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ABSTRACT

KEYWORDS: Coding theory, Erasure-correcting codes, Codes for distributed

storage, Locally recoverable codes

Modern distributed storage systems are prone to node failures. Codes for distributed stor-

age are found to efficiently repair node failures as compared to traditional methods. Lo-

cally Recoverable Codes (LRCs) are one such class of codes that minimize the number

of nodes required in the repair process. A code is said to be a Locally Recoverable Code

(LRC) with availability if every coordinate can be recovered from multiple disjoint sets

of other coordinates called recovering sets. The sizes of recovering sets of a coordinate

is called its recovery profile. In this work, we consider LRCs with availability under two

different settings: (1) irregular recovery: non-constant recovery profile that remains fixed

for all coordinates, (2) unequal locality: regular recovery profile that can vary with co-

ordinates. For each setting, we derive bounds for the minimum distance that generalize

previously known bounds to the cases of irregular or varying recovery profiles. For the

case of regular and fixed recovery profile, we show that a specific Tamo-Barg polyno-

mialevaluation construction is optimal for all-symbol locality, and we provide improved

parity-check matrix constructions over smaller fields for information locality.
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CHAPTER 1

Introduction

In today’s digital age, organizations and individuals generate massive amounts of data

every day. For example, recent estimates show that 2.5 exabytes of data are produced

across the world on a daily basis. With the advent of numerous data-driven applications

and social media platforms in this modern era of big data, large-scale data storage has

become increasingly critical. Since dependence on data is inevitable, end users of such

data-driven applications cannot afford to lose data, making reliability of data storage a

major necessity.

Data centers these days have the capability of storing exabytes of data. For various rea-

sons such as scalability, cost effectiveness and failure resilience, modern storage systems

predominantly follow the distributed storage paradigm, wherein a massive amount of data

is stored across a large number of inexpensive and unreliable storage devices resulting in

a highly reliable storage system. Typically, a distributed storage system contains multiple

clusters that house hundreds of servers interconnected by switches. Data is stored on a

such a system using a distributed file system such as Google File System (GFS), Apache

Hadoop etc.

Modern distributed storage systems are prone to node failures. Sources of these failures

include power outage, hardware and software failures, maintenance related shutdowns.

Bringing about a high degree of reliability in a distributed storage system requires intro-

ducing some form of redundancy. Traditionally, data centers have been using replication

of data as a means to provide reliability and availability. For instance, data centers based

on the Hadoop Distributed File System (HDFS) employed 3x replication for all of their

data. Naturally, data replication is resource-intensive and involves a lot of space overhead.

Erasure coding techniques provide a much more efficient way to introduce redundancy

as compared to data replication. In a distributed storage system, erasure codes are used in

the following manner : A file is divided into k blocks which are encoded into n blocks and



stored in n different nodes. In such a system, data stored in a single node can be recovered

by accessing k other nodes in case of a failure. Reed-Solomon (RS) codes are a popular

choice of erasure codes used in storage systems, because of the Maximum Distance Sep-

arable (MDS) property of these codes wherein any k coordinates out of n coordinates of

an (n, k) RS code suffice to recover the entire codeword. For example, Facebook uses a

(14, 10) RS code for it’s cold data, thus bringing down the storage overhead by 60% as

compared to 2x replication.

Although traditional erasure codes reduce storage overhead, they perform poorly in

terms of other metrics such as number of bits communicated during the repair process

i.e repair bandwidth, number of disk I/O’s, number of nodes participating in the repair

process, i.e. repair locality etc.. For example, a (n, k) RS code has a repair locality of k

whereas 2x replication has a repair locality of only one. Specialized codes for optimizing

over each of these metrics have been designed and studied by coding theorists. There has

been recent active interest in two classes of codes, namely Regenerating Codes which seek

to minimize repair bandwidth and Locally Recoverable Codes that seek to minimize repair

locality.

1.1 Locally Recoverable Codes (LRCs)

An [n, k, d, r] code is said to be a Locally Recoverable Code (LRC) if every coordinate

can be recovered from atmost r other coordinates. These r other coordinates are called the

recovering set or the repair group of the failed coordinate and the parameter r is termed

as the locality of the coordinate. An LRC is said to have information locality r if all

information coordinates have locality r. If all coordinates have locality r, an LRC is said

to have all-symbol locality. LRCs were first introduced in the seminal paper Gopalan

et al. (2012) and a Singleton-like upper bound on the minimum distance was derived.

Constructions meeting this bound with exponential field size were proposed in Silberstein

et al. (2013), Tamo et al. (2013), Hao and Xia (2016). An alphabet-size dependent bound

was obtained in Cadambe and Mazumdar (2015). A parity-check matrix approach was

used in Hao and Xia (2016) to construct optimal LRC codes. An elegant algebraic optimal
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construction with field size linear in blocklength was presented in Tamo and Barg (2014).

1.1.1 LRCs with Availability

LRCs were originally intended to minimize the number of nodes accessed to recover from

a single node failure. Although single node failures are most frequent, LRCs with multiple

disjoint recovering sets are useful for recovering from multiple concurrent node failures.

Moreover, this property could also be exploited for the storage of “hot” data, which may

be served to several users simultaneously using the recovering sets in parallel. As a result,

LRCs with multiple disjoint recovering sets are also referred to as LRCs with availabil-

ity. LRCs with availability have been studied in Tamo and Barg (2014); Pamies-Juarez

et al. (2013); Rawat et al. (2014); Wang and Zhang (2014); Tamo et al. (2016); Huang

et al. (2015). An upper bound on the minimum distance for an [n, k, d] LRC with informa-

tion locality r and availability t is given in Wang and Zhang (2014). For n ≥ k (tr + 1),

Wang and Zhang (2014) proves existence of codes that meet the above bound. However,

to the best of our knowledge, no explicit constructions meeting this bound are known. An

alphabet-dependent upper bound for linear codes with information locality and availability

was derived in Huang et al. (2015). In Tamo et al. (2016), an upper bound on minimum

distance was derived for the all-symbol locality and availability case. To the best of our

knowledge, no general constructions that attain this bound are known. Motivated by recov-

ering from multiple erasures, Prakash et al. (2012) define the notion of (r, δ) codes wherein

each coordinate is protected by a local code of length r + δ − 1 and minimum distance

atleast δ. They also derive Singleton-like upper bounds on the minimum distance of (r, δ)

codes. Another line of work Song et al. (2016) is recovering from multiple erasures in a

sequential manner. Note that although all these different approaches recover from multiple

erasures only LRCs with availability enable parallel access.

1.1.2 Codes with Unequal Locality

Recently, Kadhe and Sprintson (2016), Zeh and Yaakobi (2016), Chen et al. (2017), Kim

and Lee (2017) studied codes with unequal locality. Codes with unequal locality are prac-
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tically significant in scenarios wherein different locality requirements are needed for dif-

ferent blocks of data. For example, since hot data needs to be accessed quickly, one might

need a small locality for hot data whereas cold data can tolerate larger locality. Upper

bounds on minimum distance for codes with unequal information locality and unequal all-

symbol locality were obtained in Kadhe and Sprintson (2016). Constructions based on an

adaptation of Pyramid codes and rank-metric codes were proposed to attain these bounds,

respectively. Chen et al. (2017), Kim and Lee (2017) considered an extension of (r, δ)

localities to unequal locality. However, to the best of our knowledge, none of these works

consider LRCs with availability.

