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ABSTRACT

The primary objective of the work is to implement the VAD algorithm using group

delay function which is a phase based feature. Here I’ve put my effort to reproduce a

portion of results reported in the MS Thesis titled ’Voice Activity Detection using Group

Delay Functions’ of Mr. Sree Hari Krishnan (earlier MS scholar from IIT Madras).

Throughout my work, I have used the thesis prepared by him as a reference. Earlier

works have used time domain parameters, or spectral shaped parameters, or a combi-

nation of both for addressing VAD problem. Using group delay function, a much more

robust representation of speech signal for VAD can be achieved.

Short term energy (STE) is a quantity which can be used for VAD. Our algorithm,

GD-VAD, based on minimum phase group delay processing of STE yields a good per-

formance in terms of speech and non-speech detection. Although STE is not robust to

noise, group delay processing makes it more robust to noise. The group delay function

of a minimum phase signal retains its structure even in the presence of noise.

The group delay based VAD is implemented and performance of the algorithm in the

presence of noise is investigated. The voice samples for the project are taken from the

AURORA database.
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CHAPTER 1

INTRODUCTION

Voice activity detection is a technique in which presence or absence of human speech

is detected. By exploiting the information about speech and non-speech in a speech

signal, these algorithms had its main use in speech coding and in speech recognition.

It helps to avoid unnecessary coding and transmission of non-speech packets in VoIP

applications. VAD algorithm can be viewed as a binary classifier that labels each frame

of speech as speech or non-speech respectively.

The result of the VAD algorithm should remain identical for clean and noisy speech

signal. A typical speech conversation speech is characterized by a speech to non-speech

ratio of forty to sixty. The primary motivation for VAD is rooted on this. VAD’s bene-

fits in applications such as speech coding and voice over IP (VoIP), include decreasing

the average bit rate, increasing the number of users and lowering the power consump-

tion. VAD is also used as a front-end to automatic speech recognition (ASR) systems

to improve recognition accuracy and resource utilization. Its other uses include noise

estimation for speech enhancement.

Since Mr. Sree Hari Krishnan had carried out this study earlier itself, what I needed

was to obtain a result which matches with what he got in his work. Also the algo-

rithm is exactly same as that he discussed in his thesis. I’ve to use a platform for the

implementation purpose and I preferred Matlab.

1.1 Issues in VAD

The variability and time varying nature of background noise and the speech itself

is one of the issues in VAD. The background speakers and vehicles results in varying

background noise, while the difference among speakers and variations among speech

units results in variability in speech. As a result, simple methods like energy or zero

crossing level based VAD will fail in lower SNR environments.



VAD methods have to deal with the problem of misclassification between speech and

non-speech frames. The intelligibility is seriously compromised when speech frames

are classified as non-speech. VAD algorithm should be constrained to identify speech

regions without compromising the detection of non-speech frames.

1.2 Structure of a Typical VAD Algorithm

Basically, in every VAD algorithms, features or parameters extracted from the speech

signal are compared against an adaptive threshold or against explicit speech/non-speech

models. Every VAD algorithm involves the following steps:

• Extraction of parameters: The first step in most of the VAD algorithms involves

the extraction of time-domain or frequency domain parameters such as ,STE, zero

crossing rate, LPCs etc.

• Initialization of counters: Normally VAD algorithms use some speech or non-

speech threshold levels, here these counters are initialized.

• Making the VAD decision: These decisions are made based on models or adaptive

thresholds. These thresholds are estimated using the counters from last step.

• Smoothing the VAD decision: The output of the VAD algorithm might fluctuates

due to errors in decisions. These have to be smoothed. Such schemes are imple-

mented a state machines that prevent rapid transitions from speech to non-speech,

while allowing faster transitions from non-speech to speech.

• Updating the counters: Finally after the VAD decisions are made, the background

counters updated.
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Start

Parameter Extraction

Initialization

VAD decision

VAD Decision Smoothing

Update Background Parameters

End

Figure 1.1: Flowchart of a typical VAD algorithm

1.3 Organization of the thesis

• The properties of group delay functions need to be studied. A theory of group

delay relevant for the study is given in chapter 2

• The development of the GD-VAD algorithm is briefed in chapter 3. The theory

of Buf-GD VAD is also described here.

• The major results of the study is discussed in chapter 4.

