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ABSTRACT 
 
 
 
There is an increase in the use of dynamic pricing of electricity by most of the 

developed countries. In this project a study is done on the day-ahead Nordic pool 

market to observe whether the use of a battery energy storage system will benefit a 

consumer household. An algorithm is formulated which takes advantage of the 

dynamic pricing of electricity and the use of a battery energy storage system to buy 

power when the price is low and sell power when the price is high. The algorithm also 

ensures that the consumption demand of the consumer is met. It is observed that there 

is indeed a reduction in the cost-per-day of electricity by using this algorithm. An 

approximate optimal battery capacity is then estimated for a specific case of battery 

efficiency and power capacity by using the algorithm on increasing values of battery 

capacity and plotting a cost-per-day vs. battery capacity graph. It is observed that 

beyond a specific battery capacity, the cost-per-day no longer reduces making it the 

approximate optimal battery capacity. Finally, the payback period of the investment is 

calculated and it is observed that the payback period is greater than the warranty 

period of the battery making the investment infeasible. However, with an increase in 

research on battery energy storage systems, the initial cost will decrease and will one 

day make this a viable investment. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
1.1 INTRODUCTION AND LITERATURE REVIEW 
 
The global demand for electricity is increasing day-by-day due to the exponential 

increase in population and the constant advancement in technology. Due to this 

increase in demand there is a requirement for a similar increase in supply. However, 

the upgrading of power stations and power networks happen at a slower pace due to 

the funding required and the economic risk involved in setting up new power plants. 

Hence, sometimes it is not possible to satisfy peak demands either due to unexpected 

outages or faults at the generators. 

 
 
One way to reduce peak demand would be for the consumers to use a Battery Energy 

Storage System (BESS) thereby storing energy during non-peak times and using the 

energy from the BESS during peak times. This would cause a reduction in peak 

demand thereby reducing the number of instances where supply does not meet 

demand. This however, will not work in a system which has a constant price for 

electricity.  

 
 
Dynamic pricing has been enabled by recent smart-grid technologies such as smart 

meters. There are two main types of dynamic pricing methodologies adopted.  

 
 
The first method is called “Time-Of-Use” pricing where the price is divided into two 

or three constant levels (‘off-peak’, ‘mid-peak’ and ‘on-peak’) depending on the time 

of the day.These levels will have a correlation with the average demand during that 
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segment of the day. These price levels are determined well in advance and are usually 

not changed more than twice a year. Studies have been done to examine the optimal 

operation of the BESS in a “Time-Of-Use” system using Dynamic Programming [3], 

Non-linear Programming [4] and Multipass Iteration Particle Swarm Optimization [5] 

approaches to optimize the system with respect to charge and discharge scheduling of 

the battery in order to maximize the benefits of the difference in prices.  

 
 
The second method of dynamic pricing is called “Real-Time Pricing” where the price 

changes either hourly or half-hourly to reflect the price on the wholesale energy 

market. Studies have been done in a “Real-Time Pricing” environment as well to 

show that the use of a BESS will help to cut down the cost of electricity [1]-[2]. In 

[2], they argued that the cost-optimizing storage policy is threshold-based and 

analytically showed the existence of an optimal threshold policy. However, in [2], 

they did not consider the possibility of selling power back to the grid. Studies have 

been done in the day-ahead market as well [1] where the hourly electricity prices are 

available one day in advance. Here they, also try to find the payback period of using a 

battery energy storage system but the cost optimization formulation does not take the 

demand pattern into consideration. 

 
 
 
 
 
 
 
 
 
 

Fig. 1.1 Different types of pricing methods 
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Fig. 1.1.(contd.) 
 
 
 
The use of a BESS will thus help a user take advantage of the dynamic pricing by 

buying power when the price is low and selling it back to the grid when the price is 

high. This allows users to benefit from the varying electricity price without changing 

their electricity consumption pattern accordingly. The economic viability of such a 

setup has always been a drawback in the past but recent developments and reductions 

in cost of home-batteries has made this setup more viable. 

 
 
In this project we will try to formulate and test an algorithm which will help a 

consumer household use a battery energy storage system to take advantage of the 

dynamic pricing of electricity. Hence, the algorithm should help schedule the transfer 

of energy between the grid, battery and the household every day at the same time 

minimizing the cost of electricity per day of the household. 

 
 
1.2 OVERVIEW AND STRUCTURE OF THE THESIS 

In the 2ndchapter of this thesis, we will formulate a model where a consumer 

household uses a battery energy storage system in a dynamic pricing environment and 

the model will try to schedule the transfer of energy between the three entities (Grid, 

BESS and household) and try to minimize the household’s cost-per-day of electricity 

and at the same time meet the consumption demands of the household for that day. 
3 

 



 
 

In Chapter 4, we will test the model on real-life data and observe if there is any cost 

optimization for the household by comparing with the cost when a battery energy 

storage system is not used and also with the case when we can buy from the grid but 

not sell it back. 

 
 
In Chapter 5, we will use the model formulated in Chapter 5 and test it on a few case 

studies. First, the model will be tested for the case of stacking N batteries and 

observing if there is any minimization in cost-per-day with an increase in N. The next 

simulation will be to find the battery capacity at which the cost saturates. Finally, the 

payback period of the investment will be calculated to conclude whether the 

investment is viable or not. 

 
 
A flow chart is given which will help to understand the structure of the thesis better. 
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1.2.1 Flow Chart 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig 1.2 Flow Chart of the Structure of the Thesis 
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CHAPTER 2 
 

FORMULATION AND METHODOLOGY 
 
 
 
2.1 MODEL FORMULATION 

The main purpose of this chapter is to formulate a model which will help a consumer 

household take advantage of the dynamic pricing of electricity by using a battery 

energy storage system (BESS). The model should take the daily price and the 

consumption demand from the households as inputs and produce an energy transfer 

schedule between the grid, the battery and the household which will minimize the 

cost-per-day of the household but at the same time meet the demands. 

 
 
We start offby defining the variables and the assumptions that are necessary for the 

model. Then we formulate the objective function along with the specific set of 

constraints necessary. 

 
 
We then present the methodology that will be used to solve the model. 

 
 
2.1.1 Variables And Notations Used 
 
We first start the formulation by defining the variables that will be used in the 

simulation. 

 
 Let us divide the day into 24 equal hourly intervals and define each interval as 

i={1,2,3,4,5,.......22,23,24} such that: 
 

• i=m, is the time interval from the (m-1)th hour to the mth hour 
 

 We define a variable to represent the time instant at the beginning and end of 
every time interval as t={1,2,3,4,.....,25} such that: 

 
• t=n, represents the time instant at the nth hour of the day 
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• Here, we start from 1 instead of 0 for simplification while writing the code 
 
 Let the energy flow in each time interval be defined as: 

 
• G_H(i) : the total amount of energy transferred from the grid to the 

household during the time interval i 
 

• G_B(i): the total amount of energy transferred from the grid to the battery 
energy storage system (BESS) during the time interval i 

 
• B_G(i): the total amount of energy transferred from the battery energy 

storage system (BESS) to the grid during the time interval i 
 

• B_H(i): the total amount of energy transferred from the battery energy 
storage system (BESS) to the household during the time interval i 

 
 We also define the following variables with respect to the time interval i: 

 
• C(i): The energy consumption by the household during the time interval i 

 
• SP(i): The spot market price for the time interval i 

 
 We define the energy stored in the battery energy storage system (BESS) at every 

hourly time instant as: 
 
• BE(t): the Battery Energy contained in the BESS at the (t-1)th hour 

 
 We also define the following constants which will be provided prior to the 

simulation: 
 
• η: the efficiency of the BESS(which includes any inverters/converters that 

might be used with the battery) 
 

• Bmax: the maximum capacity of the BESS 
 

• Pmax: the maximum power of the BESS 
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2.1.2 Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig 2.1 Model Diagram 
 
 
 
2.1.3 Assumptions 
 
Before we proceed with any further formulation, we first make the following 

assumptions: 

1. Since the spot market price is available one day ahead, it is assumed that all the 
energy stored in the battery energy storage system (BESS) is discharged in the 
same day. Hence, we assume that the energy stored in the battery energy storage 
system at 0:00 hour is zero, or BE(1) = BE(25) = 0. 

