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ABSTRACT

KEYWORDS: Visual Question Answering, Novel Objects, Zero Shot, Auto-Encoders

We study the problem of answering questions about images in the harder setting, where

the test questions and corresponding images contain novel objects, which were not

queried about in the training data. Such setting is inevitable in real world—owing to the

heavy tailed distribution of the visual categories, there would be some objects which

would not be annotated in the train set. We show that the performance of two popular

existing methods drop significantly (up to 28%) when evaluated on novel objects cf.

known objects. We propose methods which use large existing external corpora of (i)

unlabeled text, i.e. books, and (ii) images tagged with classes, to achieve novel object

based visual question answering. We do systematic empirical studies, for both an oracle

case where the novel objects are known textually, as well as a fully automatic case with-

out any explicit knowledge of the novel objects, but with the minimal assumption that

the novel objects are semantically related to the existing objects in training. The pro-

posed methods for novel object based visual question answering are modular and can

potentially be used with many visual question answering architectures. We show con-

sistent improvements with the two popular architectures and give qualitative analysis of

the cases where the model does well and of those where it fails to bring improvements.
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CHAPTER 1

INTRODUCTION

Humans seamlessly combine multiple modalities of stimulus, e.g. audio, vision, lan-

guage, touch, smell, to make decisions. Hence, as a next step for artificial intelligence,

tasks involving such multiple modalities, in particular language and vision, have at-

tracted substantial attention recently. Visual question answering (VQA), i.e. the task

of answering a question about an image, has been recently introduced in a supervised

learning setting Malinowski et al. (2015); Antol et al. (2015). Some examples of im-

ages and associated questions are given in Figure 1.1. VQA can be considered an im-

portant task for two main reasons. Firstly, it requires a higher level of understanding

of the vision, language modalities and the interaction between the two when compared

to other tasks like image captioning and video captioning. VQA requires the system

to recognize and detect objects, understand their interaction with the environment and

other objects (action recognition), reason based on knowledge acquired from external

databases and common-sense, etc. While image captioning requires a system to gen-

erate a single line summary of the image, VQA requires the system to answer queries

about different parts of the image, which may require a more thorough understanding

of the image. Secondly, it is easier to evaluate VQA than image captioning. Several

evaluation metrics for image captioning have been used Papineni et al. (2002); Lin;

Vedantam et al. (2015); Lavie (2014); Anderson et al. (2016) and it is a research topic

by itself Elliott and Keller (2014). On the other hand, even if we restrict the answer

space to a finite set of answers, we can test a VQA system on a wide variety of queries

and reasoning skills. This allows us to better evaluate the performance of different al-

gorithms on this task and track the progress of VQA systems.

In the currently studied setup, like in other supervised learning settings, the objects in

the training data and the test data overlap almost completely, i.e. all the objects that

appear during testing have been annotated in the training. This setting is limited as this

requires having training data for all possible objects in the world—this is an impractical

requirement owing to the heavy tailed distribution of the visual categories. There are

many objects, on the tail of the distribution, which are rare and annotations for them



Figure 1.1: Examples of images and associated questions from VQA dataset Antol et al.
(2015)

might not be available. While humans are easily able to generalize to novel objects, e.g.

make predictions and answer questions about a wolf, when only a cat and/or a dog were

seen during training, automatic methods struggle to do so. In the general supervised

classification, such a setting has been studied as zero shot learning Larochelle et al.

(2008), and has been applied for image recognition as well Huang et al. (2015); Lam-

pert et al. (2013); Xian et al. (2016); Yu and Aloimonos (2010). While the zero shot

setup works with the constraint that the test classes or objects were never seen during

training, it also assumes some form of auxiliary information to connect the novel test

classes with the seen train classes. Such information could be in the form of manu-

ally specified attributes Huang et al. (2015); Lampert et al. (2013); Yu and Aloimonos

(2010) or in the form of relations captured between the classes with learnt distributed

embeddings like, Word2VecMikolov et al. (2013) or GloVe Pennington et al. (2014),

of the words from an unannotated text corpus Xian et al. (2016). In the present paper,

we are interested in a similar setting, but for the more unconstrained and challenging

task of answering questions about novel objects present in an image. Such a setting,

while being natural, has not been studied so far, to the best of our knowledge.
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Is the dog black and white ?Is the cat black and white ?
Yes

Train on known objects Test on unknown objects

Figure 1.2: We are interested in answering questions about images containing objects
not seen at training.

We start studying the problem by first proposing a novel split (§4.1), into train and

test sets, of the large-scale public dataset for VQA recently proposed by Antol et al.

(2015). Our split ensures that the novel objects in the test set are never seen in the train

set; we select the novel objects and put all the questions that contain those objects into

the test set along with all the questions whose answers contain them as well. This means

that the train set does not contain any question which either (i) makes a query about the

novel objects, or (ii) queries about some aspect of the image which indicates any of the

novel objects, i.e. has any possible answer mentioning the novel object. Hence, the split

is strong as any information about the novel object is missing from the train set.

We then take two deep neural network based architectures which have shown good

performance on tasks based on language and vision combined Lu et al. (2015); Ren

et al. (2015a). We benchmark them on the new split for novel object VQA and com-

pare the performances on the known object setting. As expected, we find that the per-

formances drop significantly (up to 28%) when there are novel objects in the test set.

We then propose two methods based on deep recurrent neural network based multi-

modal autoencoder, which exploit large existing auxiliary datasets of text and images,

to answer questions about novel objects, with the two architectures studied. The pro-

posed frameworks are modular and can be used with many neural networks based VQA

systems. We show that the proposed methods improve the performance of the system,

equally when (i) an oracle is assumed, that gives the novel test objects and (ii) when the

3



minimal assumption is made that the novel test objects are semantically related, quan-

tified by their similarity in distributed Word2Vec embedding space Mikolov et al.

(2013), to the train objects. We extensively study multiple configurations quantitatively

and also analyse the results qualitatively to show the usefulness of the proposed method

in this novel setting.
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CHAPTER 2

RELATED WORKS

Image based question answering was introduced by Malinowski and Fritz (2014) as the

Visual Turing Test, with the aim to develop AI systems that can pass a turing test under

unconstrained settings. They discuss some prominent challenges in this domain such

as scalability, ambiguity in concepts and references, common-sense knowledge and

evaluation. VQA dataset is a large scale dataset introduced by Antol et al. (2015). The

recent arrival of this dataset and the accompanying VQA challenge has led to increased

interest in the problem. The survey by Wu et al. (2016) categorizes the methods for

VQA into three main categories.