• Conclusions from the study is discussed in chapter 5.
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CHAPTER 2

Theory of Group Delay Functions

2.1 Introduction

Group delay function is defined as the negative derivative of the Fourier transform

phase function. The advantage of group delay is that it can be computed directly from

the speech signal without need for phase unwrapping. but when we process just the

short term phase, the formants which appear as transitions are masked by the wrapping

of phase at multiples of 2π. Group delay functions have been applied to many speech

processing tasks and its properties are used extensively in this thesis as well.

In this chapter, a brief overview of the theory of group delay functions is given.

Also a summary of minimum phase signals and the significance of their properties are

discussed. Procedures to convert from non-minimum phase signals to minimum phase

signals in order to facilitate group delay processing is described.

2.2 Overview of Group Delay Functions

Let X(ω) denote the discrete time Fourier transform (DTFT) of a signal x[n]. Then,

X(ω) = |X(ω)| expjθ(ω) (2.1)

The group delay function is defined as the negative derivative of the unwrapped Fourier

transform phase (θ(ω)). Mathematically, it is defined as follows:

τ(ω) =
d(θ(ω))

d(ω)
(2.2)

It is interpreted as the time delay that a frequency ω undergoes as it passes from the

input to the output of the system. The group delay function is expressed in seconds.



When θ(ω) is linear, the group delay is a constant and all frequencies undergo the same

amount of delay. The group delay function has the property that the poles and zeros of

the transfer function show up as peaks and valleys respectively.

2.3 Minimum Phase Group Delay Function

A signal x[n] is minimum phase if the poles and zeros of its transfer function, lie within

the unit circle. This imposes the constraint that not only is a signal causal and stable, its

inverse is also causal and stable. Mathematically, this can be expressed as:

X(z) =
b0

∏m
i=1(1− biz−1)

a0
∏n

j=1(1− ajz−1)
(2.3)

where ∀i, j |bi| < 1 and |aj| < 1. The group delay function is well behaved only when

the signal is minimum phase. The group delay function derived from the minimum

phase signal is called the minimum phase group delay function.

2.4 Properties of Minimum Phase Group Delay Func-

tions

The two properties of group delay function which are used extensively in this study are:

1. Additive property

2. High resolution property

2.4.1 Additive Property

Let xi[n] and Xi(ω) be the Fourier transform pairs, and let

X3(ω) = X1(ω).X2(ω) (2.4)

5



Then,

|X3(ω)| = |X1(ω)|.|X2(ω)| (2.5)

arg(X3(ω)) = arg(X1(ω)) + arg(X2(ω)) (2.6)

τx3(ω) = τx1(ω) + τx2(ω) (2.7)

where τx3(ω), τx1(ω) and τx2(ω) corresponds to the group delay function of X3(ω),

X1(ω) and X2(ω) respectively. From Equations ( 2.4 - 2.6), we see that the multiplica-

tion in the spectral domain corresponds to addition in the group delay domain.

2.4.2 High Resolution Property

It has been established that minimum phase group delay functions exhibit squared mag-

nitude behaviour in the neighbourhood of a pole. Consequently, the poles of the z-

transform are resolved well in the group delay domain. Figures 3.4(a), (b) and(c) show

a linear time-invariant (LTI) minimum phase system with a complex conjugate pole

pair, its magnitude spectrum, and the corresponding group delay function. It can be

seen that the pole is much better resolved in the group delay domain than it is in the

magnitude spectral domain. Figures 3.4(d), (e) and (f) demonstrate this property with

another complex conjugate pole pair. Lastly, Figure 3.4(g) shows an LTI system with

the poles from Figures 3.4(a) and (d). In Figure 3.4(i), not only are poles sharper

in comparison to Figure 3.4(h), but also do not exhibit a negative interference as evi-

denced in the magnitude spectrum. This is due to the combined effect of the additive

and the high resolution properties of the group delay function.

2.5 Conversion of a Non-Minimum Phase Signal to a

Minimum Phase Signal

Here, techniques that can be used to convert a non-minimum phase signal to a min-

imum phase signal or its estimate, is outlined. And these techniques are used in the

development of VAD algorithm discussed in this thesis.

