
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Learning Language And Expanding

Vocabulary Using Reinforcement

Learning

by

Ghulam Ahmed Ansari

(EE12B134)

A thesis submitted in partial fulfillment for the degree of

BACHELOR OF TECHNOLOGY & MASTER OF TECHNOLOGY

in the

Electrical Engineering Department

under the guidance of

Dr. B. Ravindran

&

Dr. Kaushik Mitra

May 2017

http://www.iitm.ac.in
ansarighulamahmed@gmail.com
http://www.ee.iitm.ac.in
http://www.cse.iitm.ac.in/~ravi/
http://www.ee.iitm.ac.in/kmitra/

THESIS CERTIFICATE

This is to certify that the thesis titled Learning Language And Expanding Vocab-

ulary Using Reinforcement Learning, submitted by Ghulam Ahmed Ansari, to

the Indian Institute of Technology, Madras, for the award of the degree of Bachelor of

Technology and Master of Technology, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Dr. B. Ravindran
Research Guide
Associate Professor
Dept. of Computer Science
IIT-Madras, 600 036

Dr. Kaushik Mitra
Research Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: May 2017

i

http://www.cse.iitm.ac.in/~ravi/
http://www.ee.iitm.ac.in/kmitra/

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Abstract

Learning Language And Expanding Vocabulary Using Reinforcement

Learning

by Ghulam Ahmed Ansari

Text-based games are suitable test-beds for designing agents that can learn by interacting

with the environment through natural language text. Very recently, deep reinforcement

learning based agents have been successfully applied for playing text-based games. In

this paper, we explore the possibility of designing a single agent to play several text-

based games and of expanding the agent’s vocabulary using the vocabulary of agents

trained for di↵erent games separately. To this extent, we explore the application of

recently proposed policy distillation method for video games to the text-based game

setting and show that this method is able to learn rich word representations.

http://www.iitm.ac.in
ansarighulamahmed@gmail.com

Acknowledgements

I would like to express my thanks to the people who have helped me most throughout

my project. I am extremely grateful to my research adviser, Prof. B. Ravindran, for

supporting and guiding me throughout the project.

I would also like to o↵er my special thanks to Sarath Chandar, (Ph.D student ,

Department of Computer Science, University of Montreal) for his constant support,

guidance and motivation as a friend. I am also grateful to his valuable suggestions and

feedback in designing the right set experiments and understanding the results.

I wish to thank J.P Sagar, (Dual Degree Student, Department of Computer Science

IIT Madras) for designing the game environments, being a great companion during the

literature survey and also for assisting in interfacing the lua based game environment

with our python based core module.

I am grateful to the members of the reviewing committee of ACL, a premier conference

of the field of computational linguistics, who provided interesting insights and sugges-

tions with regard to a short paper submission of this work titled Language Expansion

In Text-Based Games.

I wish to thank Prof. Mitesh Khapra, Department of Computing Science, IIT

Madras, for his suggestions and views.

I also wish to thank Prof. Kaushik Mithra, Department of Electrical Engineering,

IIT Madras, for his guidance in helping me become a competent researcher.

Finally, I wish to thank my parents, my friends, and the faculty of Department of

Computer Science and Department of Electrical Engineering, IIT Madras for their kind

support and assistance.

Ghulam Ahmed Ansari

iii

Contents

THESIS CERTIFICATE i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Abbreviations viii

Notations ix

1 Introduction 1

1.1 Reinforcement Learning . 1

1.2 Deep Learning . 3

1.3 Deep Reinforcement Learning . 3

1.4 Imitation Learning . 4

1.5 Multi-task learning . 4

1.6 Summary . 5

2 Background Theory 6

2.1 Markov Decision Processes (MDP) . 6

2.2 The Episodic Reinforcement Learning Problem 7

2.3 State Action Value Function (Q-function) 8

2.4 Q-learning . 9

2.5 Deep Q Networks (DQN) . 9

2.6 LSTM-DQN . 10

2.7 Multi-Task Policy Distillation . 11

3 Learning Language And Expanding Vocabulary Using Reinforcement
Learning 13

3.1 Motivation . 13

3.2 Contribution . 14

3.3 Multi-task Distillation Agent for Learning Representations from Multiple
Sources . 15

iv

Contents v

4 Experiments and Analysis 18

4.1 Game Environment . 19

4.2 Learning games with contradicting state dynamics 21

4.3 What is the mechanics of multi-task policy distillation? 23

4.4 Transfer learning using policy distillation 26

4.5 What can we say from the visualization of word embeddings? 27

4.6 Policy distillation Vs. Multi-Task LSTM-DQN? 28

5 Conclusion 33

Bibliography 34

List of Figures

1.1 A general reinforcement learning setting 2

2.1 Episodic Reinforcement Learning Schematic 7

2.2 LSTM-DQN Architecture . 11

2.3 Multi-Task Policy Distillation architecture . 12

3.1 Learning representations from multiple text-based games 16

4.1 Di↵erent game layouts . 19

4.2 Training curves of multi-task policy distillation agent (student) 22

4.3 Heat-maps of di↵erent layer combinations for smaller student network trained

on game 1, 2, 4 with size of 1st linear layer as 50. The heat-maps in (a) are very

similar for the two games. All the diversity can be seen in the heat-maps in (b)