• Joint embedding methods Fukui et al. (2016); Gao et al. (2015); Malinowski
et al. (2015); Noh et al. (2016); Ren et al. (2015b); Andreas et al. (2015, 2016):
These methods bring the visual vectors obtained from Convolutional Neural Net-
works (CNNs) and textual vectors obtained from Recurrent Neural Networks
(RNNs) into a common space and then predict the answer using the joint em-
bedding.

• Attention based systems Chen et al. (2015); Lu et al. (2016); Shih et al. (2016);
Xu and Saenko (2015); Yang et al. (2015); Zhu et al. (2015a): Instead of relying
on global image representations, these methods focus on / attend to the relevant
spatial regions in the images which are decided based on the input question. The
attention features are then used to answer the question.

• Compositional models Andreas et al. (2015, 2016); Kumar et al. (2015); Xiong
et al. (2016): These are based on networks with explicit memory mechanisms.
They focus on having modular architectures which allows for efficient supervi-
sion and transfer learning.

2.1 Joint emedding models

The images are encoded using a CNN, the question words are encoded using distribu-

tional embeddings such as Word2Vec and GloVe. The encoded words are fed into

an RNN to obtain the fixed length question encoding. The image and question vec-

tors are then jointly fed to a classifier that will predict the answer. Malinowski et al.



(2015) and Gao et al. (2015) encode the question and image using an LSTM and use

a decoding LSTM to generate the answers. In additon, Malinowski et al. (2015) share

the LSTM parameters across the encoder and decoder. Ren et al. (2015b) predict a

word answer using a multi-class classification over a pre-defined vocabulary of single

word answers. Ren et al. (2015b) also use bidirectional LSTMs for improved ques-

tion encoding. Fukui et al. (2016) propose a multimodal bilinear pooling as opposed

to addition, multiplication and concatenation of the different modes for more expres-

sive representations. Fourier space computations are adopted for computing the outer

product efficiently.

2.2 Attention based models

Zhu et al. (2015a) augment the LSTM with spatial attention over the image. This is

done by learning weights over the convolutional features which are predicted using the

global image features and the hidden state of the LSTM. Similarly, Chen et al. (2015)

generate a question-guided attention map using convolution with a kernel generated

from the question embeddings. Yang et al. (2015) use stacked attention networks that

locate visual features relevant to the question iteratively to estimate the answer. Xu

and Saenko (2015) propose a multi-hop image attention scheme, where the two types

of hops are guided by word-based and question-based attention. Shih et al. (2016) use

region proposals to find relevant regions in the image w.r.t. the question and potential

answer pairs. Lu et al. (2016) propose a hierarchical co-attention model where both

image and question steer the attention over parts of each other.

2.3 Compositional models

Neural Module Networks Andreas et al. (2015, 2016) exploit the compositional nature

of the questions to breakdown the complexity of the task. They learn to assemble sub-

modules that perform specific tasks and answer the question based on the composed

network. Dynamic Memory Networks Kumar et al. (2015) and their variants Weston

et al. (2014); Sukhbaatar et al. (2015); Bordes et al. (2015), have been recently adapted

and applied to VQA by Xiong et al. (2016). They use an explicit memory to read and
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write depending on the input question, allowing them to understand the questions better.

Methods which use auxilary image or text datasets or other sources of knowledge

have also been proposed. Wang et al. (2015, 2016) propose methods which use knowl-

edge bases for VQA. Wu et al. (2015b) predict semantic attributes in the image and

exploit external knowledge bases to query for related knowledge, to better understand

the question.

Similar in spirit to the current work, zero shot learning, i.e. when the set of test

classes is disjoint from the set of train classes, has been well studied in the literature

Huang et al. (2015); Lampert et al. (2013); Larochelle et al. (2008); Yu and Aloimonos

(2010). Zero shot learning aims to predict novel object categories without any visual

training examples but with auxilary relations between the known and unknown objects,

e.g. in the form of common attributes. Lampert et al. (2013) proposed to use attributes

for zero shot image classification while more recent work by Xian et al. (2016) showed

that it could be achieved using embeddings learnt from unsupervised text data. Most

of the current state-of-the-art methods for zero shot classification use an embedding

based approach where the images and classes (the word for the class, e.g. ‘dog’, ‘cat’)

are embedded into respective spaces and a bilinear compatibility function is learnt to

associate them Frome et al. (2013); Xian et al. (2016).

Our work is also related to the recent works on autoencoders for vector sequences

based on recurrent neural networks (RNN). Such autoencoders have been recently used

in text processing Li et al. (2015); Dai and Le (2015) as well for doing semi-supervised

learning and fine tuning of RNN based language models.
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CHAPTER 3

APPROACH

We are interested in extending the VQA models to better answer questions about novel

objects by being aware of them both textually and visually. Towards that end, we start

with two existing architectures, for VQA, and expose them to extra information, from

auxiliary datasets of text and images, in a carefully designed manner. This allows them

to be able to answer questions about novel objects that are not present in the VQA

training data. We consider two successful deep neural network based architectures,

illustrated in Figure 3.1, whose variants have been used in recent literature Lu et al.

(2015); Ren et al. (2015a). We first describe the base architectures and then give the

proposed training and architectural extensions for novel object induction.

3.1 Base Architectures

Architecture 1.

The first architecture, shown in Figure 3.1 (left), proposed by Lu et al. (2015), uses

a Long Short Term Memory (LSTM) based recurrent neural network, to encode the

question as xQ ∈ RdQ , and a Convolutional Neural Network (CNN) to encode the im-

age as xI ∈ RdI . The two encoded representations are then projected to a common

multimodal space with projection matrices WQ ∈ Rd×dQ and WI ∈ Rd×dI respectively.