6
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Figure 2.1: Illustration of high resolution property of group delay functions

2.5.1 Root Cepstrum based Minimum Phase Group Delay

A root cepstrum based method was proposed to compute a minimum phase equivalent

signal of a non-minimum phase signal. It was shown that, for any non-minimum phase

signal, the causal portion of the inverse Fourier transform of the squared magnitude

spectrum is a minimum phase signal. The steps in converting a non-minimum phase

signal x1[n] to its minimum phase equivalent xc[n], are given below:

• Let X1[k] be the DFT of x1[n]

• Raise magnitude spectrum to power γ: |X1[k]|γ

• Compute the IDFT of |X1[k]|γ : x2[n]

• Extract the causal portion of x2[n] : xc[n]

• Windowing xc[n] using a half hann window gives x̃c[n]

7



In this transformation xc[n] retains the exact location of poles and zeros as that of

x1[n].

8



CHAPTER 3

Group Delay based VAD Scheme

3.1 GD-VAD Algorithm

3.1.1 Short Term Energy

The short term energy of each frame of a speech signal (x[n]) is defined mathematically

as:

E[m] =
N−1∑
n=0

(w[n]x[m− n])2 (3.1)

where w[n] is the analysis window, N is the frame size in samples, and m is a multiple

of the frame shift.

3.1.2 The Algorithm

In the GD-VAD the STE of the speech signal is viewed as the positive frequency part of

the magnitude spectrum of an arbitrary minimum phase signal. The group delay of this

signal is then computed. The speech regions of the signal are characterized by well-

defined positive regions in the group delay spectrum, while the non-speech regions are

identified by well-defined negative regions. A block diagram illustrating the proposed

GD-VAD algorithm is shown in figure and a formal description of the same is listed

below.



Start

Compute STE

Symmetrize STE

Compute IDFT

Group Delay Processing

WSF and γ

Peaks –> speech

Valleys –> non-speech

End

Speech signal

STE sequence

Symmetrized STE sequence

Root cepstrum

Group Delay Function

Figure 3.1: Flowchart of gd-VAD algorithm

1. Let x[n] be the speech signal.

2. Compute its STE. Let us denote it by E[m] with 0 ≤ m ≤ K − 1 and K is the

length of the STE defined as K = length of speech signal in samples
frame-shift in samples

3. Obtain Ẽ[m] from E[m] by zero padding, making Ẽ[m] an exact power of two.

Ẽ[m] = E[m] 0 ≤ m ≤ K − 1 (3.2)

Ẽ[m] = 0 K ≤ m ≤M − 1 (3.3)

where M = 2dlog2Ke

10



4. Form the symmetric sequence Es[m]

Es[m] = Ẽ[m] 0 ≤ m ≤M − 1 (3.4)

Es[m] = Ẽ[2M −m− 1] M ≤ m ≤ 2M − 1 (3.5)

where 2M is the DFT order. This new sequence is considered as a magnitude

spectrum of an arbitrary signal of 2M points between −π and π and is denoted

as Es[k]. Let 2M − 1 = N .

5. To reduce the dynamic range, perform the following:

És[k] = [Es[k]]γ 0 ≤ k ≤ N − 1 (3.6)

6. Compute the IDFT of the function És[k]. The causal portion of the resulting

signal denoted by e[n] is minimum phase signal.

7. Compute the group delay function of e[n]w[n], where w[n] is a low pass filter of

length Nl. Then the group delay is computed as follows.

• Compute the phase spectrum φ[k] of e[n]w[n].

• Compute the forward difference

τ [k] = φ[k]− φ[k − 1] 0 ≤ n ≤ N − 1 (3.7)

where τ [k] is the group delay function.

8. For every peak in the group delay function (τ [k]), compute the following:

• Identify the valley before the peak as fb[i].

• Identify the valley after the peak as fe[i].

• The frames between fb[i] and fe[i] denote speech regions.

9. Output the VAD sequence VGD[n] consisting of 0 and 1, where 0 denotes a non-

speech frame and 1 denotes a speech frame.

11
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Figure 3.2: Steps involved in performing GD-VAD

Window Scale Factor (WSF = N
Nl

) and γ are used to control the resolution of the

group delay. In this algorithm those are empirical constants, those values are determined

after large no of iterations. The steps involved in GD-VAD is described in the figure

3.2(a) to (d).

• Figure 3.2(a) refers to a clean speech signal.

• Figure 3.2(b) refers to the STE of the clean speech signal.

• Figure 3.2(c) refers to the group delay of the STE function.

• Figure 3.2(d) refers to the VAD decison.
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3.1.3 Robustness of Group Delay Functions to Noise

The performance of the GD-VAD algorithm can be attributed to the robustness of the

group delay representation.

