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ABSTRACT

KEYWORDS: Communication Complexity, Information Complexity, Wyner

Common Information

The question of how much communication is required between collaborating parties to

compute a function of their data is of fundamental importance in the fields of theoretical

computer science and information theory. In this work, the focus is on coming up with

lower bounds on this. The information cost of a protocol is the amount of information

the protocol reveals to Alice and Bob about each others inputs, and the information

complexity of a function is the infimum of information costs over all valid protocols.

For the amortized case, it is known that the optimal rate for the computation is equal

to the information complexity. Exactly computing this information complexity is not

straight forward however. In this work we lower bound information complexity for

independent inputs in terms of the Wyner common information of a certain pair of ran-

dom variables. We show a structural property for the optimal auxiliary random variable

of Wyner common information and exploit this to exactly compute the Wyner common

information in certain cases. The lower bound obtained through this technique is shown

to be tight for a non-trivial example - equality (EQ) for the ternary alphabet. We also

give an example to show that the lower bound may, in general, not be tight.
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CHAPTER 1

Introduction and Background

Communication Complexity aims to characterize the complexity of function computa-

tion by estimating the amount of messages that must be exchanged between communi-

cating parties to jointly compute the function, whose inputs are broken up amongst the

players so that each player only has partial knowledge of the input. The notion of Com-

munication Complexity was introduced in [14], where the problem of the minimum

amount of communication required between two parties, Alice and Bob, who wanted

to compute a function f(x, y) that depended on their inputs x and y, respectively, was

studied. Over 35 years later, the simplistic model of communication established by Yao

has proven to be quite powerful and the development of the field has seen the production

of an immense number of interesting upper and lower bounds on the complexity of sev-

eral diverse communication problems, and in addition, these bounds transfer easily to

other computation models. This problem is relevant in several real world applications,

such as in VLSI design(where one wants to minimize the amount of energy used by

decreasing the amount of electic signals required between the different components),

in the study of data structures, in proving space-time tradeoffs for Turing machines,

in proving circuit size and depth lower bounds, and in the optimization of computer

networks. A more detailed survey of the topic is presented in [7].

The general communication model established by Yao admits any number of fi-

nite players, however, the field is split on looking at two-party communication bounds

and multi-party communication bounds, and in this thesis, we confine ourselves to the

former model. Most of the results in this domain are based on two general purpose

methods for proving lower bounds on communication: rectangle based methods and

information based methods. Early progress was made using the former, which leads

to a combinatorial method of tackling the problem [7], while more recent advances in

the area have centered around the notion of information complexity, which measures

the amount of information learned by the parties about each other’s inputs from the

protocol’s transcript, rather than a direct estimate of the number of bits required in the



communication between the parties to correctly compute the function. More specifi-

cally, if the inputs, X and Y of the two parties comes from a joint distribution µ, then

the information cost of a protocol Π (for computing a function f ) whose transcript is

denoted by M is defined as

I(X;M |Y ) + I(Y ;M |X).

Information complexity is the infimum of information costs of valid protocols, i.e., pro-

tocols which allow the parties to compute within the desired error performance, and is

denoted by ICXY (Z) for the computation of a function Z = f(X, Y ).

This quantity has a close connection to the problem of interactive source coding and

interactive function computation studied in information theory literature. In particular,

works by Kaspi [6] and Ma and Ishwar [8] show that information complexity for zero-

error is precisely the rate of communication required to compute with asymptotically

vanishing error when the parties are allowed to code over long blocks of independent,

identically distributed inputs. While, in general, computing information complexity

is not straightforward, it is known exactly for some interesting examples [8] and an

algorithm, albeit with run-time exponential in the alphabet size, for approximating it

has been proposed [3].

In [9], with the goal of better understanding information complexity, a monotonicity

property of interactive protocols was leveraged to obtain lower bounds on the informa-

tion complexity. The monotonicity property is that of the “tension region” of the views

of the two users. Tension region of a pair of random variables was introduced in [10] as

a measure of dependence which cannot be captured using a common random variable.

The question of how well correlation can be captured by a random variable may be

formulated in terms of “common information.” Two different notions of common infor-

mation were developed in the 70’s, CIGK(A;B) by Gács-Körner [5], and CIWyn(A;B)

by Wyner [13].

CIGK(A;B) = max
pQ|A,B :
Q−A−B
Q−B−A

I(Q;A,B) (1.1)

CIWyn(A;B) = min
pQ|A,B :
A−Q−B

I(Q;A,B) (1.2)
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One can define corresponding notions of tension as the gap between mutual infor-

mation (which accounts for all the correlation, but may not correspond to a common

random variable) and common information. More precisely, one can define the non-

negative tension quantities TGK(A;B) = I(A;B) − CIGK(A;B) and TWyn(A;B) =

CIWyn(A;B) − I(A;B). These notions of tension were identified in [10] as special

cases of a unified 3-dimensional notion of tension region.

The tension region of a pair of random variables was defined in [10] as the following

upward closed region.

Definition 1. For a pair of random variables A,B, their tension region T(A;B) is

defined as

T(A;B) = {(r1, r2, r3) : ∃Q jointly distr. with A,B

s.t. I(B;Q|A) ≤ r1, I(A;Q|B) ≤ r2, I(A;B|Q) ≤ r3}.