The projected vectors are then multiplied element-wise to obtain the joint multimodal

representation of the question and the image. This representation is then, in turn, pro-

jected to the answer space using a fully connected layer to obtain probabilities over the

set of possible answers,

pQI = WQI (tanh(WQxQ)� tanh(WIxI)) . (3.1)

Here, pQI is the unnormalized probability distribution over the set of all possible an-

swers, given the image, question pair i.e. the model treats the VQA task as a multimodal
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Figure 3.1: The two Visual Question Answering (VQA) architectures used.

signal classification task. The answer with the maximum probability is then taken as

the predicted answer.

Architecture 2. The second architecture, shown in Figure 3.1 (right), proposed by Ren

et al. (2015a), borrows ideas from image captioning literature. It treats the image as the

first word of the question, by projecting the image feature vector xI to the word embed-

ding space with a learnt projection matrix We. Following the image first, the question

words are then passed one at a time to the LSTM. The hidden state vector of the LSTM

after the last time step, which now becomes the joint embedding of the question and the

image, is then projected to the answer space to obtain the probabilities over the set of

answers, similar to Architecture 1 above.

3.2 Inducing novel objects using auxiliary datasets

Given the above two architectures, we now explain how we introduce novel objects us-

ing auxiliary datasets. We experiment with two different settings, first, when the novel

words are known textually, and, second, when the novel words are not known. The

former is similar to the zero-shot classification Lampert et al. (2013) setting where the

unknown classes are never seen visually at training but are known textually. In the lat-

ter, we make the assumption that the novel words are semantically close to the known

words; where we use the vector similarity of the words in a standard distributed word

9
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Figure 3.2: Autoencoders used to pre-train the respective VQA networks’ encoders.

embedding space, e.g. word2vec Mikolov and Dean (2013). Given the novel words

from the two settings, to make the system aware of novel concepts, we have two sources

of auxiliary information. We could use large amount of text data, e.g. from Wikipedia

or books, as well as image data from large datasets such as ImageNet Russakovsky

et al. (2015). We now describe the different ways in which we propose to exploit such

auxiliary datasets for making the above described VQA systems aware of novel objects.

Auxiliary text data only. In the first method we propose to use only auxiliary text data

for improving VQA performance for novel objects. In most of the VQA architectures,

the question encoding is done with a recurrent neural network such as the LSTM net-

work. When large amount of text data is available, which contains both the known and

novel objects and the relations between them (as could be described textually), we hy-

pothesise that pre-training question encoder on the auxiliary dataset could be beneficial.

To pre-train the question encoder, we use an LSTM based sequence autoencoder (AE),

e.g. Dai and Le (2015); Li et al. (2015). The AE is pre-trained on a large external text

dataset, e.g. BookCorpus Zhu et al. (2015b). Figure 3.2 illustrates the AEs (with the

dashed block absent, we explain it more below).

However, this is not a straightforward pre-training as the text vocabulary needs to

be expanded to contain the novel words, so that the VQA system is aware of them and

does not just see them as UNK (special token for all words not in vocabulary). It could

be argued that pre-training with only the current vocabulary may improve the encoder

10



in general and might help the VQA system—we test this system as well in the experi-

ments. To do such vocabulary expansion is non-trivial; we could use a vocabulary from

the external corpus1, but such a vocabulary turns out to be very large and can degrade

the VQA performance. Thus, we evaluate two ways to construct the vocabulary.

Oracle setting. First, we assume an oracle setting where we know (textually) the novel

words that will appear—this is similar to the assumption in zero-shot setting2 Lampert

et al. (2013). We add the known novel words to the current vocabulary and train the AE

on the auxiliary text data. Once trained, we take the encoder weights from the AE to

initialize the question encoder in the VQA system.

General setting. Second, we assume that the novel words would be semantically sim-

ilar to the known words and, thus, expand the vocabulary by adding words, from the

external dataset, which are within a certain distance to the known words. The seman-

tic word distance we use is the cosine distance between the word2vec embeddings

Mikolov and Dean (2013) of the known and novel words. This is a more relaxed as-

sumption compared to the oracle setting and we call this the general setting.

In practice, however, we found that the direct AE training was noisy in this general

setting as the vocabulary size increased by nearly 4×. We found that the noise and

instability of the the training mainly came from the word embeddings, i.e. the projection

of the one-hot word representations before being fed to the recurrent unit, in the AE.

In order to train it more effectively, we thus use a pre-training technique for initializing

the word embeddings of the AE as follows. We first train the AE on the BookCorpus

with the VQA vocabulary. We then take the words which appear both in the VQA

vocabulary and the original trained word2vec vocabulary. Using these words, we

obtain a projection to align the the word2vec vector space with the currently learned

word embedding space. Formally, denote the word2vec embedding matrix as Aw and

the VQA word embedding matrix as Av, then we find a projection matrix M , using least

squares, as

AwM = Av, i.e., M = (A>wAw)
−1A>wAv. (3.2)

Once the alignment matrix M is available, the words in the general setting’s vocabulary,

1All words with frequency above a threshold in the whole dataset
2Note that our setting is harder than zero-shot setting in Lampert et al. (2013) as here the test set

contains both the known and novel objects

11



which are not in the VQA vocabulary, are computed as

Âv(w) = Av(w)M, w ∈ Vg\Vv, (3.3)

where Vg is the vocabulary set of the general setting and Vv is that of VQA vocabulary.

We term this as vocabulary expansion from the first vocabulary to the second, similar

in spirit to the work by Kiros et al. (2015). Going a step further, we initialize the word

embedding matrix in the AE using the estimated word vectors and train the AE again

on BookCorpus, which we finally use with the base architecture as in the other AE’s

above.

Auxiliary text as well as image data. Apart from using text only data to induce novel

objects, we also attempt to use freely available auxiliary image classification data, e.g.

ImageNet Russakovsky et al. (2015). The general philosophy stays the same, we wish

to train auto-encoders with the auxiliary data, but in this case such AE takes multimodal

input in the form of both text sentences and images, and decodes them back to the sen-

tences. We hope that such an AE3 will help induce novel objects. To do so, we require

paired image-text data and we use the two auxiliary datasets to generate such paired

data synthetically and weakly as follows. We take images of the words corresponding

to objects in our text vocabulary from the classification dataset such as ImageNet Rus-

sakovsky et al. (2015) and pair them with general sentences about the object from the

text dataset, e.g. BookCorpus Zhu et al. (2015b) or Wikipedia. Note that this is ex-

pected to be a noisy paired data; we evaluate if such noise is tolerated by the AE to

still give some improvement on the VQA task by learning lexico-visual associations for

novel objects.

