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ABSTRACT 

KEYWORDS: GMM; SGMM; Phone CAT; 

In this thesis, a new acoustic modelling technique, the Transform-based Phone CAT Model, 

for Speech Recognition Introduced by our Lab mates Bhargav Srinivas and Vimal M has been 

Implemented for TIMIT and some of the Indian Languages. Various simulations have been 

performed by varying different parameters involved in PhoneTxCAT and results have been 

obtained. Comparison of performance is done for various parameters and also with CDHMM and 

LDA+MLLT. The exact procedure to be followed and the various optimized parameters have 

been explained in detail. The significance of each parameter is also explained. Also, the results 

for various transform classes and UBMs have been given in detail. 
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  Chapter 1 

                                     Introduction 

The translation of speech to text is called speech recognition. The goal is to make human 

machine interaction possible. 

There is growing interest in the field of automatic speech recognition (ASR) because of its 

fascinating applications in many fields. 

 

1.1 Automatic Speech Recognition 

 

Automatic Speech Recognition mainly consists of three phases namely feature 

extraction, training and testing. Feature extraction stage extracts relevant information  from 

the speech signal. This is series of signal processing steps which try to imitate the human 

perception process. The way ear responds to different frequency bands, loudness scales 

MFCCs (provide reference) are the conventional features used for speech recognition. Speech 

signal can be assumed to be stationary over a period of 25ms. Feature extraction converts the 

speech signal into stream of MFCC vectors.  

The acoustic models which can capture the statistical behaviour and temporal 

information of a speech signal are built during the training phase. Generally statistical models 

like Hidden markov models are used for temporal pattern recognition applications like speech 

recognition. HMMs consists of states which represent a part of phone or word and the 

transition between the states capture temporal dynamics in the speech signal. The information 

that a particular  feature vector belongs to a particular state is not known. The state 

information is “hidden” and HMMs assume the samples of a speech signal as the outcomes of 

a markov process, hence the name hidden markov model. The outcomes are assumed to be 
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generated by Gaussian  Mixture model (GMM). HMMs in which each state is characterized 

by GMM is referred to as  HMM-GMM system. These models are trained using Baum-Welch 

algorithm using MFCCs and transcriptions of a speech signal. Block diagram of standard 

ASR system is shown in Fig. below 

Figure 1.1: Standard ASR System 

The same feature extraction procedure is performed during testing. The task is to 

identify the underlying phone (state) sequence for a given speech signal. Viterbi search 

algorithm is used for identifying the most probable state sequence. Language model defines 

the probability of different word sequences based on the grammar rules of the language and 

helps in improving the performance of recognizer. 

 

1.2 Linguistic units 

 
             The choice of the basic linguistic unit depends on the size of vocabulary. For a small 

vocabulary task like digit recognition, words can be basic units. For a large vocabulary tasks  
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like continuous speech recognition, monophones are the linguistic units. Acoustic models for 

just monophones give very simple model. Also, the acoustic characteristics of a monophone 

is greatly affected by the preceding and succeeding monophones because of the co-

articulation effect of vocal tract. Therefore, we need to build HMM considering the left and 

right context of the phone in consideration. Such models are referred as triphone models. 

There are about 40 monophones in English language which gives     different triphones. 

Large amount of training data is needed to estimate the parameters of all the triphones and 

also all these triphones are not used or not seen during the training phase. So, we “tie” the 

states of many similar triphones using decision tree based top-down clustering approach 

(reference). These are referred as tied states and these are the physical states representing 

many similar triphone states. We get few thousands of tied states at the end of clustering 

approach. 

 

1.3 HMM-GMM system 

 

Generally each triphone is modelled as a three state HMM with left-to-right topology. 

A typical HMM-GMM system has few thousands of tied states after the clustering. If each 

tied state is characterized by GMM, then     tied state can be expressed as follows: 

 (  | )  ∑    (          )

  

   

 

where    is the observation or MFCC vector             are Gaussian prior, mean and 

covariance matrix of      Gaussian of      tied state,    is the total number of gaussians in     

tied state. Means, Covariance and Gaussian priors constitute the parameter set of HMM-

GMM system. This system is also referred as continuous density HMM (CDHMM). The 
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parameters of this system are estimated from the train data using expectation maximization 

(EM) algorithm. 

 

1.4 Focus of the work 

          

          State tying is performed to reduce the number of parameters in the model. Nevertheless 

number of parameters is still high as each tied state has individual parameters. We need 

enough amount of training data to robustly estimate these parameters. Reliability of the 

estimates of parameters is not guaranteed if we have less amount of training data. One way to 

reduce the effective number of parameters is to reduce the number of Gaussians in each tied 

state. But this is not a solution as detailed modelling (or we need enough number of 

Gaussians) is necessary to capture the variability of the speakers and environments of training 

data. So there should be balance between detailed modelling and robust estimation of the 

parameters.  

The main focus of the work is to effectively reduce the number of parameters of the 

model. The conventional parameter estimation technique of CDHMM does not exploit any 

relationship among tied states i.e., parameter estimates of one tied state is completely 

independent of estimates of the other parameters. 
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Chapter 2 

Background 

Our focus in this chapter is going to be as follows.. 

The parameters of CDHMM are estimated from training data using Baum-Welch 

algorithm. For tasks like continuous speech recognitions having large vocabulary, we need 

sufficient amount of training data to robustly estimate the parameters. In past, attempts have 

been tried to address the problem of insufficiency of the train data. We will see how 

techniques from speaker adaptation, verification and recognition literature are adopted for 

triphone state modelling. 

