
n
2 + zn1 |wn

1 ,W12)]

− nh(w1) + nh(y1G|s1G)

− nh(w2) + nh(y2G|s2G), (4.22)

where CGA−X
sum is the sum capacity of the genie-aided MIMO XC. Now, consider the

first term in (4.22).

h(sn1 |W21)− h(H21x
n
1 + zn2 |wn

2 ,W21)

= h(H21x
n
1 + wn

1 |W21)− h(H21x
n
1 + zn2 |wn

2 ,W21)

(e)
= h(H21x

n
1 + wn

1 |W21)− h(H21x
n
1 + vn1 |W21)

(f)
= h(H21x

n
1 + wn

1 |W21)− h(H21x
n
1 + wn

1 + ṽn1 |W21)

= −I(ṽn1 ; H21x
n
1 + wn

1 + ṽn1 |W21)

≤ −I(ṽn1 ; H21x
n
1 + wn

1 + ṽn1 )
(g)

≤ −nI(ṽ1; H21x1G + w1 + ṽ1)

= nh(s1G)− nh(H21x1G + z2|w2)

where vn1 is the MMSE error in estimating zn2 given wn
2 and vn1 ∼ N

(
0, I −A2Σ

−1
2 AT

2

)
,

and step (e) follows from [21, Lemma 9]. In step (f), ṽn1 ∼ N
(
0, I −A2Σ

−1
2 AT

2 −Σ1

)
and is independent of wn

1 . Since the covariance matrix has to be positive semidefinite,

we get the condition (4.6). Step (f) follows since wn
1 + ṽn1 has the same marginal as vn1 .

Step (g) follows from the worst case noise result [21, Lemma 8]. Similarly, the second

term in (4.22) can also be simplified and we get condition (4.7) in the process. Overall,

we get

n(CGA−X
sum − 2ε) ≤ [nh(s1G)− nh(H21x1G + z2|w2)]

+ [nh(s2G)− nh(H12x2G + z1|w1)]

− nh(w1) + nh(y1G|s1G)

− nh(w2) + nh(y2G|s2G)
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=
2∑
i=1

nI(xiG;yiG, siG)
4
= nRGA−X

TIN (Q1,Q2) (4.23)

Therefore, we have

CGA−X
sum ≤ RGA−X

TIN (Q1,Q2) for some Qi ∈ Qi

≤ max
Qi∈Qi,i∈{1,2}

RGA−X
TIN (Q1,Q2),

resulting in

CGA−X
sum = max

Qi∈Qi,i∈{1,2}
RGA−X
TIN (Q1,Q2). (4.24)

At this point, for a given Q1, Q2 the genie-aided outer bound RGA−X
TIN (Q1,Q2) is the

same as the genie-aided outer bound in [21] for the MIMO-IC. Therefore, the remaining

steps that involve proving that the genie does not increase sum capacity, i.e., proving

the smart genie conditions (4.8), (4.9) and RGA−X
TIN (Q∗1,Q

∗
2) = RX

TIN(Q∗1,Q
∗
2), where

Q∗1,Q
∗
2 are full rank matrices, are similar to [21, Theorem 1] and are not repeated here.

Theorem 6 If there exist matrices A1, A2, Σ1 � 0, Σ2 � 0, full rank matrices

(Q∗1,Q
∗
2) which solve problem (4.5), and they satisfy the following conditions:

Σ1 � I −A2Σ
−1
2 AT

2 (4.25)

Σ2 � I −A1Σ
−1
1 AT

1 (4.26)

(AT
1 (H22Q

∗
2H

T
22)−1H21 −H11)Q∗1 = 0 (4.27)

(AT
2 (H11Q

∗
1H

T
11)−1H12 −H22)Q∗2 = 0, (4.28)

the sum capacity of GXC(H11,H21,H12,H22, P1, P2) is achieved by using the TIN

scheme with cross messages only, and is given by
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CX
sum = RX

TIN(Q∗1,Q
∗
2) (4.29)

= max
Qi∈Qi,i∈{1,2}

1

2
log
∣∣∣I + H21Q1H

T
21

(
I + H22Q2H

T
22

)−1
∣∣∣

+
1

2
log
∣∣∣I + H12Q2H

T
12

(
I + H11Q1H

T
11

)−1
∣∣∣ . (4.30)

Proof: Apply Theorem 1 to the dual channel GXC (H21,H11,H22,H12, P1, P2)

and use Remark 5.

4.3 Symmetric MISO and SIMO Gaussian XCs

Now, we state the results for the symmetric MISO and SIMO Gaussian XCs. The

main difference between the MISO and MIMO cases is in proving RGA−X
TIN (Q∗1,Q

∗
2) =

RX
TIN(Q∗1,Q

∗
2). However, given that the genie-aided outer bound RGA−X

TIN (Q1,Q2) in

Theorem 1 is the same as the bound in [21], this part remains the same as in [21,

Theorem 2] and [21, Theorem 3]. Therefore, the proofs are not included.

