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ABSTRACT

KEYWORDS: Estimation; Missing Mass; Squared Error Loss; Good-Turing Es-

timator of Missing Mass; Poisson Sampling Model; Worst-case

Risk; Linear Estimator of Missing Mass; Multinomial Sampling

Model; Minimax Risk.

Missing mass estimation is a basic problem in statistics with wide practical ap-

plications including language modelling and ecology. This work considers the

problem of minimax estimation of missing mass under a squared error loss. The

popular Good-Turing estimator is shown to have a worst-case risk of 1/n un-

der the Poisson sampling model and we prove that it is asymptotically optimal

within an extended class of linear estimators. Under the multinomial sampling

model, the worst-case risk of the Good-Turing estimator is shown to be between

0.6080/n and 0.6179/n asymptotically. The minimax risk under the multinomial

model is shown to be asymptotically lower bounded by 0.25/n, which shows that

the Good-Turing estimator is order-optimal under this model.
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NOTATION

I(E) Indicator random variable for event E
X Sample space

k Size of sample space

u, v Elements of the sample space

p or P Sampling distribution

P Set of probability distributions p belongs to

p (u) Probability of symbol u under distribution p
n Deterministic sample size

N Poisson distributed sample size

Xn Sample of size n
Φi (X

n) Number of symbols appearing i times in Xn

M0 Missing mass

M̂0 Missing mass estimator

M̂GT
0 Good-Turing estimator of missing mass

Rn Risk or worst-case risk of estimator

R∗
n Minimax Risk

v



INTRODUCTION AND CHAPTER OUTLINES

Given a set of independent samples from a probability distribution, the missing

mass of the samples is the total probability of all unseen symbols. A basic prob-

lem in statistics is to estimate the missing mass with no information about the

distribution given only the samples - this has applications in several fields includ-

ing language modelling and ecology. One of the earliest missing mass estimators

is the Good-Turing estimator, developed by Irving Good and Alan Turing during

World War II. The Good-Turing estimator uses the fraction of symbols that appear

only once in the sample as an estimate of the missing mass.

There is a significant body of work that analyzes missing mass estimators; es-

pecially the Good-Turing estimator. However, a notable omission in the literature

is an analysis of the worst-case risk of estimators and the minimax risk of the

missing mass estimation problem. This work seeks to bridge that gap by provid-

ing the first conclusive results on the minimax risk of missing mass. Additionally,

we also show some optimality guarantees for the Good-Turing estimator in the

worst-case sense and give tight bounds on its worst-case risk.

Chapters 1 and 2 introduce the problem of minimax estimation of missing

mass and any necessary background. Chapter 2 additionally introduces the Good-

Turing estimator and contains a survey of prior work on missing mass estimation

and its applications.

The main body of the work starts from chapter 3, which introduces linear

estimators - a class of estimators that generalize the Good-Turing estimator. We
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analyze linear estimators under the Poisson sampling model and show that the

Good-Turing estimator has a worst-case risk of 1
n

. Additionally, we prove that the

Good-Turing estimator is asymptotically optimal among all linear estimators.

Having shown its optimality under the Poisson model, chapter 4 looks at the

worst-case risk of the Good-Turing estimator under the multinomial sampling

model. We show that the worst-case risk of the Good-Turing estimator lies be-

tween 0.6080/n and 0.6179/n. This chapter consists of the work of the author’s

collaborator and guide, Andrew Thangaraj, and has been included for complete-

ness.

Finally, chapter 5 puts the worst case risk of the Good-Turing estimator in

perspective by showing lower bounds on the minimax risk. Two lower bounds

are obtained using different methods; the first using Bayes risk gives a bound of

4/27n and the second using distribution estimation yields a 1/4n lower bound.

Section 5.2 on the distribution estimation bound is by the author’s collaborator,

Ananda Theertha Suresh, and has been included for completeness.
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CHAPTER 1

FUNDAMENTALS OF ESTIMATION

This chapter provides a brief review of the concepts in estimation theory used in

this work. We first describe the basic setup of estimation problems. After this, we

look at loss functions and define the risk of an estimator, which serves as a metric

of evaluation. From this, we head to defining the worst-case risk of an estimator

and the minimax risk for an estimation problem. Finally, we take a look at the

multinomial and Poisson sampling models, which we use in chapter 3.

1.1 Statistical Estimation

Let p be an unknown probability distribution over a sample space X , parametrized

by parameters θ. Assume that θ is unknown, but deterministic. We observe a vec-

tor of n i.i.d samples from the distribution, which we denote Xn = (X1, X2, . . .Xn).