Since the question encoder for the first architecture does not use the image as an in-

put, we design the corresponding multimodal AE as shown in Figure 3.2 (left). We take

the output of the multiply layer and use it to initialize the hidden state of the decoder. To

keep the architecture consistent with the text AE, we introduce a skip connection which

feeds the final hidden state of the encoder to the decoder’s initial state. Adding such a

skip layer ensures that the AE will use the image encoding only if it is beneficial and

we hope that this will add resilience to the noise in the synthetically generated paired

3It is not strictly an AE as it is only decoding back the text part and not the image part. We refrained
from decoding back the images, as initial results were not encouraging; also, image generation from
encoded vectors is a complete challenging problem in itself Goodfellow et al. (2014).

12



data. We, thus, effectively sum the final hidden state of the encoder and the output of

the multiply layer to obtain the initial decoder state. In case of the second architecture,

we just use the image encoding as the first input to the LSTM based AE, as shown in

the dashed part of Figure 3.2 (right).
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CHAPTER 4

EXPERIMENTS

We now describe the experiments we performed to validate the method and study VQA

when novel objects are present in the test set. We first describe the datasets we used,

followed by the new split we created to have novel objects in the test set. We then give

our quantitative and qualitative results, with discussions.

VQA dataset Antol et al. (2015) is a publicly available benchmark which consists of

images obtained from the MSCOCO dataset Lin et al. (2014a) and an abstract scenes

dataset. The statistics of the dataset are shown in Table 4.1. The models are evaluated

on the VQA dataset using the accuracy metric defined as

acc = min

(
# humans that provided that answer

3
, 1

)
. (4.1)

BookCorpus Zhu et al. (2015b) dataset has text extracted from 11, 038 books available

on the web. Summary statistics of the dataset are shown in Table 4.1. We created a

split consisting of 73, 874, 228 training, 30, 000 validation and 100, 000 test sentences

to train the AEs.

ImageNet dataset from the ILSVRC challenge Russakovsky et al. (2015) consists of

images collected from Flickr and other search engines. Each image is labelled with the

VQA dataset
#images 204,721
#ques 614,163
#ans per ques 10
#ques Types more than 20
#words per ans one or more

BookCorpus
#books 11,038
#sentences 74,004,228
#unique words 984,846,357
avg #words / sent. 13

Table 4.1: Statistics of datasets used



presence or absence of one out of 1000 object categories. The training set consists of

1.2 million training images, 50, 000 validation images and 100, 000 test images. We

have used ImageNet to obtain images for the known and unknown objects.

Wikipedia. The text data obtained from BookCorpus did not have sentences containing

some of the novel objects. Also, the data obtained from BookCorpus was story oriented

and not factual data, hence the sentences containing certain objects did not describe the

objects themselves, but just contained the objects as a part of a narrative. In order to

complement the data from BookCorpus and obtain descriptive information about novel

objects, we queried Wikipedia1 by searching for sentences containing the novel objects.

Weak paired training data. To generate synthetic paired data, we consider all the

objects from the oracle/general vocabulary and find an intersection with the ImageNet

classes. For each of the objects, we obtain m random images from the matched classes

and n random sentences containing the object from BookCorpus and pair them to obtain

mn sets of paired images and sentences. In our case, we selected m = 20 and n = 20.

This constitutes the weak paired training data which amounted to approximately 0.25

million samples for the oracle case and 0.45 million samples for the general case.

4.1 Proposed Novel Split for VQA dataset

We create a new split of the VQA dataset to study the setting of novel objects at test

time. We obtain the train and validation split of the real scenes part of VQA dataset An-

tol et al. (2015) and call this the original split. The questions from the train split are

used for training and the questions from the validation split are used for testing. Next,

we divide the full set of images, train and validation combined, into new train and test

split as follows. For each of the questions in the VQA dataset, we identify the nouns2

and create a histogram of the types of questions each noun occurs in. We use normal-

ized histograms to cluster the nouns into 14 clusters. We select 80% of the nouns as

known and 20% of the nouns as novel, randomly from each of the 14 clusters. A ques-

tion in the VQA dataset belongs to the new test set if and only if at least one of the novel

1Source: https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

2We used NLTK’s PerceptronTagger for obtaining the nouns http://www.nltk.org/
_modules/nltk/tag/perceptron.html
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# Questions # Objects
Split Train Val Test Train Test Both
Orig 215375 0 121509 3625 3330 3178
Prop 224704 5000 116323 2951 3027 2216

Table 4.2: Statistics of the dataset splits. The proportion of seen test objects is 95.4% in
original vs. 73.2% in proposed.

#Known objs 0 1 2 3 4 5
#Questions 32452 35300 12593 2605 501 48

Table 4.3: The number of questions with specific number of known words in test set.

nouns occur in it. We randomly sample 5000 questions from the train split to create the

validation split. The statistics of the original split and the new proposed are shown in

Table 4.2—note that, while the original test split contains 3178 known objects out of

3330 total, the proposed test split has only 2216 known objects out of a total of 3027,

i.e. 811 objects that appear in the test split were never seen (visually or textually) in the

VQA training data 3. Further, Table 4.3 shows the number of questions where 0 to 5

known objects appear as well (in addition to at least one unknown object). We see that

a large number of question, i.e. 32452 contain only novel objects.

Architecture 1

Open Ended Questions Multiple Choice Questions

Split Ov.all Oth. Num. Y/N Ov.all Oth. Num. Y/N

Orig 54.23 40.34 33.27 79.82 59.30 50.16 34.41 79.86

Novel 39.38 23.07 27.52 74.02 46.54 34.91 29.39 74.10

Drop 14.85 17.27 5.75 5.8 12.76 15.25 5.02 5.76

Architecture 2

Open Ended Questions Multiple Choice Questions

Split Ov.all Oth. Num. Y/N Ov.all Oth. Num. Y/N

Orig 48.75 33.31 31.42 74.20 54.94 45.24 32.95 75.28

Novel 34.97 16.98 28.27 71.06 42.83 30.16 29.42 71.12

Drop 13.78 16.33 3.15 3.14 12.11 15.08 3.53 4.16

Table 4.4: The drop in performance for novel word setting.