As shown in [10], without loss of generality, we may assume a cardinality bound

|Q| ≤ |A||B| + 2 on the alphabet Q in the above definition, where A and B are the

alphabets of A and B, respectively.

In [10], an operational meaning was also obtained for tension region in terms of a

generalization of the common information problem of Gács and Körner. Tension region

has proved useful in deriving converse results for secure computation. Specifically, it

was used to strictly improve upon an upper bound of Ahlswede and Csiszár [1] on the

oblivious transfer capacity of channels [11].

Suppose X ,Y are the inputs and A,B the outputs of the parties under a protocol.

Let M denote the transcript of the protocol. Let VA = (X,A,M) and VB = (Y,B,M)

denote the views of the parties at the end of the protocol. The key monotonicity property

we use is:

Proposition 1 (Theorem 5.4 of [10]).

T(VA;VB) ⊇ T(X;Y ).

A consequence of this is the following result:
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Theorem 1. For all X, Y, Z,

ICXY (Z) ≥ TWyn(XZ;Y Z)− TWyn(X;Y )

+ I(X;Z|Y ) + I(Y ;Z|X).

See [9] for a more general result which implies the above lower bound. For the

case of independent inputs the TWyn(X;Y ) term goes to zero. We will give a proof of

Theorem 1 for the case of independent inputs in Appendix A. While, the above bound

is not always tight2, we present a non-trivial example where the bound turns out to give

a tight result. It is worth noting that the technique of [8] does not easily yield this result.

Example 1 (ternary EQ). Let X, Y be independent and uniformly distributed over

{0, 1, 2}. The goal is to compute the indicator for the event (X = Y ). Theorem 1

gives a lower bound of H2

(
2
3

)
+ log2(3) which can be shown to be tight.

The equality (EQ) function, which determines whether two parties have the same

inputs, has been studied extensively. To the best of our knowledge, the only lower bound

on information complexity available is the trivial ICXY (Z) ≥ I(X;Z|Y )+I(Y ;Z|X).

The best available upper bound is 4.5 for k-ary EQ computation, for any probability

distribution over the inputs [2]. In this paper, we obtain both lower bounds and upper

bounds on the information complexity of the EQ function for uniformly distributed

inputs. To evaluate our lower bound of Theorem 1, we need to compute Wyner common

information (or an equivalent quantity given in (2.4)). Note that computing Wyner

common information is, in general, not straightforward [12]. Using standard techniques

based on Carathéodory’s theorem, an upper bound of |Q| ≤ |A| × |B| + 2 on the

auxiliary random variable Q of (1.2) is available. We show that it is enough to consider

a potentially smaller cardinality forQwhich depends on the number of maximal cliques

of the bipartite characteristic graph of pA,B – this is the bipartite graph on A × B such

that there is an edge between a ∈ A and b ∈ B if pA,B(a, b) > 0 – such that conditioned

on each element of q ∈ Q, the characteristic graph of pA,B|Q=q is a distinct clique

(Theorem 3). This then allows us to compute Wyner common information exactly for

certain examples of interest (chapter 3). In particular, the resulting lower bound turns

out to be tight for the ternary EQ example above. We also give a randomized protocol
2An example where this bound turns out not to be tight is that of computing the AND of two inde-

pendent uniform bits X,Y , for which information complexity is known [8].
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for the 4-ary EQ problem which performs better than deterministic protocols in terms

of its information cost, but here our lower bound does not meet the upper bound given

by the protocol.

Before delving into the material, we first state a couple of definitions used through-

out the text.

Definition 2. Consider a pair of random variables A and B, jointly distributed ac-

cording to µ, with alphabets A and B respectively. The characteristic graph between A

and B is the bipartite graph G = (A ∪ B, E), where the set of edges E is defined as

E = {(a, b) | a ∈ A, b ∈ B, µ(a, b) > 0}.

Definition 3. Given k numbers, {i1, ..., ik}, we define Hk(i1, ..., ik) =
k∑

j=1

ij log
(

1
ij

)
Definition 4. The function 1 takes as input a closed boolean formula ϕ and is defined

as

1[ϕ] =

 1 if ϕ is true

0 if ϕ is false

And finally, we look at the Log-sum inequality, which states that given nonnegative

numbers a1, . . . , an and b1, . . . , bn,

n∑
i=1

ai log
ai
bi
≥ a log

a

b

where a =
n∑

i=1

ai and b =
n∑

i=1

bi.
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CHAPTER 2

Interactive Function Computation

2.1 Introduction and Problem definition

In the two party interactive function computation model, there are two players - Alice

and Bob, with unlimited computational power and access to private random strings -

who want to compute a function that depends on both of their inputs. Alice is given an

inputX and Bob is given an input Y , drawn from a joint distribution µ overX×Y , and

they want to compute a function f : X × Y 7→ Z , where X is the alphabet over which

the random variable X is defined, and likewise Y is the alphabet of the r.v. Y . The

range of the function is Z , and given a distribution on X and Y , we can naturally define

a random variable Z = f(X, Y ) whose alphabet is Z and whose distribution depends

only on the function f and the distribution µ. Now given inputs (x, y) ∈ X ×Y , the ob-

jective of Alice and Bob is to each compute the value of f(x, y) exactly. Naturally, for

functions that non-trivially depend on both the inputs, this engenders the need for com-

munication between the players. The model of the communication between the players

is a 2-way, zero error channel connecting the two players, in which the communication

takes place sequentially - first Alice uses the channel to communicate information to

Bob, following which Bob uses the channel, and then Alice uses it again and so on until

the end of the communication when both have enough information to correctly compute

the value of the function f .