 
2. We assume that the spot market prices are not changed by the operation of the 

battery energy storage system. 
 

3. The η used for the simulation includes the efficiency of the battery as well as any 
inverters or converters used along with the battery and we simply state this whole 
setup as the Battery Energy Storage System (BESS) 

 
4. We also assume that the Battery Efficiency (η) remains constant with time. 
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2.1.4 Objective Function 
 
Our main objective is to use a battery energy storage system (BESS) to take 

advantage of the varying electricity price by buying electricity when the price is low 

and selling it back to the grid when the price is high. We want to reduce the amount of 

money being used by the consumer on electricity hence we want to minimize the cost 

of using electricity with the help of the battery energy storage system (BESS). We 

also want to ensure that the electricity consumption demand of the consumer 

household is met.  

 
 
Hence the objective function will be: 

 

Cost = �  
24

𝑖𝑖=1
[G_H(i) + G_B(i) – (η*B_G(i))]*SP(i) ;  (2.1) 

 
where, 
 
 [G_H(i) + G_B(i)]: Total amount of energy drawn from the grid during the time  

interval “i” 
 

 η*B_G(i): Total amount of energy transferred back to the grid during the time 
interval “i” 

 
 SP(i): Spot market price of the time interval “i”. 
 
Here, we want to minimize the above objective function under a defined set of 

constraints. 

 
 
2.1.5 Constraints 
 
For every optimization problem, there exists an objective function and a set of 

constraints which have to be met while optimizing (maximizing or minimizing) the 

objective function. For the above objective function, the following are the set of 

constraints: 
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 Non-negativity constraints 
 

The energy transfer variables represent a one-way transfer of energy and hence they 

cannot be negative. We therefore impose the following constraints on the variables: 

G_H(i) >= 0; for all i ϵ [1, 24]      (2.2) 
 

G_B(i) >= 0; for all i ϵ [1, 24]      (2.3) 
 

B_G(i) >= 0; for all i ϵ [1, 24]      (2.4) 
 

B_H(i) >= 0; for all i ϵ [1, 24]      (2.5) 
 

The energy present in the battery can also never be negative; hence we impose the 

following constraint on the battery energy variable: 

BE(t) >= 0; for all t ϵ [1,25]       (2.6) 
 
 
 
 Consumption constraint 
 
The energy that is being transferred to the household at a particular time interval “i” 

should be equal to the consumption demand [C(i)] of that time interval. Hence, we get 

the following equation: 

G_H(i) + {η*B_H(i)} = C(i), for all i ϵ [1,24]    (2.7) 
 
where, 
 
• [G_H(i) + {η*B_H(i)}] is the total amount of energy that arrives at the household 

during the time interval “i”. 
 
 
 
 Battery energy equation 
 
At every time interval “i”, there will be an energy transfer between the grid and the 

battery (G_B(i) and B_G(i)) as well as between the grid and the household (B_H(i)). 

Hence there will be a change in the energy present in the battery (BE(t)) between the 

time instant “t” and “t+1”. The time interval between the time instants “t” and “t+1” is 

“i”. We therefore define the change in battery energy with the following equation: 
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BE(t+1) = BE(t) + [η*G_B(i)] – [B_G(i) + B_H(i)], for all i=t ϵ [1,24] (2.8) 

 
where, 
 

-[η*G_B(i)] is the amount of energy that arrives at the battery energy storage 
system (BESS) during the time interval “i” which is the time period between 
the instants t and (t+1) 

 
-[B_G(i) + B_H(i)] is the amount of energy that leaves the battery energy 
storage system (BESS) during the time interval “i” which is the time period 
between the instants t and (t+1) 

 
 
 
 Battery constraints 
 
The battery energy storage system that we use will have it’s own functional 

limitations like the capacity and power constraints. Hence we add them below: 

1. Capacity constraint 
 

BE(t) <= Bmax , for all t ϵ [1,25]      (2.9) 
 

2. Power constraint 
 

G_B(i) <= Pmax; for all i ϵ [1,24]      (2.10) 
 

B_G(i) <= Pmax; for all i ϵ [1,24]      (2.11) 
 

B_H(i) <= Pmax; for all i ϵ [1,24]      (2.12) 
 
We earlier made the assumption that the energy stored in the battery on a particular 

day is completely used up in that day itself, which means that the battery should be 

completely discharge at the beginning and at the ending of the day. We apply this 

constraint by using the following equation: 

3. BE(1) = BE(25) = 0;                (2.13) 
 
 
 
Now, it is not optimal for energy transfer to take place from the grid to the battery and 

from the battery to the consumer in the same time interval. It is also not optimal for 
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the battery to draw power from the grid and transfer power to the grid in the same 

interval. Hence we impose the following constraints: 

 [G_B(i)]*[B_H(i)] = 0; for all i ϵ [1, 24]     (2.14) 
 
 [G_B(i)]*[B_G(i)] = 0; for all i ϵ [1, 24]     (2.15) 

 
 
 
Hence, this now becomes a Quadratic Programming (QP) Problem. 
 
 
 
Now that the model has been defined properly, we need to test the model on real-life 

practical cases and observe if the model performs well. We want to observe if the 

model takes advantage of the price differences throughout the day to buy when the 

price is low and sell when the price is high and at the same time meeting the required 

consumption needs of the consumer household. 

 
 
2.2 METHODOLOGY 
 
A mathematical optimization technique formulates the problem in a mathematical 

representation; provided the objective function and/or the constraints are nonlinear, 

the resulting problem is designated as Non Linear optimization Problem (NLP). A 

special case of NLP is quadratic programming in which the objective function is a 

quadratic function of x. If both the objective functions and the constraints are linear 

functions of x, the problem is designated as a Linear Programming (LP) problem. 

Other categories may also be identified based on the nature of the variables. For 

instance, if x is of integer type, the problem is denoted by Integer Programming (IP). 

Mixed types such as MILP (Mixed Integer Linear Programming) may also exist in 

which even though the variables may be both real and integer, the problem is also of 

LP type. 

 
12 

 



 
 

The above problem is solved using the LINGO programming language. LINGO 

includes a set of built-in solvers to tackle a wide variety of problems. Unlike many 

modelling packages, all of the LINGO solvers are directly linked to the modelling 

environment. This integration allows LINGO to pass the problem to the appropriate 

solver directly in memory rather than through more sluggish intermediate files. This 

direct link also minimizes any compatibility problems between the modelling 

language component and solver components. 

 
 
The optional Barrier solver of LINGO provides an alternative means of solving linear 

models. The Barrier option utilizes a barrier or interior point method to solve linear 

models. Unlike the Simplex solvers that move along the exterior of the feasible 

region, the Barrier solver moves through the interior space to find the optimum. 

Depending upon the size and structure of a particular model, the Barrier solver may be 

significantly faster than the Simplex solvers and can provide exceptional speed on 

large linear models -- particularly on sparse models with more than 5,000 constraints 

or highly degenerate models. 

 
 
For nonlinear programming models, the primary underlying technique used by 

LINGO's optional nonlinear solver is based upon a Generalized Reduced Gradient 

(GRG) algorithm which is a generalization of the reduced gradient method. However, 

to help get to a good feasible solution quickly; LINGO also incorporates Successive 

Linear Programming (SLP). The nonlinear solver takes advantage of sparsity for 

improved speed and more efficient memory usage.  

