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ABSTRACT

KEYWORDS: Gesture Recognition ; Subgestures; Long Short Term Memory;

Encoder Decoder Models.

Almost all approaches nowadays are focussed on classifying single gestures in each

attempt. While they are decently successful, categorising single gestures doesn’t prove

to be very useful in applications that are prevalent today. In this paper, we propose

a Long Short Term Memory(LSTM) based deep network on the lines of an Encoder-

Decoder architecture that classifies gesture sequence accurately in one go. We also

show an empirical training strategy for our architecture which can achieve good results

even with limited amount of collected data. Results from the experiments performed on

labelled datasets from Inertial Motion Units (IMU) proves the efficiency and usefulness

of the proposed method.
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CHAPTER 1

INTRODUCTION

In today’s world we see every computing device getting seamlessly integrated in our

lives day by day for which it becomes critical to have intuitive and coherent Human

Computer Interactive(HCI) devices. Innovative gesture recognition algorithms play an

important part in this journey through which we can develop applications like sign

language recognition, touchless car assistance system, new age gaming systems, etc.

1.1 Motivation

The most popular method of gesture recognition till now was through video sequences

Mitra and Acharya (2007) VI. Pavlovic (1997). However, there have then been a

lot of other methods are becoming popular like IMUs , depth sensors, etc J. Galka

(2016a) R. Aggarwal (2015). All the instruments used to gather data for the task of

gesture recognition have their own challenges. In case of videos, several systems that

are in place only work in good lighting conditions and such systems fail very badly due

to occlusion J. Galka (2016a). Depth based sensors also have an issue of occlusion

and the depth range. While, IMUs don’t have any of the above problems, it faced the

inconveniences like wiring and bulkiness till recent times.

Our work mainly deals with gesture recognition based on IMU pertaining to sev-

eral advantages it posesses. Firstly, usage of IMU removes the problem of occlusion

and thus we can infer data in real time without any issues. Secondly, over time, there

have been lot of improvements in terms of sizing and accuracy of the IMUs being pro-

duced J. Galka (2016a). Also, advances in latest technologies like Bluetooth Low En-

ergy makes it more convenient to use IMUs in recent times.



1.2 Desired Outcome

Many recognition algorithms that exist have the capability to be able to classify a single

gesture and depend a lot on stop detection algorithms and gesture segmenting algo-

rithms which doesn’t help the system to be fluent. Being able to recognise multiple

temporal gestures at once increases the number of functionalities of the system thus

making the system smooth. For example, with a gesture database of 8 different types of

gestures and a system which can recognise multiple temporal gestures upto length 3 ac-

curately, we will ideally be able to recognise 8+8*8+8*8*8=584 gesture/functionalities.

This kind of recognition systems will prove to be beneficial in systems like sign lan-

guage recognition to recognise different standard phrases or in touchless car assistance

systems to control the different features, etc.

In this paper we introduce a new variant of Encoder-Decoder Models(EDM) I. Sutskever

(2014) in the field of gesture recognition for the first time to tackle the problem of ac-

curate classification of multiple temporal gestures. EDMs have become very famous

recently for their success in the field of natural language processing, specifically in ma-

chine translation, and other sequence to sequence problems such as video captioning

P. Pan (2015).

In particular, we propose a new Selective Encoder Decoder(SED) network that has

the ability to recognise multiple temporal gestures at once along with experimental

results on a dataset collected from an IMU. We also show an emperical training strategy

used by us and which allows the network to learn parameters with minimal training data

and also demonstrate its usefulness through experimental results.