3The design of the dataset leads to sharing of images between the train and test splits; see supplemen-
tary material for detailed discussion.
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Implementation details. In the case of Architecture 1, we used the default settings

of 200 dimensional word encoding size, 512 RNN hidden layer size and 2 RNN layers

for computing the results on the case of training only with VQA dataset. To avoid

very long training times, with the above large parameter values for other architectures,

we selected 512 dimensional word encoding, 512 RNN hidden layer size and 1 RNN

layer for computing all our results. We observed that this did not affect our results

appreciably. Similarly, in Architecture 2, we used 512 dimensional word encoding, 512

RNN hidden layer size and 1 RNN layer throughout all our experiments.

4.2 Quantitative Results

Our overall results for the two architectures are shown in Table 4.5. The results are split

into the standard question types of Overall, Others, Numbers and Yes/No. We also in-

troduce the Novel question type which consists of all the questions which contain only

the novel objects and no known objects (32452 questions from Table 4.3). This helps

us analyse the performance of novel object VQA without interference from the known

objects. The image feature, auxilliary data and the vocabulary used for each of the

experiments has been specified. The image feature can be VGG, INC (Inception), EF

(Early fusion of VGG, INC) or LF (Late fusion of VGG, INC), the auxilliary data can

be none (baseline), text (BookCorpus pre-trained AE) or text+im (BookCorpus +

WeakPaired data pre-trained AE) and the vocabulary can be train (only words from

train data of novel split), oracle (oracle case), gen (general case) or gen(exp)

(vocabulary expansion in general case). We analyse our results in terms of the need

to incorporate novel words, effects of different features, vocabulary expansion and pre-

training methods on the overall performance. In the following, we refer to a cell in the

tables with the Architecture number, the row number and the type of questions (others,

numbers etc. in Open Ended or Multiple Choice questions). If we do not specify the

sub-type of questions for OEQ or MCQ, then we are discussing the overall averages for

these two types.
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Performance on original vs. novel split. Table 4.4 gives the results of the two ar-

chitectures on the original and novel splits, respectively, without using any data outside

of the VQA dataset4. We obseve a severe drop in perfomance, e.g. Architecture 1 (2)

drops by 27% (28%) on average for the open ended questions, and 21% (22%) on the

multiple choice ones. This highlights the fact that the current methods are not capable

of generalizing on VQA to novel objects when not explicitly trained to do so. This

empirically verifies the argument that VQA in the novel object setting is a challenging

problem and deserves attention on its own.

Naïve pre-training is not sufficient. An obvious first argument, as discussed in Sec. 3.2,

is that pre-training the text model on the large amount of auxiliary text data, might make

it better and hence lead to improved performance, even when the vocabulary is kept the

same as the original one (which does not contain the novel words). We tested this hy-

pothesis and found it to not be true. While text only pre-training (rows A1.b, A2.b in

Table 4.5) provided some improvements over the baseline (row A1.a) in most cases,

e.g. 39.38 to 40.09 in A1.b OEQ, 46.47 to 47.01 in A1.f MCQ, they were generally mi-

nor, especially in the high performing models; some isolated larger improvements did

happen, e.g. +6.6% (34.97 to 37.30) in A2.b OEQ, but they were not consistent and hap-

pened in the relatively low performing cases only. However, the text only pre-trained

models with the oracle and general vocabularies provided consistent improvements,

e.g. +2.7% (39.38 to 40.44) in A1.c OEQ, +2.3% (40.27 to 41.19) A1.g OEQ, +7.7%

(34.97 to 37.68) in A2.c OEQ and +2.3% (37.66 to 38.53) in A2.g OEQ, as they were

capable of understanding novel objects. Hence, we conclude that simple pre-training

without adding the novel objects to the vocabulary is not sufficient for novel object test

setting in VQA.

In the following, all the discussion are w.r.t. methods using vocabularies incorporating

novel objects.

Comparison of architectures. We found that that Architecture 1 generally performed

better than Architecture 2, e.g. 39.38 on A1.a OEQ vs. 34.97 on A2.a OEQ, 39.56 in

A1.k OEQ vs. 35.65 on A2.k OEQ. The relative improvements obtained with the better

performing architecture over the corresponding baseline were, unfortunately, generally

4While the training/testing data are not same, and hence the performances are not directly comparable,
we note that the amount of training data is ∼ 4% more for the models trained in the novel setting
(Table 4.2). If the difficulties of the settings were similar, the novel models should have, arguably, done
better due to access to more training data.
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lesser, e.g. +6.2% and +4.2% in A1.i OEQ and MCQ vs. +11.1% and +8.5% in A2.i

OEQ and MCQ, both with early fusion of VGG and Inception features, respectively,

indicating that it is more difficult to improve performance for more saturated methods.

We do, however, see consistent improvements in majority of cases for both the Archi-

tectures, supporting the proposed method.

Auxiliary text data. The models initialized from auxiliary text data, with both oracle

and general vocabularies, provide significant improvement in the Yes/No, e.g. +5.6%

(71.06 to 75.06) in A2.c OEQ, +4.4% (73.25 to 76.49) in A1.q OEQ, and Novel ques-

tions, such as 2.5% (48.03 to 49.23) in A1.g OEQ, +5.2% (44.60 to 46.93) in A2.c

OEQ. The proposed model improves on Yes/No questions as they generally have a cen-

tral object, e.g. ‘is the little dog wearing a necktie?’ (Fig. 4.1, image on left-top), and

when this object (necktie here) is unknown the baseline model fails to understand the

question. Similar trend is visible in the ‘Novel’ type.

The effect of the general (automatic) vocabulary expansion technique is similar to

the oracle case, where the novel objects are assumed to be known a priori. The overall

results with oracle vocabulary vs. general vocabulary are similar, i.e. 41.84 vs. 41.82,

48.87 vs. 48.35, for A1.(i,s) OEQ and MCQ, respectively, and 39.49 vs. 39.91 and 46.40

vs. 46.99 for A2.(i,t) OEQ and MCQ, respectively. Thus, we conclude that the proposed

method is capable of leveraging auxiliary text data to improve novel object VQA, in the

automatic setting when the minimal assumption is made that the novel words are ex-

pected to be semantically similar to the known words.