We are interested in finding the value of a function f (Xn, θ) that depends

on both the distribution and sample. Since θ is unknown, we can only use the

observed sample Xn to estimate f (Xn, θ). A function f̂ (Xn) that seeks to ap-

proximate the value of f (Xn, θ) is called an estimator of f (Xn, θ).

1.2 Loss and Risk

Having defined an estimator, we now need a means to evaluate the performance

of an estimator and compare different estimators. To this end, we define two



quantities : the loss and the risk of an estimator.

The loss Ln

(

f, f̂ , θ, Xn
)

is a function that measures the performance of an

estimator for a particular sample and parameter vector. Several loss functions are

commonly used in literature, including:

• Squared error or ℓ2 loss : Ln =
(

f (Xn, θ)− f̂ (Xn)
)2

• Absolute error or ℓ1 loss : Ln =
∣

∣

∣
f (Xn, θ)− f̂ (Xn)

∣

∣

∣

• Zero-one loss : Ln = 0 if f (Xn, θ) = f̂ (Xn), Ln = 1 otherwise.

From the definition, it can be seen that the loss of an estimator depends on the

particular sample Xn that is observed. To obtain a single metric that is indepen-

dent of the sample, we need to aggregate the loss for each sample in some manner.

One way of doing this is using the risk Rn

(

f, f̂ , θ
)

, defined as:

Rn

(

f, f̂ , θ
)

, EXn

[

Ln

(

f, f̂ , θ, Xn
)]

(1.1)

The expectation is explicitly specified to be over Xn to emphasize that θ is not

a random variable - this will be omitted in future sections.

1.3 Minimax Risk and Minimax Estimators

From the definition of risk in the previous section, it can be seen that the risk

depends on the value of the parameter vector θ as well. However, as the true value

of θ is unknown, we cannot compute the risk of an estimator in practice. So, we

instead use the worst-case risk Rn

(

f, f̂
)

as a metric of performance, defined as:

Rn

(

f, f̂
)

, max
θ

Rn

(

f, f̂ , θ
)

(1.2)
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Note that the same notation is used for both the risk and the worst-case risk;

which one is being referred to will be made clear from either the context or the

function parameters.

The lowest possible worst-case risk attainable by any estimator for a given

problem is called the minimax risk R∗
n (f), defined as:

R∗
n (f) , min

f̂
Rn

(

f, f̂
)

(1.3)

= min
f̂

max
θ

Rn

(

f, f̂ , θ
)

(1.4)

The second equation explains why the term “minimax” is used to describe this

risk. An estimator whose worst-case risk is equal to the minimax risk is called a

minimax estimator.

The final goal of solving an estimation problem under the minimax framework

is to find a minimax estimator. If this is not possible, the next best thing is to find

an estimator whose worst-case risk is close to the minimax risk for the problem.

1.4 Sampling Models

The definition of risk in equation 1.1 involves an expectation over the vector Xn.

To compute this, the distribution of Xn is required. However, we have available

only the distribution p of each element of Xn - finding the distribution of Xn

requires additional information on how the samples are generated. We look at two

popular sampling models : the Multinomial model and the Poisson model.

Under the Multinomial sampling model, the number of samples n is a deter-

ministic constant. The vector of samples Xn consists of n i.i.d samples from the

5



underlying parametrized distribution p.

Under the Poisson sampling model, the number of samples is a random vari-

able which follows a Poisson distribution. To emphasize this, we denote the num-

ber of samples as N instead, with N ∼ Pois (n). Here, n is the mean of the

Poisson distribution used to generate the number of samples and is a deterministic

constant. As before, the vector of samples XN consists of N i.i.d samples from

p. The Poisson sampling model arises naturally when the samples are generated

from a Poisson process with a fixed duration of sampling.

One of the useful features of the Poisson sampling model is that the counts

of different symbols in the sample XN are independent. This is not true for the

multinomial sampling model, for instance, since the sum of the counts of all sym-

bols is n, which makes them dependent. We will make use of this property in

chapter 3.
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CHAPTER 2

MISSING MASS

In this chapter, we introduce the idea of missing mass. We start with its basic def-

inition and look at some applications of missing mass in language modelling and

ecology. We then turn to the problem of estimating missing mass from a sample;

in particular, we look at the problem of finding good missing mass-estimators in

the minimax sense. We then look at the Good-Turing missing mass estimator - one

of the earliest developed estimators for this problem. The chapter concludes with

a brief survey of some of the important prior results on missing mass estimation.