1.3 Previous Works

Most of the approaches towards gesture recognition were in the field of vision. Par-

ticularly, there was a good amount of success in the usage of HMMs. For instance,

Elmezian et al. Elmezain and Al-Hamadi (2008) have proposed a Left-Right Banded

HMM model for classification of the gestures.Yang et al. Z. Yang (2014) have worked

on the problem using HMMs on fragmented observations. There have also been some

attempts using sparse Bayesian classifier for example Wong et al. Wong and Cipolla
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(2007). Recently, several successful deep learning based solutions have come up like

Molchanov et al. P. Molchanov (2015) have proposed a 3D Convolutional Neural Net-

work and achieved a reasonable accuracy on the VIVA dataset. There have been other

works in the field of gesture recognition, action and emotion recognition which try to

use the concept of recognizing gestures based on the recognizing the subelements Yang

and Narayanan (2015) J. Galka (2016a) J. Galka (2016b) Yin (2014). Most of the

above attempts being based on a recognition structure called Parallel Hidden Markov

Model CD. Mitchell (1995).

Sequence to sequence models in Deep Learning is one of the newest architecture

that was introduced few years ago. It has showed tremendous promise in the fields

of Machine translation. Cho et al. K. Cho (2014) have first introduced the Encoder

Decoder models for learning the Phrase representations. There have been many other

variations of the model D. Bahdanau (2015) I. Sutskever (2014) and we derived our

inspiration to apply this model for this problem.

3



CHAPTER 2

BACKGROUND THEORY

2.1 Overview

This chapter gives a brief information about all the concepts that have bee used for the

work that has been done.

2.2 Deep Learning

Deep Learning is an a separate class of machine learning algorithms where the basic

objective is to find an approximation to a complex(or simple) function which can be

used in a variety of tasks like recognition, prediction, feature selection, etc. It usually

involves a manually decided loss function over the parameters of the cascaded network

which is programmed to be minimized using various methods like gradient descent,

adagrad, adam, etc.

Deep Learning has several configurations and advantages to it’s usage which has

made it very effective over a wide range of problems and has also become very popular

in recent times. For example, for the basic unit(neuron), it could be the normal algebraic

unit, convolutional unit, recurrent unit, etc. The excitation of the neuron could be a

Relu, sigmoid, etc. Among the advantages it has, they can be joined easily to make

complex networks which have the ability to extract informative features and the recent

upsurge in the computing power makes it easy to train the networks faster over a large

amount of data.

Various approaches of Deep Learning on the problem of Gesture Recognition have

been showing tremendous improvements lately. Our work derives inspiration from this

field and we propose a Deep Neural Network that can not only accurately classify sim-

ple gestures but also classify multiple temporal subgestures at once.

*** Mathematical Part of Deep Learning ***



Figure 2.1: A pictorial representation of the Recurrent Neural Network which helps to
understand the nature of computations

In this work we propose the usage of Recurrent Neural Networks which is a type of

Deep Network which has the ability to deal with sequential data.

2.3 Recurrent Neural Networks

Recurrent Neural Network(RNN) is one kind of neural network which has the capability

to operate on sequential data. In each pass of the forward propagation of the network,

the state of the network gets updated on the basis of the present input as well as the

previous state. This way, it has some kind of memory associated with it and can conve-

niently act on temporal data and provide effective results in the tasks of classification,

prediction, etc.

(Elman’s)RNN could mathematically be expressed as follows,

ht = σh(Whxt + Uhht−1 + bh) (2.1)

yt = σy(Wyht + by) (2.2)

where,

xt : input vector

ht : hidden layer vector

yy : output layer vector

5



Figure 2.2: Thes standard LSTM cell

W , U , b : parameter matrices and vector

σh and σy : Activation functions

2.3.1 Long Short Term Memory RNN

Long Short Term Memory Recurrent Neural Network(LSTM) is an upgraded version

of the basic RNN which basically has more functionality than a normal RNN which

makes it more versatile it it’s functionality as compared to the RNN.

The additional inclusion of forget, input and output gates when compared to the

standard RNN improves the functionality of an LSTM. The ability to remember, forget

and selectively values from the previous state that makes it more efficient in predicting

the output in the present state based on the right information.

