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ABSTRACT 

 

 

KEYWORDS: Striatum, Basal Ganglia, Context Dependant Learning, Striosomes and 

Matrisomes, Self Organizing Maps, Modular Reinforcement Learning, Stochastic Multi Context 

Tasks, Bayesian Model 

 

Basal Ganglia circuit is an important subcortical system of the brain thought to be responsible 

for reward based learning. Striatum, the largest nucleus of the Basal Ganglia, serves as an input 

port that maps cortical information. Microanatomical studies show that the striatum is a mosaic 

of specialized input-output structures called Striosomes and regions of the surrounding matrix 

called the Matrisomes. We have developed a computational model of the striatum using layered 

self-organizing maps to capture the centre-surround structure seen experimentally and explain 

its functional significance. We believe that these structural components could build 

representations of state and action spaces in different environments. The striatum model is then 

integrated with other components of Basal Ganglia, making it capable of solving reward based 

tasks. We have proposed a biologically plausible mechanism of action based learning where the 

striosome biases the matrisome activity towards a preferred action. Several studies indicate that 

the striatum is critical in solving context dependant problems. We build on this hypothesis and 

the proposed model exploits the modularity of the striatum to efficiently solve such tasks.  We 

have also looked at stochastic multi context tasks and developed a Bayesian theoretical model to 

solve these problems. The striatum model is also catered to solve these tasks. We have shown 

that the striatal model matches the theoretical model for low stochasticity in the environment 

and could be thought of as a neural implementation of the theoretical model. 
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LIST OF FIGURES 

 

Fig. 1 A) A schematic of the striosome-matrisome centre surround mapping in the striatum. 

The red structures represent the striosomes and the surrounding green structures 

represent the matrisomes. B) A Schematic of the layered SOM structure modeling the 

striosomes and matrisomes. The Strio-SOM (Red) represents the striosomes and the 

Matri-SOM (Green) represents the matrisomes; each Strio-SOM neuron has projections 

to the surrounding Matri-SOM neurons. 

Fig. 2 Schematic Diagram for the Basal Ganglia model. The arrows indicate connections and 

their type. The component sizes are proportional to their dimensions. The feedback 

connections from the thalamus project the information about the action chosen back to 

the striatum 

Fig. 3 Schematic of the extended model to handle modular RL tasks showing the case with two 

striatal modules. The state representations of the two modules are used to calculate their 

respective responsibilities which are then used by the striatal interneurons to choose the 

appropriate module.  

Fig. 4 

 

A) Activity of the Strio-SOM and the corresponding Matri-SOM neurons for different 

actions in a state. The centre map shows only the activity of the Strio-SOM in the 

absence of any action and the other four maps in the corners show the activity of the 

Strio-SOM and the four possible Matri-SOM neurons that best respond to the particular 

action. B) Same as (A) for another state. C) Combined activity for all the action pairs in 

(A). Shows one configuration of the centre-surround mapping. D)  Combined activity 

for all the action pairs in (B). Shows another configuration of the centre-surround 

mapping. 

Fig. 5 

 

A) Schematic of the grid-world used in the task. A goal is located at the top right corner 

of the grid B) State value map estimated by the agent at different spatial locations. We 

can see that the state value peaks at the goal location. C) Plot of the Number of Steps 
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taken by the agent in each episode averaged across 50 independent sessions. We see that 

the number of steps reduces as the agent learns across episodes. 

Fig. 6 

 

A) Schematic of the gridworld used in the task. A goal is switched between the top left 

and bottom right corner every 150 episodes. B) State value map estimated by the agent 

at different spatial locations across different contexts. We can see that the state value 

peaks at the goal location corresponding to the context. C) Environment Feature Signal 

maps estimated by the agent at different spatial locations across different contexts. We 

can see that the state value peaks at the goal location corresponding to the context. D)  

Modules chosen by the agent at different episodes. We can see that the module chosen 

switched with change in context indicating that the agent is able to identify the context it 

is currently present in. 

Fig. 7 

 

A) Plot of Number of Steps taken by the single module agent in each episode averaged 

across 50 independent sessions. We see that the agent needs to relearn after each context 

switch B) Plot of Number of Steps taken by the multi module agent in each episode 

averaged across 50 independent sessions. We see that the agent efficiently switches 

modules after each context switch C) Peak number of steps needed to reach the goal 

after a context switch averaged across 50 sessions. D) Number of episodes for the 

number of steps required to reach the goal to go below a certain threshold averaged 

across 50 sessions E) Peak value for the average number of steps needed to reach the 

goal after a context switch. The experimental values have been adapted from (Brunswik 

1939) D) Number of episodes for the average number of steps required to reach the goal 

to go below a certain threshold. The experimental values have been adapted from 

(Brunswik 1939) 

Fig. 8 Flowchart depicting steps to solve a stochastic multi context task. 

Fig. 9 A) Schematic of the centre surround mapping of seen in the striatum. The red centre 

represents the striosomes and the surround green neurons represent the matrisomes. B) 

Schematic of the layered SOM architecture where each neuron in the Strio-SOM (Red) 

projects to the neurons in the Matri-SOM (Green) C) Schematic diagram of the Striatum 
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model where the arrows indicate the connections and their types. 

Fig. 10 Schematic of the extended model to handle modular RL tasks showing the case with two 

striatal modules. The state representations of the two modules are used to calculate their 

respective responsibilities which are then used by the striatal interneurons to choose the 

appropriate module. 

Fig. 11 A) Demonstration of change in performance with varying reward magnitudes (Figure 

adapted from (Lloyd and Leslie 2013)). B) Performance of our model on the varying 

reward magnitude task C) Demonstration of change in performance with varying reward 

probabilities (Figure adapted from (Lloyd and Leslie 2013)). D) Performance of our 

model on the varying reward probability task 

Fig. 12 A) Percentage of trials where the animal chooses the arm which is non-profitable for the 

first 24 trials and becomes profitable following that. (Figure adapted from (Lloyd and 

Leslie 2013)). B) Performance of the model on the task described in A. We see that the 

model shows similar trends where the definite reward tasks show faster reversal 

learning. C) Percentage of trials where the animal chooses the arm which was rewarding 

before 24 trials following which both arms are not rewarded (Figure adapted from 

(Lloyd and Leslie 2013)). D) Performance of the model on the task described in C where 

the model shows similar trends as the definite reward task show faster unlearning. 

Fig. 13 A) Schematic of the cue based decision making task where the agent has to choose 

between the two shapes shown in the screen and each shape has a different probability of 

reward associated with it. B) Percentage of correct responses averaged over 25 sessions 

for 200 trials. C) Mapping of the action inputs forms a centre-surround structure when 

we view the combined activity of the Matri-SOM for all action inputs D) Ratio of 

choosing response 1 with associated probability P1 wrt to the sum P1+P2. The model 

follows a similar trend to the experimental plot adapted from (Pasquereau, Nadjar et al. 

2007) 

Fig. 14 A) Probability of context 1 estimated by the theoretical model. B) Probability of context 
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1 estimated by the neural model. 

Fig. 15 A) Percentage of correct responses by the theoretical model. B) Percentage of correct 

responses by the neural model. 

Fig. 16 Schematic of the extended model to handle modular RL tasks showing the case with two 

striatal modules. The state representations of the two modules are used to calculate their 

respective responsibilities which are then used by the striatal interneurons to choose the 

appropriate module. 
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ABBREVIATIONS 

 

 

BG     Basal Ganglia 

SOM     Self-Organizing Maps 

TD     Temporal Difference 

STN     Subthalamic nucleus 

GPe     Globus Pallidus external 

GPi     Globus Palidus internal 

RL     Reinforcement Learning 
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NOTATIONS 

 

 

x     Variable x (italicized) 

x     Vector x (bold, italicized) 

dim(x)     Dimension of vector x 

 [n]     Spatial Location of neuron n 

x→y     Projection from x to y  
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OUTLINE OF THE THESIS 

 

The thesis is organized into several chapters most of which are assigned to two main sections 

which describe the two main models of striatum. Section I of the thesis deals with the non-

stochastic version of reward based learning. The first chapter of this section introduces the 

earlier studies for understanding the structure and function of the striatum and basal ganglia. 

The next chapter lays down the architecture of the proposed model for dealing with these tasks. 

This is followed by the results of section I which sets up a testbench problem and demonstrates 

the model performance in building representations, solving both the stationary and non-

stationary versions of the reinforcement learning problems and finally shows some experimental 

results which validate the model. The last chapter of section I is the discussion chapter which 

presents an analysis of the various predictions made by the model and their support with 

existing literature. 