The players proceed according to a protocol Π, which describes a sequence of

steps each player takes based on the input he/she has received and the messages re-

ceived on the communication link upto that point. Let the messages sent on the link

when the players follow a protocol Π be MΠ,0,MΠ,1, ...,MΠ,t, where t is the length

of the protocol(number of steps), and as defined by the communication model above,

the messages indexed by even numbers are sent by Alice and the odd ones by Bob.

Define the concatenation of all the messages sent upto the ith turn, the transcript,



M i
Π = (MΠ,0,MΠ,1, ...,MΠ,i−1). Also define MΠ = M t

Π. Note that all the individ-

ual messages and hence the transcript upto any stage are random variables that depend

on µ and the protocol. Now a protocol Π for computing a function f is said to be valid

if at the end of the protocol, both Alice and Bob have correctly computed the function

value. In other words, H(Z|X,MΠ) = 0, and H(Z|Y,MΠ) = 0.

ALICE BOB 

/Ü  

 

/Ü>5 

 

: ; 

 

Figure 2.1: The model for the two-party computation

Now Alice initially does not know Bob’s input, except for the (possibly) partial

information she might have due to her own input X and the distribution µ, and thus

conditioned on her input, the message she sends, MΠ,0 cannot reveal/depend on any

new information about Y . However, MΠ,2 might contain some new information about

Y , as the message sent by Bob, MΠ,1 might reveal something about his input. However

this is the only source of Alice’s knowledge of Bob’s input and hence conditioned on

the transcript so far, Alice’s next message cannot depend on any new information about

Bob that cannot be gotten from X and the transcript thus far. In other words,

∀ even i, MΠ,i −X,M i−1
Π − Y (2.1)

Using a similar argument about Bob’s source of knowledge of Alice’s input, it is

easy to see that

∀ odd i, MΠ,i − Y,M i−1
Π −X (2.2)

The entropy of the final transcript H(MΠ) is a lower bound for the average number

of bits needed for the protocol Π. Further, the Information Complexity of the func-

tion computed by Π is a lower bound on H(MΠ). Before proving this, we look at an

important lemma that is useful for it.

Lemma 1. For any valid protocol Π,

I(X;Y ) ≥ I(X;Y |MΠ)

7



Proof. Consider the ith message in the protocol defined by Π. Suppose Alice is sending

the message MΠ,i on the link, and so i is even.

I(X;Y |M i−1
Π )− I(X;Y |M i

Π) = H(Y |M i−1
Π )−H(Y |X,M i−1

Π )

−H(Y |M i
Π) +H(Y |X,M i

Π)

(a)
= H(Y |M i−1

Π )−H(Y |M i
Π)

≥ 0

where (a) follows from the fact that H(Y |X,M i−1
Π ) = H(Y |X,M i

Π), since MΠ,i −

X,M i−1
Π − Y forms a markov chain. We get a similar result for the message sent by

Bob as well.

Thus, I(X;Y |M i−1
Π ) ≥ I(X;Y |M i

Π), and by repeatedly using this for the length of the

protocol, we get I(X;Y ) ≥ I(X;Y |MΠ).

Now we use this lemma to prove that the information complexity of a function

Z = f(X, Y ) is a lowerbound on the entropy, H(MΠ), of the transcript observed using

a protocol Π computing the function.

Lemma 2. Consider a function f : X ×Y 7→ Z , and a two player interactive protocol

Π which computes the function. If Z = f(X, Y ), then

H(MΠ) ≥ ICXY (Z)

Proof.

H(MΠ) ≥ I(MΠ;XY )

= I(X;MΠ) + I(Y ;MΠ|X)

= I(X;Y,MΠ)− I(X;Y |MΠ) + I(Y ;MΠ|X)

= I(X;Y ) + I(X;MΠ|Y )− I(X;Y |MΠ) + I(Y ;MΠ|Y )

(a)

≥ I(X;MΠ|Y ) + I(Y ;MΠ|X) ≥ ICXY (Z)

where (a) uses Lemma 1.

Now, in the amortized case, when we consider a block of independent identically

distributed inputs of length n and a sequence of schemes, one for each block length

8



n, the following theorem, proved in [8],[4], gives the minimum rate of communication

needed to compute a function with a vanishing probability of block error. The rate R of

a scheme is defined as the total number of bits exchanged divided by the block length.

A rate R is said to be achievable if there is a sequence of schemes whose probability of

error goes to 0 as n→∞. The optimal rate R∗ is the infimum of all achievable rates.

Theorem 2. The optimal amortized rate R∗ for computing the function Z = f(X, Y )

is

R∗ = inf
M

[I(X;M |Y ) + I(Y ;M |X)] = ICXY (Z) (2.3)

where the infimum is over allM = (M1,M2, ...) satisfying the Markov chain conditions

in Equation 2.1 and Equation 2.2, and H(Z|Y,M) = H(Z|X,M) = 0.

2.2 Wyner Common Information as a Lower Bound

Now we look at the main result of the report, which is to bound the Information Com-

plexity of a function using the Wyner Common Information between a pair of variables.