Mathematically, traditional LSTM can be expressed as follows,

ft = σg(Wfxt + Ufht−1 + bf ) (2.3)

it = σg(Wixt + Uiht−1 + bi) (2.4)

ot = σg(Woxt + Uoht−1 + bo) (2.5)
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ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (2.6)

ht = ot ◦ σh(ct) (2.7)

where,

xt : input vector

ht : output vector

ct : cell state vector

W , U and b : parameter matrices and vector ft, it and ot : gate vectors (Forget gate

vector : Weight of remembering old information, Input gate vector : Weight of acquiring

new information, Output gate vector : Output candidate)

σg : Sigmoid function

σc : Hyperbolic tangent

σh : Hyperbolic tangent

◦ : Hadamard product i.e entry wise product

2.3.2 Bidirectional LSTM

Bidirectional LSTM is an extended version of the LSTM where it has a set of 2 state

vectors when compared to the normal LSTM which has only one. Here, one of the

state vector gets updated with respect to the sequence in the forward direction while the

other gets update to the same sequence that is inverted. At a time instant, both the state

vectors help in predicting the output.

It usually outperforms LSTMs in respect to particular applications where there is

a bit of confusion involved between multiple classes that are to be classified. Bi-

directional LSTMs are incredibly useful when the context of the input is required to

make the required predictions. It helps in the case that reading the sequence from both

the sides can help build a better classifier. For example, in handwriting recognition, the

performance can be improved by knowing the letters before and after the current letter.

7



Figure 2.3: Example for pictorial representation of the embeddings on the two principal
axes

2.4 Word Embedding

Word Embedding is a method for language modelling and feature learning in Natural

Language Processing where words and phrases are collectively mapped to a vectors of

real numbers. Conceptually it involves a mathematical embedding from a space of one

dimension per word to a continuous vector space with a much lower dimension.

Such embeddings are important because they capture the similarity between various

entities. Instead of having a one dimension per word, having a continuous real number

vector space for various words enables us to capture the similarities between words

using various similarity measurements like cosine similarity, etc.

Such similarities are easy to see when the entities are projected on a vector space

map. To show an example for the similarities that is being talked about, consider the

words New Delhi, Beijing, India and China. Here, we can say that New Delhi-Beijing

are closely related in one way and New Delhi-India are closely related in another way,

but New-Delhi is not so closely related with China as compared to other two. This kind

of relations can be captured on the embeddings.

2.5 Encoder-Decoder Networks

These networks are usually deep neural networks consisting of 2 parts - encoder and

the decoder. The usefulness of these networks come as suggested in the name itself - i.e

when it has to encode some information in one domain and decode the same information

in another domain. Encoder-Decoder networks have found a great application in a

8



certain type of problems called sequence to sequence problems. As the name suggests,

the aim of the problem is to convert a sequence of information in one domain to that of

a sequence in another domain.

Mathematically, they can be represented like this

Encoder :-

ht = RNN(ht−1, xt) (2.8)

s0 = hT (2.9)

where T is the length of the input

Decoder :-

st = RNN(st−1, e(ŷt−1)) (2.10)

P (yt|yt−11 , x) = softmax(V st + b) (2.11)

Parameters : Udec, V , Wdec, Uenc, Wenc

Loss : L(θ) =
∑T

i=1 Lt(θ) = -
∑T

i=1 log P (yt = lt|yt−11 , x)

Algorithm : Gradient descent with backpropogation

The basic sequence to sequence model consists of two RNNs, an encoder that pro-

cesses the input and the decoder that generates the output. In the basic model depicted,

the sequence to be encoded is to be read and converted into a fixed-size state vector

which is usually the state vector of the encoder RNN. Later, the encoded state is copied

into that of the decoder and the sequence that is expected is generated.

Among one of the application that these networks have shown a great promise is in

the field of Machine Translation. So far, among all the methods that exist, variants of the

encoder decoder models have shown the most promising results. For example, the latest

9



Figure 2.4: Results from the famous Sutskever et al. paper on Machine Translation

work done has recorded a BLEU score of 36.5 for the translation task of English-French

on the whole of WMT-14 dataset.
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CHAPTER 3

Selective Encoder Decoder(SED) Architecture

In this section we give the description of the problem to be solved, the dataset and the

Selective Encoder Decoder Architecture used to solve it.