& (c) . 24

4.4 Heat-maps of di↵erent layer combinations for larger student network trained on

game 1, 2, 4 with size of 1st linear layer as 100. The heat-maps in (a) are very

similar for the two games. All the diversity can be seen in the heat-maps in (b)

& (c) . 25

4.5 Training curves for LSTM-DQN agents A1, A2, A3, A4, A5, A6 training on game

5. Agent A1, A2, A3, are initialized with learnt embeddings from LSTM-DQN

teachers T1, T2, T3 respectively. Agent A4 is initialized with learnt embeddings

from student S. Agent A5 has randomly initialized embeddings. Agent A6 has

all possible embeddings initialized from all the LSTM-DQN teachers T1, T2, T3

combined. 27

4.6 t-SNE plots of embeddings learnt by multi-task distillation agent (student) trained

on games 1, 2, 3 . 29

4.7 t-SNE plots of embeddings learnt by LSTM-DQN teachers trained on games 1,

2, 3 respectively . 30

4.8 Experimental results of multi-task LSTM-DQN 31

vi

List of Tables

4.1 Average absolute di↵erence between heat-maps of game 1, 4 for di↵erent combi-

nations of network layers using the two di↵erent sized versions of student network 24

vii

Abbreviations

RL Reinforcement Learning

MDP Markov Decision Process

DQN Deep Q Network

LSTM Long Short Term Memory

MUD Multi User Dungeon

t-SNE t-Distributed Stochastic Neighbor Embedding

viii

Notations

S State space of a MDP

A Action space of an MDP

P (.) Conditional probability distribution of next state and reward
obtained on state transition

� Discount factor

✓ A variable weight parameter

⇡(.) A policy on a MDP

Q

⇡ State-Action value function of policy ⇡

length(.) length of an episode e

E[.] Expectation of a random variable

D Set of demonstrations on M following expert’s policy

ix

Chapter 1

Introduction

In this section, we will give a brief introduction to the concepts in reinforcement learning

and machine learning that are needed to have a better understanding of the problem

that we are interested in. The technical preliminaries are postponed to a later section.

We will begin by discussing the full reinforcement learning framework in section 1.1

following which in section 1.4 we will describe the concept of imitation learning. Finally,

in section 1.5, we briefly describe the problem that forms the goal of this work.

1.1 Reinforcement Learning

Reinforcement learning (RL) is the branch of machine learning that can be used to model

sequential decision making problems. It considers an agent situated in an environment:

each time-step, the agent takes an action, and it receives an observation and reward.

An RL algorithm seeks to maximize the agents total reward called the return, given a

previously unknown environment, through a trial-and-error learning process.

1

Introduction 2

Figure 1.1: A general reinforcement learning
setting

As can be seen in Figure 1.1, the execu-

tion of an action results in two kinds of

feedback from the environment. First, the

agent receives a reward. Second, the en-

vironment makes a transition to another

state. Both the above e↵ects are depen-

dent only on the state the agent was in

when it took the action, and the action

itself - but not any event that happened further back in time. The above system of

the agent, the environment, states, actions, transitions and rewards is encapsulated as

a Markov Decision Process.

When an agent is thus introduced to an unknown environment it has to learn through

experience what is the best action to be taken at every state. The quality of the action

can be understood to correspond to the amount of return that is expected by taking

that action. We will call this state-action mapping that is to be learned as the optimal

policy. This process of learning will involve exploration - that enables to the agent to

understand the environment better - and also exploitation that ensures that the agent

makes best use of what it has learned. Thus, when an agent explores and receives a high

reward, the reward is a means of reinforcement which encourages the agent to believe

that the steps it took recently are good and can be exploited later. Chapter 2 provides

a more detailed description of the mathematical formulation of reinforcement learning.

With this basic idea of the reinforcement learning problem, we will first briefly discuss

the area of deep reinforcement learning and then move on to describing the concept of

imitation learning.

Introduction 3

1.2 Deep Learning

Modern machine learning is mostly concerned with the problem of learning a function to

represent the given data. In the recent years Deep learning has revolutionized the way

we do machine learning. It revolves around finding a good set of parameters to a deep

neural network (function approximator). A loss function has to be chosen depending

upon the problem at hand, and then the parameters are optimized using gradient descent

or its variants. Deep Learning has been successfully applied and outperformed the

existing methods in a wide range of problems like object detection (Girshick, 2015),

object recognition (Krizhevsky et al., 2012), and speech recognition (Dahl et al., 2010).

We will now give a brief introduction on the combination of reinforcement learning and

deep neural networks.

1.3 Deep Reinforcement Learning

Deep reinforcement learning is the study of reinforcement using neural networks as func-

tion approximators. The integration of reinforcement learning and neural networks dated

back to 1990s- Tesauros TD-Gammon (Tesauro, 1995), developed in the early 1990s, used

a neural network value function and played at the level of top human players. Lins 1993

thesis (Lin, 1992) explored the combination of various reinforcement learning algorithms

with neural networks, with application to robotics. With recent advances in deep learn-

ing (Lecun et al., 2015; Goodfellow et al., 2014), benefiting from powerful computational

resources and new algorithmic techniques, we have been witnessing an immense growth

in the area of deep reinforcement learning, i.e., a combination of reinforcement learning

and deep neural networks. This rise of interest in deep reinforcement learning primarily

Introduction 4

occurred following the results from Mnih et al. (2015), who demonstrated learning to

play a collection of Atari games, using only feed from the screen as input, using a vari-

ant of Q-learning. Since then, there have been many interesting results like AlphaGo

(Silver et al., 2016) and di↵erentiable neural computer (Graves et al., 2016); and novel

architectures and applications, like asynchronous methods (Mnih et al., 2016) etc.