2.1 Definition

Let p be an unknown probability distribution over an unknown finite sample space

X . We observe n samples Xn = (X1, X2, . . .Xn) which are i.i.d according to p.

The missing mass M0 (X
n, p) is defined as:

M0 (X
n, p) , P (X\ {X1, X2, . . .Xn}) (2.1)

Essentially, the missing mass is the total probability of all symbols in X that

have not been observed in the sample Xn.

To make this definition more analytically tractable, we define a random vari-

able Nu (X
n) which denotes the number of times a symbol u ∈ X appears in the



sample Xn. Using this, we can rewrite the definition of missing mass as:

M0 (X
n, p) =

∑

u∈X

p (u) I (Nu (X
n) = 0) (2.2)

Here, p (u) denotes the probability of symbol u according to the distribution p

and I denotes the indicator function.

2.2 Applications of Missing Mass Estimation

Missing mass estimation has several applications in multiple fields. Most applica-

tions stem from the use of missing mass in estimating a distribution from samples

- Gale and Sampson (1995) provides an account of this, for instance. Another

theoretical application is explored by Vu et al. (2007), which looks at using sam-

ple coverage estimates to improve estimates of a distribution’s entropy, where the

coverage of a sample is 1−M0 (X
n, p).

Language modelling is one field where missing mass sees use. Several works

(Katz, 1987; Chen and Goodman, 1999; Church and Gale, 1991) use missing mass

estimates to improve estimates of n-gram probability distributions by smoothing.

Sproat et al. (1996) use missing mass estimators in the problem of word segmen-

tation of Chinese text.

Another sphere where missing mass estimators see use is ecology, where miss-

ing mass helps provide estimates of the size of a population. Chao and Lee (1992)

use sample coverage estimates to obtain estimates of the number of species in a

population. Shen et al. (2003) use sample coverage estimators to predict the num-

ber of new species that will be observed when a further survey is conducted, which

measures the viability of surveying.
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2.3 Minimax Estimation of Missing Mass

Let M̂0 (X
n) be an estimator of the missing mass M0 (X

n, p). As discussed in

chapter 1, we define the squared loss risk Rn

(

M0, M̂0, p
)

of the estimator as:

Rn

(

M0, M̂0, p
)

, EXn

[

(

M0 (X
n, p)− M̂0 (X

n)
)2
]

(2.3)

We will henceforth omit the M0 argument from the risk and write it simply as

Rn

(

M̂0, p
)

, since we will only be looking at estimators of missing mass. We can

also define the worst case risk Rn

(

M̂0

)

and the minimax risk R∗
n:

Rn

(

M̂0

)

, max
p

EXn

[

(

M0 (X
n, p)− M̂0 (X

n)
)2
]

(2.4)

R∗
n , min

M̂0

max
p

EXn

[

(

M0 (X
n, p)− M̂0 (X

n)
)2
]

(2.5)

The above expressions are applicable when we work with the multinomial

sampling model with a fixed n. Under the Poisson sampling model, the definitions

remain mostly the same, except that the fixed length sample Xn is replaced with

the random length sample XN and the expectations are taken over both N and

XN .

2.4 The Good-Turing Estimator

Some of the earliest work on missing mass estimation was done by Irving Good

and Alan Turing, which resulted in the so-called Good-Turing (GT) estimator for

missing mass (Good, 1953). Their work describes a class of method of moments

estimators for various population parameters that depend only on the sample size

9



n and the number of symbols that appear an equal number of times, as described

below.

Let Φi (X
n) denote number of distinct symbols that have appeared i times in

the sample Xn. We define it mathematically as:

Φi (X
n) ,

∑

u∈X

I (Nu (X
n) = i) (2.6)

Here, Nu (X
n) is the number of times u appears in Xn, as defined in section

2.1. The Good-Turing (GT) estimator of missing mass M̂GT
0 (Xn) is defined as:

M̂GT
0 (Xn) ,

1

n
Φ1 (X

n) (2.7)

In later chapters, we will look at the worst-case risk of the GT estimator and

use it as a benchmark for evaluating other estimators.