Recall the definition of the Wyner Common Information and Wyner Tension between

two r.v.s

CIWyn(A;B) = min
pQ|A,B :

A−Q−B

I(Q;A,B)

TWyn(A;B) = CIWyn(A;B)− I(A;B)

9



We can rewrite the Wyner Tension as

TWyn(A;B) = CIWyn(A;B)− I(A;B)

= min
pQ|A,B :

A−Q−B

I(Q;A,B)− I(A;B)

= min
pQ|A,B :

A−Q−B

[I(Q;A,B)− I(A;B)]

= min
pQ|A,B :

A−Q−B

[I(A;Q) + I(B;Q|A)− I(A;B)]

(a)
= min

pQ|A,B :

A−Q−B

[I(A;Q) + I(A;B|Q) + I(B;Q|A)− I(A;B)]

= min
pQ|A,B :

A−Q−B

[I(A;B,Q) + I(B;Q|A)− I(A;B)]

= min
pQ|A,B :

A−Q−B

[I(A;Q|B) + I(B;Q|A)]

where (a) follows from the fact that A − Q − B is a markov chain and therefore

I(A;B|Q) = 0.

Now consider the case where X and Y are independent random variables. Then,

from Theorem 1(or rather, the version of it for independent inputs, as proved in the

10



Appendix), we can see that

ICXY (Z) ≥ TWyn(X,Z;Y, Z) + I(X;Z|Y ) + I(Y ;Z|X))

= inf
pQ|X,Y,Z :

XZ−Q−Y Z

[I(XZ;Q|Y Z) + I(Y Z;Q|XZ)] + I(X;Z|Y ) + I(Y ;Z|X)

= inf
pQ|X,Y,Z :

XZ−Q−Y Z

[I(XZ;Q|Y Z) + I(Y Z;Q|XZ) + I(X;Z|Y ) + I(Y ;Z|X)]

= inf
pQ|X,Y,Z :

XZ−Q−Y Z

[I(X;Q|Y Z) + I(Y ;Q|XZ) + I(X;Z|Y ) + I(Y ;Z|X)]

= inf
pQ|X,Y,Z :

XZ−Q−Y Z

[I(X;Q,Z|Y ) + I(Y ;Q,Z|X)]

= H(X|Y ) +H(Y |X) + inf
pQ|X,Y,Z :

XZ−Q−Y Z

[−H(X|Q, Y, Z)−H(Y |Q,X,Z)]

= H(X|Y ) +H(Y |X) + inf
pQ|X,Y,Z :

XZ−Q−Y Z

[−H(XZ|Q, Y Z)−H(Y Z|Q,XZ)]

(a)
= H(X|Y ) +H(Y |X) + inf

pQ|X,Y,Z :

XZ−Q−Y Z

[−H(X,Z|Q)−H(Y, Z|Q)]

= H(X|Y ) +H(Y |X)− sup
pQ|X,Y,Z :

XZ−Q−Y Z

[H(X,Z|Q) +H(Y, Z|Q)]

= H(X|Y ) +H(Y |X)− sup
pQ|U,V :

U−Q−V

[H(U |Q) +H(V |Q)] (2.4)

where (a) follows from the markov chain X,Z − Q − Y, Z and thus H(X,Z|Q) =

H(X,Z|Q, Y, Z). We introduce new random variables, U = X,Z and V = Y, Z as

well for ease of notation.

Now the problem reduces to computing the supremum term in the above lower

bound, sup pQ|U,V :

U−Q−V
[H(U |Q) +H(V |Q)], where the auxillary r.v. Q is such that, given

Q, the random variables U and V are independent. Suppose the r.v. Q has the alpha-

bet Q, and let q be one element from it. What this means is that if Q = q, then the

characteristic graph of U, V |Q = q should be a bipartite clique, for U and V to be con-

ditionally independent. Thus we shift our focus to only the possible induced bipartite

cliques in the characteristic graph of U and V , and group the elements of Q according

to the clique that they conditionally induce.

Since the alphabet of X ,Y , and Z are finite, U and V have a finite set of vertices in

the characteristic graph and thus the number of possible bipartite cliques is also finite.

Hence we end up with a finite number of groups, each group characterized by the same

11



graph structure they induce on the characteristic graph of U and V , but having poten-

tially different distributions on the edges.

Further, we restrict our attention only to maximal bipartite cliques, since a non-

maximal clique is just a special case of a maximal clique with some edges taking zero

probability.

This is just a characterization of the various elements ofQ, but however we haven’t

yet seen any way to narrow down the search space. To this end, we prove that, in

the search for the optimal alphabet, Qopt, we need only consider one from each of the

classes defined above. With this reduction in the alphabet size, we can find the optimal

distribution Q as well.

Theorem 3. For any distribution of random variables U and V , there is a r.v Qopt, s.t

U −Qopt − V and that maximizes H(U |Q) +H(V |Q), such that atmost one element q

from the alphabet, Qopt, induces any given maximal bipartite cliques on the character-

istic graph of U and V .

Proof. Consider an structure of the induced characteristic graph, say a (k, l)-bipartite

clique, as shown in Figure 2.2. Now consider two elements q0, q
′
0 ∈ Q, where Q is a

r.v. which satisfies U − Q − V , with alphabet Q. The edge distribution on these two

cliques, pQ,U,V (·, ·, ·) are given by the vectors p and p′, where the elements are indexed

as shown in the figure. We now construct another r.v, Qnew, with one less element from

1 1 

2 2 

3 3 

k l 

k edges l edges L5 

� 

L6 

LÞß  

LÞß?5 

  

Figure 2.2: Characteristic graph of U, V |Q = q when q is of class q1

the class which induces this bipartite clique and the same number of elements from the

other classes, such that H(U |Q) + H(V |Q) ≤ H(U |Qnew) + H(V |Qnew). This then

12



proves the required claim, as given some arbitrary r.v Q, we can construct another r.v

Q′, satisfying the necessary markov conditions such that its alphabet contains atmost

one element inducing any given kind of bipartite clique.