1.4 Imitation Learning

Recall that the goal of the reinforcement learning problem is to find the optimal policy

i.e., a mapping that tells us what is the best action to perform at a given state in a

sequential decision making process. The imitation learning problem gives an interesting

twist to this problem: we no longer have a notion of an optimal policy; instead we want

to learn a policy that best mimics the behavior of another agent whom we choose to

call the teacher or expert. Imitation learning is extremely useful when we are dealing

with an environment with no access to accurate reward signals. In such a case where

there is no reinforcement in form of rewards, manually generating reward signals and

tuning them until the task is learnt is a ine↵ective apprach. Instead, having an expert

or teacher to demonstrate its optimal policy is a better option. Next, we talk about how

imitation learning plays an important role in multi-task learning.

1.5 Multi-task learning

The ability to act in multiple environments and transfer previous knowledge to new

situations can be considered a critical aspect of any intelligent agent. Thus it is im-

portant for an agent to learn how to behave in multiple tasks simultaneously, and then

Introduction 5

generalize its knowledge to new domains. The ability to perform multiple task simul-

taneously is referred to as multi-task learning. Our work is built upon one method of

multi-task learning namely, policy distillation (Rusu et al., 2015). Policy distillation was

introduced as an approach for designing single agent that can play multiple video-based

games (atari games). The basic recipe of policy distillation is to extract expert trajecto-

ries from teachers trained on various games and train a new agent to play all the games

by mimicking the expert trajectories of the teachers.

Given that (Narasimhan et al., 2015) demonstrated that it is possible to learn language

by interaction with a text-based game environment, our goal is to be able to combine

these language representations learned by playing di↵erent text-based games.

1.6 Summary

The rest of the document is organized as follows. Chapter 2 formally introduces the

terms and definitions that will be used for discussing the problem. In particular, we will

introduce the reader to the notations that are common in reinforcement learning. We

will also define and explain the LSTM-DQN framework and policy distillation method,

which are important for understanding our work. In Chapter 3, we detail our motivation

in solving this problem in the light of earlier work and then proceed to discussing our

solution and insights. Finally, in Chapter 4 we summarize our contributions.

Chapter 2

Background Theory

2.1 Markov Decision Processes (MDP)

A reinforcement learning problem can often be modelled as a Markov Decision Pro-

cess (MDP). The interactions of the agent with the environment are described by the

following components:

• S : state space

A set of all the states in the environment

• A : action space

A set of actions available to the agent at every time-step

• P (r, s0|s, a) : Transition probability

Given that the agent is in a state s and an action a is taken, P (r, s0|s, a) specifies

the probability that the environment will transition to a state s

0 and output a

reward r

6

Background Theory 7

The final goal here is to find a policy policy ⇡, which maps states to actions. Policies can

be either stochastic or deterministic. A stochastic policy corresponds to a conditional

distribution given as ⇡(s|a), where as deterministic policies are generally written as

a = ⇡(s).

2.2 The Episodic Reinforcement Learning Problem

Figure 2.1: Episodic Reinforcement Learning Schematic

In this thesis we will consider text-based game environments that are episodic in nature,

where the agents experience is broken up into a series of episodes with a finite number

of states, actions and rewards. Episodic reinforcement learning in the fully-observed

setting is defined by the following process. Each episode begins by sampling an initial

state of the environment, s0 from a probability distribution µ(s0). At each time-step

t = 0, 1, . . . the agent chooses an action a

t

2 A, sampled from the distribution ⇡(a
t

|s
t

).

Here, the distribution ⇡ is known as the policy, which is the probablity distribution that

Background Theory 8

the agent uses to sample it’s actions from. After taking the action, the environment

generates the next state and reward, according to some distribution P (r
t

, s

t+1|st, at).

Finally, the episode ends when a terminal state s

T

is reached. This process is described

in Figure 2.1.

The goal is to find a policy ⇡ that optimizes the expected total reward per episode.

max
⇡

E
�

(R|⇡)

The expectation is taken over a set of trajectories � which are generated by using policy

⇡ to take actions. Here R is known as the Return. For a given episode, the return R is

defined as

R = r0 + r1 + . . .+
length(episode)�1

2.3 State Action Value Function (Q-function)

A state action value function helps us understand how desirable is an action under a

policy. It can be defined as,

Q

⇡(s, a) = E
⇡

[R|s0 = s, a0 = a]

Where the agent follows the policy ⇡ to pick actions at every state except s0.

An optimal policy ⇡

⇤ is such that 8s 2 S,

Q

⇡

⇤
(s, a) = max

⇡

Q

⇡(s, a)

Background Theory 9

2.4 Q-learning

Q-Learning (Watkins and Dayan, 1992) is a model-free technique which can be used

to learn an optimal Q(s, a) for the agent. In a state s the agent takes an action a

by consulting a state-action value function Q(s, a), which is a measure of the action’s

expected long-term reward. InQ-Learning, theQ-function is initialized randomly. Then,

by playing the game and obtaining rewards, the agent continuously updates its Q-values

according to Equation 2.1. The iterative updates are derived from the Bellman equation

(Sutton and Barto, 1998):

Q

i+1(s, a) = E[r + �max
a

0
Q

i

(s0, a0) | s, a] (2.1)

where � is a discount factor for future rewards and the expectation is over all game

transitions that involved the agent taking action a in state s.