1.2 Organization of the thesis and Contributions

In an LRC with availability, the sizes of recovering sets of a particular coordinate is called

its recovery profile, which is said to be regular if all sizes are equal, and irregular otherwise.

In this work, we extend codes with availability to include irregular and varying recovery

profiles. Specifically, we study the following two settings, which have not been studied

before:

a) Irregular recovery: recovery profile can have varying recovering set sizes but re-
mains fixed for all coordinates, i.e. t disjoint recovering sets with sizes r1, r2, . . ., rt
for all coordinates,

b) Unequal locality: regular recovery profile that may vary over coordinates, i.e. t
disjoint recovering sets each of size ri for coordinate i, 1 ≤ i ≤ n.

Upper bounds on minimum distance are obtained for both settings under information

and all-symbol locality. We also present a generalization of an existing construction from

Tamo and Barg (2014) and prove that it meets the distance bound for arbitrary t and r =

k− 1. For information locality and availability, we extend the construction in Hao and Xia

(2016) and provide an explicit parity-check matrix construction that meets the distance

upper bound for n ≥ k (tr + 1) and improves upon the implicit construction in Wang and

Zhang (2014) in terms of field size for some parameters.

The rest of the thesis is organized in the following manner.
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Chapter 2 provides a technical definition of LRCs and notation that we will be using

throughout the thesis. We also provide brief details of a polynomial evaluation construction

by Tamo and Barg (2014) that will form the foundation of Chapter 4.

Chapter 3 focuses on codes with irregular recovery and unequal locality and avail-

ability. We derive upper bounds on the distance for the case of information locality and

all-symbol locality for the case of codes with irregular recovery. We derive distance upper

bounds for the case of information locality for codes with unequal locality with availability

and provide a brief note on the difficulty of the problem setup for the all-symbol locality

case

Chapter 4 contains an optimal parity-check matrix construction for LRCs with infor-

mation locality and availability subject to rate constraints. In addition, we prove optimality

of an existing construction in the case of LRCs with all-symbol locality and availability.

Chapter 5 presents a couple of results that use the parity-check matrix viewpoint of

LRCs. However, these are not connected to the main theme of the thesis.

Chapter 6 summarizes Chapters 3,4 and presents future directions that could be pur-

sued.
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CHAPTER 2

Problem Setup and Preliminaries

We first provide a technical definition of codes with locality r and availability t.

Consider an [n, k, d] linear code C ⊆ Fnq , where q is a prime power and Fq is the

finite field with q elements. Suppose a subset D ⊆ [n] , {1, 2, . . . , n} is the support

of a dual codeword. Then, for every i ∈ D, the i-th coordinate of a codeword of C is a

linear combination of the coordinates in D \ {i}. The code C is said to have locality r and

availability t if, for i ∈ [n], there exist t dual-codeword support sets D(i)
j , j ∈ [t] such that

1. i ∈
∣∣∣D(i)

j

∣∣∣
2. R(i)

j = D
(i)
j \ {i} are disjoint

3.
∣∣∣R(i)

j

∣∣∣ ≤ r.

The sets R(i)
j are called the recovering sets for i because the coordinate i can be

recovered from the coordinates in any of its recovering sets. For i ∈ [n], we denote

Γa (i) = {i} ∪ R(i)
1 ∪R

(i)
2 · · · ∪R

(i)
a for 1 ≤ a ≤ t. A code with locality is referred to as a

Locally Recoverable Code (LRC).

2.1 Upper Bounds on Distance for LRCs with Availability

For LRCs with no availability constraints, Gopalan et al. (2012) derived the following

Singleton-like upper bound on the distance for information locality.

d ≤ n− k −
⌈
k

r

⌉
+ 2 (2.1)

It is interesting to note that the above upper bound also holds for LRCs with all-symbol

locality as shown in Tamo and Barg (2014).



LRCs with information locality and availability were considered in Wang and Zhang

(2014) and the following distance upper bound was obtained for a [n, k, d] LRC with lo-

cality r and availability t

d ≤ n− k −
⌈
t (k − 1) + 1

t (r − 1) + 1

⌉
+ 2 (2.2)

Wang and Zhang (2014) prove existence of optimal codes that meet (2.2) for n ≥

k (tr + 1). In Chapter 5, we provide an explicit parity-check matrix construction that

meets the above bound with a field size smaller than that in Wang and Zhang (2014).

For LRCs with all-symbol locality and availability, Tamo et al. (2016) derived the

following distance upper bound using concepts of recovery graphs and expansion ratios

d ≤ n−
t∑
i=0

⌊
k − 1

ri

⌋
(2.3)

No codes that meet the above construction over a non-trivial range of parameters are

known. In Chapter 5, we prove that an extension of the polynomial evaluation construction

of Tamo and Barg (2014) meets the above upper bound with equality for k = r + 1 and

arbitrary t. Note that for t = 1, (2.2) and (2.3) reduce to (2.1).

2.2 Polynomial-evaluation Construction for LRCs

We now describe the polynomial-evaluation construction of LRCs with availability from

Tamo and Barg (2014).

Let A ⊆ F (F is a finite field), |A| = n. Let A1 and A2 be two partitions of A into m1

and m2 sets such that for any two sets A1 ∈ A1, A2 ∈ A2, we have |A1| = r1, |A2| = r2,

and the size of their intersection |A1 ∩ A2| ≤ 1. Such partitions are called orthogonal

partitions. Define for Ai, i = 1, 2,

FAi
[x] = {f ∈ F[x] : f is constant on Aj ∈ Ai, j ∈ [mi] , deg f ≤ |Aj|} .

7



Further, define two families of polynomials

F r1A1
= ⊕r1−1

i=0 FA1 [x]xi, F r2A2
= ⊕r2−1

i=0 FA2 [x]xi.

Let Pm be the space of polynomials of degree less than or equal to m. Define

Vm = F r1A1
∩ F r2A2

∩ Pm

Let φ : Fk → Vm be an injective linear mapping with basis g0, · · · , gk−1 in Vm such that

φ (a) =
k−1∑
i=0

aigi (x)

Note that φ (a) is a polynomial in x and denote it by f (x). A codeword of a length-n LRC

with availability t = 2 is obtained by evaluating f on all n points of A. If the number of

such polynomials of degree at most m is |F|k, we obtain an (n, k, d) availability-2 LRC

with minimum distance d ≥ n−m. A set Ai ∈ Ai is a dual codeword support set because

the ri points of Ai pass through a polynomial of degree at most ri − 1. Therefore, by the

above construction each coordinate has two disjoint recovering sets because the partitions

are orthogonal.

Following Tamo and Barg (2014), a partition is naturally formed by a subgroup H

of the multiplicative or additive group of F and cosets of H . A degree-|H| polynomial

constant on such partitions is

g (x) =
∏
h∈H

(x− h) .