• Figure 3.3(a) to 3.3(e) show the short term energy of speech signal recorded in

the absence of noise, snr = 15dB, 10dB, 5dB and 0dB respectively.

• Figure 3.4(a) to 3.4(e) show the group delay function of the STE of speech signal

recorded in the absence of noise, snr = 15dB, 10dB, 5dB and 0dB respectively.

The figures show an increase in the distortion of STE with an increase in noise level.

This distortion can be characterized in terms of a change in the contour and a shift in

the dc.
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Figure 3.3: Short Term Energy

Figures 3.4(a) to (e) show the group delay processed STE of the speech signal in

exactly the same environments. It can be observed from the figures that the group delay

processed STE representation is much less distorted in the two aspects:

• The location of the peaks and valleys of the group delay processed STE function

in clean environment is close to that of the group delay processed STE functions

13



in noisy environments.

• There is also no dc shift in the group delay representation.
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Figure 3.4: Group Delay Function

Since the GD-VAD is having a latency equal to that of the signal strength, a new

algorithm with less latency is explored theoretically.

3.2 The BufGD-VAD Algorithm

• We have to apply GD-VAD on shorter segments of speech, which introduces the

dual problems of a segment being entirely speech or being entirely noise. When

either case occurs, the group delay function being an excellent resolver of peaks

and valleys, enhances the variations in that segment. This leads to misclassifica-

tion of frames.

• So we have to reduce the high resolution property, which can be done by append-

ing a short segment of speech under consideration, with a known surrogate signal,

so that length of the signal under consideration increases. This step, while solv-

ing the problem indicated in the previous step, presents another issue: the buffer

14



size of the segment under consideration being too small to hold an entire speech

or non-speech region, so that no peaks and valleys are entirely contained in the

segment, to make a VAD decision.

• To solve the issue,we make an estimate of the maximum value attained by the

group delay function in the noise regions. This estimated value is then subtracted

from the group delay function. To make this estimate, the first few frames of the

speech signal are assumed to be non-speech and the maximum value of the group

delay function is estimated using this. The VAD decision is made on this noise

compensated group delay function as follows: positive values indicate speech and

the negative values indicate non-speech.

• A 5 point is performed to remove the rapid fluctuations finally

3.2.1 The Algorithm

The algorithm processes a buffer of the given speech signal as follows: For the bth

buffer, the STE for each frame in that buffer is denoted as éb[m]. This is appended with

the surrogate signal, βs[n] to form the sequence ẽb[m], where s[n] is a signal normalized

to 1, and β is a scale factor, determined empirically. This sequence is viewed as the

positive part of the magnitude spectrum of an arbitrary signal and is converted into

its minimum phase equivalent. The group delay of this signal is obtained. A noise-

compensated group delay, τnb [k],is then obtained by subtracting the maximum value of

the group delay of the first few frames (assumed to be noise). Next, a median filtering on

τnb [k] using the current and past elements is performed to yield τ̄nb [k]. VAD decisions are

made on τ̄nb [k] as follows: positive values of τ̄nb [k] are classified as speech regions and

negative values are classified as non-speech. This algorithm is formally listed below.

1. Given a speech signal x[n], let us consider a buffer of contiguous frames. If the

length of the buffer is B, then the number of buffers P = length of x[n]
B

.

2. For each buffer b(0 ≤ b ≤ P − 1), repeat steps 3 - 12:

3. Compute the STE, éb[m], where 0 ≤ m ≤ B − 1.

15



4. Append STE with surrogate signal. Form the sequence, ẽb[m]

ẽb[m] = éb[m] 0 ≤ m ≤ B − 1 (3.8)

ẽb[m] = βrect[m−B] B ≤ m ≤ B + L− 1 (3.9)

ẽb[m] = 0 B + L ≤ m ≤M − 1 (3.10)

where M = 2dlog2(B+L)e

5. Form the symmetric sequence, ẽsb[m]

ẽsb[m] = ẽb[m] 0 ≤ m ≤M − 1 (3.11)

ẽsb[m] = ẽb[2M −m− 1] M ≤ m ≤ 2M − 1 (3.12)

6. Improving resolution using γ. To improve the resolution, perform the following:

ěsb[m] = [ẽsb[m]]γ 0 ≤ m ≤ 2M − 1 (3.13)

7. ěsb[m] is considered as a magnitude spectrum of an arbitrary signal of 2M − 1

points in (−π, π] and is denoted by Eb[k].