In a state s the agent uses the Q-values to choose an action a

0
, given by:

a

0
= argmax

a

Q(s, a) (2.2)

In practice, it is necessary to take non greedy actions and explore the state space. This

can achieved by following an ✏-greedy policy (Sutton and Barto, 1998), where the agent

performs a random action with probability ✏.

2.5 Deep Q Networks (DQN)

In most real world environments the state representation is very high dimensional. In

such state spaces it is di�cult for an agent to experience all the states even once. Thus

Background Theory 10

we need some form of generalization over the state action pairs. Moreover as in Q-

learning it is infeasible to store all the state action pairs, thus we cannot use any tabular

methods like Q-learning. A solution to this problem, as pointed out by many function

approximation methods, is to use a parametrized state action value function Q(s, a; ✓).

However, creating a good parametrization requires knowledge of the state and action

spaces. One way to bypass this feature engineering is to use a Deep Q-Network (DQN)

(Mnih et al., 2015). The DQN approximates the Q-value function with a deep neural

network to predict Q(s, a) for all possible actions a simultaneously, given the current

state s.

2.6 LSTM-DQN

LSTM-DQN is a reinforcement learning framework for learning to play MUD1 games.

The action space in this architecture was restricted to be of one action word and one

object word (e.g. go east). LSTM-DQN agent proposed in (Narasimhan et al., 2015)

di↵ers from the standard DQN agent (Mnih et al., 2015) in two ways as can be seen in

Figure 2.2.

Firstly, since the state is a sequence of words in the case of text-based games, LSTM-

DQN uses an LSTM layer for state representation instead of a convolutional layer. This

LSTM layer will have di↵erent vocabulary for di↵erent games. Following (Narasimhan

et al., 2015) a whole sentence is passed through the LSTM word by word and an output

is generated by it for every word. The mean of all these outputs of LSTM is passed to the

next fully connected layer of the network. Secondly, MUD-games use multi-word textual

commands as actions. For each state in the game, Q-values of all possible actions and all

1
http://mudstats.com/

Background Theory 11

Figure 2.2: LSTM-DQN Architecture

available objects are predicted using the same network. An average of the Q-values of

the action a and the object o is used as a measure of the Q-value of the entire command

(a, o). The action and object with the highest predicted Q-value is chosen by the agent,

to maximize the expected long-term rewards.

2.7 Multi-Task Policy Distillation

In Multi-Task learning the goal is to learn a single agent that can learn to perform

multiple tasks. In our work we employ a method known as policy distillation (Rusu

et al., 2015), one among few methods for Multi-Task Learning.

Distillation is a method to transfer knowledge from a teacher model T to a student model

S. This technique is generally employed to learn a simpler classification network from

a complex one. The distillation targets are typically obtained by passing the weighted

Background Theory 12

sums of the last network layer of the classification network, through a softmax function.

Generally, a temperature parameter ⌧ is also used in the softmax, in-order to control

the amount of knowledge transfer.

Figure 2.3: Multi-Task Policy Distillation architecture

Rusu et al. (2015) describes Multi-Task Policy distillation method for training a single

agent that can play multiple Atari games that have similar structure and dynamics. The

approach for multi-task policy distillation, illustrated in Figure 2.3, is straightforward. It

uses n DQN single-game experts, each trained separately. These agents produce inputs

and targets, just as with single-game distillation, and the data is stored in separate

memory bu↵ers. The distillation agent then learns from the n data stores sequentially,

switching to a di↵erent one every episode. Since di↵erent tasks often have di↵erent

action sets, a separate output layer (called the controller layer) is trained for each task

and the ID of the task is used to switch to the correct output during both training and

evaluation.

Chapter 3

Learning Language And

Expanding Vocabulary Using

Reinforcement Learning

3.1 Motivation

The exact process of language learning in human is still unclear, but it is certain that

interaction and feedback from the environment plays a pivotal role in shaping the lan-

guage centers of the human brain. As far as learning language by machines is considered,

we generally follow a frequentist approach where wherein thousands of labeled textual

examples are used to learn a representation of language. Learning language in this fash-

ion undermines the essence of the human communication, i.e., understanding. There has

been very little progress towards language understanding, as even the current metrics

for evaluating representations of language do not explicitly penalize or reward based on

the closeness of the representations to human language. Our goal is to narrow the gap

13

Learning Language & Expanding Vocabulary Using RL 14

between machine and human language learning. One way to achieve this as proposed

by Narasimhan et al. (2015) is to allow an agent to interact with an environment using

natural language commands. In this way, we can intelligently tailor environments to

impart language information to an agent.

An important measure of an agent’s language representation is the size of it’s vocabulary.

In the interaction based learning framework, the vocabulary of an agent is only so good

as the size of the vocabulary of the environment. The biggest problem that arises

with the interaction based approach is that it is not feasible to build an environment

encompassing an entire language.