 
 
Local search solvers are generally designed to search only until they have identified a 

local optimum. If the model is non-convex, other local optima may exist that yield 
13 

 



 
 

significantly better solutions. Rather than stopping after the first local optimum is 

found, the Global solver will search until the global optimum is confirmed. The 

Global solver converts the original non-convex, nonlinear problem into several 

convex, linear sub problems. Then, it uses the branch-and-bound technique to 

exhaustively search over these sub problems for the global solution. 

 
 
In addition to solving linear and mixed integer models, with the Barrier option 

LINGO can automatically detect and solve models in which the objective function 

and/or some constraints include quadratic terms. By taking advantage of the quadratic 

structure, LINGO can solve these models much more quickly than using the general 

nonlinear solver. LINGO can even handle quadratic models with binary and general 

integer restrictions. 
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CHAPTER 3 
 

DAY-AHEAD ELECTRICITY MARKET AND BATTERY 
ENERGY STORAGE SYSTEMS 

 
 
 
3.1 DAY – AHEAD ELECTRICITY MARKET 
 
The Day-Ahead Market that we use in our project is the Nordic Pool Market. 
 
 
 
3.1.1The Nordic Pool Market 
 
Power is a vital component of our everyday lives that supports our modern basic 

necessities. As power production and transmission capacity has been extended over 

the years, transmission of power between countries has become more common. This 

has resulted in the evolution of a dynamic market where power can be bought or sold 

across areas and countries more easily. 

 
 
Supply and demand set the price 
 
The balance between supply and demand determines the power price. The weather 

conditions and the production levels of the power plants are other factors that can 

impact power prices. 

 
 
Integrating Nordic and Baltic markets 
 
The Nordic countries deregulated their power markets in the early 1990s and brought 

their individual markets together in a common Nordic market. Estonia, Latvia and 

Lithuania deregulated their power markets and joined the Nord Pool market in 2010-

2013. 
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The meaning of the term ‘deregulation’ is that the state is no longer running the power 

market and instead, free competition is introduced. The efficiency of the market for 

the exchange of power between countries and increased security of supply was the 

main motivation for deregulation. Available power capacity can be used more 

efficiently in a large region as compared to a small one, and integrated markets 

enhance productivity and improve efficiency. 

 
 
An emerging European market 
 
Now that transmission capacity and coupling is in place between the Nordic countries, 

the European continent and the Baltics, the power market covers large parts of 

Europe. This means that power from many different sources – hydro, thermal, 

nuclear, wind and solar – enters the grid. This ensures a more ‘liquid’ market, where 

large volumes are traded daily, and a more secure power supply. 

 
 
3.1.2 Day-Ahead Market 
 
The day-ahead market is the main arena for trading power. Here, contracts are made 

between seller and buyer for the delivery of power the following day, the price is set 

and the trade is agreed. 

 
 
Driven by planning 
 
Daily trading is driven by a member’s planning. A buyer, typically a utility, needs to 

assess how much energy (volume) it will need to meet the demand the following day, 

and how much it is willing to pay for this volume, hour by hour. The seller, for 

example the owner of a hydroelectric power plant, needs to decide how much he can 

deliver and at what price, hour by hour. These needs are reflected through orders 

entered by buyers and sellers into the Nord Pool day-ahead trading system. 
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Setting the price and closing the deal 
 
12:00 CET is the deadline for submitting bids for power which will be delivered the 

following day. The trading system feeds the information into a specialist computer 

system which calculates the price, based on advanced algorithm. Put simply, the price 

is set where the curves for sell price and buy price meet. 

 

 
Fig. 3.1 Supply-Demand curve 

 
 
 
Hourly prices are typically announced to the market at 12:42 CET or later. Once the 

market prices have been calculated, trades are settled. From 00:00 CET the next day, 

power contracts are physically delivered (meaning that the power is provided to the 

buyer) hour for hour according to the contracts agreed. 

 
 
The cost of transmission constraints 
 
While supply and demand are the key factors determining the hourly market prices, 

transmission capacity also plays a role. Bottlenecks can occur where power 

connections are linked to each other, if large volumes need to be transmitted to meet 

demand. To relieve this congestion, different area prices are introduced. In other 
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words, when transmission capacity gets constrained, the price is raised to reduce 

demand in the areas affected. 

 
 
3.1.3 Price Formation 
 
The primary role of a market price is to establish equilibrium between supply and 

demand. The day-ahead market is at Nord Pool is an auction based exchange for the 

trading of prompt physically delivered electricity. 

 
 
The day-ahead market carries out the key task of balancing supply and demand in the 

power market with a certain scope for forward planning. In addition to this, there is a 

final balancing process for fine adjustments in a real-time balancing market. 

 
 
The ‘Invisible Hand’ which creates equilibrium in most other markets is replaced in 

the power markets by a concrete visible hand. This is the day-ahead market which 

receives bids and offers from producers and consumers alike and calculates and 

hourly price which balances these opposing sides. Nord Pool publishes a price for 

each hour of the coming day in order to synthetically balance supply and demand. 

 
 
Every morning, members post their orders for the coming day. Each order specifies 

the volume in MWh/h that a member is willing to buy or sell at specific price levels 

(EUR/MWh) for each individual hour in the following day. 

 
 
Electricity produced at the lowest cost every hour of the day 
 
A properly functioning and competitive power market produces electricity at the 

lowest possible price for every hour of the day. The balance price represents both: 
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i. The cost of producing one kWh of power from the most expensive source 
needed to be employed in order to balance the system – either from a domestic 
installation or from external imports, and 
 

ii. The price that the consumer group is willing to pay for the final kWh required 
to satisfy demand. 

 
The price formation process is therefore economically effective for society. 
 
 
 
Nord Pool establishes prices in the same way as other energy markets 
 
This type of price formation is usually labelled as marginal price setting and gives a 

false impression that the establishment of prices in the electricity market is different 

from the price formation process in other commodity markets. The only difference 

lies in the significantly higher requirements for the secure delivery of electricity 

because it must be delivered at the precise moment it is needed by the consumer. 

Market price formation is therefore a more accurate term than marginal price setting. 

 
 
There is, however, a great difference between electricity and the other energy (and 

commodity) markets in that the variable costs of production vary so greatly between 

different types of installations – wind and hydropower with a virtual nil cost at one 

extreme and gas turbines at the other end of the scale. 

 
 
In order to satisfy fluctuating consumer demand at the lowest cost, a broad variety of 

generating techniques are required. Some installations are capital intensive but can be 

run year round and are relatively fuel efficient (hydro, nuclear, coal-fired). Other units 

such as CHP (combined heating and power)  are used less frequently to cover winter 

heating demand at times of higher prices, while energy intensive units such as gas 

fired turbines are used for brief periods of very high price and demand. 
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3.1.4 Intraday Market 
 
Nord Pool offers an intraday market covering the Nordic, Baltic, UK and German 

markets. The intraday market supplements the day-ahead market and helps secure the 

necessary balance between supply and demand in the power market for Northern 

Europe. 

 
 
A majority of the volume handled by Nord Pool is traded on the day-ahead market. 

For the most part, the balance between supply and demand is secured here. However, 

there may be unpredictable incidents that take place between the closing of the day-

ahead market at noon CET and delivery the next day. These unpredictable incidents 

may vary from the shutting down of operations of a Nuclear power plant in Sweden, 

to the presence of stronger winds in Germany which leads to a higher than anticipated 

power generation. At the intraday market, buyers and sellers can trade volumes close 

to real time to bring the market back in balance. 

 
 
Trading close to real time 
 
At 14:00 CET, capacities available for Nord Pool’s intraday trading are published. 