8. Minimum phase equivalent. Compute the IDFT of Eb[k]. The causal portion of

the resulting sequence denoted by eb[l] is a minimum phase signal.

9. Group delay computation. Compute the group delay function of eb[l]w[l], where

w[l] is a cepstral lifter of length W1 as follows.

• Compute the phase spectrum φb[k] of eb[l]w[l].

• Compute the forward difference

τb[k] = φb[k]− φb[k − 1] 1 ≤ k ≤ 2M − 1 (3.14)

where τb[k] is the group delay function.

10. Compute the noise compensated group delay τnb [k] as:

τnb [k] = τb[k]− τmax 0 ≤ k ≤ 2M − 1 (3.15)

16



where τmax = max τb[n] for 0 ≤ n ≤ T and T is an empirically determined

threshold index.

11. Perform median filtering on the noise-compensated group delay τnb [k] as:

τ̄nb [k] = median(τnb [k]) 0 ≤ k ≤ 2M − 1 (3.16)

where median(.) computes a 5-point median.

12. VAD decision. If τ̄nb [k] ≥ 0, classify frame as speech else if τ̄nb [k] ≤ 0 classify

frame as non-speech.
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CHAPTER 4

Results

By executing the program on 500 test samples from AURORA database, we obtained

a relation between WSF and γ with the SNR of the speech signal. We obtained an

inverse relationship between WSF and SNR. This can be attributed to the fact that,

at lower SNR (more noisy conditions), the STE function fluctuates more rapidly, and

consequently, a low pass filter with a lower cutoff is mandated. Therefore a higher

WSF is needed at a lower SNR. Also we got a similar inverse relationship between γ

and SNR. As SNR noise level decreases, noise level increases. Consequently, there

are more ripples in the STE contour. Thus to increase the dynamic range between the

speech (characterized by high-energy regions) and non-speech regions (characterized

by low-energy regions), the power (γ ≥ 1) to which STE function needs to be raised

has to be increased as well.

• Figure 4.1 is the result of GD-VAD on clean speech.

• Figure 4.2 is the result of GD-VAD on speech signal with snr 15dB.

• Figure 4.3 is the result of GD-VAD on speech signal with snr 10dB.

• Figure 4.4 is the result of GD-VAD on speech signal with snr 5dB.

In figures 4.1 to 4.4 the signals from top to bottom are in the order, speech signal,

group delay of the STE function, VAD classifier for γ = 2 and VAD classifier for γ = 3

respectively.
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Figure 4.1: GD-VAD on clean speech signal
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Figure 4.2: GD-VAD on speech signal with SNR 15dB
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Figure 4.3: GD-VAD on speech signal with SNR 10dB
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Figure 4.4: GD-VAD on speech signal with SNR 5dB

• For clean speech signal WSF is set at 2.

• For speech signal with SNR 15 dB WSF is set at 3.

20



• For speech signal with SNR 10 dB WSF is set at 6.

• For speech signal with SNR 5 dB WSF is set at 7.
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CHAPTER 5

Summary and Conclusions

5.1 Summary

The results I’ve got were matching with that of what Mr. Sree Hari got in his work.

Traditionally VAD algorithms have used time-domain characteristics or features de-

rived from the spectral shape. Time-domain features show dependencies on estimates

of absolute levels, such as dc values. Spectral shape based features have a tendency to

become flatter as the noise level increases. As the spectrum becomes flatter, the infor-

mation about the formants in the signal, starts to decrease. For a VAD problem, this

could lead to poorer identification of speech regions.

So, one of the primary objectives of this thesis was to study alternate representations

of the speech signal for VAD. In particular, the use of phase based methods,specifically

group delay functions, for solving the voice activity detection was explored. The GD-

VAD algorithm yielded good performance, but suffers from a latency equal to the signal

length.Framing needs to be done before starting the algorithm to calculate the STE.

Since the signal on which group delay processing is performed is a STE function, which

only gives one value per frame shift. So to to have a reasonable number of samples for

group delay processing, an equal number of frame-shifts are needed which results in

increased latency in processing Also this method needed two quantities(WSF andγ) to

be updated manually depending on the SNR of the speech signal. An improvement can

be added to the GD-VAD algorithm for processing shorter segments of speech.