Vocabulary expansion. Generally, the accuracy of the system improves with vocab-

ulary expansion on the Yes/No and Novel question categories when compared to the

accuracy of the non-expanded setting, e.g. 75.48, 48.78 in A1.p OEQ vs. 76.49, 49.36

in A1.q OEQ and 74.38, 51.29 in A2.l MCQ vs. 75.28, 52.47 in A2.m MCQ. This fol-

lows the trend from auxiliary text data where we observed similar improvements, and

is expected since vocabulary expansion is simply a better way to perform text only pre-

training.

Auxiliary text and image data. Using both auxiliary datasets of text and image, as pro-

posed, led to consistent but small improvements over using only auxiliary text datasets.

As an example, consider Inception features for Architecture 2 in A2.f–h OEQ. The

baseline of 37.66 is improved to 38.53 (+2.3%) by oracle vocabulary expansion and

use of auxiliary text data which is further improved to 38.75 (+2.9%) when using both
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Is the little dog wearing a necktie? What color is the apple? What event is this? What flavor is the cake? What ethnicity is the baby?
P: no, B: yes, GT: no P: green, B: red, GT: green P: baseball, B: yellow, GT: green P: chocolate, B: left, GT: chocolate P: asian, B: left, GT: asian

Is this a restaurant? What direction is the bear facing? Is this plane in motion? How many teams are in the photo? What color ink is in the pen?
P: no, B: yes, GT: yes P: brown, B: right, GT: right P: yes, B: no, GT: no P: 3, B: 2, GT: 2 P: red, B: blue, GT: blue

Figure 4.1: Qualitative examples highlighting the success and failure cases of our pro-
posed model(P) cf. the baseline model(B) and the ground truth(GT). The
novel concepts are underlined in the question.

auxiliary data of both text and image—the major improvement comes from using text

data and a further small improvement is achieved by using image data as well. We

believe that since the text data is relatively clean and rich, it provides good semantic

ground for the model to understand the novel objects, while the noisy method of gener-

ating weak text-image paired data as proposed is not able to supplement it significantly,

and sometimes even deteriorates it slightly. Also, since the image model may have seen

the novel objects a priori, this may not have a significant impact on the overall results.

Additional observations. Apart from the above main observations, we found that In-

ception features were generally better than VGG features for VQA. However, most of

the improvement of Inception over VGG features was in the “others" category, e.g.

23.07 in A1.a OEQ vs. 24.54 A1.e OEQ and 30.74 in A2.k MCQ vs. 31.87 in A2.o

MCQ. The Inception baseline models do not generally perform better than VGG base-

line models on the “Novel" questions, especially in Architecture 1 which is the stronger

architecture. Therefore, improving image features alone is not sufficient for better novel

objects based VQA. This is expected since the text model is still the same and without

improvements in the text model or better joint modelling, we cannot expect a significant

difference in performance on novel objects.
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Architecture 1 (A1)
Open Ended Questions (OEQ) Multiple Choice Questions (MCQ)

Row Feat Aux Vocab Overall Others Numbers Yes/No Novel Overall Others Numbers Yes/No Novel
a VGG none oracle 39.38 23.07 27.52 74.02 47.56 46.54 34.91 29.39 74.10 52.32
b VGG text train 40.09 23.46 28.85 75.14 48.75 47.22 35.32 20.36 75.21 53.39
c VGG text oracle 40.44 23.42 28.24 76.52 48.95 47.65 35.39 29.89 76.60 53.77
d VGG text+im oracle 40.49 23.35 28.32 76.79 48.89 47.38 34.76 30.04 76.87 53.80
e INC none oracle 40.27 24.54 28.02 73.95 48.03 46.47 34.84 29.41 74.00 52.19
f INC text train 40.18 24.12 28.25 74.37 48.10 47.01 35.43 29.91 74.46 52.80
g INC text oracle 41.19 24.98 28.44 75.93 49.23 47.87 36.00 30.24 76.04 53.88
h INC text+im oracle 40.73 24.12 27.80 76.03 48.61 47.23 34.99 29.58 76.12 53.18
i EF text oracle 41.84 25.69 27.93 76.87 49.76 48.47 36.62 29.75 76.96 54.40
j LF text oracle 41.46 25.39 28.66 75.95 49.32 48.22 36.33 30.26 76.54 54.04
k VGG none gen 39.56 23.18 28.47 74.06 48.02 46.23 34.27 29.92 74.13 52.44
l VGG text gen 40.53 23.62 28.93 76.20 49.00 47.50 35.26 30.10 76.27 53.45

m VGG text gen(exp) 40.76 23.89 28.19 76.69 49.05 47.82 35.67 29.40 76.79 53.75
n VGG text+im gen(exp) 40.34 23.09 29.25 76.49 49.25 47.36 34.82 30.31 76.60 53.92
o INC none gen 40.25 24.86 28.12 73.25 47.77 46.53 35.28 29.56 73.33 52.07
p INC text gen 40.76 24.54 28.14 75.48 48.78 46.87 34.77 28.95 75.56 52.83
q INC text gen(exp) 41.39 24.96 28.83 76.49 49.36 47.88 35.74 30.09 76.62 53.77
r INC text+im gen(exp) 40.42 23.77 27.98 75.88 48.77 46.87 34.53 29.11 75.99 52.87
s EF text gen(exp) 41.82 25.72 28.51 76.55 49.60 48.35 36.57 29.81 76.65 53.92
t LF text gen(exp) 39.66 24.03 27.65 73.07 47.34 47.26 35.37 29.42 75.53 53.13

Architecture 2 (A2)
Open Ended Questions (OEQ) Multiple Choice Questions (MCQ)