Section II of the thesis mainly deals with the stochastic reward based tasks. Since the inherent 

complexity of these tasks is much higher than their non-stochastic counterparts, the approach to 

solve these problems is presented in a different route. The first chapter of this section introduces 

the problem. This is followed by the Methods chapter for this section. This chapter first lays out 

a detailed formulation of the problem. Next, a Bayesian model is formulated which provides a 

bound on the optimal performance in such tasks. This Bayesian model is modified to relax some 

of its strong assumptions to give rise to a theoretical model catering to stochastic multi-context 

tasks. This is followed by a neural model of the striatum which borrows some base features 

from the model in section I but presents an alternate variation to the striatal model. The next 

chapter consists of the results which first demonstrate the theoretical model followed by the 

demonstration of the neural model. These two models are then compared with each other on 

various problem formulations. The final chapter of this section presents a short discussion for 

the various ideas in this section. 

The last part of the thesis concludes all the results in the previous sections and then describes 

the possible future route for the model. 
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SECTION I 
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CHAPTER 1 

 

INTRODUCTION 

 

 

In order to understand the role of the striatum within the basal ganglia (BG) circuit, it is 

essential to understand the rich and complex microcircuitry of this structure. It is  well 

known that the striatum has a modular architecture, containing specialised input-output 

structures called the ‘striosomes’ and regions of the surrounding matrix called the  

‘matrisomes’ (Graybiel, Flaherty et al. 1991). The striosomes are known to receive limbic 

inputs and send their projections to the substantia nigra pars compacta,  a midbrain 

dopaminergic nucleus, whereas the matrisomes mostly receive sensorimotor and 

associative inputs and project to downstream BG nuclei (Graybiel, Aosaki et al. 1994). 

The cortico-striatal connectivity seems to show a divergence property, where there is 

spread of connections coming from the cortex to the striatum followed by a convergence 

at the level of the globus pallidus (GP) (Graybiel, Aosaki et al. 1994). There have also 

been suggestions that the striatum constructs low dimensional representations of the 

cortical states via the cortico-striatal projections (Bar-Gad, Havazelet-Heimer et al. 2000; 

Bar-Gad, Morris et al. 2003). Indirect evidence for this comes from experiments which 

indicate hebbian like learning in cortico-striatal projections (Charpier and Deniau 1997). 

Therefore the striatum has the cellular and molecular machinery to possibly construct 

such reduced representations of cortical states. These facts about striatal microanatomy 

lead us to believe that the striatum could build representations for several state and action 

spaces.  

Anatomically the striosome-matrisome complex has a center-surround structure 

(Graybiel, Flaherty et al. 1991), and the proposed computational architecture for the 

striatum is inspired by this fact. Studies investigating the projection of prefrontal areas to 

the striosomes show specificity to certain cortical areas (Eblen and Graybiel 1995). These 
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cortical projections to anterior striosomes are mostly from frontal regions like the 

orbitofrontal cortex, anterior insula and the anterior cingulate cortex (Eblen and Graybiel 

1995) which could very well represent the task or state space (Wilson, Takahashi et al. 

2014). The matrisome which receives more sensorimotor information would well 

represent the action space (Flaherty and Graybiel 1994). In classical reinforcement 

learning (RL) literature, the expected reward signal in a given state is called the value 

function (Sutton and Barto 1998). The striosomes are known to have reciprocal 

projections to both the Ventral Tegmental Area (VTA) and the Substantia Nigra pars 

compacta (SNc) and thus would receive the prediction error signal from these midbrain 

nuclei, which can serve as a reinforcement signal that aids in the computation of the state 

value function (Granger 2006). On the other hand the action representations perhaps 

evolve at the level of matrisomes, and get mapped on to action primitives at the level of 

GPi (Pasquereau, Nadjar et al. 2007). Thus using the reward information from the 

environment and the representations built in the striatum, the BG can learn to perform 

reward based decision making tasks. 

This functional organization and the modularity of the striatum has been hypothesized to 

perform context dependent tasks (Amemori, Gibb et al. 2011). Mulitple spatio-temporal 

contexts could then be mapped to different striatal modules, leading to decomposition of 

goals (context information) a facet of modular reinforcement learning (Kalmár, 

Szepesvári et al. 1999). We then consider the selection of the module appropriate to a 

given context to be driven by a responsibility signal, which is a function of the 

uncertainty in the environment. Uncertainty in the environment from previous approaches 

has been represented by reward variance (Balasubramani, Chakravarthy et al. 2015).  

Since change in context leads to increased uncertainty, reward variance could help 

identify this change.   

In the current study, we propose a hierarchical self-organizing structure to model the 

striosome-matrisome compartments. Self-organizing maps (SOMs) have been used to 

represent high-dimensional information in 2-D sheets of neurons (Kohonen 1998). The 

striosome and the matrisome layers are both modelled as a double SOM layer, consisting 
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of Strio-SOM and Matri-SOM respectively, where a single Strio-SOM neuron has 

projections to the surrounding Matri-SOM neurons. The activity of the Matri-SOM is 

mapped to action primitives via the direct and indirect pathways of the BG to perform 

action selection. The reward information from the environment is utilized by the Strio-

SOM to bias the surrounding Matri-SOM activity towards a preferred action. This 

provides a biologically plausible way of carrying out action based Q-learning (Sutton and 

Barto 1998) and is a novel feature of our model. This model has been tested on standard 

grid-world problems. 

The model has been extended to cater to problems with varying contexts (changing 

reward locations). Different striatal modules map different contexts and Tonically Active 

Neurons (TANs) (Apicella 2007) aid in module selection This selection is driven by the 

risk (reward variance) in the environment which is used to calculate the responsibility 

signal (Amemori, Gibb et al. 2011) for a particular module. We have tested this model on 

grid-world problems with varying reward distributions and the model is able to solve 

these problems efficiently.  
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CHAPTER 2 

 

METHODS 

 

Modeling the microanatomy of the Striatum 

 

We have proposed an architecture consisting of two layers of SOMs as a method for 

mapping centre-surround structures seen in the striatum (Fig. 1A). This architecture is 

used to model striosomes and matrisomes which map the state space and action space 

respectively. 

The first layer called Strio-SOM models the striosomes and maps the state space.  The 

second layer activated by the Strio-SOM is called the Matri-SOM which models the 

matrisomes and maps the action space (Fig. 1B).  

 

 

 

Fig. 1 A) A schematic of the striosome-matrisome centre surround mapping in the striatum. The red 

structures represent the striosomes and the surrounding green structures represent the matrisomes. B) 

A Schematic of the layered SOM structure modeling the striosomes and matrisomes. The Strio-SOM 
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(Red) represents the striosomes and the Matri-SOM (Green) represents the matrisomes; each Strio-

SOM neuron has projections to the surrounding Matri-SOM neurons. 

 

In order to map the state space, we have a Strio-SOM of size m1 x n1. If s is a state vector, 

the weights of the Strio-SOM (W 
S
) are of dimension m1 x n1 x dim(s), where dim(s) 

stands for the dimension of the state  vector s. Similarly, to map the action space, we have 

a Matri-SOM of size m2 x n2. If a is an action vector, the weights of all the Matri-SOMs 

(W 
M

) are of dimension m1 x n1 x m2 x n2 x dim(a) as each neuron in the Strio-SOM is 

connected to a Matri-SOM. 

The activity for a neuron n in the Strio-SOM for a state input s is given in Eq. 1. 

 2

[ ] 2

[ ] 2

|| ||
exp( )
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nS

n
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Eq. 1 

 

where [n] represents the spatial location of the neuron n and σS controls the sharpness of 

the neuron activity. The complete activity of the Strio-SOM (X
S
) is the combination of 

individual activity of all the neurons. The neuron with the highest activity (“winner”) for 

a state s is denoted by ns
*

. 

Similarly, the activity for a neuron n in the Matri-SOM for an action input a in a state s is 

given in Eq. 1. 
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Eq. 2 

 

where σM controls the sharpness of the neuron activity. The complete activity of the 

Matri-SOM corresponding to neuron ns
*
 ( * ][ s

M

n
X ) is the combination of individual 

activity of all the neurons in the Matri-SOM corresponding to ns
*
. The neuron with the 

highest activity (“winner”) for an action a in a state s is denoted as ns,a
*
. 