5.2 Conclusions

Since I’ve tried to implement the VAD algorithm discussed by earlier MS scholar Mr.

Sree Hari Krishnan, I would like to share his conclusions also along with mine.



• The group delay function of a minimum phase signal preserve its structure even in

the presence of noise which makes group delay a useful quantity for the purpose.

• The implemented algorithm works well for clean speech and a degradation in

reliability of the classifier is observed as the signal to ratio approaches zero dB.

• As the proposed algorithm is having a latency equal to the signal length, algorithm

can be modified to process on shorter segments of speech.

• Since the WSF and gamma depends on the SNR, an SNR estimation scheme can

be employed which can be used to estimate WSF automatically
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APPENDIX A

Matlab Code

clc;

% clear ;

% close all;

delete('VAD*.fig');

%%% Frame Details %%%

%%% Copy wav file to current folder %%%

frame_interval=25e-3;

frame_overlap=15e-3;

title1=4;

WSF=[2 3 4 5 7];

gamma1=[2 3 4 ];

% global j;

nameList = ls('Aurora\clean1\*.wav');

% folderList={'Aurora\clean1\';'Aurora\N1_SNR-5\';...

%'Aurora\N1_SNR0\';'Aurora\N1_SNR5\';'Aurora\N1_SNR10\';...

%'Aurora\N1_SNR15\';'Aurora\N1_SNR20\'};

folderList={'Aurora\clean1\';'Aurora\N1_SNR20\';...

'Aurora\N1_SNR15\';'Aurora\N1_SNR10\';'Aurora\N1_SNR5\'};

var_fol=1;

accuracyInDiffSpeech = [];



for varInDiffSpeech = 535 %length(nameList)

fprintf(1,'%%%%%%%%%%%%%%%%%%%%%%%%%%%\n');

fprintf(1,' %dth speech file\n',varInDiffSpeech);

for WSFtemp=5

VAD = {};

grdcell={};

for varInSameSpeech = var_fol %1:length(folderList)

for gammatemp=1:3

dat=[];M=[];N=[];VAD2=[];c1=[];c2=[];e=[];e_tem=[];...

grd=[];grd1=[];half_hann_win=[];newdat=[];...

ph_ind=[];phase1=[];refVAD=[];ste=[];ste1=[];

ste2=[];tem_win=[];time_index=[];valley=[];win=[];win1=[];

eval(['[dat_' num2str(varInDiffSpeech) '_' ...

num2str(varInSameSpeech) ...

' fs] = wavread([folderList{varInSameSpeech}'...

' nameList(varInDiffSpeech,:)]);']);

dat=eval(['dat_' num2str(varInDiffSpeech) '_' ...

num2str(varInSameSpeech)]);

[dat fs] = wavread('FBA_367A_4');

dat(1)=dat(2);

%%% Calculating no of samples %%%

fi=frame_interval*fs;

fo=frame_overlap*fs;

fa=fi-fo;

%%% No of frames %%%

nofr=1+floor((length(dat)-fi)/fa);

newdat=zeros(fi,nofr);
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%%% Framing and making the matrix with columns as frames %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tem_win=hann(floor(2*fi));

half_hann_win=tem_win(floor(length(tem_win)/2)+1:end);

% half_hann_win=rectwin(fi);

j=1;

k=fi;

for i=1:nofr

temp=dat(j:k);

newdat(:,i)=temp;

j=j+fa;

k=k+fa;

end;

clear temp;

%%%% Frame Energy %%%%

ste=zeros(1,nofr);

for j=1:nofr

for i=1:fi

ste(j)=ste(j)+(newdat(i,j)*half_hann_win(i)).^2;

end

end

ste=ste./max(ste);

l=length(ste);

M=2^(ceil(log2(l)));

N=2*M;

ste1=zeros(1,N);

for i=1:l
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ste1(i)=ste(i);

ste1(2*M-i+1)=ste(i);

end

ste2=(abs(ste1)).^(gamma1(gammatemp));

e_tem=ifft(ste2,N);

%%% causal conversion %%%

e=zeros(1,N);

e1=e;

e(1:N/2)=e_tem(1:N/2);

% e(1)=e_tem(1)/2;

%%%%%%%%%%%%%%%%%%%%%%%%%

%%% windowing %%%%

win1=hann(floor(2*N/WSF(WSFtemp)));

win=win1(floor(length(win1)/2)+1:end);

for i=1:length(win)

e1(i)=e(i)*win(i);

end

E1=fft(e1,N);

phase1=angle(E1);