Such a polynomial is called the annihilator polynomial of H . If H is a multiplicative

subgroup of F∗q , then g (x) = x|H| is constant on each coset of H .

2.2.1 Example

We illustrate the above construction using the following example of a (12, 4, [2, 3]) LRC

wherein partitions are generated using multiplicative subgroups.

8



LetA = F13\ {0} and letA1 andA2 be generated by cosets of the multiplicative cyclic

groups generated by 5 and 3 respectively.

A1 = {{1, 5, 12, 8} , {2, 10, 11, 3} , {4, 7, 9, 6}}

A2 = {{1, 3, 9} , {2, 6, 5} , {4, 12, 10}} {7, 8, 11}

Using the annihilator polynomial of each of the cyclic subgroups,

FA1 [x] = 〈1, x4, x8〉,FA2 [x] = 〈1, x3, x6, x9〉

It is easy to check that

F r1A1
∩ F r1A2

= 〈1, x, x4, x6, x9, x10〉

Since, k = 4, Vm = 〈1, x, x4, x6〉. Therefore,

fa (x) = ao + a1x+ a2x
4 + a3x

6

This same polynomial can be represented in the following two different ways,

fa (x) =
(
a0 + a2x

4
)

+ a1x+
(
a3x

4
)
x2

=
(
a0 + a3x

6
)

+
(
a1 + a2x

2
)
x

The above two representations illustrate how a failed coordinate can be recovered using

two disjoint set of symbols. For example, let the failed coordinate be fa (1). Then from the

first representation we can see that a unique degree 2 polynomial passes through {5, 12, 8}.

From this polynomial, we can recover the value at {1} by evaluating the value of the degree

two polynomial at 1. Similarly, a unique degree 1 polynomial passes through {3, 9} and

fa (1) can be recovered by evaluating this polynomial at 1.

9



2.3 Parity-Check Matrix Approach to LRCs

A parity-check matrix approach was adopted to study bounds and constructions for LRCs

in Hao and Xia (2016). We briefly present a proof of the Singleton-like upper bound on

the minimum distance of LRCs with all-symbol locality Gopalan et al. (2012) through a

parity-check matrix viewpoint given in Hao and Xia (2016). We will use a similar approach

to construct LRCs with information locality and availability in Chapter 4.

Theorem 1. For a (n, k, d, r) linear LRC with all-symbol locality,

d ≤ n− k −
⌈
k

r

⌉
+ 2

Proof. LetH be the parity-check matrix for a (n, k, d, r) LRC. We characterizeH as given

in the following algorithm

Algorithm 1 Characterization of parity check matrix H of a (n, k, r) LRC

1: Set S0 = φ, i = 1
2: while Si−1 6= [n] do
3: Pick j ∈ [n] \Si−1

4: Choose the minimal weight parity check equation hi

5: Set Si = Si−1 ∪ supp (hi)
6: i = i+ 1

7: Set l = i− 1, H1 =

h1
...
hl


8: Choose additional n − k − l rows from C⊥ such that these rows and H1 form a full

rank n− k × n matrix

We know that for a (n, k, d) linear code, the parity-check matrix should satisfy the

following properties :

1. Any d− 1 columns of the parity-check matrix should be linearly independent

2. There exists some d columns that are linearly dependent.

Therefore, it is sufficient to prove that H has n− k−
⌈
k
r

⌉
+ 2 columns that are linearly

dependent. Consider the first t =
⌊
k−1
r

⌋
rows. Let γ be the number of columns in which

the non-zero elements of the t rows lie in. This implies γ ≤ t (r + 1). Let η = n− k − t.

10



Delete the t rows and the γ columns. Therefore, we are left with a η×n−γ matrix denoted

by H ′. Note that

n− γ ≥ n− t (r + 1) ≥ n− k − t+ 1 = η + 1

Therefore out of the n−γ columns, we can find η+1 columns which are linearly dependent

in H ′. Note that, these columns are also linearly dependent in H since the remaining

entries of the column in H and not in H ′ are 0. Thus, there exists η+ 1 = n− k− t+ 1 =

n− k −
⌈
k
r

⌉
+ 2 columns that are linearly dependent in H .

11



CHAPTER 3

Bounds on Codes with Irregular Recovery and Unequal

Locality with Availability

3.1 Irregular Recovery with Availability

In this section, we consider locally recoverable codes (LRCs) whose coordinates have an

irregular recovery profile. This extends the notion of (r, t) locality in Wang and Zhang

(2014) to the case where sizes of recovering sets of each coordinate are not equal. A

precise definition is as follows.

Definition 1. Let C ⊆ Fnq be an [n, k, d] code. The i-th coordinate has (r, t) locality, where

r = (r1, r2 . . . rt), if there are t disjoint recovering sets R(i)
1 , R

(i)
2 . . . R

(i)
t for i such that

∣∣∣R(i)
j

∣∣∣ ≤ rj ∀j ∈ [t] .

The code C has (r, t) information locality if all information coordinates have (r, t) locality.

The code C has (r, t) all-symbol locality if all coordinates have (r, t) locality.

3.1.1 Bounds for Information Locality

First we consider bounds on minimum distance of codes with (r, t) information locality.

We follow a similar proof technique as Gopalan et al. (2012) Wang and Zhang (2014) but

with adaptations for unequal recovery.

Theorem 2. If C has (r, t) information locality, then

d ≤ n− k −

⌈
t(k − 1) + 1∑t
j=1 (rj − 1) + 1

⌉
+ 2



Proof. In the proof, we will assume that r1 ≤ r2 ≤ · · · ≤ rt. Let l be the number of

iterations in Algorithm 1 when run on the code C resulting in a subset S. Denote the rank

increment and size increment in the i-th iteration of Algorithm 1 (refer Appendix A) by

mi = rank(Si) − rank(Si−1) and si = |Si| − |Si−1|, respectively. We find a lower bound

for |S|, which in turn leads to an upper bound on the distance d ≤ n − |S|. Consider two

cases depending on how Algorithm 1 terminates.

Case 1: Sl is a union of Γt (j)’s i.e, Sl is formed in line 5.

Since each of the recovering sets contribute at least one linear dependency to Si, we

have mi ≤ si − t for i ∈ [l]. Further, we have

|S| =
l∑

i=1

si ≥
l∑

i=1

(mi + t) = k − 1 + tl. (3.1)

To find a lower bound on |S|, we find a lower bound on l, the number of iterations. Since

every recovering set adds at least 1 linear equation, we have

rank (Γa (j)) ≤ 1 +
a∑

j′=1

(rj′ − 1) .

Since S is the union of l sets Γt(j), we have

rank (S) = k − 1 ≤ l
(
1 +

t∑
j=1

(rj − 1)
)
. (3.2)

Using (3.2) in (3.1) and d ≤ n− |S|, we get

d ≤ n−

(
k − 1 + t

⌈
k − 1

1 +
∑t

j=1 (rj − 1)

⌉)

≤ n− k − t

⌈
k − 1

1 +
∑t

j=1 (rj − 1)

⌉
+ 1 (3.3)

≤ n− k −

⌈
t (k − 1) + 1

1 +
∑t

j=1 (rj − 1)

⌉
+ 2, (3.4)

where, to get from (3.3) to (3.4), we use the facts btxc ≤ tx ≤ tdxe for a real number x

and ba
b
c = da+1

b
e − 1 for positive integers a, b.