2.5 Prior Results on Missing Mass Estimation

We first look at some results that give performance guarantees for the Good-

Turing estimator. McAllester and Schapire (2000) show that the absolute bias

of the Good-Turing estimator is upper bounded by 1/n, and use this to show

stronger PAC bounds on the error of the Good-Turing estimator. Esty (1983)

showed that the Good-Turing estimate follows a normal limit law in its conver-

gence to the true missing mass. Several variations of the Good-Turing estimator

for problems apart from missing mass estimation such as distribution estimation

(Orlitsky and Suresh, 2015), unseen species estimation (Good and Toulmin, 1956;

Orlitsky et al., 2016) sequence estimation (Wagner et al., 2007), rare event prob-

10



ability estimation (Ohannessian and Dahleh, 2012) have been analyzed.

Apart from the performance of estimators, some results show distribution-free

concentration bounds on the missing mass itself. Multiple works (Berend and Kontorovich,

2013; McAllester and Ortiz, 2003) show an exponentially decaying concentration

bound for the missing mass about its mean, while Ben-Hamou et al. (2017) show

sub-Gaussian and sub-Gamma bounds for the lower and upper tails respectively.
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CHAPTER 3

LINEAR ESTIMATORS OF MISSING MASS

We introduced the Good-Turing estimator for missing mass in the previous chap-

ter. Now, we look at a class of estimators that naturally extend the Good-Turing

estimator, which we call linear estimators. The chapter starts with a mathematical

definition of linear estimators. We then look at the problem of computing the risk

of a linear estimator. This is difficult to do under the multinomial sampling model,

so we instead compute the risk under the Poisson sampling model, which is sum-

marized in Lemma 3.2.1. We then use this expression for risk to show that the

worst case risk of the Good-Turing estimator is 1
n

. Finally, we find a lower bound

on the worst-case risk of an arbitrary linear estimator and show that the Good-

Turing estimator is asymptotically optimal within the class of linear estimators,

made precise in Theorem 3.5.1.

3.1 Definition

Recall the definition of Φi (X
n) and the Good-Turing estimator from section 2.4.

A linear estimator generalizes the idea of the Good-Turing estimator; we denote

and define a linear estimator as:

M̂0 (X
n; c (n))

∆
=

∞
∑

i=1

ci (n)Φi (X
n) (3.1)

=

∞
∑

i=1

∑

u∈X

ci (n) I (Nu (X
n) = i) (3.2)



where ci(n), i ∈ N are scaling factors that only depend on n and c (n) =

(c1 (n) , c2 (n) , . . .). Equation 3.2 follows from the definition of Φi (X
n) in equa-

tion 2.6. For any finite N , the sum absolutely converges if the set {|ci (n)| , i = 1, 2, . . .}

is bounded, so the estimate is well defined for such estimators and the order

of summation can be interchanged - only such estimators will be considered in

the following discussion. If there exists a J ∈ N such that ci (n) = 0 for

all i > J , the estimator is termed as an order-J estimator, which is denoted

as M̂0 (X
n; c1 (n) , c2 (n) . . . , cJ (n)). Note that the Good-Turing estimator is an

order-1 linear estimator M̂0

(

XN ; 1/n
)

.

3.2 Risk of Linear Estimators and the Poisson Model

In this section, we look at computing the risk of a linear estimator M̂0 (X
n; c (n))

for a symbol distribution p. We do this using a bias-variance decomposition:

Rn

(

M̂0, p
)

= E

[

(

M0 (X
n, p)− M̂0 (X

n; c (n))
)2
]

= E

[

M0 (X
n, p)− M̂0 (X

n; c (n))
]2

+var
(

M0 (X
n, p)− M̂0 (X

n; c (n))
)

(3.3)

The first term is the squared bias of M̂0 and the second term is its variance:

Bias , E

[

∑

u∈X

∞
∑

i=1

(ci (n) I (Nu (X
n) = i))

−p(u)I (Nu (X
n) = 0)] (3.4)

Variance , var

[

∑

u∈X

∞
∑

i=1

(ci (n) I (Nu (X
n) = i))

−p(u)I (Nu (X
n) = 0)] (3.5)

13



The bias can be easily computed for any p using the linearity of expectation.

However, we quickly run into a problem when trying to evaluate the variance. The

variance consists of a summation of terms for each symbol u ∈ X which each

depend on Nu (X
n). However, for a fixed sample size n, the Nu (X

n) are not

independent, so we cannot express the variance of the sum as a sum of variances.

To solve this problem, we use the approach Orlitsky et al. (2016) adopted for

a similar problem, which is to use the Poisson sampling model instead of the

multinomial model. Under this model, we replace the number of samples n with

a random variable N ∼ Poisson (n). This results in Nu (X
n) being independent

for each u ∈ X , so we can express the variance of the sum as a sum of variances.

We now proceed to evaluate the bias and variance under this model.