% phase2=unwrap(phase1);

%%% forward diff %%%

grd=[];

for i=2:N

grd=[grd phase1(i)-phase1(i-1)];

end;

grd=-grd;

% grd=grpdelay(e1,N);

% grd=grd/abs(max(grd));

VAD2=zeros(1,nofr);

grd1=grd(1:nofr);
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grd1=grd1/max(grd1);

thr=max(grd1)/600;

grdcell=[grdcell; grd1];

thr=0;

[c1 c2]=get_peaks(grd1,thr);

for i=1:length(c2)

[valley(i,1) valley(i,2)]=get_valleys(grd1,c2(i));

end

for i=1:size(valley,1)

VAD2(valley(i,1):valley(i,2))=ones(1,valley(i,2)-...

valley(i,1)+1);

end

skip1=8;

for i=1:length(VAD2)-skip1

if ((VAD2(i) == 1) && (VAD2(i+skip1)==1))

VAD2(i+1:i+skip1)=ones(1,skip1);

end

end

datcpy=dat(1:nofr*fa);

% end

frame_index=0:nofr-1;

% time_index=0:1/fs:(fi-1+(nofr-2)*fa)/fs;

time_index=0:1/fs:(nofr*fa-1)/fs;

ph_ind=0:fa/fs:(nofr*fa-1)/fs;

datcpy=dat(1:nofr*fa);

% end

frame_index=0:nofr-1;

% time_index=0:1/fs:(fi-1+(nofr-2)*fa)/fs;

time_index=0:1/fs:(nofr*fa-1)/fs;

ph_ind=0:fa/fs:(nofr*fa-1)/fs;

figure;
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subplot(4,1,1)

% plot(time_index,dat(1:fi+(nofr-2)*fa));

plot(time_index,datcpy);

% xlim([0 (nofr-1)*fa./fs]);

% title(title1);

title(WSF(WSFtemp))

% plot(dat(1:nofr*fa));

subplot(4,1,2)

plot(frame_index*fa./fs,ste)

% plot(ste);

ph_ind=0:fa/fs:(nofr*fa-1)/fs;

subplot(4,1,3)

plot(ph_ind,grd(1:nofr));

% plot(grd1);

subplot(4,1,4)

plot(ph_ind,VAD2(1:nofr))

ylim([-.5 1.5]);

close

% saveas(gcf,['VAD_' num2str(varInDiffSpeech)...

%'_' num2str(gamma1(gammatemp)) '_' num2str...

%(WSF(WSFtemp)) '.fig']);

% plot(VAD2(1:nofr));

VAD = [VAD ; VAD2];

end
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% subplot(6,1,1);

% plot(time_index,datcpy);

% subplot(6,1,2);

% plot(ph_ind,VAD{1});

% subplot(6,1,3);

% plot(ph_ind,VAD{2});

% subplot(6,1,4);

% plot(ph_ind,VAD{3});

% subplot(6,1,5);

% plot(ph_ind,VAD{4});

% subplot(6,1,6);

% plot(ph_ind,VAD{5});

% saveas(gcf,['VAD_' num2str(varInDiffSpeech) ...

% '_' num2str(WSF(WSFtemp)) '_' num2str...

% (gamma1(gammatemp)) '.fig']);

%

nofr_time=(nofr*(fi-fo)+fo)/fs;

figure;

subplot(4,1,1);

plot(time_index,datcpy);

ylabel('Speech signal')

% title(['VAD ', num2str(varInDiffSpeech), ' ',...

% num2str(gamma1(gammatemp)), '.fig']);

xlim([0 nofr_time]);

maxi=max(abs(datcpy));

ylim([-maxi maxi]);

subplot(4,1,2);

plot(ph_ind,grd1);

ylabel('grd')

xlim([0 nofr_time]);

ylim([-1.5 1.5]);
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for plotvar=1:2

subplot(4,1,plotvar+2);

plot(ph_ind,VAD{plotvar});

ylabel(['\gamma = ', num2str(gamma1(plotvar))])

xlim([0 nofr_time]);

ylim([0 2])

end

saveas(gcf,['VAD_' num2str(varInDiffSpeech) ...

'_' num2str(gamma1(gammatemp)) '(WSF 2-10).fig']);

end

end

end
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