19 

 

The weight of a neuron n in the Strio-SOM for a state input s is updated according to the 

following rule 

 * 2

2
[ ] [ ] ][2

|| [ ] [ ||
.exp( ).(

]
)S s

S

n n
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n n
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Eq. 3 

The weight of neuron n in the Matri-SOM for an action input a in a state s is updated 

according to the following rule: 
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Eq. 4 

   

Reinforcement learning in Basal Ganglia 

The striatum model developed in the previous section was useful in developing 

representations for states and actions. In this section, we incorporate the striatum model 

in a BG  model and apply the model to  standard reinforcement learning tasks. A 

schematic diagram of the model is given in Fig. 2. 
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Fig. 2 Schematic Diagram for the Basal Ganglia model. The arrows indicate connections and their type. The 

component sizes are proportional to their dimensions. The feedback connections from the thalamus 

project the information about the action chosen back to the striatum 
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Let us assume that the animal is in a state s. The activity of the striosomes gives us the 

representation of the state in the striatum. In our model, the activity of the striosomes is 

given as the activity of the neurons in the Strio-SOM where the activity of a single 

neuron is given by Eq. 1. Thus the activity is of dimension m1 x n1. 

This activity of the Strio-SOM projects to the SNc and represents the value for the state s 

in our model (Eq. 5). These weights from the striatum to SNc (W
Str→SNc

) are trained using 

the signal from SNc which is representative of Temporal Difference (TD) error ( ) (Eq. 

6). The TD error is calculated as ( ') ( )r V s V s     where s’ is the new state after 

taking action a (Eq. 19), r is the reward obtained and   is the discount factor. 

 
[ [ ]]( ) SNcStr S

nn

n

V s XW 



  Eq. 5 

 
[ ] [ ]

SNc SNc S

n

Str Str

nW X     Eq. 6 

where V(s) represents the value for state s, η
Str→SNc 

is the learning rate for W
Str→SNc

. 

The representation for the various actions the agent in state s can perform is given by the 

activity of the matrisomes surrounding the corresponding striosome neuron for the state. 

In our model, this is given by the activity of the neurons of the Matri-SOM corresponding 

to the neuron with the highest activity in the Strio-SOM (ns
*
) where the activity of a 

single neuron in the Matri-SOM is given in Eq. 2. Thus the activity is of dimension m2 x 

n2. The action input a is given as feedback input from the thalamus to the striatum (Fig. 

2).  

The activity of Matri-SOM neurons is further tuned by the connections between the 

neurons in the Strio-SOM and the Matri-SOM (W
S→M

). These connections are also 

trained using TD error as above using the Matri-SOM activity for the action (a) chosen, 

as follows: 
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* *[ [ ] [ ]][]S S

M M

n n

S

n

S

n

MW X     Eq. 8 

where α controls the contribution of the action and the lateral connections to the activity 

of the Matri-SOM and η
Str→SNc 

is the learning rate for W
S→M

. Choosing a low value of α 

and low initial weights for W
S→M 

ensures that the activity is driven by the action 

representation initially and then driven by the lateral weights once the W
S→M 

have been 

trained sufficiently. The Strio-SOM/Matri-SOM weights (W
S→M

) are thresholded and 

normalized by their sum to ensure stability. 

The matrisomes activity is projected to the direct and indirect pathways by the D1 and D2 

neurons of the striatum. In our model, the Matri-SOM activity is modulated by a value 

difference signal (δV). If the agent goes from state  s
(1)

 to s
(2)

, δV is the difference between 

the value of the two states, i.e. δV = V(s
(1)

)-V(s
(2)

). 

 This value difference signal modulates the switching between the direct and indirect 

pathways and is thought to be represented by the dopamine signaled by SNc 

(Chakravarthy and Balasubramani 2015). The activity of the D1 and D2 neurons are 

given in Eq. 9 and Eq. 10. 
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where f is a tanh nonlinearity and 
1D  and 2D  are the gains of the D1 and D2 neurons  

respectively. The indirect pathway consisting of the GPe and STN is modeled as network 

of coupled non-linear oscillators. The dynamics of these oscillators is highly dependent 

on the input, which constitutes the projections from the D2-expressing neurons of the 

striatum. The dynamics of GPe is given below:  
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Eq. 11 
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[ ] [ ]tanh( )GPGP e

n n

e GPeY X  Eq. 12 

 

where W
GPe→GPe

 are the lateral weights within the GPe, ϵ
GPe

 is the connection strength, 

W
STN→GPe

 are the connections between STN and Gpe, and λ
GPe

 is a non-linear scaling 

parameter. 

The STN layer in the model exhibits correlated activity suppressed  for high striatal input, 

and uncorrelated oscillatory activity for low striatal inputs(Chakravarthy and 

Balasubramani 2015). The uncorrelated oscillations of the STN are a key source of 

exploration for the agent. The  dynamics of STN is given below:  

 
[ ]

[ ] [ ] [ ] [ ] [ ]

nSTN STN STN STN STN STN GPe STN GPe

n n n n n

STNdX
X W Y W Y

dt
        

 

Eq. 

13 

 

 
[ ] [ ]tanh( )STST N

n n

N STNY X  Eq. 

14 

 

 

where W
STN→STN

 are the lateral weights within the STN, ϵ
STN

 is the connection strength, 

W
GPe→STN

 are the connections between Gpe and STN and λ
STN

 is a non-linear scaling 

parameter. 

The D1 neurons of the striatum and the STN neurons project to the GPi leading to the 

convergence of the direct and indirect pathways in GPi. In the model, the number of GPi 

neurons equals number of actions (= dim(a)).  The weights W
D1→GPi

 and W
STN→GPi

 map 

the corresponding activities of D1 striatum and STN onto the GPi. The Matri-SOM 
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activity (Y
D1

) corresponding to the chosen action (a) (which comes via feedback) is used 

to train the two sets of weights, W
D1→GPi

 and W
STN→GPi

 using Hebb’s rule. The output of 

GPi neurons are computed according to (eqn. 15), and the update for the weights 

W
D1→GPi

 and W
STN→GPi

 are done according to (Eq. 16 and Eq. 17). 

 1

[ '] [ '][ ] [ ] [ '] [

1

[ ] ]

GPi D GPi STN GPi

n n n n n n n

D STNY W Y W Y    Eq. 

15 

 11

[ ][ '] [ ] [ ']

1D DD GPi GPi GPi

n n n nY XW     Eq. 

16 

 
[ ][ '] [ ] [ ']

STN GPi STN STNGPi GPi

n n n nY XW    Eq. 

17 

 

The neurons in the GPi project to the thalamus. In our model, action selection takes place 

in the thalamus, following the integrator-race model (Bogacz 2007) with thalamic 

neurons having self-exciting and mutually inhibiting interactions. The thalamic neuron 

that first crosses a threshold value (Ythresh) determines the action. The thalamic neurons 

have low initial random activity which converge to a high activity for the chosen action 

and low values for the others. The dynamics of thalamic neurons is given as:  

 
[ ] [ ][ '] [ '] [ ]

'

Thal Thal Thal GPi

n n n n n

n Thal

Y W Y Y


   Eq. 

18 

 

 
[ ]{[ ]: }Thal

n thresha n Y Y   Eq. 

19 

 

This action (a) chosen is carried out and the reward (r) is obtained. The action chosen is 

also projected back to the striatum to obtain the activity. Both the action and the reward 

are used for updates in Eq. 6, Eq. 8 and Eq. 16. 
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Reinforcement Learning in Environments with Multiple Contexts 

Standard Reinforcement Learning techniques are suited for problems where the 

environment is stationary. However, in some tasks the environment suddenly changes 

and the agent has to adopt a policy suitable for the new environment. In such a case, the 

agent identifies the context either using a cue which is representative of the context or 

using its experience in the preceding trials. One of the techniques to solve problems of 

the second category is the modular RL framework.  In this method, the agent allocates 

separate modules to separate contexts. Each of the modules has its own copy of the 

environment in a particular context, represented by an environment feature signal (ρ). 

This copy is used to generate a responsibility signal, denoted by λ, which indicates how 

close the current context is to the one represented by the module. Thus by identifying the 

module with the highest responsibility signal we can follow the policy developed in that 

module to solve the problem in an efficient manner. 

 

Using the striatal modularity to solve modular reinforcement learning 

tasks 

The striatum model developed above forms the basic module capable of solving simple 

RL tasks. Multiple such modules in the striatum could then be exploited to tackle multi-

context tasks using modular RL framework. A schematic of this extended model is given 

in Fig. 3. 

We believe that context selection happens at the level of the striatum and the context 

modulated activity is projected to the downstream nuclei of the BG  for further 

processing. Thus, for clarity, we have expanded the intra-nuclear activity of the striatum 

in the model schematic (Fig. 3). Supposing there are K modules denoted by M1, M2 … 

,MK. We now define the weights and activities in the previous sections for each module 

and denote {Mi} with each term associated with module Mi. Thus, for a  module m, the 
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following variables undergo a change in notation: X
S
 → X

S,{m}
 (Eq. 1),  X

M
 → X

M,{m}
 

(Eq. 2), W 
S
 → W 

S,{m}
 (Eq. 3), W 

M
 → W 

M,{m}
 (Eq. 4), V(s) → V

{m}
(s) (Eq. 5), W 

Str→SNc
  

→ W 
Str→SNc,{m}

 (Eq. 6), X
M

 → X
M,{m} 

(Eq. 7), W
S→M

 → W
S→M,{m}

 (Eq. 8). 