The new r.v. is constructed as follows. The alphabet isQnew = Q∪{qnew}\{q0, q
′
0},

and the distribution of each of the induced cliques is the same as for Q, on all the

elements except when Qnew = qnew, in which case, it is the element wise sum p + p′.

This is illustrated in Figure 2.3.

Figure 2.3: Merging of classes

We now prove thatH(U |Q) ≤ H(U |Qnew) and the proof ofH(V |Q) ≤ H(V |Qnew)

is similar, thus proving the theorem. First, note that pQ(q0) =
∑kl

i=1 pi, and pQ(q′0) =∑kl
i=1 p

′
i, and pQnew(qnew) =

∑kl
i=1(pi + p′i) = pQ(q0) + pQ(q′0). Therefore,

pQ(q0)H(U |Q = q0) + pQ(q′0)H(U |Q = q′0)− pQnew(qnew)H(U |Qnew = qnew)

= (p0 + p′0)H

(
a1 + a′1
p0 + p′0

,
a2 + a′2
p0 + p′0

, ...,
ak + a′k
p0 + p′0

)
− p0H

(
a1

p0

,
a2

p0

, ...,
ak
p0

)
− p′0H

(
a′1
p′0
,
a′2
p′0
, ...,

a′k
p′0

)

where ai = p(i−1)l+1 + p(i−1)l+2 + ...+ pil, likewise a′i = p′(i−1)l+1 + p′(i−1)l+2 + ...+ p′il,

and p0 = pQ(q0), p′0 = pQ(q′0).

Using the Log-Sum inequality, we get

k∑
i=1

[
(ai + a′i) log

ai + a′i
p0 + p′0

]
≤

k∑
i=1

[
ai log

ai
p0

+ a′i log
a′i
p′0

]

and thus

pQ(q0)H(U |Q = q0) + pQ(q′0)H(U |Q = q′0) ≤ pQnew(qnew)H(U |Qnew = qnew)

13



H(U |Q) =
∑
q∈Q

pQ(q)H(U |Q = q)

=
∑

q∈{q0,q′0}

pQ(q)H(U |Q = q) +
∑

q∈Q\{q0,q′0}

pQ(q)H(U |Q = q)

=
∑

q∈{q0,q′0}

pQ(q)H(U |Q = q) +
∑

q∈Qnew\{qnew}

pQnew(q)H(U |Qnew = q)

=
∑

q∈{q0,q′0}

pQ(q)H(U |Q = q)− pQnew(qnew)H(U |Qnew = qnew) +H(U |Qnew)

≤ H(U |Qnew)

Having thusly restricted the search space for Qopt, we look at a few examples of

using this bound in the next chapter.

14



CHAPTER 3

Information Complexity of EQ

We consider the problem, EQ, of testing if the inputs given to Alice and Bob are equal.

The inputs, X and Y are assumed to be independently and unifromly distributed.

3.1 Ternary EQ

In the Ternary EQ problem, Alice’s inputX and Bob’s input Y are drawn independently

and uniformly at random over a ternary alphabet X = Y = {α, β, γ}, and the function

to be computed is Z = 1[X = Y ], the EQ function over a ternary alphabet.

We first use Theorem 3 to derive a lower bound for the information complexity of

the function.

The characteristic graph of XZ and Y Z is shown in Figure 3.1, and it is clear that

there are 9 maximal bipartite cliques in this graph(Figure 3.2). From Theorem 3, in

searching for the optimal auxillary r.v. Q, we can restrict the cardinality of its alphabet,

Q to only 9, where each element induces one of the bipartite cliques shown.

Figure 3.1: Support graph of ternary EQ

Since the input is uniformly distributed, each of the edges in the support graph of

XZ and Y Z has weight 1
9
, since each is equally likely. This translates to the following



observation on the weights of the induced bipartite cliques:

∑
q

Pr
XZ,Y Z,Q

(u, v, q) =
1

9
, ∀(u, v) ∈ Supp(XZ, Y Z)

Figure 3.2: Maximal bipartite cliques for ternary EQ

Naming the probability of the edges in the induced cliques as in Figure dos, this

leads to the equations

p1 + p9 =
1

9

p2 + p7 =
1

9

p3 + p11 =
1

9

p4 + p8 =
1

9

p5 + p12 =
1

9

p6 + p10 =
1

9

pi =
1

9
∀i ∈ [13, 15]
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Now, H(U |Q) +H(V |Q) =
6∑

i=1

pQ(qi)H2

[
p2i−1

pQ(qi)

]

≤
6∑

i=1

pQ(qi)

=
2

3

where we have used the fact that H2(·) ≤ 1 and the set of equations mentioned above.

Now from section 2.4, we get ICXY (Z) ≥ H(X) +H(Y )− 2
3

= 2 log 3− 2
3

= 2.5033.