3.2 Contribution

In our work, we propose a solution to the practical limits on environments size by

proposing a framework to constructively combine knowledge gained by di↵erent agents

trained in nonidentical environments irrespective of the scale of the environments. This

way we not only expand the vocabulary learned, but we also bypass the problem of

environment creation as there are a plethora of text-based games that can be used for

this purpose.

By playing di↵erent games simultaneously and generating a representation of language

based upon all the games, we learn a representation that is better than each of the

individual representations learned by playing a single game. In our experiments, the

games are designed in a way that mastering one game helps the learning of another

game when the context of the games are similar.

Learning Language & Expanding Vocabulary Using RL 15

3.3 Multi-task Distillation Agent for Learning Represen-

tations from Multiple Sources

Now we describe our method to learn language representations from multiple games

with stochastic textual descriptions. First we train n single-game LSTM-DQN teachers

(T) separately. We want a single agent to be able to play all n games, therefore we

train a separate student neural network (S) to learn the optimal policies of each of

these games. Each of the n expert teachers produce a set of state-action and state-

object values which we store along with inputs and game labels in a memory bu↵er.

A separate memory bu↵er is maintained for each game as shown in Figure 3.1a and

training happens sequentially, i.e training is done one by one, on samples drawn from a

single game bu↵er at a time.

As we have n di↵erent games and each game has to output an action and object at each

time-step, the student network S has a controller which can shift between n di↵erent

action, object output modules as shown in Figure 3.1b. The student network uses the

input game label to switch between the corresponding modules.

The outputs of the final layer of the teachers are used as targets for the student S, after

passing through a softmax function with a temperature parameter (⌧). The targets to

the student S are thus given by softmax(q
T

⌧

), where qT is the vector of Q-values of

Teacher T . The outputs of the final layer of the student S are also passed through a

softmax function and can be given by softmax(qS), where qS is the vector of Q-values

of Student S. KL divergence loss function is used to train the student network S.

L(X, ✓

S

) =

|X|X

i=1

softmax(
qT

i

⌧

)ln
softmax(

qT
i
⌧

)

softmax(qS

i

)

Learning Language & Expanding Vocabulary Using RL 16

(a) Multi Task Policy Distillation for Text-based games

(b) Student Network Architecture

Figure 3.1: Learning representations from multiple text-based games

Learning Language & Expanding Vocabulary Using RL 17

where dataset X = {(s
i

,q
i

)}N
i=0 is generated by Teacher T , where each sample consists

of a short observation sequence s

i

and a vector q
i

of un-normalized Q-values with one

value per action and one value per object. In simpler terms, q
i

is a concatenation of the

output action and object value function distributions. We call this agent as multi-task

distillation agent. This is a straight-forward extension of distillation agent for video

games proposed in Rusu et al. (2015) to text-based games.

We also train a multi-task LSTM-DQN agent as a baseline. For multi-task LSTM-

DQN, the approach is similar to single-game learning. The network is optimized to

predict the average discounted return of each possible action given a small number of

continuous observations. The training is similar to multi-task distillation. The current

game is switched after every episode, separate replay memory bu↵ers are maintained

for each task, and training is evenly interleaved between all tasks. The game label is

used to switch between di↵erent output modules as in multi-task policy distillation,

thus enabling a di↵erent output layer, or controller, for each game. The multi-task

LSTM-DQN loss function remains identical to single-task learning (Narasimhan et al.,

2015).

Chapter 4

Experiments and Analysis

In this section, we do an extensive analysis of policy distillation applied to LSTM-DQN.

Specifically, we are interested in answering the following questions:

1. How to learn multiple games with contradicting state dynamics?

2. What is the mechanics of multi-task policy distillation?

3. What can we say from the visualization of word embeddings?

4. How to do transfer learning using policy distillation?

5. How is the performance of policy distillation when compared to multi-task LSTM-

DQN?

We first explain the text-based game environment used in the experiments before re-

porting our findings.

18

Experiments and Analysis 19

Figure 4.1: Di↵erent game layouts

4.1 Game Environment

We conduct experiments on 5 worlds which we have built upon the Home World cre-

ated by Narasimhan et al. (2015)1. For our vocabulary expansion experiments, we have

created multiple worlds, such that no two of the worlds have identical vocabulary. Out

1
using Evennia (http://www.evennia.com/)

http://www.evennia.com/

Experiments and Analysis 20

of the 5 worlds we created, only game-4 has a di↵erent layout. The games have a vocab-

ulary of 90 words on an average. Every room has a variable set of textual descriptions

among which one is randomly provided to the agent on entering that room. The quests

(tasks given to the agent) and room descriptions are structured in a similar fashion to

Narasimhan et al. (2015) in order to constrain an agent to understand the underlying

information from the state so as to achieve higher rewards.

Each of the 5 worlds consists of four rooms – a bedroom, a living room, a garden, and a

kitchen – that can be connected in di↵erent ways as shown in Figure 4.1. Each room has

an object that the player can interact with. The player has to figure out the right room

and the object to interact with based upon the given quest. ”eat pizza”, ”go west” etc.

are few examples of possible interactions of the player with the environment. There is

no stochasticity in transitions between the rooms. The start states are random and the

player can spawn into any random room with a random quest provided to it. The state

representation that the player has, contains a textual description of its current state and

quest. The action set and quests that are given to the agent in all 5 games are the same.