 In literature researchers often resorted to subspace modelling techniques when there 

is insufficiency of the data (be it either train data or test data). Let’s consider the case of 

insufficiency of test data in speaker adaptation. MLLR is the standard technique for speaker 

adaptation. MLLR requires more amount (nearly 35-40 seconds) of test data to robustly 

estimate the adaptation parameters. Subspace modelling techniques like Eigen-voices, CAT 

were proposed which uses very less number of parameters which can be estimated with less 

amount of test data. In the same way if we consider speaker recognition, UBM is MAP 

adapted to every speaker. Subspace modelling technique called JFA is  proposed which tries 

to reduce the dimensionality of a speaker. So all these subspace modelling techniques Eigen 

voices, CAT for speaker adaptation and JFA for speaker recognition are proposed to handle 

the case of insufficiency of test data. In the above paragraph, we discussed how to handle the 

cases where there is insufficiency of test data. Now let’s consider the problem of 

insufficiency of train data. At this point, we have to ask a question as to how to estimate 

parameters of SI model when there is fewer amounts of training data. Researchers have tried 
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to address this problem by using subspace modelling techniques which are inspired from 

above mentioned speaker adaptation, recognition techniques. 

For example, Eigen-triphones is inspired from Eigen voices. Eigen triphone tries to 

identify low resource triphone as a point in space formed by doing PCA on mean 

supervectors of high resource triphone. As PCA is dimensionality reduction technique, lesser 

number of parameters are to be estimated to get triphone parameters. But, Eigen-triphone 

gave very marginal improvements over conventional CDHMM.  

Similarly, Subspace Gaussian Mixture Model (SGMM) is  another acoustic modelling 

technique which is successfully applied for the problem of low resource data. This is actually 

inspired from JFA. The parameters of speaker in JFA and parameters of tied state in SGMM 

are modelled exactly in same fashion. But SGMM is not very intuitive. 

Similarly, UBM adaptation to tied state and UBM adaptation to speaker. This is not 

very successful.   

Because of all these parallels between speaker modelling and tied state modelling in 

literature, is there any other subspace modelling technique for speaker that we can replicate 

for tied state modelling. As mentioned earlier CAT   

 

2.1 Subspace Gaussian Mixture Model (SGMM) 

 

While JFA assumes that GMM supervector of speaker is coming from low 

dimensional factors , SGMM assumes that the GMM supervector of tied state is coming from 

low dimensional factors. This can be expressed as follows 

             

where    ,m are supervectors of      tied state and UBM respectively. M,N are phonetic, 

speaker subspaces respectively (as compared to channel and speaker spaces in JFA). M is 
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named as phonetic space as SGMM is modelling at phone level. If we consider more basic 

version of SGMM neglecting speaker space (which is used only for adaptation), then 

         

Here M is state independent phonetic space from which tied state parameters are derived 

using    as in above equation.    is called as state specific vector. The dimension of M is 

typically around 40 to 45, experimentally chosen, which is way less compared to dimension 

of    . In other words, high dimensional    is lying in the space of low dimension M and 

hence the name subspace Gaussian mixture model (SGMM). If each tied state is assumed to 

contain I 

Gaussians i.e.,    =,   
      

 -   and M= ,  
     

 -  then expression for       mean of   

    tied state can be written as follows  

           

where     is the      submatrix of M. In SGMM, the covariances are shared across all the tied 

states so that we have a state independent covariance   . The Gaussian priors are obtained 

using soft-max function and these can be expressed as follows 

       

    
    (  

   )

∑     (   
   )

 
    

 

where    is called as Weight Projection Vector and it defines the subspace in which the 

unnormalized log Gaussian priors lie. The above three equations define the complete 

modelling structure of a tied state in SGMM.   ,   ,      ,   constitute the total parameter 

set of SGMM. We can observe that all the means and Gaussian priors of a tied state are 

obtained using single state specific vector    . The detailed of explanation of SGMM can be 

found in (add reference). The training of the SGMM system begins with the traditional 

CDHMM system. An UBM is built by repeatedly merging the Gaussians of CDHMM to get a 
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desired number of Gaussians with diagonal covariances. These Gaussians are trained with 

around 8 iterations of EM algorithm for full covariance re-estimation. The UBM need not 

necessarily be built from a specific CDHMM system; any generic UBM can be used. This 

UBM is used to initialize the SGMM. The parameters are initialized in such a way that the 

initial p.d.f. in every tied state is equal to UBM. CDHMM system provides the Viterbi 

alignments for the initial SGMM parameter re-estimation. Once the SGMM parameters are 

estimated by EM algorithm to a sufficient extent, SGMM training can be continued with self-

alignment (alignments from the SGMM itself). 

 

2.2 Outline to Cluster Adaptive Training (CAT) 

 

In CAT, all the training speakers are initially divided into “P” groups or clusters and a 

CDHMM is built, known as cluster model, for each cluster using the data of speakers 

belonging to that particular cluster. The parameters of each speaker model are obtained as 

linear interpolation of the parameters of all the P clusters. If     cluster parameter is 

represented as    
 

,then mean of     state,     Gaussian for speaker“s” in CAT model is 

obtained as follows 

   
    

    
    

    
      

    
  [   

     
     

 ],  
    

     
 -      

  

where     is the matrix of means from P clusters and    is referred as the speaker weight 

vector. Thus the model-based CAT parameters are the model parameters 

 =*{       } *       ++, where     is the covariance of     Gaussian component of     

tied state and cluster weight vector parameters   *  +  , 1 ≤ s ≤ S. During the training 

phase the cluster model parameters   and weight vectors for training speakers   are 

iteratively estimated so that clusters become compact. During the test phase, adapted model 
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for the test speaker is obtained by estimating speaker weight vector   . As the number of 

parameters to be estimated is less (only P parameters), CAT supports model adaptation when 

the amount of adaptation data available is less (i.e., rapid adaptation). 
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                                                Chapter 3 

 Subspace Model and CAT 

 

Gaussian Mixture Model (GMM) characterizing the distribution of each CDHMM state is the 

standard acoustic model in speech recognition. The requirement of sufficiently large amount 

of training data for the robust estimation of these GMM parameters (i.e., context dependent 

phone models) is an important issue for building these models. On-going research in the field 

of acoustic modelling is gaining momentum in the present scenario where robust models need 

to be built on fewer amounts of training data. Efficient and robust estimation of acoustic 

model parameters utilizing limited availability of training data is steering the research focus 

to techniques where the number of parameters to be estimated are few. SGMM and Canonical 