3.1 Description of the problem

The aim of the work is to capture the gestures performed by the hand, break them down

into a standard set of subgestures and then classify them to a certain gesture according

to the temporal sequence of subgestures. For this, we used the data captured from

an IMU(Inertial Motion Unit) tied to the finger of a hand, which has the capability to

provide close to accurate information about the acceleration and orientation of it in the

real world(total of 6 dimensions).

3.1.1 Advantages of this method

The primary advantage that this kind of classification gives is that it increases the scope

of number of gestures that can be recognized. For example, suppose we consider 8

number of standard sub gestures in our solution and gesture recognition based on segre-

gation into subgestures upto length 3, we can see that if a proper robust solution can be

designed for this, then we can accommodate 8 + 8*8+ 8*8*8 = 584 different gestures

using one single classifier.

Accordingly, such a classifier can has applications in various domains where it is

required to have a large number of gestures that can be classified such as Sign Language

Recognition, Human Computer Interaction, Car feature control, etc. For example, in the

case of sign language recognition, it could be developed into a proper device which can

recognize



Figure 3.1: Pictorial description of the gestures that have been considered in this paper.
The black highlightening on the index finger indicates the position of the
IMU that has been placed.

3.2 Formulation

Let x = (x1, x2, x3 .... xn),where each xi is a vector of dimension D1 be a sequence

of data in one domain named A. The objective is to convert the same sequence from

domain A into a sequence y = (y1, y2, y3 .... ym) in another domain B where each yi is

a vector of dimension D2. The aim of the experiment being to maximize the accuracy

of the sequence in domain B.

In this case, the problem we have at hand is to convert a sequence of temporal data

collected from the IMU which will be the domainA into that of sequence of subgestures

which is the domain B. For example, if swipe down and swipe right were a part of the

subgestures domain, then suppose a person drew an ’L’ in the air, then the model should

be able to predict the gesture as [swipe down, swipe right].

3.3 Dataset

We have generated our own dataset for this. We used the BNO055 Bosch IMU to

capture the data from the moving hand. The IMU has a triaxial accelerometer and a

triaxial gyroscope along with a triaxial geomagnetic sensor, which is capable of giving

the real time IMU frame acceleration and orientation of the IMU in the form of Euler

12



angles. As a part of preprocessing, we converted the IMU frame acceleration into world

frame acceleration using Euler geometry as the following:

aI = RI
B ∗ am +


0

0

g

 (3.1)

Where aI is the Inertial world frame acceleration of the sensor, RI
B is the rotation

matrix from the body frame to the inertial frame of the sensor and am is the 3-axis

acceleration vector from the accelerometer. Thus, at every time instant we get a 6

dimensional feature vector which contains a 3 dimensional world frame acceleration

and 3 dimensional orientation.

Our gesture database consists of the following basic gestures : swipe right, swipe

up, swipe left, swipe down, clockwise circle, anti-clockwise circle, clockwise twist and

anti clockwise twist. Each of the gesture was captured about 200 times in different

different settings with various people making it a total of 1600 gestures.

*** Specs of the IMU *** Frequency, max length of the gesture, average length,

ranges of angles and the acceleration, etc.

3.4 Proposed Method

In this section, we give the information about the SED architecture that has been used

to achieve the best results as well as the training strategy that has been employed to take

advantage of the architecture to be able to recognize multiple subgestures by training

on very limited data.

3.4.1 SED Architecture

The following is the architecture developed to use for the problem.

Encoder : In the encoder, a bi-directional LSTM Schuster and Paliwal (1997) has

been used with a state size L. The sequence of inputs is the stream of data arising from

the IMU which is a 6-dimensional stream of data. After the forward propagation of the

13



Figure 3.2: Selective Encoder Decoder Architecture.

sequence, whatever state remains is the encoded information of the input data.

The Encoder needs to read the whole sequence and condense the information into

some tangible form which is the final state here. The bi-directional LSTM has been

added because it can capture the information in a more abstract manner. For example

suppose there are 2 gestures, a right swipe and a clockwise circle, here both of the

gestures initially have a same trajectory and thus a standard LSTM might not be able to

classify well. Reading the data from both directions(i.e usage of bi-directional LSTM)

can and has improved the accuracy based on the experiments.