3.2.1 Computing the Bias

Bias = E

[

∑

u∈X

∞
∑

i=1

(ciI (Nu = i))− p(u)I (Nu = 0)

]

=
∑

u∈X

∞
∑

i=1

(ciP (Nu = i))− p(u)P (Nu = 0) (3.6)

Here, Nu is short for Nu (X
n) and ci is short for ci (n). Under the Poisson

model, Nu

(

XN
)

∼ Poisson (np (u)), so P
(

Nu

(

XN
)

= i
)

= 1
i!
exp (−np (u)) (np (u))i.

Thus, we have:

Bias =
∑

u∈X

exp (−np (u)) ·

(

∞
∑

i=1

(

1

i!
ci (n) (np (u))

i

)

− p(u)

)

=
∑

u∈X

exp (−np (u)) · (fc (np (u))− p(u)) (3.7)

14



where fc (x)
∆
=
∑∞

i=1
1
i!
ci (n) x

i.

3.2.2 Computing the Variance

Variance = var

[

∑

u∈X

∞
∑

i=1

(ciI (Nu = i))− p(u)I (Nu = 0)

]

=
∑

u∈X

var

[

∞
∑

i=1

(ciI (Nu = i))− p(u)I (Nu = 0)

]

=
∑

u∈X

E





(

∞
∑

i=1

(ciI (Nu = i))− p(u)I (Nu = 0)

)2




−E

[

∞
∑

i=1

(ciI (Nu = i))− p(u)I (Nu = 0)

]2

=
∑

u∈X

∞
∑

i=1

(

c2iP (Nu = i)
)

+ p2(u)P (Nu = 0)

−

(

∞
∑

i=1

(ciP (Nu = i))− p(u)P (Nu = 0)

)2

(3.8)

=
∑

u∈X

exp (−np (u)) ·

(

∞
∑

i=1

(

1

i!
c2i (n) (np (u))

i

)

+ p2(u)

)

− exp (−2np (u)) ·

(

∞
∑

i=1

(

1

i!
c2i (n) (np (u))

i

)

− p(u)

)2

=
∑

u∈X

exp (−np (u)) ·
(

fc2 (np (u)) + p2(u)
)

− exp (−2np (u)) · (fc (np (u))− p(u))2 (3.9)

where fc2 (x)
∆
=
∑∞

i=1
1
i!
c2i (n) x

i. 3.8 follows from the fact that

I
(

Nu

(

XN
)

= i
)

I
(

Nu

(

XN
)

= j
)

= 0 for i 6= j.
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3.2.3 Putting it All Together

From equations 3.3,3.7 and 3.9, we get an expression for the risk of any linear

estimator, summarized in the lemma below:

Lemma 3.2.1. For any linear estimator M̂0 (X
n; c (n)) under the Poisson sam-

pling model, we have:

Rn

(

M̂0, p
)

=

(

∑

u∈X

exp (−np (u)) · (fc (np (u))− p(u))

)2

+
∑

u∈X

exp (−np (u)) ·
(

fc2 (np (u)) + p2(u)
)

− exp (−2np (u)) · (fc (np (u))− p(u))2

where fc (x)
∆
=
∑∞

i=1
1
i!
ci (n)x

i and fc2 (x)
∆
=
∑∞

i=1
1
i!
c2i (n) x

i.

3.3 Worst-case Analysis of the Good-Turing Estima-

tor

We now have the tools to compute the worst-case risk Rn

(

M̂GT
0

)

for the Good-

Turing estimator under the Poisson sampling model. For the Good-Turing estima-

tor fc (x) =
x
n

and fc2 (x) =
x
n2 . From Lemma 3.2.1, we get:

Rn

(

M̂GT
0 , p

)

=
∑

u∈X

exp (−np (u)) ·

(

p(u)

n
+ p2(u)

)

(3.10)

Rn

(

M̂GT
0

)

= max
p

∑

u∈X

exp (−np (u)) ·

(

p(u)

n
+ p2(u)

)

(3.11)

An interesting side-note is that the bias term vanishes for the Good-Turing

16



estimator - meaning that it is unbiased under the Poisson model.

We first obtain a upper bound for Rn

(

M̂GT
0

)

. To do this, we obtain a distribu-

tion independent upper bound on the risk by using the inequality exp (−x) ≤ 1
1+x

,

x ≥ 0:

Rn

(

M̂GT
0

)

≤ max
p

∑

u∈X

1

1 + np (u)
·

(

p(u)

n
+ p2(u)

)

= max
p

1

n

∑

u∈X

p(u)

=
1

n

∴ Rn

(

M̂GT
0

)

≤
1

n
(3.12)

To obtain a corresponding lower bound, we evaluate Rn

(

M̂GT
0 , pU

)

for the

uniform distribution pU over the set X = {1, 2 . . . k}. For this distribution,

pU (u) = 1
k

for all u ∈ X .