13



Case 2: Sl is formed in line 9.

Since mi ≤ si − t, 1 ≤ i ≤ l − 1, and ml ≤ sl − a, we have

|S| =
l∑

i=1

si ≥
l−1∑
i=1

(mi + t) +ml + a

= k − 1 + t (l − 1) + a. (3.5)

Since rank (Sl−1 ∪ Γa+1 (l)) = k, and Sl−1 is the union of l − 1 sets Γt(j), we have

k ≤ (l − 1)

(
1 +

t∑
j=1

(rj − 1)

)
+

(
1 +

a+1∑
j=1

(rj − 1)

)
. (3.6)

Using the lower bound for l − 1 from (5.2) in (3.5), we get

|S| ≥ k − 1 + t
k − 1−

∑a+1
j=1(rj − 1)

1 +
∑t

j=1 (rj − 1)
+ a. (3.7)

Let Ω = 1 +
∑t

j=1 (rj − 1). Since the rj are in increasing order, the average of the first

a+ 1 of the (rj − 1) is smaller than the average of all t resulting in the inequality

∑a+1
j=1(rj − 1)

a+ 1
≤ Ω− 1

t
. (3.8)

Using (3.8) in (3.7) and simplifying, we get

|S| ≥ k +
t(k − 1) + a+ 1

Ω
− 2 (3.9)

≥ k +

⌈
t(k − 1) + 1

Ω

⌉
− 2. (3.10)

Using the above in d ≤ n− |S|, we get the statement of the theorem.

For the case of equal recovery with availability, r is a constant vector with ri = r, and

the bound of Theorem 1 reduces to (2.2).
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3.1.2 Bounds for All-symbol Locality

We now derive a minimum distance upper bound for codes with (r, t) all-symbol locality.

Our proof is similar in outline toTamo et al. (2016), and for equal recovery the bound

reduces to (2.3). We present two lemmas required for the proof of the upper bound. For

the rest of this section, we assume that r1 ≤ r2 ≤ · · · ≤ rt. We use the notions of

recovering graph and expansion ratio from Tamo et al. (2016).

Recovering Graph and Expansion Ratio

The recovering graph of a length-n LRC code with (r, t) locality has vertex set [n] and

edges of color j from i to i′ if i′ ∈ Rj (i) for j ∈ [t]. More generally, a t-edge-colored

directed graph is said to be an (r, t) recovering graph if, for i ∈ [t], every vertex has at

least one and at most ri outgoing color-i edges. The set of vertices with incoming edges

of the same color from a given vertex i is said to be a recovery set for i. Note that the

recovering graph of an LRC code with (r, t) locality is indeed an (r, t) recovering graph

with R(i)
j being the recovery set of vertex i.

Consider an arbitrary subset of vertices S in a recovering graph. Color all the vertices

in S in some fixed color, say red. Color every vertex with at least one fully colored recovery

set. Continue this procedure until no more vertices can be colored. The final set of colored

vertices thus obtained is defined to be the closure of S, denoted by Cl (S). The expansion

ratio with respect to S, denoted e(S), is defined as the ratio e(S) = |Cl (S) |/|S|. Observe

that all vertices in Cl (S) can be recovered from vertices in S.

Lemma 1. Let G be an (r, t) recovering graph. For a vertex v ∈ G, there exists a subset

of the vertices S such that v ∈ Cl (S) and

|S| ≤
t∏
i=1

ri and e(S) ≥ et , 1 +
t∑

j=1

1
j∏
i=1

ri

. (3.11)

Proof. Our proof follows the proof of Lemma 3 in Tamo et al. (2016) closely, except

we use the following key insight to construct S : smaller recovering sets result in larger
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expansion ratios. Therefore, while constructing S we give a higher preference to smaller

recovering sets as compared to larger recovering sets. We proceed by induction on t. For

t = 0, we take S as the single vertex v, and get e(S) = 1. Assuming the statement is true

for t = k, we prove the statement for t = k + 1. Remove vertex v from G. For every

other vertex, u 6= v, remove the edges that correspond to the recovering set with size r1

unless there is an edge from u to v; in such a case, remove the edges in that recovering

set and call the resulting graph G1. We remove the r1 sized recovering sets because of

the aforementioned principle of giving higher preference to smaller sized recovering sets.

Note that the remaining vertices in the graph have t − 1 recovering sets. It is easy to

see that for a vertex u ∈ G1 with recovery profile {r̃1, r̃2 · · · r̃k} where r̃i ≤ ri+1. Let

v1, v2 · · · vl be the vertices in the rk+1 sized recovering set of v, where l ≤ rk+1. We omit

the construction of the set S since it is the exact same as that of Tamo et al. (2016). We

now derive the upper bound on the size of S

|S| ≤ r1

k∏
i=1

r̃i ≤
k+1∏
i=1

ri

As a result, e (S) satisfies

e (S) ≥ ek+1 ,
1

k+1∏
i=1

ri

+ ek

The increasing order r1 ≤ · · · ≤ rt ensures that the largest possible expansion ratio

can be obtained using {r1, r2, . . . , rt}. Note that Lemma 1 reduces to Lemma 3 in Tamo

et al. (2016) for the case of equal recovery when ri = r.

The radix-r representation of an integer plays a role in Tamo et al. (2016). The analog

for unequal recovery is the representation of an integer in the unequal radix

{1, r1, r1r2, . . . , r1r2 · · · rt}

. The next lemma concerns such representations.

16



Lemma 2. Let m be an integer with the following representation

m = βrt

t∏
i=1

ri +
t∑
i=1

αi

i∏
j=1

rj + α0,

where 0 ≤ αi < ri+1, 0 ≤ i ≤ t−1, 0 ≤ αt < rt, and β is an integer. Let ẽi = 1+
i∑

j=1

1
j∏

l=1
rl

.

Then,

⌊
m
t∏
i=1

ri

⌋
et

t∏
i=1

ri +
t−1∑
i=0

αiẽi

i∏
j=1

rj =
t∑
i=0

⌊
m
i∏

j=1

rj

⌋

Proof. For i ∈ [t], we have

ẽi

i∏
j=1

rj =
i+1∑
j=1

i∏
l=j

rl. (3.12)

Next, observe that

t∑
i=0

⌊
m
i∏

j=1

rj

⌋
=

t∑
i=0

(βrt + αt)
t∏

j=i+1

rj +
t−1∑
j=i

αj

j∏
l=i+1

rl.

Also, from (3.12) and the above representation of m,

⌊
m
t∏
i=1

ri

⌋
et

t∏
i=1

ri = (βrt + αt)
t−1∑
i=0

t∏
j=i+1

rj.