This is a continuous market and trading takes place everyday around the clock until 

one hour before delivery. Prices are set based on a first-come, first-serve principle, 

where best prices come first – highest buy price and lowest sell price. 

 
 
Increasingly Important 
 
As the generation of power due to wind increases, the unpredictability of power 

generation also increases making the intraday market even more important. Wind 

power is unpredictable by nature, and imbalances between day-ahead contracts and 

produced volume often need to be offset. The market plays a key role in the 
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development of intraday power trading in Europe. Future prospects indicate 

exponential growth, reaching 1.9 GW installed wind capacity worldwide in 2020 

(Source: World Wind Energy Association). This type of market will help to increase 

the share of renewable energy in the energy mix. 

 
 
3.2 BATTERY ENERGY STORAGE SYSTEMS 
 
The increase in funding for research in energy storage systems has led to the 

development of more advanced batteries which have a longer lifetime, which are 

cheaper, more portable and efficient. This has led to the increase in the use of a 

battery energy storage system in households. Some of the more renowned Battery 

Energy Storage Systems are as follows: 

 
 
3.2.1 Powervault 
 
The Powervault is a home electricity product which helps households use energy 

more efficiently by storing and supplying solar energy or cheap electricity, and 

provide emergency power during black outs. Its properties are given below: 

 
 
Lithium Ion Version (G200 –Li 2kWh) 
 
Nominal Capacity: 2.2 kWh 
Usable Capacity: 2 kWh 
Weight: 85 kg 
Batteries : 1 x 75 Ah (90% Depth of Discharge) 
 
Input (AC) 
 
Max. Continuous Power: 800 VA 
Nominal Voltage: 230 V 
Full Power Voltage Range: 217 to 253 
Maximum Current: Fused to 7A 
Peak Power: 1.6 kW (1 second) 
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Output (AC) 
 
Maximum Continuous Power: 1200 VA 
Nominal Voltage: 230 V 
Nominal Current: 5.2 A 
Frequency: 50 Hz 
PF: 0.99 
 
 
 
3.2.2 SonnenBatterie Eco 
 
Engineered in the energy village Wildpoldsried in Germany and made in the U.S.A., 

the sonnenBatterie is one of the world’s most accepted lithium based energy storage 

system. It has its own integrated smart electronics which helps to manage energy use 

throughout the day, detecting when there is excess power and storing it for use at 

night. It’s properties are given below: 

 
 
Power Unit 
 
Continuous Output(AC): 3000 W – 8000 W 
Usable Capacity: 4 kWh – 16 kWh (in 2kWh steps) 
Dimensions W/H/D (4 – 8 kWh): 26 inches / 51 inches / 14 inches 
Dimensions W/H/D (10 – 16 kWh): 26 inches / 71 inches / 14 inches 
Backup Power Capability 
 
 
General 
 
Maximum Efficiency of Inverter: 93% 
Ambient Temperatures: 5o C to 45o C / 41oF to 113oF 
AC Specs: 240 VAC/ Split Phase/60Hz 
Lifetime: 1000les or 10 years 
 
 
 
3.2.3 Tesla Powerwall 2 
 
The Tesla Powerwall 2 is a home for small businesses that can store solar energy as 

well as energy from the grid to deliver power as and when the user wants. It is 

compact and easy to install. It is touch-safe for the entire family with no live wires or 

bulky vents. Wall mounted or floor mounted, up to ten Powerwall units can be 
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stacked to power homes of any size. It has a water resistant and dust proof enclosure 

for installation inside or outdoors. The powerwall has an internal inverter to convert 

DC solar energy from the Solar Roof to the AC energy required at home, thus 

lowering cost and complexity in the case of solar energy. It also has a liquid thermal 

control system which regulates the Powerwall’s internal temperature to maximize 

battery performance in any climate. It is also the most affordable home battery in 

terms of cost per kWh. The technical specs of the Tesla Powerwall are given below: 

 
 
Usable Capacity: 13.5 kWh 
Depth of Discharge: 100% 
Efficiency: >90% round-trip 
Power : 7kW peak / 5kW continuous 
Scalable: Up to 10 Powerwalls 
Operating Temperature: -4oF to 122oF / -20oC to 50oC 
Dimensions: L x W x D : 45 inches x 30 inches x 6 inches 
Weight: 276 lb / 125 kg 
Warranty: 10 years 
Installation: Floor or Wall mounted and Indoors or Outdoors 
 
 
 
The Tesla Powerwall 2 is the battery used for the simulations in the project.
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CHAPTER 4 
 

MODELING AND SIMULATION 
 
 
 
We want to test the model formulated in Chapter 2 using LINGO programming 

language for three special cases and observe if there is any advantage to the cost of 

using electricity. 

 
 
Case 1 
 
We find the cost per day when no battery energy storage system (BESS) is used. 
 
 
 
Case 2 
 
We take the case when a battery energy storage system (BESS) is used but the option 

of selling back to the grid is not available. 

 

Case 3 
 
This is the main objective where we optimize for the case when a battery energy 

storage system (BESS) is used and both buying from the grid and selling to the grid is 

possible. 

 
 
4.1. DATA USED FOR SIMULATION 
 
For the day-ahead spot market price, we take the data from the Nordic Pool [7] for 2nd 

March 2015 in Great Britain. As for the consumption data, we get it from [8]. 

 
 
For the battery energy storage system (BESS) capacity and efficiency data, we take 

the values of the Tesla Powerwall 2. 
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– Bmax = 13.5kWh        (4.1) 
 

– Pmax = 7kW        (4.2) 
 

– η = 0.9         (4.3) 
 
 
 
The hourly spot market price and consumption data for 2nd March 2015 is given in 

Table 4.1 

 
 

Table 4.1 Energy and Consumption Data for 2nd March 2015 
 

Index Time Energy Consumption in 
Wh (02-03-2015) 

Spot Market 
Price EUR/Wh 
(02-03-2015) 

1 12am -1 am 2759 0.00004819 
2 1- 2am 1300 0.00005082 
3 2- 3am 227 0.0000483 
4 3- 4am 178 0.00004131 
5 4- 5am 279 0.00003854 
6 5- 6am 183 0.00004805 
7 6- 7am 256 0.00006383 
8 7- 8am 204 0.00006332 
9 8- 9am 190 0.00007109 
10 9- 10am 270 0.00006671 
11 10- 11am 171 0.0000633 
12 11- 12am 285 0.00005435 
13 12- 1pm 172 0.00005229 
14 1- 2pm 184 0.00005454 
15 2- 3pm 276 0.00004953 
16 3- 4pm 173 0.00005093 
17 4- 5pm 1058 0.00005941 
18 5- 6pm 2248 0.00006141 
19 6- 7pm 1792 0.00012812 
20 7- 8pm 1105 0.0000867 
21 8- 9pm 1375 0.00005719 
22 9- 10pm 4964 0.00005622 
23 10- 11pm 3382 0.00004976 
24 11- 12am 2366 0.0000506 
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Fig 4.1 Energy Consumption Trend 
 
 
 

 
 

Fig 4.2 Spot Market Price Trend 
 
 
 
Notice the price peaks for the intervals (8am – 9am) and (6pm- 7pm), price 

depression for the interval (4am-5am) and also the consumption peaks for the 

intervals (5pm-6pm) and (9pm-10pm) for future reference. 
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4.2. MODEL TESTING 
 
 
 
4.2.1 Case 1: When No Battery Is Used 
 
This is the normal case where the household does not use a battery energy storage 

system and energy gets transferred from the grid directly to the household. The cost-

per-day for this case is simply the sum of the product of the consumption per interval 

with the price per interval, or,  

 

Cost = �  
24

𝑖𝑖=1
[C(i)*SP(i)];       (4.4) 

 
 
where, 
 
• C(i): Consumption during the time interval “i”; 

 
• SP(i): Spot market price for the time interval “i”; 
 
The cost for this case comes to: 
 

CASE 1 COST = € 1.538 per day      (4.5) 
 
 
 
4.2.2 Case 2: When A Battery Is Used But The Option Of Selling Back To The 
Grid Is Not Available 
 
In this case, the household uses a battery energy storage system but does not sell back 

any power to the grid, i.e., all the energy from the battery gets transferred only to the 

household. This implies that there will be no transfer of energy from the battery 

energy storage system to the grid, that is, 

 
 

B_G(i) = 0; for all i ϵ [1,24]       (4.6) 
 
 
 
Hence, the original optimization model needs to be adjusted to match this scenario. 