Rn

(

M̂GT
0

)

≥ Rn

(

M̂GT
0 , pU

)

=
∑

u∈X

exp
(

−
n

k

)

·

(

1

kn
+

1

k2

)

= exp
(

−
n

k

)

·

(

1

k
+

1

n

)

Letting k → ∞, we get:

Rn

(

M̂GT
0

)

≥
1

n
(3.13)

From equations 3.13 and 3.12, we obtain an exact expression for the risk of

17



the Good-Turing estimator under the Poisson model:

Rn

(

M̂GT
0

)

=
1

n
(3.14)

3.4 Worst-case Analysis of Linear Estimators

Lemma 3.2.1 can also be used to obtain lower bounds on the worst-case risk of

any linear estimator M̂0

(

XN ; c (n)
)

. To do this, we once again bound Rn

(

M̂0

)

by Rn

(

M̂0, p
U
)

, where pU is the uniform distribution over X = {1, 2 . . . k}.

Rn

(

M̂0

)

≥ Rn

(

M̂0, p
U
)

(3.15)

=

(

∑

u∈X

exp
(

−
n

k

)

·

(

fc

(n

k

)

−
1

k

)

)2

+
∑

u∈X

(

exp
(

−
n

k

)

·

(

fc2
(n

k

)

+
1

k2

)

− exp
(

−2
n

k

)

·

(

fc

(n

k

)

−
1

k

)2
)

=
(

k2 − k
)

exp

(

−
2n

k

)

·

(

fc

(n

k

)

−
1

k

)2

+k exp
(

−
n

k

)

·

(

fc2
(n

k

)

+
1

k2

)

(3.16)

The RHS in 3.16 can be seen to be quadratic in the ci. We can find a c
∗ =

(c∗1, c
∗
2, . . .) that minimizes it by setting its gradient to 0:

0 = 2
(

k2 − k
)

exp

(

−
2n

k

)

·

(

fc∗
(n

k

)

−
1

k

)

·

(

n
k

)i

i!

+k exp
(

−
n

k

)

·

(

n
k

)i

i!
· 2c∗i (3.17)
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Solving equation 3.17 for c∗, we get:

c∗i =
exp

(

−n
k

)

A

(

1−
1

k

)

(3.18)

fc∗
(n

k

)

=

(

1−
1

A

)

·
1

k
(3.19)

f(c∗)2
(n

k

)

= exp
(

−
n

k

)

(

1

A
−

1

A2

)(

1

k
−

1

k2

)

(3.20)

where A = (k − 1) ·
(

exp
(

−n
k

)

− 1
)

+ 1. Plugging this into 3.16, we get:

Rn

(

M̂0

)

≥
(k − 1)

kA2
exp

(

−
2n

k

)

+ k exp
(

−
n

k

)

·

[

exp
(

−
n

k

)

(

1

A
−

1

A2

)(

1

k
−

1

k2

)

+
1

k2

]

(3.21)

Finally, we evaluate the bound as m → ∞. Noting that limk→∞A = n, we

get:

Rn

(

M̂0

)

≥
1

n
± o

(

1

n

)

(3.22)

3.5 Summary

We summarize the main results of this chapter in the following theorem:

Theorem 3.5.1. Under the Poisson sampling model, the Good-Turing estimator is

asymptotically optimal within the class of linear estimators using the worst-case

risk measure. Specifically, if M̂0 is an arbitrary linear estimator and M̂GT
0 is the

Good-Turing estimator:

Rn

(

M̂0

)

≥ Rn

(

M̂GT
0

)

(1± o (1)) =
1

n
(1± o (1))
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This result motivates us to look at the Good-Turing estimator in greater de-

tail. In the next chapter, we shall analyze the Good-Turing estimator under the

multinomial sampling model as well.
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CHAPTER 4

MULTINOMIAL ANALYSIS OF THE

GOOD-TURING ESTIMATOR

In the last chapter, we analyzed the class of linear estimators under the Poisson

sampling model and showed the optimality of the Good-Turing estimator within

that class. We now analyze the Good-Turing estimator under the multinomial

sampling model. The main difficulty in doing this is highlighted in section 3.2,

which is that the symbol counts Nu (X
n) are not independent. This requires mod-

elling the joint distribution of Nu (X
n) and Nv (X

n) for all pairs of symbols u, v.