Therefore, it suffices to prove that

t−1∑
i=0

αi

i+1∑
j=1

i∏
l=j

rl =
t∑
i=0

t−1∑
j=i

αj

j∏
l=i+1

rl.

The above equation can be verified to be true by comparison of coefficients of αi, i ∈
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[t− 1], thus completing the proof.

Theorem 3. If an [n, k, d] code C has (r, t) all-symbol locality, then

d ≤ n− k + 1−
t∑
i=1

⌊
k − 1∏i
j=1 rj

⌋
.

Proof. The proof is similar to that of Tamo et al. (2016), and only key ideas are presented.

We obtain a k − 1 sized subset of vertices S and prove a lower bound on |Cl (S) | by

applying Lemma 1 repeatedly. Consider the recovering graph G of C. From Lemma 1,

there exists a set of vertices S0 such that its expansion ratio is atleast et. Let the induced

subgraph on V \ Cl (S0) be G1, which is an (r, t) recovering graph. Apply Lemma 1 on

G1 and continue this process until the number of remaining vertices in the graph Gl after l

steps is lesser than
∏t

j=1 rj .

Now, continue by viewing the graph Gl as an ([r1, . . . , rt−1], t − 1) recovering graph.

By Lemma 1, there exists a set of vertices Sl with |Sl| ≤
∏t−1

j=1 rj and expansion ratio

at least ẽt−1 (see Lemma 2 for definition). Continue the coloring process going through

([r1, . . . , ri], i) recovering graphs containing sets of vertices of size at most
∏i

j=1 rj and

expansion ratio at least ẽi for i = t− 2, . . . , 1 till k − 1 vertices are colored.

By keeping track of the expansion ratios and the number of applications of Lemma 1,

we get the following lower bound on |Cl (S) |:

|Cl (S) | ≥

⌊
k − 1
t∏
i=1

ri

⌋
et

t∏
i=1

ri +
t−1∑
i=0

αiẽi

i∏
j=1

rj

where k − 1 =
∑

i

(
αi

i∏
j=1

rj

)
. Using Lemma 2,

|Cl (S) | ≥
t∑
i=0

⌊
k − 1
i∏

j=1

ri

⌋
.

Since rank(Cl (S)) = rank(S) < k, d ≤ n − |Cl (S) |, which results in the bound of the

theorem.
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3.2 Unequal Locality with Availability

We now consider the case of unequal locality where different coordinates have possibly

different, but regular recovery profiles with availability t. That is, the i-th coordinate has

a length-t recovery profile of the form [ri ri · · · ri]. We will consider only information

locality here. At the end of the following section, we will give a brief intuition as to why

this particular case is ill-posed to study all-symbol locality.

3.2.1 Bounds for Information Locality

We first consider information locality and prove a lower bound on minimum distance. We

use the notion of locality profile from Kadhe and Sprintson (2016).

Definition 2. An [n, k, d] code C has information locality profile {k1, k2, . . . , kr} with

availability t if ki is the number of information coordinates with locality i and availability

t.

A modified version of Algorithm 1, which we refer to as Algorithm 2, is used in the

proof. Algorithm 2 is identical to Algorithm 1 except for Step 3, which becomes

3 : Set i = i+ 1, Choose j ∈ [n] \ Si−1 with minimal locality

Theorem 4. If C is an [n, k, d] linear code with information locality profile {k1, k2, . . . , kr}

with availability t, then

d ≤ n− k + 2− t

(
r−1∑
j=1

⌈
kj

t (j − 1) + 1

⌉)
−
⌈
t (kr − 1) + 1

t (r − 1) + 1

⌉
.

Proof. We use Algorithm 2 with the code C. Let l be the number of iterations of Algorithm

2. Consider two cases depending on how Algorithm 2 terminates.

Case 1: Sl is formed in line 5.
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As in the proof of Theorem 2, we get

|S| ≥ k − 1 + tl. (3.13)

Let lj be the number of iterations in which coordinates with locality j are chosen. In these

lj iterations, the rank of S increases by kj for 0 ≤ j ≤ r − 1. Since rank (Sl) = k − 1 and

coordinates with least locality are preferred in Step 3, for j = r, the rank increment for the

lr iterations is kr − 1. Now, as in the proof of Theorem 2,

kj ≤ lj (1 + t (j − 1)) ∀j ∈ [r − 1] ,

kr − 1 ≤ lr (1 + t (r − 1)) .

Since l =
∑r

j=1 lj , we have

l ≥
r−1∑
j=1

⌈
kj

t (j − 1) + 1

⌉
+

⌈
kr − 1

t (r − 1) + 1

⌉
. (3.14)

Plugging (3.14) in (3.13), we get

|S| ≥ k − 1 + t

(
r−1∑
j=1

⌈
kj

t (j − 1) + 1

⌉
+

⌈
kr − 1

t (r − 1) + 1

⌉)

≥ k − 2 + t

(
r−1∑
j=1

⌈
kj

t (j − 1) + 1

⌉)
+

⌈
t (kr − 1) + 1

t (r − 1) + 1

⌉
,

where the manipulations for the last step are same as before. Using d ≤ n − |S|, the

distance bound follows.

Case 2 Sl is formed in line 9.

Note that (3.5) holds in this case. Since rank (Sl−1 ∪ Γa+1 (cl)) = k, in the last lr

iterations, the rank increment is now kr instead of kr − 1 in Case 1 above. Lower bounds

on lj , 1 ≤ j ≤ r − 1 are the same as in Case 1. For lr, we get a lower bound from the
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following inequality

kr ≤ (lr − 1) (1 + t (r − 1)) + 1 + (a+ 1) (r − 1) .

Adding the lower bounds for lj ,

l − 1 ≥
r−1∑
j=1

⌈
kj

t (j − 1) + 1

⌉
+

⌈
kr − ar − r + a

t (r − 1) + 1

⌉
. (3.15)

Plugging (3.15) in (3.5), we have

|S| ≥ k − 1 + a+

t

(
r−1∑
j=1

⌈
kj

t (j − 1) + 1

⌉
+

⌈
kr − ar − r + a

t (r − 1) + 1

⌉)
. (3.16)

Let Ω = 1 + i (r − 1). Using t dxe ≥ dtxe,

t

⌈
kr − Ωa+1

Ωt

⌉
≥
⌈
t (kr − Ωa+1)

Ωt

⌉
(3.17)

=

⌈
t (kr − 1) + 1− t (Ωa+1 − 1)− 1

Ωt

⌉
=

⌈
t (kr − 1) + 1

Ωt

− (a+ 1) +
a

Ωt

⌉
. (3.18)

Substituting (3.18) in (3.16), and using d ≤ n− |S|, we get the desired bound.
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CHAPTER 4

Optimal Constructions for LRCs with Availability

In this chapter, we present constructions of LRCs with availability and compare their min-

imum distances with the derived distance upper bounds. In some cases, we obtain optimal

constructions where the minimum distance meets the upper bound.

4.1 Regular Recovery and Locality with Availability

In this section, we revert to the notion of equal recovery and locality, and consider LRCs

having (r, t) locality with availability.