Row Feat Aux Vocab Overall Others Numbers Yes/No Novel Overall Others Numbers Yes/No Novel
a VGG none oracle 34.97 16.98 28.27 71.06 44.60 42.83 30.16 29.42 71.12 49.38
b VGG text train 37.30 19.50 26.24 74.48 45.71 44.30 31.26 27.09 74.55 50.31
c VGG text oracle 37.68 19.50 28.28 75.06 46.93 45.12 31.91 29.64 75.11 51.67
d VGG text+im oracle 38.06 20.15 28.45 74.98 47.54 45.80 32.96 30.30 75.10 52.66
e INC none oracle 37.66 20.18 28.32 73.69 46.50 44.59 31.77 29.32 73.77 50.98
f INC text train 37.37 20.00 25.90 73.89 45.54 44.40 31.83 26.59 73.96 50.27
g INC text oracle 38.53 20.79 28.07 75.39 47.55 45.85 32.98 29.37 75.49 52.32
h INC text+im oracle 38.75 21.12 28.96 75.20 47.95 46.07 33.32 30.13 75.34 52.53
i EF text oracle 38.85 21.18 28.43 75.57 48.00 46.47 33.76 30.58 75.66 53.15
j LF text oracle 39.49 22.02 28.71 75.95 48.47 46.40 33.56 29.56 76.04 52.86
k VGG none gen 35.65 17.33 26.62 73.14 45.19 43.64 30.74 27.40 73.28 50.29
l VGG text gen 37.66 19.95 27.73 74.31 46.64 44.99 32.19 29.01 74.38 51.29
m VGG text gen(exp) 38.00 20.21 26.77 75.21 46.84 45.96 33.32 29.26 75.28 52.47
n VGG text+im gen(exp) 37.92 20.21 27.90 74.59 45.58 45.58 33.04 28.99 74.67 52.15
o INC none gen 37.29 19.59 28.76 73.50 46.16 44.63 31.87 27.40 73.28 50.29
p INC text gen 38.23 20.89 28.11 74.22 46.94 45.23 32.54 29.55 74.31 51.67
q INC text gen(exp) 37.99 20.59 26.30 74.65 46.31 45.89 33.54 29.01 74.72 51.84
r INC text+im gen(exp) 38.20 20.49 27.79 75.00 46.97 45.65 32.94 28.96 75.08 51.93
s EF text gen(exp) 38.37 21.13 28.82 74.00 47.10 45.46 33.00 29.99 74.05 51.89
t LF text gen(exp) 39.91 22.75 28.90 75.87 48.48 46.99 34.55 30.24 75.94 53.26

Table 4.5: Perfomances of the different models in the novel object setting for VQA
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4.3 Qualitative results

Figure 4.1 shows some example images with the questions and their answers from the

different methods. In the first row, we can observe that proposed model (corresponding

to A1.s) has successfully induced the concepts of mouse, apple, event and flavor into

the VQA framework whereas the baseline (corresponding to A1.k) has failed to reason

based on them. Some of the failure cases of the proposed model are illustrated in the

second row. It has failed to induce the concepts of restaurant and direction. We also feel

that in the last 2 cases, it has predicted purely based on the text modelling. For example,

in the fourth case it says that the plane is in motion and in the fifth case it says the ink

is red. This could be because it witnessed similar textual examples and the image is not

convincing enough for it to say otherwise.
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CHAPTER 5

CONCLUSIONS

We presented a new task of VQA based on novel objects which were not seen during

training. This is a relevant setting as in real world, owing to the heavy tailed distribu-

tion of the visual categories, many rare objects are not expected to have annotations.

We showed that this is a challenging scenario and directly testing the models which had

not seen the objects during training leads to substantial degradation in performances of

up to 28%. We proposed to use auxiliary datasets of text, e.g. books and Wikipedia,

and images, e.g. ImageNet, to make the system aware of the novel objects it might en-

counter during testing. We showed that increasing the vocabulary, to include possible

novel words, is important and a simple pre-training on the auxiliary data is not suffi-

cient. We proposed two methods for incorporating novel objects in VQA systems. In

the first oracle method, we assumed that the novel objects that would appear are given

to us, while in the second we made the weaker assumption that the novel words will be

semantically similar to the known words. We also proposed a method to use external

labeled image datasets to form noisy image-text pairs for pre-training the VQA archi-

tectures. Our results demonstrated that making the model aware of novel objects using

vocabulary expansion and pre-training on external text datasets significantly improves

the performance for VQA in novel test object setting e.g. by +3.4% on the Yes/No ques-

tions, +3.6% on Numbers, +11.48% on Others and +4.8% on Novel for Architecture 1

and by +6.76% on the Yes/No questions, +2.2% on Numbers, +24.4% on Others and

+8.7% on Novel for Architecture 2 in OpenEnded questions category. However, the

gains from external image datasets were either absent or were only modest. We believe

that the external text datasets provided a clean and rich source of knowledge while the

paired image information was noisy and hence relatively less effective.



APPENDIX A

APPENDIX

A.1 Possible extensions

Here, we tackle the problem (P1) of answering known (e.g. similar to those in train

set) questions containing novel objects and having known answers, at test time. More

challenging cases include (P2) answering novel questions about novel objects (as sug-

gested by AR2) and (P3) generating answers containing novel objects (as suggested by

AR5). While problems P2 and P3 are more difficult problems than P1, we highlight

that P1 is itself a very challenging subproblem which has not been addressed so far. In

the proposed setting, questions that come under P1 account for a significant fraction of

the test questions (71.79%, 83, 508 out of 116, 323). If a perfect model were available

for P1, then the overall accuracy would be 71.79%. However, current methods obtain

accuracies of around 40%, highlighting that P1 itself is very hard and arguably should

be the first stepping stone in this direction.

A.2 Image sharing

Image sharing takes place in our proposed split, statistics are shown in Tab. A.2. We

claim that overfitting does not happen and justify the claim with the performances of

the system computed separately on the common and exclusive parts of test set; Tab. A.1

gives these performances and we see that the differences in overall performance are

very small (≤ 0.5) in all cases. Also, the improvements obtained by various models

over the baseline model are similar in the common and exclusive parts of the test set.

We would like to also highlight that sharing images does not make the task easier

or the split prone to overfitting (as already demonstrated by the results above). Even if

the same image is present in train and test set, the object being queried for is different

at train and test time (by design of the split). Hence, the system can not memorize or

overfit on the train set and give good performance on the test set.