We propose that in addition to the value of the state s, the activity of the Strio-SOM also 

projects to the SNc to represent the environment feature signal (ρ
{m}

). The weights of 

these projections are denoted as       Wρ 
Str→SNc,{m}

 and are trained using the signal from 

SNc which is representative of context prediction error       ( *
).  The corresponding 

equations are given in Eq. 20 and Eq. 21. The context prediction error is calculated as 

* { }( )mr s     

 { } ,{ }
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Fig. 3 Schematic of the extended model to handle modular RL tasks showing the case with two striatal modules. The 

state representations of the two modules are used to calculate their respective responsibilities which are then 

used by the striatal interneurons to choose the appropriate module.  

 

 

We believe that the selection of the appropriate module for the context is guided by the 

striatal interneurons. In our model, the activity of the interneurons represents the 

responsibility signal for each module, denoted by λ
{m}

 for module m. In a given state s, 
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the inter-neurons compete among themselves  and the one with the highest λ chooses the 

module responsible for deciding the action in that state. Let the winning module in the 

state s be denoted by m
*
. This module guides the projection to the direct and indirect 

pathway (Eq. 9 and Eq. 10) as given in Eq. 22 and Eq. 23. 

 

 *

*

1 ,{

[ ] [ [ ]

}

1 ]
( )

s
D V

D M m

n n n
Y f Y   Eq. 

22 

 *

*

2 ,{

[ ] [ [ ]

}

2 ]
( )

s
D V

D M m

n n n
Y f Y   Eq. 

23 

 

Following this stage, the equations governing the signal flow are same as that in the 

previous section. The weight updates in the striatum are however done only to the 

module m
*
.  

The dynamics of the responsibility signal is given in Eq. 24 

 * 2( )      Eq. 

24 

 

where αλ  controls the influence of context prediction error on the responsibility signal 

and δ
*
 is the context prediction error. 
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CHAPTER 3 

 

RESULTS 

 

Modeling the microanatomy of the Striatum 

We use a grid-world problem as a preliminary benchmark to test our model. The grid is 

of size 10 x 10 and the agent can take one of the four actions- Up, Down, Right and Left 

in a state. A reward is placed at one of the corners of the maze. The goal of the task is to 

make the model (agent) learn to reach this goal. We use the terms model and agent 

interchangeably in these sections since we use the model as a reinforcement learning 

agent in the various tasks.  We used a 10 x 10 Strio-SOM to represent the state space and 

a 3 x 3 Matri-SOM, associated with each of the Strio-SOM neurons, for representing the 

action space. 

In order to develop these representations, we make the agents explore various states and 

choose random actions in those states. Following this, we look at the neuron with the 

highest activity in the Strio-SOM for a particular state and the neurons with the highest 

activity for each action in the corresponding Matri-SOM for that state (Fig. 4A, Fig. 4B). 

Upon looking at the combined Matri-SOM activity for all the actions, we observed 

predominantly two different configurations of the centre-surround mapping (Fig. 4C, Fig. 

4D). 
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Fig. 4 

 

A) Activity of the Strio-SOM and the corresponding Matri-SOM neurons for different actions in a 

state. The centre map shows only the activity of the Strio-SOM in the absence of any action and the 

other four maps in the corners show the activity of the Strio-SOM and the four possible Matri-SOM 

neurons that best respond to the particular action. B) Same as (A) for another state. C) Combined 

activity for all the action pairs in (A). Shows one configuration of the centre-surround mapping. D)  

Combined activity for all the action pairs in (B). Shows another configuration of the centre-surround 

mapping. 

 

 

Reinforcement Learning in a Single Context Gridworld Task 

 The goal was placed at the top right of the grid as seen in Fig. 5A. The agent received a 
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reward of +20 when it reached the goal and 0 for all the other steps.  At the beginning of 

an episode, the agent started at random and the episode ended when the agent reached the 

goal or when it reached the upper limit on number of steps allowed in the episode. The 

agent carried on the task for 150 episodes. This procedure was carried out for 50 

independent sessions and the mean number of steps to reach the goal in a particular 

episode was plotted in Fig. 5C. The heat map of the state value function (Eq. 5) estimated 

by the agent at different spatial locations is given in Fig. 5B and peaks at the goal 

location. This combined with the fact that number of steps reduces as the episodes 

progress indicate that the agent is able to learn the single context task. The various 

parameter values for this task are given in Table1. 
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Fig. 5 

 

A) Schematic of the grid-world used in the task. A goal is located at the top right corner of the 

grid B) State value map estimated by the agent at different spatial locations. We can see that the 

state value peaks at the goal location. C) Plot of the Number of Steps taken by the agent in each 

episode averaged across 50 independent sessions. We see that the number of steps reduces as the 

agent learns across episodes. 
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Reinforcement Learning in a Multi-Context Grid-world Problem 

In the multi context grid-world tasks, the agent had to reach the goal like the previous 

section but the goal location changed after a certain number of episodes. The goal was 

present either at the top right corner or at the bottom left corner as shown in Fig. 6A. The 

goal was switched to the other location after 150 episodes. The task was carried out in 50 

independent sessions with each session containing 900 episodes. The parameters used 

have the same values as given in Table 1. Fig. 6B shows the value function (Eq. 5) heat 

map and Fig. 6C shows the environment feature signal (Eq. 20) heat map estimated by 

the agent for the two contexts. We can observe that the agent is able to learn these values 

for both the contexts. Fig. 6D shows the context chosen by the agent in different episodes 

and we can observe that the agent is able to switch context in sync with the switch in 

reward distribution.  These results illustrate that the agent is able to successfully identify 

the context it is presently in, and complete the corresponding grid-world task. 
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Fig. 6 

 

A) Schematic of the gridworld used in the task. A goal is switched between the top left and bottom 

right corner every 150 episodes. B) State value map estimated by the agent at different spatial 

locations across different contexts. We can see that the state value peaks at the goal location 

corresponding to the context. C) Environment Feature Signal maps estimated by the agent at different 

spatial locations across different contexts. We can see that the state value peaks at the goal location 

corresponding to the context. D)  Modules chosen by the agent at different episodes. We can see that 

the module chosen switched with change in context indicating that the agent is able to identify the 

context it is currently present in. 

 

Table 1: Parameter values for single context and multi context tasks 
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Parameter Value Parameter Value 

Strio-SOM Dimension (m1xn1) 10x10 Matri-SOM Dimension (m2xn2) 3x3 

σS 0.01 σM 0.1 

ηS 0.4 ηM 0.4 

γ  0.97 η
Str→SNc

 0.1 

α  0.1 η
S→M

 0.1 

λD1 1 λD2 -1 

τ
GPe

 3 Τ
STN

 1 

ϵ
GPe

 -0.01 ϵ
STN

 0.01 

λ
GPe

 3 λ
STN

 3 

η
D1→GPi

 0.01 η
STN→GPi

 0.01 

Ythresh 1 ηρ
Str→SNc

 0.1 

αλ  0.8   

 

 

 

The average number of steps required by the agent to reach the goal for each episode 

across 50 sessions is given in Fig. 7B. The same plot for an agent with only a single 

module is given in Fig. 7A. We can clearly see that the learning is more efficient for 

multi module agent as compared to the single module case. In order to quantify this 

improvement, we use two values to measure the agent’s performance after a context 

switch. These are the peak number of steps to reach the goal after a context switch and 

the number of episodes for the number of steps needed to go below a certain threshold. 
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We calculate these two values for each context switch in a session. These values are 

averaged across sessions and presented in Fig. 7C and Fig. 7D resp. In both cases we see 

that the multi module agent is better than the single module agent for solving the task. 