State Models (CSM)  are two acoustic modelling techniques which exploits the relationship 

between the context dependent phone models (or triphones). Both these methods have 

similarities to the Cluster Adaptive Training (CAT), a speaker adaptation technique. While 

SGMM exploits the correlation among GMM parameters of tied state, CSM strives to 

transform a canonical model to a context dependent state. Both these methods achieve 

considerable parameter reduction and hence can be used in cases where the amount of 

training data available is limited. Following similar lines of arguments as the afore mentioned 

techniques, we propose a new acoustic modelling technique called Monophone Subspace 

Model (MSM) which takes a more intuitive approach to the estimation of tied state 

parameters. Here, we assume that tied state models are formed by the liner combination of 

Monophone models. It is imperative that we attribute the inspiration of our proposed 

technique to CAT. 

In CAT, the means of the new speaker HMM is formed by the linear interpolation of several 
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cluster model means. A cluster is formed by grouping together a set of speakers and during 

CAT training phase a HMM is built for each of these clusters. Similarly in the proposed 

Subspace Model, the means of the triphone model is formed by the linear combination of 

monophone model means. 

On an implementation level, our technique is more similar to SGMM where the means and 

mixture weights of the tied states vary in the full GMM parameter space and the mapping for 

a particular tied state is done via a state projection vector. SGMM also constraints the 

covariance’s of all the HMM states to be the same as that of the canonical model. In our 

proposed method, the covariance’s of the monophone models are tied together, thereby 

constraining the covariance’s of the tied state model to be same as that of the monophone 

models. 

 

3.1 CAT &  MSM  

3.1.1 Cluster Adaptive Training (CAT) 

 

CAT is a rapid adaptation technique which compactly represents a speaker with lesser 

number of parameters. It gains an upper hand over SI-CDHMM and gives comparable 

performance to that of SD Model, but without the added hassle of requiring more amount of 

training data for a particular speaker. 

 In CAT, all the training speakers are initially divided into “P” groups or clusters and an 

HMM model known as cluster model is built for each cluster using the data of the speakers 

belonging to that particular cluster. The parameters of each speaker model is obtained by the 

linear interpolation of the parameters of all the P clusters. The mean of     state,     

Gaussian for speaker “s” in CAT model is as follows: 

   
  [   

     
     

 ],  
    

     
 -      
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Where     is the matrix of means from P clusters and   
 is referred to as the speaker weight 

vector. 

During training phase the cluster model parameters and cluster weight vectors for training 

speakers are iteratively estimated so that clusters become compact. During the test phase, 

adapted model for the test speaker is obtained by estimating speaker weight vector   . As the 

number of parameters to be estimated is less (only P parameters), CAT supports model 

adaptation when the amount of adaptation data available is less (i.e., rapid adaptation). 

The driving force behind MSM is the need to build a robust acoustic model with 

limited amount of training data. The proposed technique accomplishes this by sharing a large 

number of parameters among the tied states, thereby reducing the total number of parameters 

to be estimated for the model. 

 

3.1.2  MSM 

 

MSM technique is closely related to CAT as the former adopts the parameter estimation 

framework of the latter. However, CAT is a model adaptation technique and MSM operates 

on the acoustic modelling level. In MSM, the parameters of each tied state are obtained by 

linear interpolation of parameters of the monophone models. Mean     of the     state,     

Gaussian is as follows: 

         

where,    is the matrix formed by stacking the     mean of all the monophone models and 

   is the tied state weight vector for the      tied state as shown in Eq.above 

   [ 
 
   

 
   

 
 ];    ,  

    
    

 -  
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and   
  is     mean of     monophone and P is the total number of monophones. Hence to 

estimate the means of each triphone model, only    needs to be estimated. 

 

3.1.3 Analogy between MSM & CAT 

 

In this section, we try to draw an analogy between the proposed Subspace Model and CAT. 

As already mentioned in the previous section, CAT is a speaker adaptation technique and 

Subspace Model is an acoustic modelling technique. Consequently, the term “cluster” in CAT 

refers to a HMM for a group or cluster of speakers and that in MSM is thought of as 

monophone models.     is formed from the cluster means and    from monophone GMM 

means in CAT and Subspace Model respectively. In CAT, each speaker is associated with 

weight vector    which weights the cluster means. Similarly, in MSM the tied state specific 

weight vector   , which weights monophone means, identifies each of the triphone models. 

 

3.1.4 Overall Training Procedure 

 

A. Initialization 

1. Build monophone GMMs of required size (96 or 128 mix) from the train data. Form    by 

stacking together the     mean of all the monophones as shown in Eq. 3.3. 

2. Build a standard CDHMM baseline model (6 mix). From this model, both the initial 

alignment information to bootstrap the MSM and phonetic context information (i.e, decision 

tree) are taken. 



14 
 

3. Copy the monophone GMMs built in step 1 to all the tied states (for eg. /aa/ is copied to all 

tied states having /aa/ as middle context) in CDHMM. Now each tied state contains GMM of 

the required size. This serves as an initialization for our MSM. 

 

B. Training the MSM consists of two phases. 

• Phase1: Update the model parameters (shown in Eqs. 3.6, 3.7, 3.8) using alignment    ( ) 

from the baseline model. 

• Phase2: Update the model parameters using self-alignment i.e., alignment from MSM. 