In between Encoder and Decoder : Now that the information about the input

sequence is contained in the final state of the Encoder, we add a learnable layer of

weights and biases between it and the initial state vector of the Decoder. The dimensions

of this layer are [2L, 2L](2L is the state size of Decoder and the Encoder has 2 LSTMs

each with state size L)

The idea of having a learnable layer between the Encoder and the Decoder is so that

the Decoder can selectively extract the information it requires from the encoded data

similar to the functionality of selective read for state in LSTMs. This modification has

proved to be impactful and improved the performance validated from the experiments

performed.

Decoder : For the decoder, we use a standard LSTM with the initial state that has

been obtained by multiplying the values in the final encoder states with the layer of

weights. Here, the vocabulary of the target domain is the set of basic gestures that

have been collected in addition to two manually added elements < Start > and <

14



End >. At the input side, before the input is fed to the LSTM layer, it passes through

an embedding layer T. Mikolov (2013). At the output side, connected to the outputs

of the LSTM is a dense layer of the size of the vocabulary on top of which exists the

softmax layer to predict the right output which is then fed in as the input at next time

step. The first input is the < Start > symbol and the prediction continues till the

< End > symbol is reached.

On the decoder side, while the functionality is common from the original decoder

network, the embedding layer helps to learn similarities between various simple ges-

tures from the vocabulary set which has helped to improve performance.

Mathematically, for an input sequence x = (x1, x2, x3 .... xn), the state ht at every

time instant t in the encoder depends as

ht = f(xt, xn−t, ht−1) (3.2)

and, the final state c remains as

ht = f(xt, xn−t, ht−1 (3.3)

The selective layer in between the encoder and decoder converts the final state c in

to c′ based on the dense layer parameter M as follows

c′ =M ∗ c (3.4)

which is when the decoder converts this information into the sequence accordingly

maximizing the following probability

p(y) =
m∏
t=1

p(yt/(y1, ...., yt− 1)), c′) (3.5)

And since an LSTM is being used on the decoder side,

p(yt/(y1, ...., yt− 1)), c′) = g(yt−1, st, c
′) (3.6)
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where st is the state of the LSTM at time T and g is the update function of LSTM.

3.4.2 Training Strategy

When it comes to recognizing the subgestures, we have formulated a new strategy which

would help in identifying multiple subgestures in sequence through a simple method

without using much training data. In this case, we use training data only from simple

gestures that have been recorded to identify even multiple subgestures in a sequence.

Here, to identify multiple subgestures in a sequence we create the relavant dataset

simply by taking the permutations of the subgestures data that has been collected and

taking a random subset of the permutations that have been taken. In this way, just

with very little amount of data that is collected, it is possible to create a dataset for the

outcome that we would like to see.

This especially is very efficient and works mainly because of the nature of the ar-

chitecture. Because of the combination of the linearities and non linearities that exist in

the computation of states and outputs, and the scalability in terms of number of small-

est units that can be accomodated especially in the encoder part, it makes possible to be

able to pack information very compactly. Also the fact that LSTMs are a sequentially

processing units, this infrastructure helps with recognizing the patterns in the sequence

and then the decoder being able to tag them to the relevant subgestures.

In this method, particularly for this architecture, we can observe an analogy with

that of the problem of machine translation. In many cases during translation, many

words in one language gets translated into just a single word in the other language and

vice versa. Here in this case can be mapped to the problem of the first part only i.e many

words to one. Thus, in a way it’s just a subset of the more successful implementation

of machine translation.

16



CHAPTER 4

Experiments

In this chapter, we give information about all the methods and experiments that have

been performed and their corresponding results as well as the ideas that lie behind the

formulation of the successful method about which has been mentioned in the subsection

"Architecture".