We have also added alternate descriptions for all the rooms in di↵erent games.

We use the same evaluation metrics and procedure as used in Narasimhan et al. (2015).

To measure an agent’s performance we use the cumulative reward acquired per episode

averaged over multiple episodes and the fraction of episodes in which the agent was able

to complete the quest within 20 steps during evaluation. The best value for average

reward a player can get is 0.98, since each step incurs a penalty of �0.01. In the worst

case scenario the goal room can be diagonally opposite to the start room and so in order

to obtain the best score the agent should be completing the given task within 2 to 3

steps without selecting any wrong command. Giving a negative reward for every step

also enables the agent to optimize the number of steps.

Experiments and Analysis 21

4.2 Learning games with contradicting state dynamics

In this section we analyze the performance of multi-task policy distillation agent (stu-

dent) when the game state dynamics are contradicting. We use expert trajectories from

games 1, 2, 4 as teachers to our student network. Game 1, 2 have same layout and game

4 has a di↵erent layout.

In Figure 4.2 we see that after around 1000 training steps, the student is not only able

to complete 100% of the tasks given to it but additionally it also is able to get the best

average reward possible on all the 3 games. Note that the size of the 1st linear layer for

the teacher networks is 100 which is double of that of the smaller student network used

here.

An interesting observation that can be made from Figure 4.2a is that, initially for all the

games the average reward increased but around 400 training steps the average reward

for the game 4 started decreasing and after a while it started increasing again. One

reason for this we suspect is that, the layout of game 4 is di↵erent compared to the

other games, and thus the optimal policies will also be di↵erent. Due to this factor, an

update in the network weights in the direction of game 1, 2 could negatively a↵ect it’s

performance on game 4. To strengthen our belief, we performed the same experiments

with doubled size of the 1st Linear layer which can be found in the Figure 4.2b.

From the training curves for Game 4 in Figure 4.2b, we observe that the learning is

much more steadier and faster compared to the smaller student network experiments.

Making the network wider enhances the modelling capability of the student network.

The results in Figure 4.2 indicate that, with more modelling power, the student can

learn much faster on contrasting domains.

Experiments and Analysis 22

(a) Student with 1st linear layer size as 50

(b) Student with 1st linear layer size as 100

Figure 4.2: Training curves of multi-task policy distillation agent (student)

Experiments and Analysis 23

4.3 What is the mechanics of multi-task policy distilla-

tion?

Intrigued by the positive results obtained on simply widening a single layer in the student

network, we went a step further to interpret the intricacies of the student network. In

this experiment, we analyze how inputs from di↵erent games a↵ect di↵erent parts of

the student network. In order to do this, we compare jacobians evaluated for di↵erent

combinations of network layers for di↵erent games. 100 states are sampled from a

single game at once, and the jacobians are calculated with these states as inputs to

the network. Subsequently, we take an average over the jacobians evaluated over the

100 sampled states. This process is repeated for the next game and once we have

the average jacobian matrices for the required games, we normalize the corresponding

jacobian matrices and then scale the absolute values of elements in the resultant matrices

to 255. Final heat-maps are generated for the scaled matrices and can be seen in the

Figure 4.3 & 4.4.

We have chosen the following combinations of layers for evaluating the jacobians for a

game i, where i 2 {1, 4}:

• combination 1: jacobian of ReLU layer w.r.t mean-pool layer outputs

• combination 2: jacobian of ith action value layer w.r.t ReLU layer

• combination 3: jacobian of ith object value layer w.r.t ReLU layer

In both Figure 4.3 & 4.4 we compare the heat-maps between game 1 & 4. We see that

in case of both the smaller and larger student network, the heat-maps for combination

1 are very similar where as most of the contrast can be visualized only in the heat-

maps for combination 2 & 3. In the Table 4.1 we numerically quantify the similarities

Experiments and Analysis 24

and dissimilarities between the heat-maps. For this we take an average of the absolute

values of di↵erence between the maps for game 1 & 4 for di↵erent combinations of

network layers.

Table 4.1: Average absolute di↵erence between heat-maps of game 1, 4 for di↵erent combinations
of network layers using the two di↵erent sized versions of student network

Layer Combination 1st linear layer size 50 1st linear layer size 100

ReLU vs mean-pool 23.58 23.11
Action value vs ReLU 138.02 123.56
Object value vs ReLU 124.43 129.53

(a) ReLU layer vs mean-pool layer

(b) Action value layer vs
ReLU layer

(c) Object value layer vs
ReLU layer

Figure 4.3: Heat-maps of di↵erent layer combinations for smaller student network trained on
game 1, 2, 4 with size of 1st linear layer as 50. The heat-maps in (a) are very similar for the two
games. All the diversity can be seen in the heat-maps in (b) & (c)

Experiments and Analysis 25

(a) ReLU layer vs mean-pool layer

(b) Action value layer vs
ReLU layer

(c) Object value layer vs
ReLU layer

Figure 4.4: Heat-maps of di↵erent layer combinations for larger student network trained on
game 1, 2, 4 with size of 1st linear layer as 100. The heat-maps in (a) are very similar for the
two games. All the diversity can be seen in the heat-maps in (b) & (c)

These results indicate that the learning in the multi-task policy distillation is two-fold.