We first reduce the risk to a form which simplifies analysis; this can be seen in

Theorem 4.1.3. Using this, we derive upper and lower bounds of 0.6179/n and

0.6080/n respectively for the worst-case risk of the Good-Turing estimator, which

is summarized in Theorem 4.4.1.

4.1 Risk of the Good-Turing Estimator

The analysis of McAllester and Schapire (2000) can be extended to characterize

the risk of the Good-Turing estimator for missing mass. The risk of the Good-



Turing estimator M̂GT
0 (Xn) for a distribution p can be written down as follows:

Rn

(

M̂GT
0 , p

)

= E

[

(

M̂GT
0 (Xn)−M0(X

n, p)
)2
]

= E

[(

∑

u∈X

1

n
I(Nu = 1)− p(u)I(Nu = 0)

)

·

(

∑

v∈X

1

n
I(Nv = 1)− p(v)I(Nv = 0)

)]

=
1

n2

∑

u,v∈X

(Pn(1, 1)− 2np(u)Pn(0, 1)

+n2p(u)p(v)Pn(0, 0)
)

(4.1)

where, in the final step, we use the fact that E (I (X)) = P (X) and define

Pn(i, j) , P (Nu(X
n) = i, Nv(X

n) = j).

The probability Pn(i, j) can be written down as:

Pn(i, j) =















(

n
i j

)

p(u)ip(v)j(1− p(u)− p(v))n−i−j, u 6= v,

(

n
i

)

p(u)i(1− p(u)n−i, u = v, i = j

(4.2)

where
(

n
i j

)

= n!
i!j!(n−i−j)!

and
(

n
i

)

= n!
i!(n−i)!

. We split the summation in (4.1)

into two cases: u 6= v and u = v. Denoting P (u, v) = p(u)p(v)(1 − p(u) −

p(v))n−2, we have, for u 6= v:

p(u)p(v)Pn(0, 0) = (1− p(u)− p(v))2P (u, v),

p(u)Pn(0, 1) = n(1− p(u)− p(v))P (u, v),

Pn(1, 1) = n(n− 1)P (u, v).
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For u = v, observe that Pn(0, 1) = 0. Using the above observations, the

summation in (4.1) simplifies to

Rn

(

M̂GT
0 , p

)

=
1

n

∑

u,v∈X
v 6=u

P (u, v)

[

n
(

p(u) + p(v)
)2

− 1

]

+
1

n

∑

u∈X

[

p(u)(1− p(u))n−1 + np(u)2(1− p(u))n
]

.(4.3)

The following lemma is useful in bounding certain terms in the first summa-

tion above as a function of n, independent of the unknowns X and p.

Lemma 4.1.1. For i ≥ 1, j ≥ 1,

∑

u,v∈X ,u 6=v

p(u)ip(v)j(1− p(u)− p(v))n ≤
(i− 1)!(j − 1)!n!

(n+ i+ j − 2)!
.

Proof. Let X and Y be a pair of independent and identical random variables

with marginal distribution p. Define a random variable T (X, Y ), whose value

T (u, v) = 0 for u = v and, for u 6= v,

T (u, v) =

(

n+ i+ j − 2

i− 1 j − 1

)

p(u)i−1p(v)j−1(1− p(u)− p(v))n.

We see that T (X, Y ) is a probability for X 6= Y , and that it takes values in

[0, 1] in all cases. Therefore, its expectation:

E [T (X, Y )] =
∑

u,v∈X
u 6=v

p(u)p(v)T (u, v)

=
∑

u,v∈X
u 6=v

(

n+ i+ j − 2

i− 1 j − 1

)

p(u)ip(v)j(1− p(u)− p(v))n

≤ 1

23



and the lemma follows.

A univariate version of (4.1.1) is useful as well:

Lemma 4.1.2. For i ≥ 1,

∑

u∈X

p(u)i(1− p(u))n ≤
(i− 1)!n!

(n + i− 1)!
.

Proof. For X ∼ p, define T (X) =
(

n+i−1
i−1

)

p(X)i−1(1 − p(X))n and follow the

proof of Lemma 4.1.1.