4.1.1 All-symbol Locality

The upper bound on minimum distance for LRCs with availability t and all-symbol local-

ity r is given by (2.3). The tightness of this bound for arbitrary t has not been fully settled.

We provide a generalization of the polynomial-evaluation construction of LRC codes in

Example 6 of Tamo and Barg (2014) and show optimality for some specific cases by com-

putational methods. Later, we prove optimality for the case of r = k − 1 and arbitrary

t.

For the sake of clarity and completeness, we briefly outline Example 6 of Tamo and

Barg (2014) below. Although this example is similar to that of the example in Chapter 2,

we illustrate the use of additive subgroups and make an important observation that helps

prove optimality of this construction.

Example 1. An (n = 16, k, r = 3, t = 2) LRC is constructed over F16 by generating or-

thogonal partitions from cosets of two copies of F+
4 denoted H1 = {0, 1, α, α4}, H2 =



{0, α2, α3, α6}, where α is the residue class of x modulo x4 + x + 1. The annihilator

polynomials of H1 and H2, denoted g1 and g2, respectively, are

g1(x) = x4 + α10x2 + α5x,

g2(x) = x4 + α14x2 + α11x.

The orthogonal partitions that are generated by H1, H2 and their cosets are

A1 =
{{

0, 1, α, α4
}
,
{
α2, α8, α5, α10

}
,
{
α3, α14, α9, α7

}
,{

α6, α13, α11, α12
}
},

A2 =
{{

0, α2, α3, α6
}
,
{

1, α8, α14, α13
}
,
{
α, α5, α9, α11

}
,{

α4, α10, α7, α12
}
}.

The basis of F3
A1

⋂
F3
A2

is obtained by choosing polynomials of distinct degrees that can

be expressed as a linear combination of the basis of both F3
A1

and F3
A2

. We find that

the basis of F3
A1

⋂
F3
A2

comprises of polynomials of degrees 0, 1, 2, 4, 6, 8, 9, 10, 12. Ta-

ble 4.1 summarizes the possible dimensions along with two distance lower bounds: (1)

n−maxfa∈Vm deg (fa), (2) n− max
fa∈Vm

deg (gcd (fa, x
16 − x)). The second lower bound is

evaluated computationally. The distance upper bound in (2.3) is also shown. The second

lower bound is tighter than the first for k = 6, 7. For k = 7, the second lower bound meets

the upper bound, thus giving an optimal code. For k = 8, 9, our computations did not

terminate.

Table 4.1: Lower and upper bound on minimum distance for Example 1.

k LB 1 LB 2 UB

4 12 12 12

5 10 10 11

6 8 9 10

7 7 8 8

8 6 − 7

9 4 − 6
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We generalize the construction in the above example to arbitrary t and show that it is

optimal for k = r + 1.

Construction 1. Let r + 1 = pl, p: prime, l ≥ 1, t ≥ 2. Let n = (r + 1)t, k = r + 1 and

A = F(r+1)t . The additive subgroup of F(r+1)t can be written as

F+
(r+1)t

∼= {[a1, . . . , at] : ai ∈ F+
(r+1)}.

Consider t subgroups Hi = {[0, . . . , 0, ai, 0, . . . , 0] : ai ∈ F+
(r+1)} of F+

(r+1)t of size r + 1

for i ∈ [t]. Let gi be the annihilator polynomial ofHi. LetAi be the partitions ofA induced

by the cosets of Hi. We have

FAi
[x] = 〈1, gi(x), gi(x)2 . . . gi(x)

n
r+1
−1〉.

Since
t⋂
i=1

Hi = {0}, {Ai} are orthogonal partitions.

Now, a crucial observation is the following. Since Hi is a copy of F+
r+1, we have∑

h∈Hi

h = 0. It follows that the coefficient of xr in gi(x) =
∏

h∈Hi
(x − h) is 0 ∀i ∈ [t].

Therefore, gi(x) is of degree r + 1 and is contained in
t⋂
i=1

F rAi
as degrees 1 to r − 1 are

contained in each F rAi
. Using this, we see that

Vr+1 =
t⋂
i=1

F rAi

⋂
Pr+1 = 〈1, x . . . xr−1, g1(x)〉.

To encode a message a ∈ Fr+1
(r+1)t , we define the encoding polynomial

fa(x) =
r−1∑
i=0

aix
i + ar+1g1(x).

The code is obtained by evaluating fa on the points of A.

Theorem 5. The ((r + 1)t, r + 1, r, t) LRC code from Construction 1 is optimal.

Proof. Since r + 1 is the maximum degree of the encoding polynomials, we have d ≥
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n− (r + 1). By the bound (??),

d ≤ n−

(
k − 1 +

t∑
i=1

⌊
k − 1

ri

⌋)
= n− (r + 1),

and the proof is complete.

For r < k − 1, a basis is chosen in the same way as mentioned in the above example.

More formally, to obtain the basis of the intersection we define a matrix Ml corresponding

to the lth recovering set, l ∈ [t] where Ml (i, j) is the coefficient of xi of the j th basis

(ordered in increasing order of their degrees). We say that Ml is ’truncated to m’ if the

degree of the last basis is atmost m. Consequently, the rows will also be truncated till

degree m. Let M (m) denote the matrix obtained by augmenting Ml, l ∈ [t], such that

each Ml is truncated to m. It is not hard to see that the nullspace of M (m) is isomorphic

to
⋂t
i=1F rAi

⋂
Pm, thus providing a method to obtain the dimension of the code by getting

the rank ofM (m). The distance lower bound can be obtained by identifying the maximum

degree of the polynomials in the nullspace of M (m).

4.1.2 Parity-check Matrix Construction for Information Locality

The upper bound on minimum distance for LRCs with information locality r and avail-

ability t is given by (2.2). We present an explicit parity-check matrix construction, which

is an extension of Hao and Xia (2016), to achieve this bound for n ≥ k (tr + 1). Let

Γ = n− k + 1−
⌈
t (k − 1) + 1

t (r − 1) + 1

⌉
.

Construction 2. Let tr + 1|n and tr + 1 - Γ. Define v = n
tr+1

, u = n − k − vt, αi,j,h ∈

Fqm ,m ≥ n t(r−1)+1
tr+1

such that
{
αi,1,0 −

t∑
l=1

αi,l,r, αi,j,h − αi,j,r | i ∈ [v] , j ∈ [t] , h ∈ [r − 1]

}
are linearly independent over Fq, then the following parity-check matrix, H defines a qm-
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ary (n, k, r, t) LRC with information locality and availability.



Iv ⊗H1

α1,1,0 α1,1,1 . . . α1,1,r α1,2,1 . . . αv,t,r

αq1,1,0 αq1,1,1 . . . αq1,1,r αq1,2,1 . . . αqv,t,r
...

... . . . ...
... . . . ...

αq
u

1,1,0 αq
u

1,1,1 . . . αq
u

1,1,r αq
u

1,2,1 . . . αq
u

v,t,r


where

H1 =


1

1

. . .