The adjusted model is as follows: 
27 

 



 
 

 
Objective Function 
 
 
 

Cost = �  
24

𝑖𝑖=1
 [G_H(i) + G_B(i) ]*SP(i);     (4.7) 

 
 
 
Constraints  
 
1. Non-negativity constraints 

 
 G_H(i) >= 0; for all i ϵ [1,24]                (4.8) 

 
 G_B(i) >= 0; for all i ϵ [1,24]                (4.9) 
 
 B_H(i) >= 0; for all i ϵ [1,24]              (4.10) 
 
 BE(t) >= 0; for all t ϵ [1,25]              (4.11) 
 
 
 
2. Consumption constraint 

 
 G_H(i) + [η*B_H(i)] = C(i); for all i ϵ [1,24]            (4.12) 
 
where,  
 
- {G_H(i) + [η*B_H(i)]} is the total amount of energy transferred to the household 

during the time interval “i”. 
 
 
 
3. Battery Energy constraint 

 
 BE(t+1) = BE(t) + [η*G_B(i)] – B_H(i), for all i=t ϵ [1,24]          (4.13) 
 
where, 
 
-[η*G_B(i)] is the amount of energy that arrives at the battery energy storage system 
(BESS) during the time interval “i” which is the time period between the instants t and 
(t+1) 

 
- B_H(i) is the amount of energy that leaves the battery energy storage system (BESS) 
during the time interval “i” which is the time period between the instants t and (t+1) 
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4. Battery constraint 
 
 BE(t) <= Bmax , for all t ϵ [1, 25] ………. Capacity constraint          (4.14) 

 
 BE(1) = BE(25) = 0; ……………………due to initial assumption         (4.15) 
 
 G_B(i) <= Pmax, for all i ϵ [1, 24] ………Power constraint          (4.16) 
 
 B_H(i) <= Pmax , for all i ϵ [1, 24] ……...Power constraint          (4.17) 
 
 
 
Results  
 
After running the code in Appendix 1 on the data from (4.1), we get the following 

results: 

 
 

Table 4.2 Energy Transfer pattern for Case 2 
 

Index Time G_H(Wh) G_B(Wh) B_G(Wh) B_H(Wh) 
1 12am -1 am 2759 0 0 0 
2 1- 2am 1300 0 0 0 
3 2- 3am 227 0 0 0 
4 3- 4am 178 6999 0 0 
5 4- 5am 279 6999 0 0 
6 5- 6am 183 0 0 0 
7 6- 7am 0 0 0 284.4444 
8 7- 8am 0 0 0 226.6667 
9 8- 9am 0 0 0 211.1111 
10 9- 10am 0 0 0 300 
11 10- 11am 0 0 0 190 
12 11- 12am 285 0 0 0 
13 12- 1pm 172 0 0 0 
14 1- 2pm 184 0 0 0 
15 2- 3pm 276 0 0 0 
16 3- 4pm 173 0 0 0 
17 4- 5pm 0 0 0 1175.556 
18 5- 6pm 0 0 0 2497.778 
19 6- 7pm 0 0 0 1991.111 
20 7- 8pm 0 0 0 1227.778 
21 8- 9pm 0 0 0 1527.778 
22 9- 10pm 2294.62 0 0 2965.978 
23 10- 11pm 3382 0 0 0 
24 11- 12am 2366 0 0 0 
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Fig 4.3 Hourly energy transfer pattern from the grid to the household 
 
 
 

 
Fig 4.4 Hourly energy transfer pattern from the grid to the battery 

 
 
 

 
Fig 4.5 Hourly energy transfer pattern from the battery to the household 
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As we can see, the scheduling takes into account the dynamic pricing of electricity 

and adjusts accordingly such that more energy is drawn from the grid when the price 

of electricity is low. It can be seen that during the peak price interval of (6pm – 7pm), 

there is no energy transferred from the grid and all the energy required by the 

household is taken from the battery energy storage system. This means that the 

scheduling was done in such a way that the battery was charged up in the earlier 

intervals and that energy was then used during the price peak interval. 

 
 

Table 4.3 Hourly Battery Energy pattern for Case 2 
 

Index Time BE(Wh)  Index Time BE(Wh) 
1 12am 0  14 1pm 11385.97778 
2 1am  0  15 2pm 11385.97778 
3 2am 0  16 3pm 11385.97778 
4 3am 0  17 4pm 11385.97778 
5 4am 6299.1  18 5pm 10210.42222 
6 5am 12598.2  19 6pm 7712.644444 
7 6am 12598.2  20 7pm 5721.533333 
8 7am 12313.75556  21 8pm 4493.755556 
9 8am 12087.08889  22 9pm 2965.977778 
10 9am 11875.97778  23 10pm 0 
11 10am 11575.97778  24 11pm 0 
12 11am 11385.97778  25 12am 0 
13 12pm 11385.97778  

 
 
 

 
Fig 4.6 Hourly battery energy pattern for Case 2 
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As we can see, the model takes advantage of the presence of the battery energy 

storage system (BESS) to buy more power when the price is low with the intention of 

using it during instances when the price is high. 

 
 
Naturally, a minimization of the cost is achieved as compared to Case 1. The cost 

comes down to € 1.27 per day. 

 
 

CASE 2 COST = € 1.27 per day    (4.18) 
 
 
 
4.2.3 Case 3: When A Battery Is Used And Both Selling And Buying Of Power Is 
Considered 
 
Here, we take the original optimization model stated in Chapter 2 which takes 

advantage of the fact that power can be sold to the grid in the day-ahead market. 

Hence, the formulation remains the same as that stated in Chapter 2. 

 
 
Results 
 
When we run the code in Appendix 2 for the data provided in (4.1), we get the 

following results:  

 
 

Table 4.4 Hourly Energy Transfer pattern for Case 3 
 

Index TIME G_H (Wh) G_B (Wh) B_G (Wh) B_H (Wh) 
1 12am -1 am 2759 0 0 0 
2 1- 2am 1300 0 0 0 
3 2- 3am 227 0 0 0 
4 3- 4am 178 6999 0 0 
5 4- 5am 279 6999 0 0 
6 5- 6am 183 1002 0 0 
7 6- 7am 256 0 0 0 
8 7- 8am 204 0 0 0 
9 8- 9am 0 0 6999 211.1111111 
10 9- 10am 0 0 5989.888889 300 
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Table 4.4 (contd.)    
11 10- 11am 171 0 0 0 
12 11- 12am 285 0 0 0 
13 12- 1pm 172 1002 0 0 
14 1- 2pm 184 0 0 0 
15 2- 3pm 276 6999 0 0 
16 3- 4pm 173 6999 0 0 
17 4- 5pm 1058 0 0 0 
18 5- 6pm 2248 0 0 0 
19 6- 7pm 0 0 6999 1991.111111 
20 7- 8pm 1105 0 4509.888889 0 
21 8- 9pm 1375 0 0 0 
22 9- 10pm 4964 0 0 0 
23 10- 11pm 3382 0 0 0 
24 11- 12am 2366 0 0 0 

 
 
 

 
Fig 4.7 Hourly energy transfer pattern from the grid to the household 

 
 
 
From the above figure, we can observe that maximum energy is transferred from the 

grid to the household only during times of low prices which is in the early hour of the 

day and in the later part of the day. 
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Fig 4.8 Hourly energy transfer pattern from the grid to the battery 

 
 
 

 
Fig. 4.9 Hourly energy transfer pattern from the battery to the grid 

 
 
 
As we had seen earlier from figure 4.2., the peak price time intervals were at 8am-

9am and at 6pm-7pm. From the above figure, we can observe that the model takes 

advantage of these peak price intervals to sell power back to the grid. This further 

validates the working of the model. 
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Fig. 4.10 Hourly energy transfer pattern from the battery to the household 

 
 
 
From the pattern in figure 4.10.above, we observe that power is being transferred 

from the battery to the household during the time intervals of peak pricing. This 

indicates that the model selects to use the energy from the battery instead of buying 

from the grid when the price is high. 