We compare and contrast the approaches that have been tried in order to achieve the

goal of gesture sequence recognition. In particular, we shall describe about the methods

like Parallel Hidden Markov Models, LSTMs and Encoder Decoder Models that have

been used to achieve the goal of gesture sequence recognition. We give intrinsic details

about the intuition behind the application of the methods as well as qualitative results

including the accuracy rates, F1 scores and the Confusion Matrices.

4.1 Recognition using Parallel HMM

4.1.1 Introduction

Parallel HMM is an arrangement of multiple left-right HMMs that are arranged in the

manner shown in the picture. As seen in the picture, the start of each HMM is connected

to the start state as well as the end of each HMM is connected to the end state. Here,

in this case the start and the end states are not entitled to contribute to the emission of

symbols which make it the case that the emission probabilities of all the symbols at

these states are equal.

Here, the idea is that each of the left-right HMM corresponds to that of a certain

subgesture and when a certain complex gesture is performed, the path taken over the

complete structure which maximizes the probability for the gesture performed is the

one which includes the each left-right HMM corresponding to each subgesture in the

right sequence. This kind of structure has also been useful in the case of human emotion

recognition based on body language.



Figure 4.1: Example for pictorial representation of the embeddings on the two principal
axes

4.1.2 Training

For training this structure, preprocessing was initially done on the procured data. For

training the HMM in general using the Baum Welsch Algorithm, the outputs that need

to be trained on should be whole numbers. For this purpose, we converted every data

sample in the gestures to a whole number by usage of clustering methods like K-means

and Gaussian Mixture Models and attaching the cluster number for each data point.

This method has been successful previously in the context of speech recognition where

specifically the subgestures here correspond to syllables there.

Subsequently, each of the HMM branch in the structure is trained separately using

the training samples of that particular subgesture. Later, all the transition and emission

probabilities of each state in each branch are combined into the master matrices for the

whole structure. In these matrices, as mentioned above about the start and stop states,

transition probabilities from all end states of each branch to the end state is equal and

the transition probabilities from the start state to all the other start states in each branch

is the same. Similarly, the emission probabilities at the end state and the start state for

all the symbols are hardcoded to be the same.
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4.1.3 Testing

Now that the HMM model is formed. When a new gesture is recorded for finding the

subgestures in the right sequence, each sample of the gesture is first fitted to the cluster-

ing model that was done before during training. Now the state sequence is figured out

by using the forward propagation algorithm using the transition and emission matrices

that were computed. From this state sequence, we can find out the HMM branches that

were involved and thus the subgestures in sequence.

4.1.4 Disadvantages

While conceptually the model looks sound, this approach has a lot of disadvantages

which are the following.

1. Fixed number of states for each branch : It is not possible to have multiple

number of states for each branch as there would be problems while normalizing the

probabilities to find the path of maximum probability. Thus, there is no flexibility over

the nature of the subgestures that are used.

2. Tag for start and end : In this method there is no tag for the start and end of the

subgestures that can be captured which makes it difficult for the structure to segregate

the gesture into multiple subgestures. This mainly creates confusion at the end and start

states which creates the confusion.

3. Cannot accomodate variability : Since, every sample of the gesture is usually

clustered to give a certain tag, the space over which this model can be used is very

limited and depends quite a lot on the number of clusters that are used which in turn

increases the computational resources to be used.

Thus, this model wasn’t quite successful when used in this problem.
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4.2 Basic Sequence to Sequence Model

4.2.1 Introduction

Sequence to Sequence models were first used for the problem of language translation

which has shown successful results on the famous WMT dataset of English to French

translations. It is a basic version of the architecture that has been described in the section

above "Architecture Used".

In this particular architecture, the encoder and decoder are identical elements where

each of them is a basic RNN with an embedding layer before the inputs. The working

mechanism of the structure is quite similar to the one mentioned before except for the

fact that the state here in this case is simply copied manually from the encoder to that

of the decoder rather than having a learnable layer.

At the visually optimal tradeoff between performance, training time and space con-

sumed the network used a state_size of 128 and the number of layers to be 3 both in the

encoder and decoder side. Also, the most optimal performance was obtained when the

cluster size was 80.