Open Ended Questions Multiple Choice Questions
arch feat model aux vocab set ov oth num y/n ov oth num y/n

A
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e
1 V

G
G

1 none oracle s1 39.64 21.4 28.94 73.22 46.39 33.14 30.64 73.27
s2 39.33 23.37 27.24 74.19 46.57 35.23 29.15 74.27

2 text train s1 40.39 21.82 29.49 74.61 47.20 33.66 31.12 74.68
s2 40.04 23.75 28.73 75.25 47.23 35.62 30.21 75.33

3 text oracle s1 40.89 21.91 28.81 76.15 47.91 34.10 30.66 76.21
s2 40.35 23.69 28.13 76.60 47.60 35.62 29.73 76.68

IN
C

E
P

4 none oracle s1 40.71 23.00 29.88 73.47 46.72 33.52 31.01 73.52
s2 40.19 24.82 27.65 74.04 46.42 35.07 29.09 74.11

5 text train s1 40.40 22.61 28.77 73.53 46.79 33.70 30.47 73.61
s2 40.14 24.39 28.15 74.55 47.05 35.74 29.80 74.64

6 text oracle s1 41.20 23.20 28.61 74.99 47.76 34.63 29.97 75.11
s2 41.19 25.30 28.41 76.12 47.89 36.24 30.29 76.23

A
rc

hi
te

ct
ur

e
2 V

G
G

1 none oracle s1 35.45 15.53 28.86 70.55 43.02 28.90 29.79 70.57
s2 34.87 17.24 28.16 71.17 42.80 30.39 29.35 71.24

2 text train s1 37.52 17.37 27.37 74.12 44.45 29.63 27.85 74.20
s2 37.26 19.88 26.02 74.56 44.27 31.54 26.95 74.62

3 text oracle s1 37.99 17.66 28.16 74.78 45.04 30.00 29.47 74.83
s2 37.62 19.83 28.30 75.11 45.13 32.25 29.67 75.17

IN
C

E
P

4 none oracle s1 37.95 18.50 28.64 73.10 44.59 30.20 29.52 73.17
s2 37.61 20.49 28.25 73.81 44.59 32.05 29.28 73.89

5 text train s1 37.73 17.98 27.63 73.64 44.48 29.93 28.07 73.73
s2 37.30 20.36 25.56 73.94 44.39 32.17 26.30 74.00

6 text oracle s1 38.71 18.87 28.26 74.87 45.80 31.31 29.44 74.95
s2 38.49 21.14 28.04 75.50 45.85 33.28 29.35 75.60

Table A.1: Arch. 1 (top) and Arch. 2 (bottom) with VGG and INCEP features: s1 is
images exclusive to test and s2 is common images between train and test; in
both cases questions are test only.

# Images
Common to train and test Train only Test only

73487 43583 6216

# Corres.

Questions

Train Test Train Test

108857 97675 115847 18648

Table A.2: Statistics of images in train/test splits
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A.3 Explicit features for image representation

There have been a few works in the literature Wu et al. (2015a,b) that suggest that a

semantically explicit representation for images works better than the traditional CNN

FC layer features. One of the more commonly used representations in the vision and

language literature Fang et al. (2015); Anne Hendricks et al. (2016); Wu et al. (2015a,b)

is the attribute / lexical representation, i.e., representing the image by a set of seman-

tically meaningful concepts present in the image (nouns, verbs and adjectives). Here,

we analyze the utility of attribute representation in the context of novel object induction

for VQA. We use the attribute predictor from Fang et al. (2015) to learn an attribute

representation for VQA. The attribute predictor consists of the image features obtained

from VGGnet followed by a fully connected layer and sigmoid non-linearity to predict

the attribute probabilities. The fully connected layers (fc6, fc7, fc8) are replaced

by convolutions giving rise to a fully convolutional network. Given a set of images and

list of corresponding attributes, the network is trained in a Multiple Instance Learning

(MIL) framework to generate probabilities of each attribute being present in an image.

The training data is obtained from the MS-COCO image captioning dataset Lin et al.

(2014b). For each image, we take the nouns, adjectives and verbs present in the captions

provided and assign them as the ground truth attributes for the image.

We carefully design experiments to see the efficacy of novel object induction using

attribute based representation of images. Initially, we use only the top 1000 frequently

occurring attributes from the MS-COCO captions and train the attribute classifier. Then,

we expand the list of attributes to include the set of novel objects that we created in the

novel split of the VQA dataset. Both the attribute classifiers are trained on the MS-

COCO dataset (only on the images present in the training split of VQA dataset). The

resulting attribute representation of the image is used to train VQA models (architecture

1). The performance of these models are shown in Table A.3 in comparison to the VGG

fc7 features. We observe that using 1000 attributes obtains a 2.27% improvement in

overall accuracy when compared to fc7 features. By extending the attributes to include

the novel objects (VGG 1655), we get a marginal improvement of 0.5%. On further

analysis, we observed that the number of occurrences of the novel object attributes

was very low in the MS-COCO captions. To compensate for this, we obtained images

from the Visual Genome dataset containing the novel attributes and trained the attribute
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Open Ended Questions Multiple Choice Questions
model vocab set ov oth num y/n nov ov oth num y/n nov

VGG fc7 oracle s1 39.64 21.40 28.94 73.22 46.57 46.39 33.14 30.64 73.27 51.36
s2 39.33 23.37 27.24 74.19 47.80 46.7 35.23 29.15 74.27 52.55

VGG 1000
MS

train s1 40.54 22.75 30.14 73.29 47.69 47.20 34.45 31.24 73.33 52.06
s2 40.12 24.51 27.96 74.32 48.73 47.14 36.10 29.24 74.40 53.20

VGG 1655
MS

train s1 40.78 23.14 28.60 73.82 47.25 47.12 34.14 30.46 73.86 51.98
s2 40.60 25.11 29.06 74.36 49.22 47.35 36.27 30.32 74.14 53.43

VGG 1655
MS + VG

train s1 40.54 22.74 29.58 73.50 47.82 46.89 33.95 30.34 73.54 52.30
s2 40.31 24.35 29.28 74.83 49.54 47.21 35.72 30.59 74.93 53.86

Table A.3: Comparison of attribute features for VQA

predictor on the joint MS-COCO + Visual Genome images. The performance of this

attribute predictor on VQA is also shown in Table A.3 (VGG 1655 with MS + VG).

We can see that the performance is not better than the MS-COCO only training. This

is possibly because of the mismatch in domains between the Visual Genome and MS-

COCO images. While this mode of transfer using explicit image representations seems

plausible, the variations in image domains could potentially limit the efficacy of this

method for novel object induction as observed.
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