We use these measures to compare the model against experimental data in (Brunswik 

1939). Since we only have the average performance across sessions available in the 

reference, we calculate the corresponding values from our model and present these for the 

single module, multi module and the experimental case in Fig. 7E and Fig. 7F 

respectively. We can observe that multi module results have a similar trend to the 

experimental results as compared to the single module model, thus demonstrating that the 

BG could be using the modular architecture of the striatum to solve context switching 

tasks. 
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Fig. 7 

 

A) Plot of Number of Steps taken by the single module agent in each episode averaged across 50 independent 

sessions. We see that the agent needs to relearn after each context switch B) Plot of Number of Steps taken by 

the multi module agent in each episode averaged across 50 independent sessions. We see that the agent 

efficiently switches modules after each context switch C) Peak number of steps needed to reach the goal after 

a context switch averaged across 50 sessions. D) Number of episodes for the number of steps required to reach 

the goal to go below a certain threshold averaged across 50 sessions E) Peak value for the average number of 

steps needed to reach the goal after a context switch. The experimental values have been adapted from 
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(Brunswik 1939) D) Number of episodes for the average number of steps required to reach the goal to go 

below a certain threshold. The experimental values have been adapted from (Brunswik 1939) 
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CHAPTER 4 

 

DISCUSSION 

 

We have proposed a network model of BG incorporating a computational framework to 

capture the microanatomy of the striatum. Our model shares features with existing 

models of BG designed to solve reinforcement learning (RL) tasks. In addition to solving 

RL tasks, our model exploits the modularity of the striatum to solve tasks with varying 

reward distributions in multiple contexts. 

Striosome-Matrisome Dynamics with their Dopaminergic Projections 

Our model is based on the assumption that striosomes map state information and 

matrisomes map action information. Earlier results suggest that the striosomes receive 

input from the orbitofrontal cortex (Eblen and Graybiel 1995) known for coding reward 

related states (Wilson, Takahashi et al. 2014). Matrisomes receive connections from 

primary motor and somatosensory cortices and could have action representations 

(Flaherty and Graybiel 1994), thereby supporting the assumptions of our model.  

Anatomical studies show that striosome medium spiny neurons (MSNs) project directly 

to SNc (Lanciego, Luquin et al. 2012). We believe that these projections could code for 

the state value of the agent as seen from the Strio-SOM to SNc connections in our model. 

We propose that the striosome neurons influence the behaviour of the surrounding 

matrisome neurons. Earlier results show that Fast Spiking Interneurons (FSIs) and 

Persistent and Low-Threshold Spike (PLTS) interneurons are anatomically suitable 

candidates for this role since they branch across the patch and matrix (Gittis and Kreitzer 

2012). We believe that the dopaminergic projections to these interneurons (Bracci, 

Centonze et al. 2002) could allow the striosome to bias the surrounding matrisome 

activity towards a preferred action. To our knowledge, this modulation (Eq. 8) is a unique 



40 

 

feature to our model and gives a biologically plausible mechanism to perform Q-learning. 

This is also supported by experiments which indicate that the striatum contributes to 

action selection by biasing its output towards the most desirable action (Samejima, Ueda 

et al. 2005; Hikosaka, Nakamura et al. 2006).  

Mapping Representations to Action Primitives 

Striatal MSN recordings show that they encode action representations and are modulated 

by the expected reward for the actions (Isomura, Takekawa et al. 2013). Our model 

agrees with this as both the Matri-SOM D1 and D2 neurons represent the action space 

and are correspondingly modulated by the TD error which is representative of the 

expected reward. Experiments also show activity in the MSNs corresponding to the 

outcome of the chosen action (Kim, Sul et al. 2009). We believe again that this could be 

the signal required to bias the activity of the striatal MSN as seen in the model (Eq. 8). 

GPi forms the output nucleus of the BG and receives projections from Striatal MSNs 

through the direct and indirect pathways. Lesion studies show that GPi control movement 

by inhibitory projections to the thalamus and lesioning GPi impairs motor responses 

(Baunez and Gubellini 2010). Experiments also show that in the executive part of the 

task, the GPi activity is strongly related to the action performed (Pasquereau, Nadjar et al. 

2007).  

We propose that the connections from striatal D1 MSNs and STN to the GPi map the 

projections from action representations to action primitives. We believe that this mapping 

provides a flexible method to switch different action primitives for the same 

representations and vice versa, providing a plausible mechanism of adaptation in 

learning. Experiments show evidence of transformation of action information seen as 

higher degree of correlation in GPi activity as it passes from striatum to the GPi 

(Garenne, Pasquereau et al. 2011). 

Contextual Learning and Striatal Modularity 

Contextual Learning refers to the ability of the agent to adapt and learn in different 
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contexts. Some earlier operant conditioning experiments in such tasks have an explicit 

indication of contexts (different room or colour for each context) using which the agent 

can choose its actions (Bouton & King, 1983; Bouton & Peck, 1989). In such tasks, the 

agent shows renewal upon context switching indicating a mechanism for context 

identification. Experimental results indicate that the BG  encodes the context as well as 

the choices in those contexts  (Garenne, Pasquereau et al. 2011). 

A recent study (Amemori, Gibb et al. 2011) hypothesized that the modular architecture of 

the striatum makes it a suitable candidate for solving multi context RL problems. We 

build on this by providing a computational neural model for the same. We describe the 

plausible correlates for computing the necessary variables needed to solve multi-context 

problems using a modular setting. The context prediction signal is very similar to a state 

value and we propose that neurons in the SNc code for this signal as well (Tobler, 

Fiorillo et al. 2005). In our model this is represented by the projections from Strio-SOM 

to the SNc.  There is also a need for a reward prediction variance signal or a risk signal. 

Dopamine in the midbrain is proposed to also represent the risk component in the 

environment (Schultz 2010). In addition, it has been proposed that serotonin activity in 

the striatum correlates to risk or reward variance, just as dopamine codes for reward 

prediction error (Balasubramani, Chakravarthy et al. 2015). 

We propose that the module selection and switching in different contexts could be carried 

out by Tonically Active Neurons (TANs). TANs exert a strong influence on striatal 

information processing and lesioning inputs to TANs impair learning after a change in 

reward distribution (Ragozzino, Jih et al. 2002). In our model, the TANs compete with 

each other and select the module appropriate for the task. Experiments support this 

hypothesis by showing that TANs can compete with each other using inhibitory 

connections similar to the model (Sullivan, Chen et al. 2008) and can cause widespread 

inhibition of MSNs by activating a GABAergic subpopulation (English, Ibanez-Sandoval 

et al. 2012). Another plausible method for context switching by TANs is by producing 

Acetylcholine (ACh) which can inhibit targeted MSNs. Dynamic changes in 

Acetylcholine output in the medial striatum (Ragozzino and Choi 2004) during reversal 
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learning supports this claim. 

Behavioral Observations 

 Several behavioral processes were also observed from the results of the experiments on 

the model. We saw in Fig. 6B that the agent increases its Down and Right actions when 

the goal is placed at the bottom right corner. The agent thus exhibits acquisition (Graham 

and Gagné 1940) since it strengthens certain actions over the others based on the 

reinforcement given. We saw in Fig. 6D, that once the context has changed, the agent 

stops choosing the initial preferred response. This demonstrated extinction (Graham and 

Gagné 1940) since the behavior associated with a certain task gets elimininated when the 

reinforcement associated is removed. The experiments also indicate that the agent is able 

to show stimulus generalization and stimulus discrimination as the agent is able to 

distinguish between two different contexts which are two distinct stimuli (Till and Priluck 

2000). Also the value function peaks where the goal is given, therefore goals which are 

near each other will have similar value profiles. From Fig. 7B, we saw that after two 

changes when the initial context reappears, the agent is able to bring back the policy 

learnt almost immediately exhibiting spontaneous recovery (Graham and Gagné 1940) 

referring to the reappearance and faster relearning of a previously extinguished response.  
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SECTION II 
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CHAPTER 5 

 

STOCHASTIC MULTI CONTEXT TASK 

 

A stochastic multi context task is an extension of the standard task used in a 

reinforcement learning setting. In this section, we introduce the various task settings and 

parameters and introduce the notation used in the rest of the chapter. In a standard task, 

the agent is present in a state s and can take action a. Upon taking an action a, the agent 

goes to a state s
*

 and is given a reward r. The reward r is obtained from the reward 

distribution function :R S A  as ( , )r R s a  where S  and A  are state and action 

spaces of dimensions dim(s) and dim(a) respectively and is the reward space which is 

a subset of real numbers ( ). (dim(x) denotes the dimension of the vector x) 

This problem becomes harder when the environment is not stationary and the reward 

distribution changes based on which context the environment is present in. 

Mathematically, this means that the reward distribution function is redefined as 

:R S A C  and ( , , )r R s a c  where C is the context space of dimension dim(c) 

and c is the context in which the agent is present. The problem is harder in this case since 

the agent has to identify the context in which it is present and then choose the action 

accordingly. This set of tasks are known as multi context tasks. 