1

It ⊗ (11 . . . 1)︸ ︷︷ ︸
r


Theorem 6. For n ≥ k (tr + 1), the linear code obtained using Construction 2 meets the

distance upper bound (2.2)

Proof. Choose Γ columns arbitrarily from H . We refer to the columns beginning with

all ones as ’availability columns’ and the rest as ’non-availability columns’. Let x be the

number of availability columns chosen. Note that x ≤ n

tr + 1
. We claim that the number

of non-zero rows among the chosen Γ columns is greater than Γ. Each availability column

ensures that t distinct rows are non-zero. Since each of these availability column cover

disjoint rows we obtain the following lower bound to the number of non-zero rows among

Γ arbitrarily chosen columns

n− k − nt

tr + 1
+ xt+

⌈
Γ− x− xtr

r

⌉
(4.1)

We consider two cases

Case 1
⌈

Γ

tr + 1

⌉
≤ x ≤ n

tr + 1
Therefore, (4.1) is reduced to n− k − nt

tr+1
+ xt. It is sufficient to prove that

n− k − nt

tr + 1
+ t

⌈
Γ

tr + 1

⌉
≥ Γ (4.2)
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We first show that

n− k − nt

tr + 1
+

Γt

tr + 1
+ 1 > Γ (4.3)

⇐⇒ (n− Γ)

(
t (r − 1) + 1

tr + 1

)
> k − 1

⇐⇒ n− Γ > k − 1 +
t (k − 1)

t (r − 1) + 1

⇐⇒ k − 1 +

⌈
t (k − 1) + 1

t (r − 1) + 1

⌉
> k − 1 +

t (k − 1)

t (r − 1) + 1

Since, the last inequality is obviously true, (4.3) holds. We now show that

n− k − nt

tr + 1
+

Γt

tr + 1
< Γ (4.4)

⇐⇒ (n− Γ)

(
t (r − 1) + 1

tr + 1

)
< k

⇐⇒ n− Γ < k +
kt

t (r − 1) + 1

⇐⇒ k − 1 +

⌈
t (k − 1) + 1

t (r − 1) + 1

⌉
< k +

kt

t (r − 1) + 1

Since, the last inequality is obviously true, (4.4) holds. Therefore, if t
⌈

Γ

tr + 1

⌉
≥ Γt

tr + 1
,

then (4.2) holds. Otherwise, from (4.3) and (4.4), Γ is the integer lying between them

implying (4.2) becomes an equality.

Case 2 0 ≤ x ≤
⌊

Γ

tr + 1

⌋
(4.1) is reduced to n− k− nt

tr + 1
+

⌈
Γ− x
r

⌉
. Since, this is a decreasing function of x, it

is sufficient to prove

n− k − nt

tr + 1
+

⌈
Γ−

⌊
Γ

tr+1

⌋
r

⌉
≥ Γ (4.5)

The LHS of (4.5) is lower bounded by n − k − nt
tr+1

+
⌈

Γt
tr+1

⌉
which is equal to Γ from

(4.4) and (4.3). Thus (4.5) follows. Since, the rest of the proof is similar to Hao and

Xia (2016), we provide a brief outline. From the above, we have established that among

arbitrarily chosen Γ columns, there are more than Γ rows. This selection can be reduced
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to a square matrix S, by deleting all all-zero rows and remaining rows beginning from

the bottom. We perform the following column transformation. For all non-availability

columns in S, we choose a column from one of the repair groups and subtract it from

other columns in its repair group. It is easy to see that after this column transformation,

for each of the locality rows, there is exactly one entry with a 1 corresponding to either a

chosen non-availability column or an availability column. Also, note that an availability

column has all zeros in the locality row if each of its repair groups were present among the

Γ arbitrarily chosen columns. Obtaining the determinant by expanding along rows with

entry 1, we obtain a matrix such that it’s first row comprises of the following elements{
αi,1,0 −

t∑
l=1

αi,l,rl , αi,j,h − αi,j,rj | h ∈ [rj − 1]

}
, where i and j depend on the arbitrary

chosen Γ columns. By our construction and Lemma 4 of Hao and Xia (2016) this first row

is linearly independent over Fq. As a result, the determinant of this reduced matrix does not

vanish implying the originally chosen arbitrary Γ columns are linearly independent.

Note that, there exist m such that

n− k ≥ ntr

tr + 1
≥ m ≥ n

t (r − 1) + 1

tr + 1
.

Therefore, qn−k > qm. For small enough values of q , qn−k can be made smaller than(
n

k+µ

)
, which results in a smaller field size when compared to Wang and Zhang (2014).

In addition, Construction 2 gives an explicit construction unlike Wang and Zhang (2014).

Finally, we remark that Construction 2 can easily be extended to construct codes with irreg-

ular recovery and availability and codes with unequal information locality and availability

as defined in Chapter 4

4.2 Irregular Recovery with Availability

We consider two examples of LRCs having irregular recovery with availability. The first

example is the same as Example 5 of Tamo and Barg (2014). The second example is a

similar construction applied to a larger field. We compare their distances with the upper

bound of Theorem 3. We show the second example is optimal by showing that the distance
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satisfies the upper bound of Theorem 3 with equality.

Example 2. An (n = 12, k = 4, r1 = 3, r2 = 2, t = 2) LRC is constructed over F13 by

generating orthogonal partitions,A andA′, from the cosets of the multiplicative subgroups

generated by 5 and 3, respectively. The partitions are as follows:

A = {{1, 5, 12, 8} , {2, 10, 11, 3} {4, 7, 9, 6}} ,

A′ = {{1, 3, 9} , {2, 6, 5} , {4, 12, 10} , {7, 8, 11}} .

Since the constant polynomials with respect to A and A′ are x4 and x3, respectively, (see

Section ??), we have

FA [x] = 〈1, x4, x8〉, FA′ [x] = 〈1, x3, x6, x9〉.

Finding the basis of F3
A
⋂
F2
A′ and truncating it to obtain a k = 4 dimensional subspace,

we have

V6 = 〈1, x, x4, x6〉.

Since max
fa∈V6

deg (fa) is 6, this code has distance d ≥ 6. Evaluating the upper bound on dis-

tance from Theorem (3), we have d ≤ 8. Therefore, this construction using multiplicative

subgroups is not likely to be optimal for LRCs having irregular recovery with availability.

Example 3. An (n = 32, k = 8, r1 = 7, r2 = 3, t = 2) LRC is constructed over F32 by

generating orthogonal partitions, A and A′, from cosets of copies of F+
8 and F+

4 denoted

H and H ′, respectively. Let α ∈ F32 be primitive satisfying α5 + α2 + 1 = 0. We have

H =
(
0, 1, α, α2, α5, α11, α18, α19

)
, H ′ =

(
0, α3, α4, α21

)
.