 
 

Table 4.5 Hourly Battery Energy Pattern for Case 3 
 

Index Time BE (Wh)  Index Time BE (Wh) 
1 12am 0  14 1pm 901.8 
2 1am  0  15 2pm 901.8 
3 2am 0  16 3pm 7200.9 
4 3am 0  17 4pm 13500 
5 4am 6299.1  18 5pm 13500 
6 5am 12598.2  19 6pm 13500 
7 6am 13500  20 7pm 4509.889 
8 7am 13500  21 8pm 0 
9 8am 13500  22 9pm 0 
10 9am 6289.889  23 10pm 0 
11 10am 0  24 11pm 0 
12 11am 0  25 12am 0 
13 12pm 0  

 
 

0

500

1000

1500

2000

2500

12
am

 -1
 a

m
1-

2a
m

2-
3a

m
3-

4a
m

4-
5a

m
5-

6a
m

6-
7a

m
7-

8a
m

8-
9a

m
9-

10
am

10
-1

1a
m

11
-1

2a
m

12
-1

pm
1-

2p
m

2-
3p

m
3-

4p
m

4-
5p

m
5-

6p
m

6-
7p

m
7-

8p
m

8-
9p

m
9-

10
pm

10
-1

1p
m

11
-1

2a
m

B_H

B_H

35 
 



 
 

 
Fig. 4.11. Hourly battery energy pattern for Case 3 

 
 
 
As we can observe, this model also takes into account the option of selling back 

power to the grid when the spot market price is high, thereby giving a more different 

battery energy pattern as compared to Case 2. A large amount of energy stored in the 

battery is sold back to the grid instead of it being transferred to the household for 

consumption, thereby minimizing cost even further than in Case 2. 

 
 
The cost in Case 3 comes down even further to € 0.673 per day. 
 
 
 

CASE 3 COST = € 0.673 per day     (4.19) 
 
 
 
4.2.4 Observation 
 
As we can see, there is a definite advantage in using a Battery Energy Storage System 

in a consumer household. When we use a Tesla Powerwall 2 with η=0.9, Bmax= 13.5 

kWh and Pmax = 7kW for the three cases, we make the following observations: 
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Table 4.6 Comparison of the results between the three cases 
 

CASE 1 CASE 2 CASE 3 

BESS is not used BESS is used but  
SELLING IS NOT 
INVOLVED 

BESS is used and  
SELLING IS 
INVOLVED 

G_B(i) = 0, 
B_G(i) = 0, 
B_H(i) = 0; for all iϵ[1,24] 
BE(t)=0; for all tϵ[1,25] 

B_G(i)=0; 
For all iϵ[1,24] 

 

COST PER DAY 
€1.538 

COST PER DAY 
€1.27 
17.43% reduction 
from CASE 1 

COST PER DAY 
€0.673 
56.24% reduction 
from CASE 1 

 
 
 
We therefore end this chapter by concluding that using a battery energy storage 

system in the presence of dynamic pricing for a consumer household helps in reducing 

the daily cost of electricity by up to 56.24% which was the main objective of the 

model. In the next chapter, we will apply the model on a few real life cases and make 

some observations. 
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CHAPTER 5 
 

CASE STUDIES 
 
 
 
In this chapter, we will apply the algorithm which was modelled, formulated and 

tested in Chapters 2 and 4 on a few cases. In the first case, we will test the model 

when the Tesla batteries are stacked up to “N” batteries where Nϵ[1,10] and observe 

whether there is any advantage in increasing the number of stacked batteries. In the 

second case, we try to find a saturation point for the battery capacity beyond which 

there is no decrease in the daily cost of electricity. Finally, we try to find a payback 

period to conclude the investment viability of using a battery energy storage system 

with the same specifications and cost as a Tesla Powerwall 2. 

 
 
5.1 TESTING THE MODEL FOR N STACKED BATTERIES  
 
One of the advantages of the Tesla Powerwall 2 is that it is possible to stack up to 10 

units for an individual household without any extra requirements. Hence, we 

obviously want to find out if there is any advantage in stacking more batteries 

considering that there will be an increase in the initial investment but will also lead to 

an increase in the battery capacity. 

 
 
Now, let the number of units be defined by N where Nϵ[1,10]. 
 
 
 
We now simulate the model defined and formulatedin Chapters 2 and 4 for all cases 

of N and we get the following results. 
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5.1.1 Results 
 
The cost per day for “N” number (Nϵ[1,10]) of Tesla Powerwalls is given in the table 

below: 

 
 

Table 5.1 Battery Capacity and Cost per day for “N” stacked Batteries 
 

“N” number of 
PowerWalls 

Capacity (Bmax) in kWh Cost per day in € 

1 13.5 0.673 

2 27 0.53981 

3 40.5 0.52167 

4 54 0.52167 

5 67.5 0.52167 

6 81 0.52167 

7 94.5 0.52167 

8 108 0.52167 

9 121.5 0.52167 

10 135 0.52167 
 
 
 
As we can observe, the cost decreases only from N=1 till N=3 but it remains the same 

for N=3 to N=10. This means that the cost has saturated and adding beyond 3 stacks 

of batteries does not have any economic advantage. 

 
 
Table 5.2 Hourly Energy transfer pattern from the Grid to the household and battery 

 
   G_H  G_B 

Index TIME  N=1 N=2 N ϵ [3, 10]  N=1 N=2 N ϵ [3, 10] 
1 12am -1 am  2759 2759 2759  0 6999 6999 
2 1- 2am  1300 1300 1300  0 0 6999 
3 2- 3am  227 227 227  0 2004 6999 
4 3- 4am  178 178 178  6999 6999 6999 
5 4- 5am  279 279 279  6999 6999 6999 
6 5- 6am  183 183 183  1002 6999 6999 
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Table 5.2 (contd.)     
7 6- 7am  256 0 0  0 0 0 
8 7- 8am  204 0 0  0 0 0 
9 8- 9am  0 0 0  0 0 0 
10 9- 10am  0 0 0  0 0 0 
11 10- 11am  171 171 0  0 0 0 
12 11- 12am  285 285 285  0 0 0 
13 12- 1pm  172 172 172  1002 0 0 
14 1- 2pm  184 184 184  0 0 0 
15 2- 3pm  276 276 276  6999 6999 6999 
16 3- 4pm  173 173 173  6999 6999 6999 
17 4- 5pm  1058 1058 1058  0 0 0 
18 5- 6pm  2248 2248 2248  0 0 0 
19 6- 7pm  0 0 0  0 0 0 
20 7- 8pm  1105 0 0  0 0 0 
21 8- 9pm  1375 1375 1375  0 0 0 
22 9- 10pm  4964 4964 4964  0 0 0 
23 10- 11pm  3382 3382 3382  0 0 0 
24 11- 12am  2366 2366 2366  0 0 0 
 