We use the information complexity as a lower bound for the entropy of the link,H(MΠ)

for any protocol Π computing the function, for the amortized case, leading toH(MΠ) ≥

2.5033. We now provide a protcol Π whose link entropy meets this value, thus prov-

ing this bound’s tightness. The protocol mentioned is only for one repetition - for the

amortized case, it has to be repeated over the block of inputs.

Protocol 1: Ternary EQ computation

1. Alice sends her input to Bob

2. Bob computes Z = 1[X = Y ] and sends the resultant bit to Alice

We can calculate the information cost of this protocol. The entropy of the link during

Alice’s communication is exactly equal to the entropy of her input r.v, X . And the

entropy of the link on Bob’s message is equal to the entropy of the output variable, Z.

Thus the information cost is H(X) + H(Z) = log 3 + H2(1
3
) = 2.5033. Thus we see

that the lower bound developed is tight in this example.

3.2 Two bit EQ

In the Two bit EQ problem, Alice gets two bits as the input X = (X0, X1) and Bob

gets Y = (Y0, Y1) as input where X0, X1, Y0, and Y1 are bits drawn uniformly and

independently at random, and the function to be computed is the Equality function,

Z = 1[(X0, X1) = (Y0, Y1)].

The characteristic graph of XZ and Y Z for this problem is shown in Figure 3.3,

and the possible bipartite cliques are listed in Figure 3.4. These 18 bipartite cliques are

17



the only maximal ones possible, and hence from Theorem 3, we need consider only

alphabets of size 18, when searching for the optimal Q, such that each element of Q

induces a different bipartite clique in the characteristic graph.

Figure 3.3: Support graph for 2bit EQ

18



Figure 3.4: Maximal bipartite cliques of 2bit EQ

We have the following equalities:
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pQ|UV (q1|000, 010) + pQ|UV (q6|000, 010) + pQ|UV (q10|000, 010)

+ pQ|UV (q11|000, 010) = 1

pQ|UV (q1|000, 100) + pQ|UV (q7|000, 100) + pQ|UV (q9|000, 100)

+ pQ|UV (q11|000, 100) = 1

pQ|UV (q1|000, 110) + pQ|UV (q8|000, 110) + pQ|UV (q9|000, 110)

+ pQ|UV (q10|000, 110) = 1

pQ|UV (q2|010, 000) + pQ|UV (q5|010, 000) + pQ|UV (q12|010, 000)

+ pQ|UV (q13|010, 000) = 1

pQ|UV (q2|010, 100) + pQ|UV (q7|010, 100) + pQ|UV (q9|010, 100)

+ pQ|UV (q13|010, 100) = 1

pQ|UV (q2|010, 110) + pQ|UV (q8|010, 110) + pQ|UV (q9|010, 110)

+ pQ|UV (q12|010, 110) = 1

pQ|UV (q3|100, 000) + pQ|UV (q5|100, 000) + pQ|UV (q12|100, 000)

+ pQ|UV (q14|100, 000) = 1

pQ|UV (q3|100, 010) + pQ|UV (q6|100, 010) + pQ|UV (q10|100, 010)

+ pQ|UV (q14|100, 010) = 1

pQ|UV (q3|100, 110) + pQ|UV (q8|100, 110) + pQ|UV (q10|100, 110)

+ pQ|UV (q12|100, 110) = 1

pQ|UV (q4|110, 000) + pQ|UV (q5|110, 000) + pQ|UV (q13|110, 000)

+ pQ|UV (q14|110, 000) = 1

pQ|UV (q4|110, 010) + pQ|UV (q6|110, 010) + pQ|UV (q11|110, 010)

+ pQ|UV (q14|110, 010) = 1

pQ|UV (q4|110, 100) + pQ|UV (q7|110, 100) + pQ|UV (q11|110, 100) (3.1)

+ pQ|UV (q13|110, 100) = 1

Now we evaluate the values of H(U |QV ) and H(V |QU).
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Note thatH(V |Q = qi, U) = 0 for i = 5, . . . , 8 and i = 15, . . . , 18. Therefore, we have

H(V |QU) =
∑

(q,a)∈(q1,000),(q2,010),(q3,100),(q4,110)
(q9,000),(q9,010),(q10,000),(q10,100)

(q11,000)(q11,110),(q12,010),(q12,100)
(q13,010),(q13,110),(q14,100),(q14,110)

p(q, u)H(V |Q = q, U = u)

=
1

16
× {[p(q1|000, 010) + p(q1|000, 100) + p(q1|000, 110)] ·H3(·, ·)

+ [p(q2|010, 000) + p(q2|010, 100) + p(q2|010, 110)] ·H3(·, ·)

+ [p(q3|100, 000) + p(q3|100, 010) + p(q3|100, 110)] ·H3(·, ·)

+ [p(q4|110, 000) + p(q4|110, 010) + p(q4|110, 100)] ·H3(·, ·)

+ [p(q9|000, 100) + p(q9|000, 110)] ·H2(·)

+ [p(q9|010, 100) + p(q9|010, 110)] ·H2(·)

+ [p(q10|000, 010) + p(q10|000, 110)] ·H2(·)

+ [p(q10|100, 010) + p(q10|100, 110)] ·H2(·)

+ [p(q11|000, 010) + p(q11|000, 100)] ·H2(·)

+ [p(q11|110, 010) + p(q11|110, 100)] ·H2(·)

+ [p(q12|010, 000) + p(q12|010, 110)] ·H2(·)