F7
A, F3

A′ and annihilator polynomials of H , H ′ are obtained as defined in Chapter 2. By

linear algebraic techniques, we can find the dimension and basis of Vm = F7
A
⋂
F3
A′ ∪ Pm

numerically. It can be verified numerically that for m = 9, we have the dimension k =

8. Thus, evaluating the distance upper bound of Theorem (3), we get d ≤ 23. Since

max
fa∈V9

deg (fa) is 9, we also d ≥ 23. Thus, the bound of Theorem (3) is met with equality.
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CHAPTER 5

Miscellanous Results using the Parity-Check Matrix

approach

In this chapter, we present two results that are disconnected from the overall theme of this

thesis. The first result is a parity-check matrix proof of the distance upper bound on (r, δ)

codes. Prakash et al. (2012) proved this upper bound using generalized Hamming weights.

Our proof is simpler than the latter. The second result is a negative result that pertains to

the rate upper bound for LRCs with availability derived in Tamo et al. (2016). We prove

that this upper bound is unattainable by linear codes.

5.1 Simpler Proof of Distance Upper Bound for (r, δ) codes

We recall that (r, δ) codes are codes wherein each coordinate is protected by a local code of

length r+δ−1 with distance atleast δ. We make the following assumption first introduced

by Tamo and Barg (2014) that this local code is an MDS code.

The distance upper bound for an [n, k, d], (r, δ) code is given by the following expres-

sion

d ≤ n− k − (δ − 1)

⌊
k − 1

r

⌋
+ 1

Proof. We modify the characterization of the parity-check matrix from Algorithm (2) as

follows; instead of choosing the minimum weight parity-check equation for a coordinate,

we choose a (δ − 1)× (r + δ − 1) block representing the parity-check matrix of the local

(r, r + δ − 1) MDS code it is a part of and run the rest of the algorithm as it is except H1

is the block diagonal matrix of the parity-check matrices of the local (r, r + δ − 1) MDS

codes. It is easy to see that there are
⌊

n
r+δ−1

⌋
such blocks.



For the above modification to be well-defined, we have to ensure that

⌊
n

r + δ − 1

⌋
(δ − 1) > n− k

We prove this by giving a simple argument that

n

r + δ − 1
(δ − 1) < n− k (5.1)

Since r coordinates from the local MDS codes are sufficient to recover the entire r +

δ − 1 sized codeword, for
⌊

n

r + δ − 1

⌋
such local codes, r

⌊
n

r + δ − 1

⌋
coordinates are

sufficient to recover the entire codeword. Therefore,

k < r

⌊
n

r + δ − 1

⌋
≤ nr

r + δ − 1

Rearranging the terms gives (5.1)

We now proceed with the proof by picking t =

⌊
k − 1

r

⌋
local parity-check matrices.

The number of rows picked are (δ − 1)t. Also, the number of non-zero columns are

atmost (r + δ − 1)t. Using the same reasoning that we used in Section 2.3, we can find

n− k − δ − 1)t+ 1 columns that are linearly dependent. Therefore,

d ≤ n− k − (δ − 1)

⌊
k − 1

r

⌋
+ 1

5.2 Linear Codes cannot achieve Tamo-Barg Rate Upper

Bound

Tamo et al. (2016) derived the following upper bound on the rate of a LRC with all-symbol

locality and availability.
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The rate of a (n, k, r, t) LRC with all-symbol locality and availability satisfies

k

n
≤ 1

t∏
j=1

(1 + 1
jr

)

(5.2)

Lemma 3. For all t > 1 and r ≥ 2,

t∏
j=1

(1 +
1

jr
) < 1 +

t

r

Proof. We prove this by induction on t. First for t = 2

(1 +
1

r
)(1 +

1

2r
) = 1 +

1

r
+

1

2r
+

1

2r2

< 1 +
2

r

as r ≥ 2

Suppose the inequality holds for l − 1. Let

Γ =
l−1∏
j=1

(1 +
1

jr
)

Then,

Γ(1 +
1

lr
) < 1 +

l − 1

r
+

Γ

lr

< 1 +
l

r

where the last inequality follows from l > 1 + l−1
r
> Γ

Theorem 7. A linear (n, k, r, t) LRC with all-symbol locality and availability satisfying

(5.2) does not exist

Proof. LetC be a linear (n, k, r, t) LRC with all-symbol locality and availability satisfying

(5.2). According to the recovering graph terminology in the Tamo-Barg paper, this implies

32



that there exists a subset U of [n] such that

|U | = n(1− 1
t∏

j=1

(1 + 1
jr

)

) = n− k (5.3)

such that all the coordinates in U have atleast one recovering set completely in Ū , where Ū

is the complement of U in [n]. Equivalently, for each parity symbol, there exists atleast one

recovering set of the parity symbol that comprises only of information symbols. Since, this

is a linear code, such recovering sets of each parity symbol form n−k linearly independent

parity checks which suffice to define a parity check matrix which is of the following form.

H = [H ′|In−k]

We make a couple of observations about H ′

• Each row of H ′ contains atmost r non-zero entries.

• Each column of H ′ contains atleast t non-zero entries.

To justify the second observation, assume to the contrary that there exists atleast one

column corresponding to, say c, with less than t non-zero entries. Note that any recovery

set can be expressed as a linear combination of the n− k parity checks. The linear combi-

nation of a recovery set of c not covered by the parity checks should consist of some parity

check that covers c and a distinct parity symbol p. Note that the resulting linear combina-

tion consists of both c and p thus violating the disjoint recovering sets assumption.

By the aforementioned two observations,

(n− k)r ≥ kt⇒ k

n
≤ 1

1 + t
r

But by our assumption,
k

n
=

1
t∏

j=1

(1 + 1
jr

)

This contradicts Lemma 3.
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CHAPTER 6

Conclusions and Scope for Future Work

We derived new upper bounds on minimum distance for codes with unequal all-symbol

locality and availability. We presented a generalization of a construction for LRCs with

availability, that attains the upper bound on minimum distance for arbitrary t and r =

k−1. An explicit parity-check matrix construction that meets the upper bound on minimum

distance for LRCs with information locality and availability was also obtained for n ≥

k (tr + 1). Future work includes finding optimal constructions for LRCs with availability

for higher values of k (or lower values of r) and finding constructions that meet the bounds

proposed in this paper for a larger range of parameter values.



APPENDIX A

Distance Upper Bound Algorithm

For S ⊆ [n], let CS denote the code C restricted to the positions in S, and let rank(S)

denote the dimension of CS . A useful bound on minimum distance of C is the following: if

rank(S) < k, then d ≤ n− |S|. For LRCs, Algorithm 2 is typically used in proofs of min-

imum distance bounds to find a set S for which rank(S) < k Gopalan et al. (2012)Wang

and Zhang (2014).

Algorithm 2 Construct S such that rank (S) = k − 1

1: Set S0 = φ, i = 0
2: while rank (Si) ≤ k − 2 do
3: Set i = i+ 1, Choose j ∈ [n] \ Si−1

4: if rank (Si−1 ∪ Γt (j)) < k then
5: Set Si = Si−1 ∪ Γt (j)
6: else
7: Choose a s. t. rank (Si−1 ∪ Γa+1 (j)) = k and
8: R ⊆ R

(j)
a+1 s. t. rank (Si−1 ∪ Γa (j) ∪R) = k − 1

9: Set Si = Si−1 ∪ Γa (j) ∪R
10: Return S = Si
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