Firstly, a part of the network, the portion between input and ReLU Layer, is specializing

to learning something universal and generalizable from di↵erent game sources. Secondly,

the portions of network between the common ReLU layer and di↵erent output layers are

learning the corresponding game specific information. This especially is the reason why

making this part of the network deeper or wider will help get better performance on the

complex games as can be seen in Figure 4.2.

Experiments and Analysis 26

4.4 Transfer learning using policy distillation

Going a step further in comparing the utility of representations learnt by the student

with that of a single game teacher, we created game 5 which has parts of its vocabulary

common with each of the games 1, 2, 3. We used single game teachers T1, T2, T3

trained on games 1, 2, 3 respectively. The student which we will denote by S is trained

using these expert teachers T1, T2, T3. For this experiment we take the Game 5 and

train 4 agents A1, A2, A3, A4 by initializing the embeddings of possible words with the

embeddings learnt by T1, T2, T3 and S respectively. Here, by possible words we mean

those words that are common between the already learnt network’s game source and

game-5. The embeddings for the words that are not common are initialized randomly

just as in the case of a normal LSTM-DQN teacher.

We also train two more agents, one is A5 that has all the word embeddings initialized

randomly, and other is A6 which has all the possible word embeddings from game-5

initialized using all possible embeddings from teachers T1, T2, T3 at the same time. In

the case of A6 when there is more than one possible embedding source for a word, the

source is chosen randomly. Agent A5 an A6 serve as baselines for this experiment.

From the Figure 4.5 we infer that the teacher A4 that had embeddings initialized from

the student S is able to learn much faster than the others. Most importantly, we see

that it performs better than A6, which is the usual method for language expansion. This

strengthens our belief that student is able to learn useful representations of language

from multiple game sources.

Experiments and Analysis 27

Figure 4.5: Training curves for LSTM-DQN agents A1, A2, A3, A4, A5, A6 training on game
5. Agent A1, A2, A3, are initialized with learnt embeddings from LSTM-DQN teachers T1, T2,
T3 respectively. Agent A4 is initialized with learnt embeddings from student S. Agent A5 has
randomly initialized embeddings. Agent A6 has all possible embeddings initialized from all the
LSTM-DQN teachers T1, T2, T3 combined.

4.5 What can we say from the visualization of word em-

beddings?

In this section we analyze the t-SNE (Maaten and Hinton, 2008) embeddings learnt by

the multi-task policy distillation method on learning games 1, 2 and 3 combined and

compare them with the embeddings learnt by corresponding single game teachers. We

train a new student network for this experiment. Games 1, 2, and 3 all have the same

layout but have di↵erent vocabularies. For this we first passed every word in the vocabu-

lary of a game through the LSTM layer and took its output and then projected it onto a

2 dimensional space using t-SNE algorithm (Maaten and Hinton, 2008) and plotted the

Experiments and Analysis 28

representations. This was done for all the teacher networks and the student network. In

this experiment we used a student network of same size as that of corresponding teacher

networks. From the Figure 4.6 and Figure 4.7, we can infer that the word embeddings

learnt by a single student network are much more compact and better clustered as com-

pared to those learnt by multiple single game teachers. Also, the number of outliers in

the clusters are much less in the case of student embeddings as can be seen in the Figure

4.6.

We believe that the student network is able to associate words with the rooms and the

tasks (quests) better than the teacher networks, by benefiting from textual descriptions

from di↵erent games.

One more factor that could enable student to learn better language representations is

that, in the process of policy distillation only the final optimal policies of the teacher

are learnt by the student network. These stable targets to the student network could

help the network to learn better, unlike the case of LSTM-DQN teachers training where

the network has to represent a series of policies that are obtained in the policy iteration

cycle of the Q-learning Algorithm.

4.6 Policy distillation Vs. Multi-Task LSTM-DQN?

In this section we analyze the performance of the multi-task LSTM-DQN. We trained a

multi-task LSTM-DQN agent on games 1, 2, 3. The performance of this method is very

bad as compared to the multi-task policy distillation method as can be seen in Figure

4.8a. The multi task LSTM-DQN agent is able to solve only about 30% of the quests on

an average, given that the episodes are ended after 20 steps, whereas multi-task policy

distillation was able to solve 100% of the quests.

Experiments and Analysis 29

(a) game 1

(b) game 2

(c) game 3

Figure 4.6: t-SNE plots of embeddings learnt by multi-task distillation agent (student) trained
on games 1, 2, 3

Experiments and Analysis 30

(a) game 1

(b) game 2

(c) game 3

Figure 4.7: t-SNE plots of embeddings learnt by LSTM-DQN teachers trained on games 1, 2,
3 respectively

Experiments and Analysis 31

(a) Training curves of multi-task LSTM-DQN

(b) t-SNE plot of the multi-task LSTM-DQN word embeddings on game 1

Figure 4.8: Experimental results of multi-task LSTM-DQN

Experiments and Analysis 32

Analysis of the embeddings learnt by the agent for words in vocabulary of games 1, 2, 3

showed that the embeddings learnt by this method are almost random. This could

happen because the errors are not propagating steadily throughout network, as the

policy that the agent is learning keeps changing due to the policy iteration cycle of the

Q-Learning algorithm (Watkins and Dayan, 1992). Since, there are 3 sets of games we

are learning here, the e↵ective targets to the network are even more unstable.