+ [p(q12|100, 000) + p(q12|100, 110)] ·H2(·)

+ [p(q13|010, 000) + p(q13|010, 100)] ·H2(·)

+ [p(q13|110, 000) + p(q13|110, 100)] ·H2(·)

+ [p(q14|100, 000) + p(q14|100, 010)] ·H2(·)

+ [p(q14|110, 000) + p(q14|110, 010)] ·H2(·)}
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and, similarly

H(U |QV ) =
1

16
× {[p(q5|010, 000) + p(q5|100, 000) + p(q5|110, 000)] ·H3(·, ·)

+ [p(q6|000, 010) + p(q6|100, 010) + p(q6|110, 010)] ·H3(·, ·)

+ [p(q7|000, 100) + p(q7|010, 100) + p(q7|110, 100)] ·H3(·, ·)

+ [p(q8|000, 110) + p(q8|010, 110) + p(q8|100, 110)] ·H3(·, ·)

+ [p(q9|000, 100) + p(q9|010, 100)] ·H2(·)

+ [p(q9|000, 110) + p(q9|010, 110)] ·H2(·)

+ [p(q10|000, 010) + p(q10|100, 010)] ·H2(·)

+ [p(q10|000, 110) + p(q10|100, 110)] ·H2(·)

+ [p(q11|000, 010) + p(q11|110, 010)] ·H2(·)

+ [p(q11|000, 100) + p(q11|110, 100)] ·H2(·)

+ [p(q12|010, 000) + p(q12|100, 000)] ·H2(·)

+ [p(q12|010, 110) + p(q12|100, 110)] ·H2(·)

+ [p(q13|010, 000) + p(q13|110, 000)] ·H2(·)

+ [p(q13|010, 100) + p(q13|110, 100)] ·H2(·)

+ [p(q14|100, 000) + p(q14|110, 000)] ·H2(·)

+ [p(q14|100, 010) + p(q14|110, 010)] ·H2(·)}

Now using H2(·) ≤ 1, and H3(·, ·) ≤ 2, and adding the above 2 equations, we get

each of the 12 equations (3.1) twice. Replacing these with the value 1 for each such

quadruple, we get the desired supremum value.

H(U |Q) +H(V |Q) ≤ 1

16
(24) = 1.5

The upper bound is attained when the distribution on the 4 edge classes is uniform, i.e.

the probability metric associated with each edge of a 4-edge class is same and equal

to 1
32

. This implies that sup pQ|U,V

U−Q−V
[H(U |Q) + H(V |Q)] = 1.5, and hence ICXY(Z) ≥

H(X|Y ) +H(Y |X)− 1.5 = 4− 1.5 = 2.5.

Now, as in the previous section, we explore protocols for computing the 2 bit EQ

problem, so as to arrive at an upper bound on ICXY(Z) as well.
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Consider the following randomized protocol for the problem.

Definitions: Let Alice’s input X be uniform in A = {1, 2, 3, 4}, and Bob’s input Y

uniform in B = {1, 2, 3, 4}. Define the sets a = {1, 2},b = {1, 3}, c = {1, 4},d =

{2, 3}, e = {2, 4}, f = {3, 4}.

Protocol 2: Two bit EQ computation - Randomized

1. Alice uniformly picks u ∈ {a,b,c,d,e,f} such that X ∈ u, and sends it to Bob.

2. If Y ∈ u, Bob sends 1. Else he sends 1 or 0 with equal probability.

If Bob’s message is 0, the protocol terminates and Z = 0.

If it is 1, protocol proceeds to step 3.

3. Alice reveals her input.

4. Bob computes Z and sends the result to Alice.

If X = Y , which occurs with probability 1
4
, both parties learn 2 bits. If X 6= Y ,

but Y ∈ u, which happens with probability 1
4
, then Bob sends 1, and thus they proceed

to step 3. If Y /∈ u, then Bob sends 1 with probability 1
2
. So, given that Bob sends

1, Bob’s input Y ∈ u with probability 1
2
. Hence if the protocol goes to step 3, Alice’s

uncertainty about Bob’s input is H3(1
2
, 1

4
, 1

4
) = 1.5 at the end of the protocol. If it stops

at step 2, Alice and Bob each would have learnt only 1 bit about each other. Therefore,

the information cost is, 1
4
(4) + 1

4
(4− 3

2
) + 1

4
(4− 3

2
) + 1

4
(2) = 2.75

3.3 Multibit EQ

In the case of Multibit EQ, Alice and Bob are each given n bits X = (X0, ..., Xk)

and Y = (Y0, ..., Yk), with all bits being iid drawn from B(1
2
) and the function to be

computed is the EQ function on k bits, i.e, checking if all the k bits of both parties are

the same.