4.2.2 Training

Similar to the case of Parallel HMM, initially here all the sample points are first clus-

tered and which forms the training input. Similarly, for the training output, each of the

subgesture is given a separate tag and is provided as a sequence. Now we have the input

seqeuence and output sequence which together make the training data.

It was also an important factor for proper ratios of training samples of different

permutation length of the subgestures. For us, the best ratio that worked well was

20:30:50 of subgestures of permutation length of 1,2,3 respectively. Training was thus

done using the Adam optimizer using the sum of categorical crossentropy as the loss

function using a batch size of 64.
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4.3 Updated version

4.3.1 Improvements

Improvement 1:Separately thinking about the encoder and the decoder, we tried to

improve the performance of each of them separately. Thus thinking about the encoder,

we tried classifying the subgestures separately using the encoder only so as to decide

the best encoder.

For this we performed experiments using different units. Firstly, we used the basic

RNN to classify the subgestures and got an abysmal performance. Later, we performed

the classification using the LSTM which improved the performance but still was not at

the best. Later, we used the Bi-directional LSTM which was able to classify really well

and that too was able to learn the right parameters very quickly.

Thus for this purpose we made the encoder unit to be the bidirectional LSTM with

the state size of 128*2 and thus the basic unit of the decoder as well to the normal

LSTM of size 256.

Improvement 2:Inspired by the naively good results that were obtained in the pre-

vious method, we looked at the cause of such a weak behaviour and found out that the

performance was limited with maxima at cluster size of 80. The performances kind of

followed a bell shaped curve with respect to the cluster size.

Thus, originated the idea to remove dependence on the cluster size by simply remov-

ing the embedding layer on the side of the encoder because of the fact that the training

samples have continuous smooth data of whose advantage can be tapped into by the

neurons of the encoder which in turn can automatically have the effect of clustering

while in action. As it turned out to be, we have observed a good rise in the performance

of the network.

Improvement 3:With decently good results at this juncture, the encoder and de-

coder were separately performing well and thus didn’t require much of changes. Thus,

we made an observation that something could be done at the interface that arised in the

following idea.

Inspired by the selective read function in the state updation of the LSTMs, we then
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introduced a learnable layer in between the Encoder and the Decoder. This was done

with the intuition that the decoder should be able to pick the right information it requires

in a linear fashion which will make it easier for being able to decode the information.

This improvement has increased the performance majorly and brought the present level

of excellent performance.

4.4 Results

In this section, we give information about the recognition models that have been used

to compare the results, training methods used to achieve the results and results obtained

by using all of the above recognition models.

For training the different models mentioned below, we used the Adam optimizer D. Kingma

(2014) to minimize the loss function of summation of the categorical cross entropy of

the predicted gestures. This was performed on a training batch size of 64 with 10 epochs

where epochs 1-5 have a learning rate of 0.1, epochs 6-8 have a learning rate of 0.05

and epochs 9-10 have a learning rate of 0.02.

4.4.1 Recognition Models

For showing the superiority of the architecture proposed, we show the comparison of

performances of the following recognition architectures.

Normal Classification(gestures of sequence length 1) :-

• Standard LSTM

• Bi-directional LSTM

Sequence of gestures(gestures upto sequence length 3) :-

• The Selective Encoder Decoder architecture with a copy function instead of a
learnable layer in between the encoder and the decoder. (SED-C)

• Selective Encoder Decoder (SED)

Below, we show in order the performance of the recognition models for only ges-

tures with sequence length 1, gestures with sequence length 2/3 and gestures with se-

quence length 1/2/3 combined.
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4.4.2 Gestures with sequence length 1

The following table shows the comparison of different algorithms of the gestures cap-

tured with the composition of sequence with 1 gesture only.

Method/Accuracies Length 1
LSTM 66.4
Bi-directional LSTM 97.7
SED - C 95.4
SED 97.3

Table 4.1: This table shows the accuracies of various algorithms on gestures of se-
quence length 1

From the table, we can see that the bi-directional LSTM, SED-C and SED perform

really well. This can be attributed mainly to the proficiency of bi-directional LSTM

which also happens to be the major part of SED-C and SED.