Chapter 5

Conclusion

In this work, we applied the recently proposed policy distillation method (Rusu et al.,

2015) to text-based games. Our experiments verify that policy distillation is an e↵ective

approach even for LSTM-DQN where each game might have di↵erent vocabulary. We

also provided an extensive analysis on how distillation works when games have contra-

dicting state dynamics. It will be interesting to see if the same analysis will hold for

games with larger vocabulary space. A crucial problem we faced is that evaluating the

closeness of learned embeddings to that of human based learning is di�cult, and there

is no globally accepted evaluation metric and standard metrics do not focus on this sce-

nario. We believe that better evaluation metrics are needed to accelerate the progress

in this direction. Finally, we believe that our work is an important step in the direction

of designing agents that can expand their language in a completely online fashion (aka

continual learning).

33

LIST OF PAPERS BASED ON THESIS

1. Ghulam Ahmed Ansari, Sagar J P, Sarath Chandar, Balaraman Ravindran “Lan-

guage Expansion In Text-Based Games”, Deep Reinforcement Learning Workshop,

Neural Information Processing Systems (NIPS), 2016 (Accepted).

2. Ghulam Ahmed Ansari, Sagar J P, Sarath Chandar, Balaraman Ravindran “Lan-

guage Expansion In Text-Based Games”, Emperical Methods In Natural Language

Processing (EMNLP), 2017 (Submitted).

34

Bibliography

Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http://arxiv.

org/abs/1504.08083.

Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

George Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained deep

neural networks for large vocabulary speech recognition. Audio, Speech, and Language

Processing, IEEE Transactions on, (99):1–1, 2010.

G. Tesauro. Temporal di↵erence learning and TD-Gammon. Communications of the

ACM, 38(3):58–68, 1995.

Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,

Pittsburgh, PA, USA, 1992. UMI Order No. GAX93-22750.

Yann Lecun, Yoshua Bengio, and Geo↵rey Hinton. Deep learning. Nature, 521(7553):

436–444, 5 2015. ISSN 0028-0836. doi: 10.1038/nature14539.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

35

http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083

Bibliography 36

In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 27, pages

2672–2680. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5423-generative-adversarial-nets.pdf.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,

and Demis Hassabis. Mastering the game of Go with deep neural networks and tree

search. Nature, 529(7587):484–489, January 2016. doi: 10.1038/nature16961.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka

Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ra-

malho, John Agapiou, AdriàPuigdomènech Badia, Karl Moritz Hermann, Yori Zwols,

Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil Blunsom,

Koray Kavukcuoglu, and Demis Hassabis. Hybrid computing using a neural net-

work with dynamic external memory. Nature, 538(7626):471–476, 10 2016. URL

http://dx.doi.org/10.1038/nature20101.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dx.doi.org/10.1038/nature20101

Bibliography 37

for deep reinforcement learning. In International Conference on Machine Learning,

2016.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins,

James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia

Hadsell. Policy distillation. CoRR, abs/1511.06295, 2015. URL http://arxiv.org/

abs/1511.06295.

Karthik Narasimhan, Tejas D. Kulkarni, and Regina Barzilay. Language understanding

for text-based games using deep reinforcement learning. CoRR, abs/1506.08941, 2015.

URL http://arxiv.org/abs/1506.08941.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An Introduction.

MIT Press, 1998.

Laurens van der Maaten and Geo↵rey Hinton. Visualizing data using t-sne. Journal of

Machine Learning Research, 9(Nov):2579–2605, 2008.

Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, and

Li Deng. Deep reinforcement learning with a combinatorial action space for predicting

and tracking popular discussion threads. arXiv preprint arXiv:1606.03667, 2016.

Rodrigo Nogueira and Kyunghyun Cho. End-to-end goal-driven web navigation. arXiv

preprint arXiv:1602.02261, 2016.

Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, and

Rob Fergus. Mazebase: A sandbox for learning from games. arXiv preprint

arXiv:1511.07401, 2015.

http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1506.08941

Bibliography 38

Kumpati S Narendra and Kannan Parthasarathy. Identification and control of dynamical

systems using neural networks. IEEE Transactions on neural networks, 1(1):4–27,

1990.

	THESIS CERTIFICATE
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Notations
	1 Introduction
	1.1 Reinforcement Learning
	1.2 Deep Learning
	1.3 Deep Reinforcement Learning
	1.4 Imitation Learning
	1.5 Multi-task learning
	1.6 Summary

	2 Background Theory
	2.1 Markov Decision Processes (MDP)
	2.2 The Episodic Reinforcement Learning Problem
	2.3 State Action Value Function (Q-function)
	2.4 Q-learning
	2.5 Deep Q Networks (DQN)
	2.6 LSTM-DQN
	2.7 Multi-Task Policy Distillation

	3 Learning Language And Expanding Vocabulary Using Reinforcement Learning
	3.1 Motivation
	3.2 Contribution
	3.3 Multi-task Distillation Agent for Learning Representations from Multiple Sources

	4 Experiments and Analysis
	4.1 Game Environment
	4.2 Learning games with contradicting state dynamics
	4.3 What is the mechanics of multi-task policy distillation?
	4.4 Transfer learning using policy distillation
	4.5 What can we say from the visualization of word embeddings?
	4.6 Policy distillation Vs. Multi-Task LSTM-DQN?

	5 Conclusion
	Bibliography