 
 

Table 5.3 Hourly energy transfer pattern from the battery to the grid and household 
 

   B_G  B_H 
Index 02-Mar-14  N=1 N=2 N ϵ [3, 

10] 
 N=1 N=2 N ϵ [3, 

10] 
1 12am -1 am  0 0 0  0 0 0 
2 1- 2am  0 0 0  0 0 0 
3 2- 3am  0 0 0  0 0 0 
4 3- 4am  0 0 0  0 0 0 
5 4- 5am  0 0 0  0 0 0 
6 5- 6am  0 0 0  0 0 0 
7 6- 7am  0 6999 6999  0 284.44 284.44 
8 7- 8am  0 362.0889 6999  0 226.67 226.67 
9 8- 9am  6999 6999 6999  211.11 211.11 211.11 
10 9- 10am  5989.889 6999 6999  300 300 300 
11 10- 11am  0 0 3967.689  0 0 190 
12 11- 12am  0 0 0  0 0 0 
13 12- 1pm  0 0 0  0 0 0 
14 1- 2pm  0 0 0  0 0 0 
15 2- 3pm  0 0 0  0 0 0 
16 3- 4pm  0 0 0  0 0 0 
17 4- 5pm  0 0 0  0 0 0 
18 5- 6pm  0 0 0  0 0 0 
19 6- 7pm  6999 6999 6999  1991.11 1991.1 1991.11 
20 7- 8pm  4509.889 6999 6999  0 1227.8 1227.78 
21 8- 9pm  0 0 0  0 0 0 
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Table 5.3 (contd.) 
22 9- 10pm  0 0 0  0 0 0 
23 10- 11pm  0 0 0  0 0 0 
24 11- 12am  0 0 0  0 0 0 

 
 
 

 
Fig. 5.1 Hourly energy transfer pattern from the grid to the household 

 
 
 

 
Fig. 5.2 Hourly energy transfer pattern from the grid to the battery 

 
 
 

 
Fig. 5.3 Hourly energy transfer pattern from the battery to the grid 
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Fig. 5.4. Hourly energy transfer pattern from the battery to the household 

 
 
 
From the above results, we can observe that as N increases from 1 to 3, the hourly 

energy transfer patterns also changes but it remains the same from N=3 onwards. This 

shows that increasing the number of batteries from 1 to 3 causes a change in the 

optimal strategy for energy transfers but increasing the number of batteries from 3 to 

10 does not cause any change. 

 
 

Table 5.4 Hourly battery energy pattern 
 

  BATTERY ENERGY 
Index Time N=1 N=2 N ϵ [3, 10] 
1 12am 0 0 0 
2 1am  0 6299.1 6299.1 
3 2am 0 6299.1 12598.2 
4 3am 0 8102.7 18897.3 
5 4am 6299.1 14401.8 25196.4 
6 5am 12598.2 20700.9 31495.5 
7 6am 13500 27000 37794.6 
8 7am 13500 19716.56 30511.15556 
9 8am 13500 19127.8 23285.48889 
10 9am 6289.889 11917.69 16075.37778 
11 10am 0 4618.689 8776.377778 
12 11am 0 4618.689 4618.688889 
13 12pm 0 4618.689 4618.688889 
14 1pm 901.8 4618.689 4618.688889 
15 2pm 901.8 4618.689 4618.688889 
16 3pm 7200.9 10917.79 10917.78889 
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Table 5.4 (contd.) 
17 4pm 13500 17216.89 17216.88889 
18 5pm 13500 17216.89 17216.88889 
19 6pm 13500 17216.89 17216.88889 
20 7pm 4509.889 8226.778 8226.777778 
21 8pm 0 0 0 
22 9pm 0 0 0 
23 10pm 0 0 0 
24 11pm 0 0 0 
25 12am 0 0 0 

 
 
 

 
Fig. 5.5 Hourly battery energy pattern 

 
 
 
5.1.2 Observation 
 
As we can see, there is a decrease in cost as we go from N=1 to N=3 but there is no 

change in cost as we move from N=3 to N=10. 

 
 
We now take a look at the hourly patterns for G_H, G_B, B_G, B_H and Battery 

Energy. We can similarly observe that the patterns change from N=1 to N=3 but 

remains constant from N=3 to N=10. This indicates a change in the optimal strategy 

for energy transfers as well as battery energy from N=1 to N=3 but not from N=3 to 

N=10. 
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Hence what we can conclude from this observation is that there is obviously a 

Saturation Point somewhere between N=2 to N=3 for this specific case of η=0.9 and 

Pmax=7kW, beyond which there is no change in the optimal strategy for the energy 

transfer patterns and the battery energy patterns. 

 
 
In the next section, we will try to find the saturation point for the battery capacity 

beyond which there is no change in the cost or optimal patterns for energy transfers 

and battery energy. This means that the saturation point will be the optimal battery 

capacity for this model. 

 
 
5.2 BATTERY CAPACITY SATURATION POINT FOR A SPECIFIC CASE 

OF η AND PMAX 
 
Now, let us take the case of η=0.9 and Pmax=7kW. As we increase Bmax from 0, the 

cost keeps decreasing but saturates after a certain point. Hence we run the simulation 

for increasing values of Bmax and try to find the saturation point of Bmax.  

 
 
5.2.1 Results 
 
After running the simulation 84 times, starting from Bmax = 0 and increasing Bmax in 

steps of 0.5kWh, we get the following results: 

 
 

Table 5.5 Cost per day in Euros as Battery Capacity increases 
 

Sl. 
No. Bmax(kWh) Cost (€)  

Sl. 
No. Bmax(kWh) Cost (€) 

1 0 (No Battery) 1.53751  43 21 0.56273 
2 0.5 1.49679  44 21.5 0.56078 
3 1 1.45607  45 22 0.55883 
4 1.5 1.41536  46 22.5 0.55688 
5 2 1.37464  47 23 0.55493 
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Table 5.5 (contd.) 
6 2.5 1.33392  48 23.5 0.55298 
7 3 1.29321  49 24 0.55102 
8 3.5 1.25249  50 24.5 0.54907 
9 4 1.21177  51 25 0.54712 
10 4.5 1.17106  52 25.5 0.54521 
11 5 1.13034  53 26 0.54332 
12 5.5 1.08962  54 26.5 0.54147 
13 6 1.04891  55 27 0.53981 
14 6.5 1.00912  56 27.5 0.53815 
15 7 0.97072  57 28 0.53649 
16 7.5 0.933463  58 28.5 0.53483 
17 8 0.897034  59 29 0.53317 
18 8.5 0.860605  60 29.5 0.5315 
19 9 0.824544  61 30 0.52984 
20 9.5 0.806754  62 30.5 0.52818 
21 10 0.788964  63 31 0.52652 
22 10.5 0.771174  64 31.5 0.52487 
23 11 0.753384  65 32 0.52461 
24 11.5 0.735594  66 32.5 0.52435 
25 12 0.717804  67 33 0.52409 
26 12.5 0.700014  68 33.5 0.52383 
27 13 0.68584  69 34 0.52358 
28 13.5 0.67255  70 34.5 0.52333 
29 14 0.65926  71 35 0.52307 
30 14.5 0.64597  72 35.5 0.52282 
31 15 0.633631  73 36 0.52257 
32 15.5 0.621311  74 36.5 0.52232 
33 16 0.60899  75 37 0.52207 
34 16.5 0.59667  76 37.5 0.52182 
35 17 0.58435  77 38 0.52167 
36 17.5 0.57767  78 38.5 0.52167 
37 18 0.57532  79 39 0.52167 
38 18.5 0.57296  80 39.5 0.52167 
39 19 0.57062  81 40 0.52167 
40 19.5 0.56859  82 40.5 0.52167 
41 20 0.56663  83 41 0.52167 
42 20.5 0.56468  84 41.5 0.52167 
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5.2.2 Observation 
 
 

 
Fig. 5.6 Cost per day Vs. Battery Capacity 

 
 
 
As we had seen earlier, there is a decrease in the cost-per-day as the Battery Capacity 

increases. However, we also find that the slope of the graph slowly reduces indicating 

that the rate of decrease of cost-per-day starts reducing and eventually the cost-per-

day saturates. 