4.4.3 Gestures with sequence length 2 or 3

To establish the superiority of SED architectures while predicting gestures with se-

quence length of more than 1, the respective recognition models have been trained sep-

arately with gestures with sequence length 2 in experiment 1 and gestures with sequence

length 3 in experiment 2. Also, the recognition models have been hardcoded to predict

2 or 3 labels respectively for the above mentioned experiments i.e prediction stops after

the architecture has predicted 2 or 3 labels respectively. The following table shows the

performance of the recognition models on the data.

Method/Accuracies Length 2 Length 3
SED - C 91.2 88.4
SED 94.6 90.2

Table 4.2: This table shows the accuracies of the architectures on gestures of sequence
length 2 or 3 separately.

The above table cements the effectiveness of the SED class architectures in prob-

lems related to subgesture sequence identification given the gesture. The main reason

that can be attributed to their effectiveness is this architectures’ ability to be able to

recognize the patterns of data to be able to predict the subgestures in sequence.
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4.4.4 Gestures with sequence length 1,2 and 3 combined

In this experiment, we train the architecture on gestures with sequence lengths 1,2 and

3 at once and let the model predict the sequence of gestures. In this experiment, the pre-

diction stops when the model predicts a "Stop". The following table shows the results

for this experiment.

Method/Accuracies Length 1 Length 2 Length 3
SED - C 84.3 71.6 66.4
SED 90.2 86.7 77.5

Table 4.3: This table shows the accuracies of the architectures used when trained with
gestures of length 1,2 and 3 combined

Figure 4.2: Confusion Matrix of gestures of sequence length 1 on SED architecture

Here, we can see the competance of the SED architecture. In this case of predicting

the sequence of gestures of variable sequence lengths just using the same architecture

at one go after training on all variants of sequence lengths, the SED architecture clearly

shows a quantum jump in terms of accuracies. This can be attributed to the learnable

layer in between the Encoder and Decoder which performs the function of selective

read similar to the one that exists in the standard LSTM.
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Figure 4.3: Confusion Matrix of gestures of sequence length 2 on SED architecture

Also, using the SED architecture, the F1 scores obtained for gestures with 1,2 or

3 sequence lengths respectively are 0.89, 0.82 and 0.78. The confusion matrix for the

above experiment performed using the SED architecture is shown in Figure 3.

4.4.5 Training Strategy

For the normal classification problem, the maximum sequence length of measurements

among all the gesture is computed and all the other gestures have been padded with

zeros till the max length. Each modified sequence of gesture measurements were then

trained with each model along with their correct class.

For the sub-gesture classification problem, it was not necessary to create a separate

dataset pertaining to the sub-gestures classification. We took the permutations of all the

recorded gestures, padded them according to the maximum length of such gestures and

trained it on the model along with the sequence of subgestures they belonged to.

This method of training was effective because the model only had to learn the pat-

terns of the each of the gestures which would make it sufficient be able to recognize

the sequence of subgestures. We show that this method is effective from the results we
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Figure 4.4: Confusion Matrix of gestures of sequence length 3 on SED architecture

obtained.
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CHAPTER 5

Conclusion

Through this work, we have shown a method that has been successful in recognizing the

gestures in a sequence using the IMU. We believe that it is a big step in the direction of

ubiquitous control in the field of Human Computer Interaction basically by increasing

the field of possibilities just by using one instrument - here namely the hand. We have

also shown that exquisiteness of the architecture involved by it’s performance capabil-

ities just by utilizing a fraction of real collected data which otherwise in other cases

have never been possible. In the future, such capabilities are going to become quite

common and a new field of research that would be complementing this area and also

be very interesting to look into is the real time gesture segmentation. Such a combina-

tion of capabilities in future will be the way to work towards bringing the revolution of

ubiquitous usage of Human Computer Interactive devices.



APPENDIX A

A SAMPLE APPENDIX

Just put in text as you would into any chapter with sections and whatnot. Thats the end

of it.
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