Both these phases has to undergo through at least 7-8 iterations of EM as mentioned in 

section 3.1. The whole training procedure can be summarized as shown in Fig 3.1 

Figure 3.1: MSM training procedure 
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Chapter 4 

PhoneCAT 

 

Phone CAT (Srinivas et al. (2013)) is an acoustic modelling technique inspired from the 

Cluster Adaptive Training (CAT) (Gales (2000)) for rapid speaker adaptation, which was 

described in Section 3.1.1. While the CAT adapts a speaker independent model to different 

clusters of speakers, the Phone CAT adapts a Universal Background Model (UBM) to a set of 

clusters representing the phones (monophones). The context-dependent phone (triphones) 

states are modelled as linear weighted interpolations of the phone cluster models, just as in 

the case of CAT where the model means for a speaker are obtained as a linear weighted 

interpolation of the cluster means corresponding to different speakers. The context 

information of the phone is captured in the form of a linear interpolation weight vector. This 

technique has many similarities to the SGMM (Povey et al. (2011a)), described in Section 

2.4. In this thesis, a new technique inspired from the transform-based CAT is introduced. 

This technique exploits the correlations in the acoustic space between the distributions of the 

context dependent phone states and gives a very compact representation using a UBM and 

several MLLR transforms. Section 3.1 briefly describes the model-based Phone CAT 

technique. Section 3.2 introduces the Transform-based Phone CAT model. Sections 3.3 and 

3.4 describe in detail the initialization of the model and the training procedure. Section 3.5 

describes the extensions possible to the basic model.  

 

4.1 Model-based Phone CAT 

The model-based Phone CAT consists of a set of P clusters corresponding to the P 

monophone models. Each cluster p has a cluster-specific mean   
  for each Gaussian 
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component      . Each state j corresponding to a context-dependent HMM state is 

expressed as linear combination of the P cluster means with the interpolation weights   , 

which is called as the state vector. Thus the mean of the     Gaussian of the     state is 

modelled as follows: 

          

Where ;    [  

( )
   

( )
   

( )
]
 
 is the state vector , and     [ 

 

( )
  

 

( )
  

 

( )
] is the 

matrix obtained by stacking the      mean of all the P phone clusters, where   
( )

 is the mean 

of the     Gaussian of the    
 cluster. 

The Model-based Phone CAT has 2 distinct model sets. At the lower level, there is a set of P 

monophone models. The monophone models cannot model the context. So, at the higher 

level, there are J triphone model states. The Model-based Phone CAT assumes that each of 

these tied states has a strong relation to the P monophone models; that it lies in a subspace 

spanned by the monophone models. (3.1) represents this relation. The monophone means 

  
( )

   
( )

   
( )

 form the basis vectors of this subspace. During the training process, both the 

basis vectors and the interpolation weights are re-estimated; with the model in effect learning 

a better subspace. 

 

4.2 Transform-based Phone CAT 

 

In the transform-based Phone CAT, the means of the P clusters, corresponding to the P 

monophones1, are not specified directly, but as linear transformations of the means of a 

canonical model. In the basic model, there is an MLLR transform,   , associated with each 

cluster p. The cluster-specific mean   
( )

 for Gaussian component i is specified as: 
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( )

        ,    -
   

where    is the extended canonical model mean ,    -
  with    being the canonical mean of 

the     Gaussian. The mean for the     Gaussian of the context-dependent state j is expressed 

 

Figure 4.1: Transform based PhoneTxCAT 

 

as a weighted linear interpolation of the cluster-specific means given in 

 

    [ 
 

( )
  

 

( )
  

 

( )
]   [ 

 
   

 
   

 
 ]

[
 
 
 
   

( )

 

 

  

( )
]
 
 
 
 

  ∑  
 
   

( )

 

   

  

 (∑   

( )
  

 

   

)  
 
 

where     0  
( )

   
( )

   
( )

1
 

 is the state vector. The model is as shown in above  Fig. .The 

Transform-based Phone CAT model has 3 distinct model sets. At the lowest level, there is a 
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compact canonical model representing the average variability of all the speech data. At the 

intermediate level, there is a set of P clusters representing the P phone models. These P 

models are linear transformations, represented by (3.2) , of the canonical model. At the 

highest level, there is a set of J tied states, whose models are obtained as linear interpolation 

of the P models in the clusters. 

 

4.2.1 Model description 

 

The transform-based Phone CAT model has a GMM as the generative model in each context 

dependent state. But the means are not specified directly, but with a mapping from the the P 

dimensional state vector    . The covariance matrix    is diagonal and shared across all the 

context-dependent states. The weights are expressed through a subspace model similar to the 

SGMM (2.13). The model can be expressed as: 

 ( | )  ∑   

 

   

 .        /  

    
    (  

   )

∑     (   
   )

 
    

  

where      is the feature vector,       is the state index of the context-dependent 

state,    is the weight projection vector,    is obtained as in last equation and I is the 

number of Gaussian components in the GMM. The number of Gaussians I is typically 400 to 

4000. In the SGMM, typically a 400 mixture full-covariance matrix is used. Here, since the 

number of 

global parameters is lower, the number of mixtures can be higher. If the weights are modelled 
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directly as     rather than using (3.5), the number of parameters in the model will be 

dominated by the weights, which is undesirable. The only state-specific parameters are the 

state vectors    . The rest             are global parameters and are independent of state. 

Hence there is a large amount of data to estimate these parameters. 

 

4.2.2 Overview of the Training procedure 

 

The model training starts with a traditional HMM-GMM system. This provides the phonetic 

context information (the decision trees), a set of Gaussian mixtures to build a UBM as the 

canonical model and the Viterbi state alignments for the initial training iterations. The model 

is initialized using these and trained for a few iterations using the alignments obtained from 

the HMM-GMM system. In the next phase of training, the alignments are obtained from the 

transform-based Phone CAT system itself. There are three distinct parameter sets as in the 

case of CAT. The state vector parameters   {  }       canonical model  

parameters  =*{       } *       ++, and the subspace parameters S **      + 

*      ++.The training scheme followed is analogous to the case of transform-based CAT: 

1. Re-estimate the state vector parameters   using *   +  and the pre-update value of  . 

2. Re-estimate the subspace parameters S given {*,   } and the pre-update value of S. 

3. Re-estimate2 the canonical model parameters   given *   + and the pre-update value 

of  . 