We can make the task much harder by introducing stochasticity in the problem. This is 

done by defining R as a probability distribution over  and r is a sample drawn from 

this distribution. While individually having multiple contexts or stochasticity is 

reasonably solvable, together they make the problem highly non-trivial. This  set of 

problems are the stochastic multi context problems. Such problems can be viewed as an 

extension of contextual bandits (Langford and Zhang 2008))  where the context 

information is not presented to the agent. 
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CHAPTER 6 

 

METHODS 

 

Bayesian Model Formulation 

We defined the stochastic multi context problem in the previous section. In this section, 

we look at an algorithm to solve the problem. We consider a simpler version of the 

problem but the discussions can be extended to harder tasks. We consider a single state so 

that the reward only depends on the context and the action chosen. We look at a setting 

where there are two possible actions, 1a  and 2a  and two contexts 1c  and 2c . Let 1a  be 

the optimal action in 1c  and 2a  in 2c . Also we restrict  to have 2 values- successR  and 

failureR . Since there are two possible actions and contexts, we define a reward distribution 

matrix as follows 

11 12

21 22

r r

r r

 
  
 

R  

where ijr  is the probability of getting a reward successR  while taking action ja  in context 

ic . We get failureR  with a probability (1- ijr ) while taking action ja  in context ic . With 

the help of this, we define the reward distribution function as  

with probability 
( , )

with probability 1

success ij

i j

failure ij

R r
R c a

R r


 



 

Having formulated the problem, we notice that solving the problem essentially reduces to 

estimating the current context since we know the optimal action in each context. 

Assuming we choose action a and get a reward r, using Bayes Theorem  
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Eq. 25 
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 Eq. 26 

 

 

Assuming we do not  have any knowledge of the current context,

1 2( ) ( ) 0.5P c c P c c    . Also 2 1( | , ) 1 ( | , )P c c a r P c c a r    . Hence we need to 

only track Eq. 25 which reduces to 
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Eq. 27 

 

 

We can now extend this to multiple trials by keeping track of the history of action 

selection and rewards obtained. At the thi  trial, let the action chosen be ia  and the 

reward obtained be ir . We get at the thn  trial 

 1 1 1

1 1(( ),..., ( ) | ( , ),...( , ))n n nP c c c c a r a r     

 1 1 1

1 1

1 1 1 1 1 1

1 1 2 2
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(( , ),...( , ) | ( ),..., ( )) (( , ),...( , ) | ( ),..., ( ))
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P a r a r c c c c

P a r a r c c c c P a r a r c c c c
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Eq. 28 

 

 

and correspondingly for context 2 as well. Due to independence of trials, the Eq. 28 can 

be simplified as  
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Eq. 29 

 

Instead of keeping the full history since beginning, we can consider the history for a 

particular window length m, making Eq. 29 
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Eq. 30 

 

These terms can be read from the reward distribution function. However, the reward 

distribution function is not accessible to the agent. Thus this model is not realistic and we 

need to estimate these terms which gives rise to the proposed theoretical model. 

 

Theoretical Model 

The Bayesian model developed in the previous section seems to solve the problem of 

estimating the context in which the agent is present. However it uses 1( , | )i i iP a r c c  

which is not available to the agent. Thus, the next best option is to estimate the context 

the agent is in and then choose the actions accordingly. We denote the context estimated 
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by the agent using ĉ . Following the same steps as above we get the expression for the 

estimated context as  
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Eq. 31 

 

Now we can get values for the terms in Eq. 7 since the agent knows which context it 

estimated it was in when taking the action. Using the information from the preceding 

trials, we can estimate the probability as  
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Eq. 32 

where 1
ˆ ˆ(( , ) | )i iN a r c c  is the number of times the agent chose ia  when it estimated the 

context as 1̂c  and got the reward ir  and 1
ˆ ˆ( )N c c  is the number of times the agent 

estimated it's context as 1̂c . This expression was derived so that agent can estimate the 

context it is in by looking at the term 
1 1 1

1 1
ˆ ˆ ˆ ˆ(( ),..., ( ) | ( , ),...( , ))n n nP c c c c a r a r  . 

But to calculate this, we require terms that expect the agent to estimate the context and 

choose actions according to that context. Thus, there is an inherent circularity in the 

problem. To break this, we solve the problem in an iterative manner. We try to estimate 

the reward distribution function at trial number t and denote this as ˆ t
R . In addition, we 
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keep track of another matrix 
t

N which has the number of times, the agent chose a 

particular action in a particular estimated context. The two matrices are as follows 

11 12

21 22

ˆ ˆ

ˆ ˆ

t t
t

t t

r r

r r

 
  
 

R  

where ˆt

ijr  represents the estimated probability of getting a reward successR  when choosing 

action ja  in estimated context îc  at trial t. 

11 12

21 22

ˆ ˆ
ˆ

ˆ ˆ

t t

t

t t

n n

n n

 
  
 

N  

where ˆt

ijn  represents the number of times the agent chose action ja  in estimated context 

îc  at trial t. For ease of notation, we also define ˆ ˆ( , | )i i i i

k kL P a r c c   and k varies from 

1 to 2. With this Eq. 31 becomes  
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Eq. 33 

Since the reward probabilities are equally likely at the beginning of the trial, we have  

0 0.5 0.5

0.5 0.5

 
  
 

R  

0 0 0

0 0
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0 0

1 2
ˆ ˆ ˆ ˆ( ) ( ) 0.5P c c P c c     
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In trial t, the agent estimates its current context ( îc ) based on its estimate in the previous 

trial and chooses the action ( ja ) as given in Eq. 34 and  Eq. 35 respectively. 

 1

{1,2}
ˆ ˆarg max ( )t

k ki P c c

   Eq. 34 
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with probability1  

k ik
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


 

 Eq. 35 

where   denoted the probability of exploration and ~ (0.5)b Ber . The exploration 

ensures that all the actions are sampled in the initial trials. 

Based on the choice of îc  and ja , the agent can update the values of ˆ t
R  and 

t

N  as given 

in Eq. 36 and  Eq. 37 respectively. 

 1ˆ ˆ 1t t
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 Eq. 37 

where  tr  denotes the reward obtained at trial t. 

Since ˆt

ijr  represents the estimated probability of getting a reward successR  when choosing 

action ja  in estimated context îc  at trial t, 1- ˆt

ijr  represents the estimated probability of 

getting a reward failureR . Thus 
t

iL  is given in  

 ˆ

ˆ1

t t

ij successt

t t

ij fai

i

lure

r r R
L

r r R

 
 

 
 

Eq. 38 

Substituting values of Eq. 38 in Eq. 33, we can get the estimates of the context in trial t as 

given in  
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Eq. 39 

Eq. 34 to Eq. 39 can be used to formulate an algorithm for the agent to solve a stochastic 

multi context task as shown in Fig. 8 

   

Fig. 8 Flowchart depicting steps to solve a stochastic multi context task. 

 

 

Stochastic Reward Based Task Learning in Striatum 

We proposed a theoretical model in the last section to solve stochastic multi context 

tasks. In this section we develop a biologically plausible model of the striatum for these 

tasks. We model the centre-surround structures seen in the striatum (Fig. 9A) using a 
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layered SOM model. In a layered SOM model, each neuron in a top SOM layer projects 

to a secondary SOM layer. 

The top layer in our striatal model is the Strio-SOM, which maps the state space and is 

believed to model the striosomes. The neurons in the Strio-SOM project to the Matri-

SOM which maps the action space and is believed to model the matrisomes Fig. 9B.  

If we have m1 x n1 neurons in the Strio-SOM and m2 x n2 neurons in the Matri-SOM, the 

weights of the Strio-SOM(W 
S
)  have dimension m1 x n1 x dim(s) where s is the state 

vector. Similarly, for an action vector a the weights of all the Matri-SOMs (W 
M

) are of 

dimension m1 x n1 x m2 x n2 x dim(a) as each neuron in the Strio-SOM projects to a 

Matri-SOM. 

For a state input s, the activity for a neuron n in the Strio-SOM is given in Eq. 40. 

   
2

[ ] 2
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Eq. 40 

 

where [n] represents the spatial location of the neuron n and σS controls the spread of the 

neuron activity. The complete activity of the Strio-SOM (X
S
) is the combination of 

individual activity of all the neurons. The neuron with the highest activity (“winner”) for 

a state s is denoted by ns
*

. 

Similarly, for an action input a corresponding to a state s, the activity for a neuron n in 

the Matri-SOM is given in Eq. 2. 
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Eq. 41 

 

where σM controls the spread of the neuron activity. The complete activity of the Matri-

SOM corresponding to neuron ns
*
 ( * ][ s

M

n
X ) is the combination of individual activity of 
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all the neurons in the Matri-SOM corresponding to ns
*
. The neuron with the highest 

activity (“winner”) for an action a in a state s is denoted as ns,a
*
. 