Now the maximal bipartite cliques in this new setting for the characteristic graph of

U = XZ and V = Y Z will be functions of k. For each i there will be kCi maximal

bipartite cliques with i nodes from the U side, with Z = 0 and k − i nodes from the

V side, with Z = 0. So the total number of classes would be
∑k−1

i=1
kCi + k, where
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the final k classes are for the Z = 1 case, each containing one edge. For the Z = 0

cliques, we refer to a maximal bipartite clique with i nodes from the U set as belonging

to a class Li. Given some edge with Z = 0, connecting U = u and V = v: (u, v), we

can enumerate the number of classes, Li that contains the edge. Each edge (u, v), with

u 6= v, occurs in classes L1 only once, in classes L2
k−2C1 times, and in general, occurs

k−2Ci−1 times in the classes Li. Now as in the earlier cases, each of the edges has a

probability pU,V,Q(u, v, q) associated with it, which leads to a set of constraints:

pU,V (u, v) =
∑
q

pU,V,Q(u, v, q) =
1

k2
∀(u, v) (3.2)

In addition to these constraints the pU,V,Q(u, v, q) should be such that U −Q−V . Now,

H(U |Q) +H(V |Q)

=
∑
qi

[H(U |Q = qi)pQ(qi) +H(V |Q = qi)pQ(qi)]

≤
∑
L1

pQ(qi) log(k − 1) +
∑
L2

pQ(qi)(1 + log(k − 2))

+ · · ·+
∑
Lk−1

pQ(qi) log(k − 1) (3.3)

Case I: k is even: Using the fact that if we have 2 non-negative integers a and b

such that a + b = k (a constant), the maximum value of ab is when a = b = k
2
, we get

(log(i) + log(k − i)) ≤ (log(k
2
) + log(k

2
)). Using this in (3.3), we get

H(U |Q) +H(V |Q)

≤
∑
L1

pQ(qi)2 log
k

2
+ ..+

∑
Lk−1

pQ(qi)2 log
k

2

= 2 log(
k

2
)
∑

L1,..,Lk−1

pQ(qi) = 2(1− 1

k
) log(

k

2
) (3.4)

Consider the distribution p(u, v, q) = 1

k2
(

k−2C k−2
2

) for all the edges in classes L k
2
,

and p = 0 for all the other edges in the Z = 0 set( Of course, for all the edges with

Z = 1, we need p = 1
k2

so as to satisfy the constraints in (3.2)). It is easy to verify

that this distribution ensures that U − Q − V , and hence is a valid Q choice. For this
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distribution, the value of H(U |Q) +H(V |Q) is,

kC k
2
·

(
k
2

) (
k
2

)
k2
(
k−2C k−2

2

) · 2 log
k

2
= 2

(
1− 1

k

)
log

k

2

and so, sup pQ|U,V :
U−Q−V

H(U |Q) +H(V |Q) = 2
(
1− 1

k

)
log k

2
.

From (section 2.4), we get

ICXY (Z) ≥ 2 log(k)− 2
(
1− 1

k

)
log k

2
= 2 + 2

k
log k

2
.

Case II: k is odd: Like in the previous case, one can see that

H(U |Q) +H(V |Q) ≤
[
log(

k − 1

2
) + log(

k + 1

2
)

](
1− 1

k

)

Again, we can consider the distribution p = 1

k2
(

k−2C k−1
2

) for all the edges in classes

L k+1
2

, so that

H(U |Q) +H(V |Q) =

[
log

(
k − 1

2
· k + 1

2

)](
1− 1

k

)

So sup pQ|U,V :
U−Q−V

[H(U |Q) + H(V |Q)] =
[
log
(

k2−1
4

)] (
1− 1

k

)
, and from (2.4), we get

ICXY (Z) ≥ 2 log(k)−
[
log
(
k−1

2
· k+1

2

)] (
1− 1

k

)
.
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CHAPTER 4

Conclusion

In this report we demonstrated a method for obtaining lower bounds on information

complexity of functions under independent input distributions via computing the Wyner

common information of a pair of related random varibales. We showed the tightness of

our lower bound for the ternary EQ function. For the 2-bit EQ function, our lower

bound works out to 2.5, while we obtained an upper bound of 2.75 by giving a random-

ized protocol. Following this, we extended the results to the general case of k-ary EQ

function, where our lower bound converges to 2 as k → ∞. Repeated use of 2-bit EQ

computation protocol gives an upper bound of 3.667 as k →∞.



APPENDIX A

Proof of Theorem 1

Consider the case when X and Y are independent. From Lemma 1, I(X;Y |M) ≤

I(X;Y ) = 0, and hence I(X;Y |M) = 0. Using this, for any valid protocol with

transcript M ,

I(XZ;Y Z|M) = I(X;Y |M) + I(Z;Y |MX)

+ I(X;Z|MY ) + I(Z;Z|XYM)

≤ 0 +H(Z|MX) +H(Z|MY ) +H(Z|XYM)

(a)
= 0

(a) is because all the four terms are 0. Hence I(XZ;Y Z|M) = 0 and the Markov

chain XZ −M − Y Z.

Now, I(X;M |Y ) + I(Y ;M |X)

(a)
= I(X;MZ|Y ) + I(Y ;MZ|X)

(b)
= I(X;Z|Y ) + I(Y ;Z|X)

+ I(XZ;M |Y Z) + I(Y Z;M |XZ)

(c)

≥ I(X;Z|Y ) + I(Y ;Z|X) + TWyn(XZ;Y Z) (A.1)

where (a) follows from the fact that 0 ≤ I(X;Z|MY ) ≤ H(Z|MY ) = 0, (b) is true as

I(XZ;M |Y Z) = I(X;M |Y Z) + H(Z|MY Z) = I(X;M |Y Z), (c) is a result of the

relaxation XZ −M − Y Z. This implies that the information complexity of the setting

ICXY (Z) ≥ I(X;Z|Y ) + I(Y ;Z|X) + TWyn(XZ;Y Z), thus proving Theorem 1 for

independent inputs.
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