4. Go to 2 until convergence. 

5. Go to 1 until convergence. 

The pre-update values are used to calculate the Gaussian posteriors. These values are usually 

accumulated in the form of statistics. Also practically, this scheme does not have to be 
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followed strictly and different sets of parameters can be updated simultaneously to attain 

convergence in fewer iterations. 

The structure of the model allows efficient pruning of the gaussians that are used for  

likelihood computation in each frame: only the top few gaussians in the UBM that give the 

highest likelihood for the frame are selected and used. The statistics accumulated and the 

update equations are described in Section 3.4. 

 

4.3 Model initialization 

 

First the UBM is trained and it is then used to initialize the transform-based Phone 

CAT model. The UBM is initialized by a bottom-up-clustering algorithm as in the case of 

SGMM (Povey et al. (2011a)). The set of diagonal Gaussians in all the states of the HMM-

GMM system is clustered to create a mixture of diagonal Gaussians. This is done by 

repeatedly merging Gaussians that would result in the least log-likelihood reduction. This 

mixture of Gaussians is further trained by EM algorithm using all the speech data to get the 

final UBM. 

The transform-based Phone CAT model is initialized such that the GMM in each state 

is identical to the UBM. The MLLR transforms are all set to identity matrices with 0 bias so 

that all the cluster-specific means are initially identical to the UBM means. The state vectors 

   is assigned a vector giving a weight 1 to only one cluster depending on a mapping 

function C and 0 to every other cluster. Therefore the initialization is: 

   ,         -           
(   )

            
(   )

     

                    ( )          
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where      is a     identity matrix with D being the dimension of the feature vector, 

     is a vector of D zeros,   
(   )

,   
(   )

 are the mean and the covariance matrix of the  

    Gaussian component of the UBM,    is a P dimensional unit vector with the      

dimension as 1 and every other dimension 0 and C : *      +  *     + is a mapping from 

the state j to cluster p. 

In the simplest case, the mapping function can be defined such that C (j) = p, where p is the 

index of the central phone of the context-dependent state j. Instead, it is possible to take into 

account the state in the HMM topology to which j belongs to. If the context-dependent phone 

has 3 states, the context-dependent states corresponding to each of the 3 states can a mapped 

to different clusters. If every context-dependent phone has 3 states, then with this mapping  

the model will end up having P = 3K clusters, where K is the number of phones. Similarly, 

there can be more complex mapping functions taking into account other context information. 

 

4.4 Training of the model  

This section describes the accumulation and the update stages of the training of the model. 

 

4.4.1 Expectation Maximization (EM) algorithm 

The auxiliary function to be optimized is similar to ones used in CAT: 

  ∑   ( )

     

[   (   )  
 

 
. ( )     /

 

∑ . ( )     /
  

 
]  

Where    ( )=P(j,i|t)  is the posterior probability of the      state,     Gaussian component 

at time t, x (t) is the feature vector at time t and     and     are expressed according to (3.3) 

and (3.5). The rest of the symbols are as defined in Section 3.2.1. The update equations for 
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each of the parameters                 are obtained by optimizing Q with respect to the 

parameter keeping the other parameters fixed. The update equations along with the required 

accumulations are described in the subsequent sections. 

 

4.4.2 Estimation of Cluster Transforms 

 

Gales (2000) gives an efficient method for re-estimation of an entire row of a cluster 

transform matrix    . The update equation for the     
 row of     is given by 

  
( )    

( )[  
( )]

  
 

  
( )  ∑

 

   
( ) 

*,   
( )  ∑   

( )
  

( )  

 

   

-  
 +

 

   

 

From (3.13), we see that the accumulate for   
( )

 depends on the set of other cluster 

transforms {    }. Therefore, each time a transform is to be updated, the   
( )

 must be 

recomputed with the latest updated values of the other cluster transforms. The process is 

iterative and converges in a few iterations. 

 

4.4.3 Estimation of State Vectors 

 

The auxiliary function for state vectors    consists of two parts, one related to the mean and 

one to the weights. The dependency of the weights on    through (3.5) makes the auxiliary 

function more complex to optimize. However, by making several approximations, as in 

Povey  (2009), it is possible to get closed-form expression for the update of    . 
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The update equation for    is given by 

     
     

 

 

4.4.4 Estimation of Canonical model parameters 

 

The canonical model parameter estimation is done exactly like transform-based CAT (Gales 

(2000)). The update equations for the mean and covariance of the     Gaussian component 

are: 

 

   *∑ ∑   
( )

  
    

 

 

   

 

   

+

  

*∑  
   

  (  
( )  ∑   

( )
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+   

     {
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.  
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 ∑ ∑    
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∑     
} 

where    and    are the first D columns and the (   )   column of    ,     - 

respectively,   
( )

     ,   
( )

 is the     row of the statistics (3.16),  ( ) is the 

sufficient statistics defined by 

 ( )  ∑  
  
( ) ( )

   

 ( )  

The estimation of    depends of the current value of    and vice-versa. First, the means are 

updated and the updated means are used to update   . 
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4.4.5 Estimation of weight projections 

 

The weight projection used is exactly the same as in the case of SGMM (Povey et al. 

(2011a)). The same update procedure is used here as well. It is an iterative process with the 

following being computed every iteration: 

 

  
( )

   
(   )

   
( )  

  
( )

  

  
( )

 ∑   .         
(   )/  

 

  
   

  
( )

 ∑.         
(   )/  

 

  

Where    represents the value at     iteration 

 

4.5 Extensions to the model 

The model described in Section 3.2.1 can easily be extended by incorporating techniques 

tried out in similar models. Some of these extensions are described in this section. 

 

4.5.1 Multiple transform classes per cluster 

It is possible to use piece-wise linear transformation with multiple MLLR transforms. The I 

Gaussians in the UBM are clustered into Q transform classes and a different MLLR transform 

    is used for each class q. The equations (3.12), (3.13) and (3.14) will be similar for this 

case as well, but the summation of i will not be over *     + but over the set of Gaussians 

in transform class q. 