4.3.1 Symmetric MISO Gaussian XC

A symmetric MISO Gaussian XC can be simplified to the following standard form [21]

[22, Section 4.1]:

y1 = dTx1 + hcTx2 + z1 (4.30a)

y2 = hcTx1 + dTx2 + z2, (4.30b)

where d = [cos θ sin θ]T , θ ∈ (0, π
2
), c = [1 0]T . Note that (Q∗1,Q

∗
2) are unit rank

matrices [24] in the MISO case and not full rank as required in Theorems 5 and 6 for

the MIMO case. Here, we need to find sufficient conditions on h for the TIN scheme to

achieve sum capacity in the noisy interference regime. Following an approach similar

to [21, Theorem 2], we get the following result. We will define (x)+ = max{0, x}
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Theorem 7 The sum capacity of the MISO Gaussian X channel GXC(dT , hcT , hcT ,dT , P, P )

is given by

CX
sum =


log

(
1 +

h2P cos2 θ

1 + P
+ h2P sin2 θ

)
, h ≥ h0(θ, P )

log

(
1 +

P cos2 θ

1 + h2P
+ P sin2 θ

)
, h ≤ h1(θ, P )

(4.31)

where h0(θ, P ) and h1(θ, P ) are the positive solutions to the equations (4.32) and

(4.33), respectively.

(
1

h2
0

− sin2 θ

)
=

(
cos θ

1 + P
− 1

h0

)2

+

(4.32)

(
h2

1 − sin2 θ
)

=

(
cos θ

1 + h2P
− 1

h1

)2

+

. (4.33)

Equation (4.33) specifies the condition under which sum capacity is achieved using the

TIN scheme with direct messages only. Equation (4.32), which is obtained using the

dual channel, specifies the condition under which sum capacity is achieved using the

TIN scheme with cross messages only.

4.3.2 Symmetric SIMO Gaussian XC

A symmetric SIMO Gaussian XC can be simplified to the following standard form:

y1 = dx1 + hcx2 + z1 (4.33a)

y2 = hcx1 + dx2 + z2, (4.33b)

where d = [cos θ sin θ]T , θ ∈ (0, π
2
), c = [1 0]T . Following an approach similar to [21,

Theorem 3], we get this result.

Theorem 8 The sum capacity of the SIMO Gaussian X channel GXC(d, hc, hc,d,

P, P ) is also given by equation (4.31) where h0(θ, P ), and h1(θ, P ) are the positive

solutions to the equations (4.32) and (4.33), respectively. Under these conditions SIMO

XC achieves the same sum capacity as MISO XC.
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CHAPTER 5

Simulation

We will analyze and graphically represent the results obtained in chapters 3, 4 here.

5.1 Mixed Interference Regime of Scalar GXC: 1 bit

Gap from MAC at Receiver

Fig. 5.1 is the plot between crosslink channel coefficients a2 and b2 with power con-

straints P1 = −3 dB, P2 = −3 dB. This plot indicates four regions corresponding to

theorems in chapter 3 . In these regions sum rate achieved by MAC strategy at corre-

sponding receiver will be within n = 1 bit gap from the sum capacity of Gaussian X

channel.
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Figure 5.1: Regions indicating MAC at either receivers achieve within n = 1 bit to the
sum capacity. P1 = −3 dB, P2 = −3 dB



If the power constraint P1 or P2 are very low, these regions cover most of the mixed

interference regime i.e., a2 ≤ 1, b2 ≥ 1 or a2 ≥ 1, b2 ≤ 1.

5.2 Noisy Interference Regime of MIMO GXC

The noisy interference regime for the MISO and SIMO Gaussian XCs is illustrated in

Figure 5.2. If h is greater than h0(θ, P ), or lesser than h1(θ, P ), the sum capacity is
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Figure 5.2: Lower and upper bounds on h for MISO and SIMO Gaussian symmetric X
channel with P = 0 dB

achieved using the TIN scheme. This noisy interference regime comprises a larger set

of channels when compared to the MIMO IC result, which has only the h1(θ, P ) bound.

The bounds for SISO X channel, a special case of MISO X channel with θ = 0, are:

|h(1 + h2P )| < 0.5,

∣∣∣∣(1 + P )

h

∣∣∣∣ < 0.5 (5.1)

and were derived in [3, Theorem 6.1]. As P → ∞ , h0(θ, P ) and h1(θ, P ) curves

approach 1/ sin(θ) and sin(θ) respectively.
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CHAPTER 6

Conclusion

Sum-rate capacity results of Gaussian X channel in mixed and noisy interference regime

are derived. In mixed interference regime the sum-rate capacity of scalar Gaussian X

channel is determined to within constant number of bits from sum rate achieved by

MAC scheme. We used genie aided channel in deriving the outer bound which is in

turn outer bound to the original GXC. By varying the genie we derived another outer

bound. All these bounds together give set of conditions on the channel parameters for

n bit gap from the MAC scheme. We also observed that as powers are sufficiently low,

the set of conditions cover most of the mixed interference regime.

We also established the sum capacity of the two-user MIMO Gaussian X channel in

the noisy interference regime. Once again the genie aided technique is used to derive

the result. We also defined dual channel of a GXC which achieves same sum capacity

and made use of it in proving the conditions. The sum capacity is achieved by using

Gaussian codebooks for the messages on both the direct links (or both the cross links)

and treating the interference from the cross links (or direct links) as noise. Moreover

we derived the sum capacity for MISO and SIMO GXC’s. We also showed the existing

SISO GXC results as a special case.

We summarized known results on Gaussian interference channels and Z channels,

as some techniques known for these channels are used in proving our results.

6.1 Scope for Future Work

We can further investigate the optimal sum rate (sum capacity) achieving scheme in the

mixed interference regime. The question on the optimality of MAC scheme should also

be resolved. Characterizing the capacity region of GXC is a daunting task as it was

in the case of GIC. But efforts towards it may lead to interesting schemes, techniques



like genie aided approach and also information theoretic inequalities. Neverthless the

intuition developed for these networks can be applied to physical networks and also the

concepts can be extended to the large multi-terminal (a general scenerio) networks.
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