The weight of a neuron n in the Strio-SOM for a state input s is updated according to the 

following rule (Eq. 3)  
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Eq. 

42 

The weight of neuron n in the Matri-SOM for an action input a in a state s is updated 

according to Eq. 4. 
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Eq. 43 

These representations can be used to evaluate the states and actions and guide the 

decision making process. The schematic of our striatal model to solve stochastic RL tasks 

is given in Fig. 9C. 
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Fig. 9 A) Schematic of the centre surround mapping of seen in the striatum. The red centre represents the striosomes 

and the surround green neurons represent the matrisomes. B) Schematic of the layered SOM architecture where 

each neuron in the Strio-SOM (Red) projects to the neurons in the Matri-SOM (Green) C) Schematic diagram of 

the Striatum model where the arrows indicate the connections and their types. 

 

Let the agent performing the task be in state s. The striosome activity gives us the 

representation of the state in the striatum. This activity is modeled by the Strio-SOM as 

given in Eq. 40. Thus the activity is of dimension m1 x n1. 

This activity of the Strio-SOM projects to the SNc and represents the value for the state s 

in our model (Eq. 5). The Striatal-SNc (W
Str→SNc

) are trained using the signal from SNc 

which is representative of Temporal Difference (TD) error ( ) (Eq. 6). The TD error is 

calculated as ( ') ( )r V s V s     where s’ is the new state after taking action a (), r is 

the reward obtained and   is the discount factor. 
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where V(s) represents the value for state s, η
Str→SNc 

is the learning rate for W
Str→SNc

. 

The actions that can be performed in a state s are represented by the matrisome activity 

surrounding the striosome neuron for that state. This is given by the activity of the Matri-

SOM corresponding to the neuron with the highest activity in the Strio-SOM (ns
*
) in our 

model. The activity of a Matri-SOM neuron for an action a is given in Eq. 2 and is of 

dimension m2 x n2.  

The Matri-SOM activity x for action a is projected to the action value neurons as given in 

Eq. 46. If na is the action value neuron for the action a, ][ a

Q

nX  corresponds to the action 

value for the action in the state s in our model. These connections are also trained using 

TD error as above and the update equation is given in Eq. 47 
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where X
Q
 represents the activity of the action value neurons, ( ) ( )mSt QX Strr   

is the learning 

rate for ( ) ( )mSt QX Strr
W

 . 

The activity of the action value neurons are used for action selection by using a softmax 

policy (Sutton and Barto) in our model (Eq. 48). We believe that this is carried out by the 

dynamics of the STN-GPe oscillations with the striatal action value neurons projecting to 

the GPe. 
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Eq. 48 

where   is the inverse temperature and denotes the action set for the agent. 

 

 

Exploiting the Striatal Modularity for solving context dependent tasks  

We propose that the modular nature of the striatal anatomy could be responsible for 

solving context dependent tasks using a modular RL framework. In this method, the 

agent allocates separate modules to separate contexts. Each of the modules has its own 

copy of the environment in a particular context, represented by an environment feature 

signal (ρ). This copy is used to generate a responsibility signal, denoted by λ, which 

indicates how close the current context is to the one represented by the module. Thus by 

identifying the module with the highest responsibility signal we can follow the policy 

developed in that module to solve the problem in an efficient manner. We can extend the 

model above to incorporate the modular RL framework. The schematic for the extended 

model is given in Fig. 10. 
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Fig. 10 Schematic of the extended model to handle modular RL tasks showing the case with two striatal modules. The 

state representations of the two modules are used to calculate their respective responsibilities which are then 

used by the striatal interneurons to choose the appropriate module. 

 

We believe that context selection happens at the level of the striatum and the context 

modulated activity is projected to the action value neurons. Thus, for clarity, we have 

expanded the intra-nuclear activity of the striatum in the model schematic (Fig. 3). 

Supposing there are K modules denoted by M1, M2 … ,MK. We now define the weights 

and activities in the previous sections for each module and denote {Mi} with each term 

associated with module Mi. Thus, for a  module m, the following variables undergo a 

change in notation: X
S
 → X

S,{m}
 (Eq. 40),  X

M
 → X

M,{m}
 (Eq. 2), W 

S
 → W 

S,{m}
 (Eq. 3), 

W 
M

 → W 
M,{m}

 (Eq. 4), V(s) → V
{m}

(s) (Eq. 5), W 
Str→SNc

→ W 
Str→SNc,{m}

 (Eq. 6), 

( ) ( ),{ }( ) ( )m mStr X SStr Q Str Qtr X m
W W

 
  (Eq. 47). 
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We propose that in addition to the value of the state s, the activity of the Strio-SOM also 

projects to the SNc to represent the environment feature signal (ρ
{m}

). The weights of 

these projections are denoted as Wρ 
Str→SNc,{m}

 and are trained using the signal from SNc 

which is representative of context prediction error ( *
).  The corresponding equations 

are given in Eq. 20 and Eq. 21. The context prediction error is calculated as 
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We believe that the selection of the appropriate module for the context is guided by the 

striatal interneurons. In our model, the activity of the interneurons represents the 

responsibility signal for each module, denoted by λ
{m}

 for module m. In a given state s, 

the inter-neurons compete among themselves and the one with the highest λ chooses the 

module responsible for deciding the action in that state. Let the winning module in the 

state s be denoted by m
*
. The winning module projects to the action value neurons (Eq. 

51) following which the processing is the same as in the previous section. 
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The dynamics of the responsibility signal is given in Eq. 24 

 * 2( )      Eq. 52 

 

where αλ  controls the influence of context prediction error on the responsibility signal 

and δ
*
 is the context prediction error. 
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CHAPTER 7 

 

RESULTS 

 

Performance of theoretical model on T-Maze tasks  

The study of context dependent stochastic tasks is a reasonably underexplored area owing 

to the complexity in these tasks. However, some of the earlier results (Lloyd and Leslie 

2013) make some predictions which we aim to replicate with our model. 

The task performed by the agent is a T-maze task (Olton 1979) where the agent has to 

choose one of the arms in a maze. Upon choosing the arm, the agent gets a reward Rmax 

with a given probability (Psuccess) and a reward Rmin with a given probability (Pfailure). The 

task can be extended to a context dependent problem by reversing the reward 

distributions with trials. 

We study the performance with changing Rmax/Rmin and Psuccess/Pfailure. Animals tend to 

choose rewards which have a higher magnitude and greater rewards lead to a faster 

convergence (Fig. 11A). Similarly, with the same magnitude, animals tend to prefer 

distributions which reward with a higher probability (Fig. 11C). These effects are 

captured by our model as shown in Fig. 11B and Fig. 11D respectively. The figures show 

the ratio of the correct choices by the agent in 50 trials averaged over 50 sessions. The 

value of exploration factor, (Eq. 35) was set as 0.1 and the window length, m (Eq. 31) 

was chosen as 5. 
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Fig. 11 A) Demonstration of change in performance with varying reward magnitudes (Figure adapted from (Lloyd 

and Leslie 2013)). B) Performance of our model on the varying reward magnitude task C) Demonstration of 

change in performance with varying reward probabilities (Figure adapted from (Lloyd and Leslie 2013)). 

D) Performance of our model on the varying reward probability task 
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Fig. 12 A) Percentage of trials where the animal chooses the arm which is non-profitable for the first 24 trials and 

becomes profitable following that. (Figure adapted from (Lloyd and Leslie 2013)). B) Performance of the 

model on the task described in A. We see that the model shows similar trends where the definite reward tasks 

show faster reversal learning. C) Percentage of trials where the animal chooses the arm which was rewarding 

before 24 trials following which both arms are not rewarded (Figure adapted from (Lloyd and Leslie 2013)). 

D) Performance of the model on the task described in C where the model shows similar trends as the definite 

reward task show faster unlearning. 

 

Experimental evidence (Brunswik 1939) shows that partial reinforcement and stochastic 

rewards have a significant effect on reversal learning. We consider a task where the 

animal is trained on a T-maze with different reward probabilities for 24 trials and then the 

rewarding probabilities are reversed. We look at the percentage of the trials where the 

animal chooses the arm which is unprofitable at first and becomes profitable after the 

reversal. We can observe that the model results (Fig. 12B) show similar trends to earlier 
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results (Fig. 12A). The tasks where one arm had a definite reward showed quick reversal. 

However probabilistic rewards show slower policy modulation by the agent. 

Stochastic reward distributions also have an effect on extinction (Miltenberger 2011) of a 

learned policy. To test this, we consider a task where the animal on a T-maze for 24 trials 

as above. However, the rewards for both arms are set as 0 following the 24 trials and the 

rate of unlearning is studied. We observe that definite rewarding tasks show faster 

extinction as compared to the tasks with stochastic rewards (Fig. 12C) which is captured 

by the model (Fig. 12D). 