25 
 

 

4.5.2 Full Covariance MLLR 

The standard CAT for speaker adaptation is done with diagonal covariance. If full covariance 

is used, then the update equations are quite complex and computationally very expensive,  

making it practically infeasible. The equation (3.12) is valid only for diagonal covariance.  

MLLR for full covariance models was introduced in Povey and Saon (2006). The re-

estimation is done using a second order gradient descent approach. The same technique can 

be implemented for transform-based CAT as well. This technique is an iterative approach. 
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Chapter 5 

Experiments & Results 

 

5.1 Experimental Setup 

 

The performance of the Transform-based Phone CAT model is tested on the TIMIT database 

along with HINDI and TAMIL languages of MANDI database. TIMIT has a total of 3,396  

utterances for training and 192 utterances for testing. The HINDI database consists of 

different hours of data namely 1hr, 3hr, 5hr, and 22hrs of data for training along with 5974 

utterances for testing. Similarly, TAMIL database also has 1hr, 3hr, 5hr and 22hrs of data for 

training along with 3564 utterances for testing.    . 

13-dimensional MFCC were used as features for parameterizing the speech waveforms. The 

delta and acceleration of these features were augmented to get 39-dimensional features. 

Cepstral Mean Normalization (CMN) and Cepstral Mean Subtraction (CMS) were done to 

increase the noise-robustness of features. The Kaldi toolkit (Povey et al. (2011b)) was used 

for training and testing the acoustic models. Standard C++ programs in the Kaldi toolkit were 

used to build the baseline HMM-GMM system and also LDA+MLLT to initialize the Phone 

CAT acoustic models. 

Various libraries in the toolkit were used for the standard computations in the algorithms and 

techniques implemented for the Transform-based Phone CAT model system. 
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5.2 Parameters 

 

The LDA+MLLT system used for TIMIT task had a total of 1040 tied states and 22047 

Gaussians. The dictionary had a set of 38 phones. The silence was modelled as a context 

independent phone with a 5 state HMM, while all other phones were context-dependent with 

3 state HMMs. This was used to initialize the Transform-based Phone CAT model. Since the 

feature vector used was of 39 dimension, full-MLLR matrices of dimension 39 x 40 was used 

for the cluster transforms. The UBM was initialized by a bottomup clustering approach by 

merging the Gaussians from the LDA+MLLT system till I mixtures were obtained. I value 

was kept as 400 . 

The baseline LDA+MLLT  system used for TAMIL and HINDI task had different number of  

tied states and Gaussians for different hours of data which is mentioned in the next table  

Dictionary with 39 phones was used for TAMIL and 41 phones for HINDI.  The modelling of 

the phones was similar to that in TIMIT task. The Transform-based Phone CAT model 

initialized from this system had the following tied states mentioned in the next table 

 

5.3 Experiments and Discussion 

Tables 5.1 to 5.14 show the results of experiments evaluating the Transform-based Phone 

CAT models on the TIMIT, HINDI and TAMIL tasks respectively. The details of the 

experiments, along with the motivation and the conclusions are described in the subsequent 

sections.  
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5.3.1 Baseline system 

At first, basic CDHMM system is built and then LDA+MLLT is done on top of it which is 

used to initialize PhoneTxCAT . All the other experiments are compared with this baseline 

system in terms of accuracy. 

For TIMIT, the baseline used is only CDHMM and PhoneTxCAT is built on it 

TIMIT: 

Name of Expt Transform Classes Tied States formed % WER 

CDHMM - 1049 28.38 

LDA+MLLT - 1040 25.45 

PhoneTxCAT 4 

 

841 23.99 

                                                   Table 5.1 TIMIT Results 

 

TAMIL: 

Baseline Results  

The best CDHMM and LDA+MLLT results have been tabulated below and all the                  

remaining iterations have been given in APPENDIX B 

 

Hours of Data Pdfs,Gaussians CDHMM(%WER) LDA+MLLT(%WER) 

1 213,1504 42.00 37.93 

3 267,1803 31.61 27.34 

5 668,5414 25.91 23.17 

22 1114,23262 22.11 19.37 

Table 5.2 TAMIL Baseline Results 

        PhoneTxCAT Results 

The best PhoneTxCAT results have been given below and all the other iterations are      

given in APPENDIX B 
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Expt Hours of Data UBM Mixtures Transform class %WER 

PhoneTxCAT 1 128 1 37.19 

3 256 2 28.06 

5 500 1 22.51 

22 750 2 20.04 

Table 5.3 TAMIL PhoneTxCAT Results 

 

HINDI: 

 

For 1hr data, the various iterations used in baseline system building are shown in table5.10 

and the best is shown in bold  

(Tied States,  Gaussians) CDHMM LDA+MLLT 

262,1203 16.50 15.10 

262,1803 16.26 14.73 

305,1405 16.18 14.12 

305,2105 16.05 15.32 

344,1606 15.29 14.75 

344,2408 15.28 15.10 

382,1804 15.71 15.53 

382,2707 16.46 14.60 

422,2002 15.62 14.65 

422,3006 15.93 15.66 

Table 5.4 HINDI 1hr Baseline Results 

 

 

The best baseline is taken and PhoneTxCAT is built on top of it for different transform 

classes and result is tabulated in table 5.11 and the best is given in bold 

Expt Name UBM Mixtures Transform Classes % WER 

CDHMM - - 16.18 

LDA+MLLT - - 14.12 

PhoneTxCAT 64 1 14.08 

2 14.40 

3 13.71 

4 14.14 

Table 5.5 HINDI 1hr PhoneTxCAT Results 
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For 3hr, 5hr and 22hrs of data, the best baseline is directly taken and PhoneTxCAT is done 

on it and the corresponding results are tabulated in tables 5.12, 5.13, 5.14.  