 
 
From the above results, we can see that the saturation point lies somewhere between 

Bmax=37.5 kWh and Bmax=38 kWh. 

 
 
Hence, we perform the simulation between these values to try and close-in on the 

approximate value of the Saturation Point for Bmax when η=0.9 and Pmax=7kW.  

 
 

Table 5.6 Cost vs. Bmax to find Saturation Point 
 

Sl. No. Bmax(kWh) Cost (€) 
1 37.5 0.521815 
2 37.6 0.521765 
3 37.7 0.521715 
4 37.71 0.52171 
5 37.72 0.521705 
6 37.73 0.5217 
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After the simulations are done, we can see that when η=0.9 and Pmax=7kW, the 

Saturation Point of Bmax is at: 

 
 

Bmax (sat.) = 37.794 kWh       (5.1) 
 

where, 
 

Cost/day = € 0.521667       (5.2) 
 
 
 
5.3 PAYBACK PERIOD 
 
The main factor that will decide whether a battery energy storage system is a viable 

investment for a household would be the Payback Period. 

 
 
Here, we define the Payback Period as the time taken for the Cost Savings to add up 

to the initial investment in the Battery Energy Storage System which can be equated 

as: 

 
 

Initial Investment = �  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃

𝑖𝑖=1
(𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶  𝑆𝑆𝑃𝑃𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆  𝑝𝑝𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(1+𝑃𝑃)𝑖𝑖 
);   (5.3) 

 
 
 
 

Table 5.6 (contd.) 
7 37.74 0.521695 
8 37.75 0.52169 
9 37.76 0.521684 
10 37.77 0.521679 
11 37.78 0.521674 
12 37.79 0.521669 
13 37.791 0.521669 
14 37.792 0.521668 
15 37.793 0.521668 
16 37.794 0.521667 
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where, 
 

r is the Risk-free rate;        (5.4) 
 

Cost Saving = Cost without a BESS – Cost with a BESS;    (5.5) 
 
 
 
Here, we will only try to find an approximate payback period. To do this, first we 

have to make the following assumption: 

 
1. We assume that the cost-per-day remains the same for the whole year. This will 

obviously not be true but it is a good enough assumption for a strong 
approximation of the approximate payback period. 

 
 
 
For the calculation, we will take the 10-year US Treasury rate as the risk-free rate. 
 
 
 

Therefore, risk-free rate (r) = 2.6%      (5.6) 
 
 
 
Now, we calculate the Payback Periods for the case of N=1 to N=3 and we get the 

following results: 

 
 

Table 5.7 Payback Period for N=1 to N=3 
 

N  Initial Investment 
(€)  

Cost Savings per year (€)  Payback Period 
(Years) [approx.]  

1  6351.69  315.725  29  

2  12703.38  364.339  >29  

3  19055.07  370.96  >29  
 
 
 
Here, we can see that the payback period will not be less than 29 years, and with the 

10 year warranty period, this will not be a viable investment if the battery is used for 
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storing only power from the Grid (it might be close to viable if solar panels are used 

as well). 

 
 
However, with further research leading to cost reductions and with the use of other 

sources of energy (solar, wind) along with the conventional sources, this has the 

potential to become a viable investment if the Payback Period goes below the 10 year 

mark. 

 
 
To bring the Payback Period to within the 10 year mark, the initial investment should 

come down below a certain value which we shall define as the “Required Initial 

Investment”. Hence, the criteria will be as follows: 

 

Required Initial Investment  <�  
10

𝑖𝑖=1
(𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶  𝑆𝑆𝑃𝑃𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆  𝑝𝑝𝑃𝑃𝑃𝑃  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

(1+𝑃𝑃)𝑖𝑖 
 );   (5.7) 

 
 
Or, for the case of N = 1, 
 
 

 Required Initial Investment  <�  
10

𝑖𝑖=1
( 315.725
�1 +0.026�𝑖𝑖 

 ) ; 

 
 

Required Initial Investment  < € 2749.0213 (approximately) ;  (5.8) 
 
 
 
Hence, only after the required initial investment of a battery energy storage system 

(BESS) with η=0.9, Pmax=7kW and Bmax = 13.5 kWh come down to approximately € 

2749.0213, will it be a viable investment plan for a consumer household. 
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CHAPTER 6 
 

CONCLUSION AND FUTURE SCOPE 
 
 
 
6.1. CONCLUSION 
 
The motivation behind the project was the increased use of dynamic pricing of 

electricity. Due to the difference in prices of electricity, a battery energy storage 

system could be used to take advantage of this volatility to buy power when the price 

is low and sell it when the price is high. Hence an algorithm was formulated which 

would try to minimize the cost of electricity per day to a household consumer by 

taking advantage of the dynamic pricing of electricity. The model was then tested and 

it was observed that the use of a battery energy storage system (BESS) reduces the 

cost-per-day of electricity by 56.24% from the case when a battery energy storage 

system (BESS) is not used. This shows that the algorithm proposed works. 

 
 
Next, three case studies were done to better understand the working of the algorithm 

and to come to a conclusion about the economic feasibility of using a battery energy 

storage system (BESS). 

 

1. The first case study was to test the model on “N” stacked batteriesfrom N=1 to 

N=10 for the case of the Tesla Powerwall 2 (η=0.9, Pmax=7kW and Bmax per 

N=13.5kWh). It was observed that there is a change in strategy and a reduction 

in the cost-per-day as we move from N=1 to N=3, but no change occurs from 

N=3 to N=10. 
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2. The second case study aimed to find the Battery Capacity Saturation Point which 

is the battery capacity above which no reduction in cost is observed. This is done 

for a battery energy storage system(BESS) with η=0.9andPmax=7kW. It was 

observed that for a battery energy storage system (BESS) with these 

specifications, the Battery Capacity Saturation Point is Bmax=37.794kWh where 

the cost-per-day comes to € 0.521667. 

 
 

3. The purpose of the third case study was to find the Payback Period for the 

investment. This is basically the amount of time taken for the savings in cost-per-

day to add up to the initial investment of the battery energy storage system 

(BESS).  This measures the viability of the investment. The payback period is 

observed to be not less than 29 years which is beyond the 10 year warranty 

period for a Tesla Powerwall 2 making this investment infeasible. The Required 

Initial Investment was also calculated which is the initial investment needed to 

bring the payback period to within the 10 year mark. The Required Initial 

Investment comes out to be approximately € 2749.0213. 

 
 
Hence, it can be concluded that the algorithm does help in reducing the cost-per-day 

of electricity for a consumer household. However, the payback period is too long for 

it to be viable right now. With increased research and the use of other renewable 

sources of energy however, the cost of using a battery energy storage system could be 

further decreased such that the payback period will be reasonable enough to make it a 

viable investment.  
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6.2. FUTURE SCOPE 
 
This algorithm can be further improved and then implemented in smart meters for 

households in a day-ahead market. It can also be incorporated by the distributor itself 

which will help in demand side management. This model might indirectly cause a 

reduction in peak loads and ease the demand during peak hours. 

 
This model can also be extended to a community whereby a stack of batteries can be 

used in a neighbourhood and the initial cost can be split amongst the households in the 

neighbourhood. This will help reduce the payback period for the investment and 

thereby increase the viability of the investment. 
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