Solving Stochastic Reward Based Tasks using the Striatum Model  

In this section, we demonstrate that the striatum model developed is capable of solving 

stochastic tasks. We consider a cue based decision making task where the animal has to 

choose one of the cues displayed on the screen. This task was first described in 

(Pasquereau, Nadjar et al. 2007) and a schematic of the task is given in Fig. 13A. The 

animal is presented with two cues in each trial at two locations as seen in the figure. Each 

shape is associated with a different probability of reward. The agent has to choose one of 

the shapes and gets awarded a reward accordingly. 

We show that our striatal model is able to solve this task. We consider a 4 dimensional 

state vector, where each dimension is 1 if the shape is shown and 0 otherwise. The action 

vector is also 4 dimensional with each dimension denoting the action that is chosen by 

the agent. The various parameters of the model are given in Table 2. 
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Table 2: Parameter values for cue based decision making task 

Parameter Value Parameter Value 

Strio-SOM Dimension (m1xn1) 3x2 Matri-SOM Dimension (m2xn2) 3x3 

σS 0.01 σM 0.1 

ηS 0.4 ηM 0.4 

γ  0.95 η
Str→SNc

 0.05 

η
Str(Xm)→Str(Q)

 5x10
-4 

Β 50 

αλ  0.8 ηρ
Str→SNc

 0.1 

 

The agent (model) is pre-trained where it is given various state and action inputs. We 

show that the representational maps developed have a centre surround structure (Fig. 

13C) when we view the activity corresponding to all the actions for a particular state. The 

ratio of correct choices chosen in 200 trials averaged over 25 sessions in given in Fig. 

13B. Thus, we can see that the agent is able to solve stochastic reward based tasks. 

Experimental evidence shows that the percentage of times the agent chooses the arm with 

reward probability P1, when the ratio of the reward probabilities is P1+P2 follows a 

sigmoid activity with centre at 0.5 which is well captured by the model (Fig. 13D). 

 



64 

 

 

 

 

Fig. 

13 
A) Schematic of the cue based decision making task where the agent has to choose between the two shapes shown 

in the screen and each shape has a different probability of reward associated with it. B) Percentage of correct 

responses averaged over 25 sessions for 200 trials. C) Mapping of the action inputs forms a centre-surround 

structure when we view the combined activity of the Matri-SOM for all action inputs D) Ratio of choosing 

response 1 with associated probability P1 wrt to the sum P1+P2. The model follows a similar trend to the 

experimental plot adapted from (Pasquereau, Nadjar et al. 2007) 

 

Comparing the Theoretical and Neural model 

We have developed a theoretical model capable of solving stochastic multi-context tasks 

and also developed a neural model which provides a biologically plausible mechanism 

for the same. Since there are no concrete experiments dealing with these tasks, we use the 

theoretical model to understand the performances of the neural model. We use a 
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stochastic two arm bandit task which was the underlying problem in both the tasks 

described above. The reward distributions reverse after 500 trials and the performance of 

the agent is characterized by looking at 25 sessions. We look at the performances for 

different values of ε which represents the probability of reward for the non-profitable 

arm. 

 

 Fig. 14A demonstrates the probability of context 1 estimated by the theoretical model 

whereas Fig. 14B gives the estimate by the neural model. We observe that the theoretical 

model is able to identify the context even for larger values of the ε. The neural model is 

able to identify the context well in most cases but fails for larger values of ε. A similar 

trend can be seen in Fig. 15A and Fig. 15B where we measure the percentage of correct 

choices by the agent. We observe that the theoretical model is able to learn faster upon 

context reversal for all values of ε but the neural model needs to relearn for higher values 

of ε.  
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Fig. 14 A) Probability of context 1 estimated by the theoretical model. B) Probability of context 1 estimated by the 

neural model. 
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Fig. 15 A) Percentage of correct responses by the theoretical model. B) Percentage of correct responses by the neural 

model. 

 

Thus we can conclude that the neural model is able to follow the theoretical model for 

low values of ε but behaves like a single context agent for larger values. This is shown in 

Fig. 16 which shows that the neural model lies between the theoretical optimal and a 
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single context model and could be the biological mechanism used for solving stochastic 

multi context tasks. 

   

Fig. 16 Schematic of the extended model to handle modular RL tasks showing the case with two striatal modules. 

The state representations of the two modules are used to calculate their respective responsibilities which are 

then used by the striatal interneurons to choose the appropriate module. 
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CHAPTER 8 

 

DISCUSSION 

 

We have presented a theoretical model to solve stochastic multi-context tasks. This is 

also accompanied by a biologically plausible computational model of the striatum which 

also attempts to tackle these problems. The striatal model borrows some ideas from the 

earlier model described in the previous section and presents a alternate model of the 

striatum capable of handling stochastic RL problems. 

 

Our model derives from the model in the previous section that the striosomes map the 

state space and the matrisomes map the action space. This is supported from earlier 

results that the striosomes receive input from the orbitofrontal cortex (Eblen and Graybiel 

1995) known for coding reward related states (Wilson, Takahashi et al. 2014). 

Anatomical studies also show that striosome medium spiny neurons (MSNs) project 

directly to SNc (Lanciego, Luquin et al. 2012) which could compute values as in our 

model. 

Evidence suggests that similar to how projections from the striosomes code for state 

value, projections from the matrisomes code for action value (Doya 2002). Experimental 

results show the existence of such neurons in the striatum which code specifically for 

action value (Samejima, Ueda et al. 2005). This is well captured in our model as the 

Matri-SOM projects to action value neurons in out striatal model. 

Action selection is done using the softmax policy (Eq. 48) following the action value 

computation in the striatum. This policy uses a parameter β which controls the 

exploration of the agent. We believe that this could be the role of STN, GPe and GPi 
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before action selection is done at the level of the thalamus. This is supported by earlier 

results which suggest that  The underlying stochasticity in the soft-max rule could be 

achieved indirectly by the chaotic dynamics of the STN-GPe loop (Kalva, Rengaswamy 

et al. 2012). 

We have developed a theoretical model and a neural model for tackling stochastic multi-

context tasks. Due to the inherent complex nature of the task, there is a lack of 

experimental data for tasks which are both stochastic and non-stationary. However, what 

we can observe from the results (Eq. 32) is that the neural model falls between the 

performance of the theoretical model and the neural model with a single module. Thus 

the theoretical model acts as a lower bound to the performance of the neural model for 

the given stochasticity in the problem. Also the neural model is able to achieve 

performance on par with the theoretical model for low values of ϵ but fails to do so for 

larger ϵ where it becomes similar to a single module system. Thus, we predict that our 

neural model can explain behavior in stochastic multi context tasks for ϵ<0.3.  

Another feature of our theoretical model is that it is a very simple model with no 

assumptions on the reward or the context distributions. However, despite its simplistic 

formulation, the model is quite powerful and is able to capture all the previous results 

quite well. The modular arrangement of identifying context and using it for task selection 

is very similar to the proposed striatal model. Thus, the striatal model could be a 

biologically plausible neural implementation of the theoretical model. 
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CONCLUSION AND FUTURE WORK 

 

In this thesis, we have proposed two models of the striatum to handle stochastic multi 

context tasks. We first developed a layered-SOM architecture to model the centre-

surround mapping seen in micro anatomical studies of the striatum. This was used to map 

the state and action spaces in the reward based task. In section I, we focused on handling 

non-stochastic context dependent tasks. We extended the model to a full network model 

of the Basal Ganglia. We proposed a biologically plausible mechanism of action based 

learning where the striosome biases the matrisome activity towards a preferred action. 

Using this model we were able to solve simple reinforcement learning tasks. We also 

exploited the modularity of the striatum to handle multi-context tasks. We tested the 

model on a grid world problem. We also demonstrated that our model captures 

experimental data better than existing single module models of the basal ganglia. 

In section II, we looked at harder problems where the rewards were both stochastic and 

non stationary. We proposed a theoretical model which was capable of handling such 

tasks and showed that it captures trends seen in several earlier experiments. Following 

this, we proposed a striatal model which borrowed base features from the model in 

Section I but used action values for decision making. We tested this model on different 

stochastic problems and validated it with experimental data. We also compared the two 

models and showed that the neural model could match the theoretical model for low 

levels of ϵ. We also proposed that the neural model could be a neural implementation of 

the proposed theoretical model owing to their similar structure and performances.  

The next step would be to integrate the two models are present a unified framework for 

solving all context dependent problem. Another improvement would be to obtain the state 

and action inputs by multi-sensory integration to present a complete cortico-basal ganglia 

model.  
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