Expt Name UBM Mixtures Transform Classes % WER 

CDHMM - - 11.59 

LDA+MLLT - - 10.77 

PhoneTxCAT 200 1 10.30 

2 10.32 

3 10.47 

4 10.70 

Table 5.6 HINDI 3hr Results 

 

Expt Name UBM Mixtures Transform Classes % Accuracy 

CDHMM - - 9.06 

LDA+MLLT - - 8.53 

PhoneTxCAT 256 1 7.67 

2 7.90 

3 7.67 

4 7.80 

Table 5.7 HINDI 5hr Results 

 

Expt Name UBM Mixtures Transform Classes % WER 

CDHMM - - 5.75 

LDA+MLLT - - 5.68 

PhoneTxCAT 300 1 5.64 

2 5.70 

3 5.70 

4 5.65 

400 1 5.44 

2 5.39 

3 5.40 

4 5.47 

Table 5.8 HINDI 22hr Results 
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5.3.2 Increasing the number of tied states 

The number of tied states is increased by choosing the tied states by going further down the 

context-dependency decision tree.  And there are serious limitations to increasing the number 

of tied states, as we may not have enough data to estimate some tied state parameters. There 

is not much improvement possible on this front, but optimizing the number of tied states for 

the model might still be required to get the best system.  

 

5.3.3 Multiple Transform Classes  

The number of transform classes have been varied and results have been tabulated above. The 

Number of transform class which gives best performance for a particular data set can only be 

determined through a set of experiments. 

 

5.4 Observations 

The experiments in Section 5.3 show that the Transform-based Phone CAT model in general 

performs better than the conventional HMM-GMM and LDA+MLLT systems. The higher 

discriminatory capability of this model can be attributed to modelling the tied state 

parameters as vectors in a subspace of the total parameter space. This works because the tied 

state can be better discriminated in the subspace. The model is similar to SGMM in many 

aspects. But, instead of learning the subspace directly as in the case of SGMM, the structure 

of the subspace is defined in the form of linear transformations of a canonical mean model. 
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Chapter 6 

Conclusions 

 

A new kind of acoustic model, the Transform-based Phone CAT model, is implemented. 

Unlike, the conventional HMM-GMM system, this model does not specify the parameters of 

the distribution directly, but generates the parameters of the distribution. This allows to 

represent complex GMM distributions in a compact way. By restricting the dimensions in the 

total parameter space of the distribution to a compact subspace, the discriminatory capability 

of the speech models is improved. The use of shared, global parameters instead of the 

conventional state-specific parameters, allows a better modelling of the speech sounds for 

similar parameter count. The global parameters also allow the possibility of using out-of-

domain data and hence the model can be efficiently trained on less in-domain data than in 

CDHMM models. The structure of the model allows to train and evaluate the models 

efficiently. The compact canonical model allows efficient pruning of Gaussians evaluated in 

each frame. 

The experiments conducted on TIMIT, HINDI and TAMIL tasks confirm that the model 

gives better results than the conventional HMM-GMM and LDA+MLLT systems. On the 

TIMIT task, the Transform-based Phone CAT model shows an improvement of 1.46% 

absolute, which is a 5.73% relative improvement in Word Error Rate (WER). Similar 

improvements can laso be observed with HINDI and TAMIL databases.  Also, in general 

PhoneTxCAT gives better %WER for transform classes 1 and 2.  Being very similar to the 

SGMM, this model offers scope for similar modelling improvements. Use of piece-wise 

MLLR with multiple transform classes per cluster, full covariance cluster adaptive training 

and multiple substates per state offers possibility for further improvement with this model. It 

also allows the possibility of further using speaker adaptation techniques like CMLLR and 
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VTLN, in a similar way as in SGMM. In addition to providing improvements over the 

conventional system, this model also gives an intuitive way of representing phone context 

information. The linear interpolation weights of the clusters in the models are shown to 

capture this context information. 
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Appendix A 

 

Things To Be Noted While Performing The Experiments: 

 

 All the experiments should be performed under IITM Libra Cluster because change in 

environment is giving different result. 

 Experiments should be done by using 20 cores as change in splits gives different 

performance. 

 Also, all the features should be sorted out because unsorted features are giving 

different results.  

 All the scripts that are to be used should be latest standard KALDI scripts because 

they have slight modifications compared to old scripts and hence performance might 

be different. 

 Optimisation should be done for both LDA+MLLT and CDHMM but not just alone 

CDHMM because the input to PhoneTxCAT is LDA+MLLT in our current 

experiments. 

 The value of the TIED States formed in PhoneTxCAT will be reaching a saturation 

limit at certain point beyond which they will not be any increase  in TIED states and 

performance. 

 Also , one should be careful at giving the number of TIED states to CDHMM and 

LDA+MLLT as giving too many to lesser amount of data will hinder performance. 

 The best result in PhoneTxCAT might be obtained for any transform class which is 

unknown and can be determined only by experiments. 

 Similarly, the number of Gaussian Mixtures in UBM can also be determined only 

experimenting many different UBMs. 
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Appendix B 

Detailed list of all the iterations done for TAMIL  

Each of the different hours of data like 1hr, 3hr,5hr,22hr have been optimised after testing for 

many pdf, Gaussian combinations and the best is given in bold. 

(# pdfs, #  Gaussians) CDHMM(%WER) LDA+MLLT(%WER) 

174, 802 43.78 39.86 

174,1202 43.19 40.67 

213,1005 41.51 39.83 

213,1504 42.00 37.93 

249,1202 42.10 41.07 

249,1808 42.13 42.30 

260,1402 42.62 39.29 

260,2107 43.95 39.44 

260,1606 41.07 38.57 

260,2405 43.26 39.17 

260,1804 43.16 39.24 

260,2710 44.25 41.34 

260,2007 42.69 38.97 

260,3010 44.64 40.03 

260,2207 42.60 39.12 

260,3312 43.53 41.54 

260,2408 42.77 41.86 

260,3612 45.04 42.77 

260,2605 43.46 41.51 

260,3915 43.83 41.21 

Table B.1 TAMIL 1hr Baseline Results 
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Using the best value of LDA+MLLT, PhoneTxCAT is built on it and the best result is given 

in bold. 

 

 

Expt Name UBM Mixtures Transform Classes %WER 

CDHMM - - 42.00 

LDA+MLLT - - 37.93 

PhoneTxCAT 32 1 39.17 

2 39.34 

3 39.34 

4 38.77 

64 1 37.64 

2 38.33 

3 38.30 

4 38.35 

100 1 37.24 

2 37.76 

3 40.15 

4 37.78 

128 1 37.19 

2 38.82 

3 38.47 

4 38.77 

192 1 37.73 

2 37.69 

3 39.36 

4 39.56 

256 1 39.88 

2 38.18 

3 41.46 

4 42.69 

                                        Table B.2 TAMIL 1hr PhoneTxCAT Results 
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(Tied States,  Gaussians) CDHMM LDA+MLLT 

179,803 33.46 30.80 

179,1207 32.31 28.65 

220,1004 32.92 28.73 

220,1502 31.17 28.78 

267,1204 32.72 28.48 

267,1803 31.61 27.34 

306,1408 32.21 28.16 

306,2107 32.31 29.47 

338,1603 32.21 27.74 

338,2409 32.58 27.89 

372,1803 32.26 27.71 

372,2705 32.11 29.47 

405,2010 31.74 29.54 

405,3011 32.72 28.48 

443,2206 32.08 28.21 

443,3311 31.71 28.36 

459,2405 32.01 29.91 

459,3610 32.75 30.40 

459,2608 32.21 29.42 

459,3911 33.07 29.89 

459,2807 32.63 29.94 

459,4215 33.19 30.50 

459,3009 32.31 30.38 

459,4512 33.49 30.85 

Table B.3 TAMIL 3hr Baseline Results 
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Expt Name UBM Mixtures Transform Classes %WER 

CDHMM - - 31.61 

LDA+MLLT - - 27.34 

PhoneTxCAT 128 1 29.32 

2 29.69 

3 30.55 

4 29.99 

200 1 29.00 

2 30.31 

3 29.84 

4 29.54 

256 1 28.33 

2 28.06 

3 28.60 

4 31.17 

300 1 29.96 

2 30.73 

3 31.02 

4 32.70 

350 1 29.22 

2 29.71 

3 30.48 

4 30.70 

400 1 29.34 

2 29.64 

3 31.05 

4 32.23 

450 1 29.74 

2 30.08 

3 31.59 

4 32.65 

Table B.4 TAMIL 3hr PhoneTxCAT Results 
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(Tied States,  Gaussians) CDHMM LDA+MLLT 

410,2008 29.81 25.35 

410,3012 28.83 24.16 

442,2208 29.94 26.78 

442,3310 28.92 23.96 

475,2408 29.39 25.69 

475,3608 29.15 23.69 

515,2609 28.21 24.31 

515, 3914 28.11 23.91 

554,2808 28.92 25.30 

554,4214 27.00 24.04 

583,3012 28.60 24.83 

583,4518 27.89 23.45 

624,3210 27.84 23.52 

624,4817 27.49 24.04 

650,3408 28.11 24.58 

650,5112 27.00 23.35 

668,3612 28.01 24.19 

668,5414 25.91 23.17 

668,3813 28.26 23.49 

668,5716 27.22 23.27 

668,4010 27.42 24.16 

668,6020 27.54 24.90 

                                    Table B.5 TAMIL 5hr Baseline Results 
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Expt Name UBM Mixtures Transform Classes % WER 

CDHMM - - 25.91 

LDA+MLLT - - 23.17 

PhoneTxCAT 300 1 24.36 

2 23.67 

3 24.61 

4 25.49 

350 1 23.91 

2 23.49 

3 23.49 

4 24.04 

400 1 24.98 

2 25.52 

3 24.61 

4 26.21 

450 1 24.33 

2 24.31 

3 23.49 

4 24.78 

500 1 22.51 

2 23.37 

3 24.21 

4 23.30 

550 1 23.72 

2 25.05 

3 24.98 

4 25.17 

Table B.6 TAMIL 5hr PhoneTxCAT Results 
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(Tied States,  Gaussians) CDHMM LDA+MLLT 

887,16145 22.43 19.84 

887,18451 22.01 19.79 

921,16846 21.45 19.45 

921,19248 22.31 19.74 

952,17556 21.50 19.87 

952,20060 21.32 19.69 

993,18246 21.69 19.47 

993,20850 21.96 19.60 

1030,18948 22.14 20.04 

1030,21652 22.16 19.37 

1071,22458 21.92 19.45 

1114,23262 22.11 19.37 

1139,24052 22.24 20.06 

1172,21767 22.93 19.40 

1172,24861 22.36 20.09 

1203,22465 21.89 19.45 

1203,25662 22.43 19.89 

1245,23154 22.09 20.16 

1245,26481 22.38 19.97 

Table B.7 TAMIL 22hr Baseline Results 
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Expt Name UBM Mixtures Transform Classes % WER 

CDHMM - - 22.11 

LDA+MLLT - - 19.37 

PhoneTxCAT 400 1 21.05 

2 20.41 

3 20.63 

4 21.42 

450 1 20.61 

2 20.34 

3 20.78 

4 20.78 

500 1 20.80 

2 20.43 

3 20.93 

4 20.53 

550 1 20.83 

2 20.46 

3 21.30 

4 20.80 

600 1 20.95 

2 20.43 

3 20.06 

4 21.69 

650 1 20.80 

2 20.19 

3 21.35 

4 20.34 

700 1 20.68 

2 20.43 

3 20.38 

4 22.29 

750 1 20.63 

2 20.04 

3 21.15 

4 20.16 

800 1 20.85 

2 20.36 

3 20.56 

4 21.64 

                                        Table B.8 TAMIL 22hr PhoneTxCAT Results 
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