Using Lemma 4.1.1, observe that

∑

u,v∈X ,u 6=v

P (u, v)(p(u) + p(v))2 = o(1/n) (4.4)

Therefore, the risk can be written as

Rn

(

M̂GT
0 , p

)

=
1

n

[

∑

u∈X

p(u)(1− p(u))n−1 −
∑

u,v∈X
v 6=u

P (u, v)

+
∑

u∈X

np(u)2(1− p(u))n
]

+ o(1/n). (4.5)
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The summation terms above can be rewritten as follows:

∑

u∈X

p(u)(1− p(u))n−1 = E

[

Φ1(X
n)

n

]

. (4.6)

∑

u∈X

np(u)2(1− p(u))n =
2

n− 1

∑

u∈X

Pn(2, 0)(1− p(u))2

(a)
=

2

n− 1

∑

u∈X

Pn(2, 0)± o

(

1

n

)

= E

[

2Φ2(X
n)

n

]

± o

(

1

n

)

s, (4.7)

where (a) follows using Lemma 4.1.2.

∑

u,v∈X
v 6=u

P (u, v) =
1

n(n− 1)

∑

u,v∈X
v 6=u

Pn(1, 1)

=
1

n(n− 1)
E

[

∑

u,v∈X
v 6=u

I(Nu(X
n) = 1)I(Nv(X

n) = 1)

]

= E

[

1

n(n− 1)
Φ1(X

n)(Φ1(X
n)− 1)

]

= E

[

Φ2
1(X

n)

n

]

± o(1). (4.8)

Using the above expressions in (4.5), we get the following characterization of

the risk.

Theorem 4.1.3. The risk of the Good-Turing estimator under the multinomial

sampling model satisfies:

Rn

(

M̂GT
0 , p

)

=
1

n
E

[

2Φ2

n
+

Φ1

n

(

1−
Φ1

n

)]

+ o

(

1

n

)

. (4.9)

Note that the RHS in theorem 4.1.3 depends on the distribution p, since the
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expectations of Φ1 and Φ2 depend on p. This form, however, enables us to find

bounds independent of p, which yields bounds on the worst-case risk Rn

(

M̂GT
0

)

.

4.2 Upper Bound on the Worst-Case Risk

To obtain an upper bound on the risk, we start with the following upper bound on

one of the terms in (4.5):

∑

u∈X

np(u)2(1− p(u))n ≤
∑

u∈X

p(u)
(

np(u)e−np(u)
)

≤ e−1, (4.10)

where the first step follows because 1 − x ≤ e−x for a fraction x, and the

second step follows because te−t ≤ e−1 for t ≥ 0. Additionally, we have:

E

[

Φ1

n

(

1−
Φ1

n

)]

≤ E

[

1

4

]

=
1

4
(4.11)

Equation 4.11 follows from the fact that x (1− x) ≤ 1/4 if x ≤ 1. From

equations 4.7, 4.9, 4.10 and 4.11, we obtain an upper bound on the worst-case risk

of the Good-Turing estimator:

Rn

(

M̂GT
0

)

= max
p

Rn

(

M̂GT
0 , p

)

≤ max
p

e−1 + 0.25

n
± o

(

1

n

)
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∴ Rn

(

M̂GT
0

)

≤
0.25 + e−1

n
± o

(

1

n

)

(4.12)

The above constant e−1 + 0.25 ≈ 0.6179 is not best possible as the bounds

above are not tight. However, we show that the improvement is not significant

through a lower bound on the worst-case risk in the next section.

4.3 Lower Bound on the Worst-Case Risk

A lower bound can be obtained for the worst case risk of the Good-Turing estima-

tor by evaluating the risk for the uniform distribution pU on X . Let |X | = cn and

pU (x) = 1
cn

for all x ∈ X , where c is a positive constant. Using (4.5), we get

Rn

(

M̂GT
0 , pU

)

=
1

n

[

cn · n

(cn)2

(

1−
1

cn

)n

+
cn

cn
·

(

1−
1

cn

)n−1

−

(

cn

cn
·

(

1−
1

cn

)n−1
)2
]

+ o

(

1

n

)

(1)
=

1

n

(

(

1

c
+ 1

)(

1−
1

cn

)n

−

(

1−
1

cn

)2n
)

+ o

(

1

n

)

(2)
=

1

n

((

1

c
+ 1

)

e−
1

c − e−
2

c

)

+ o

(

1

n

)

(4.13)

where the reasoning for the steps is as follows:

1. replacing
(

1− 1
cn

)n−1
with

(

1− 1
cn

)n
(1 + o(1)).

2. using the fact that
(

1− 1
cn

)n
= e−1/c (1 + o(1)).

The coefficient of 1
n

in (4.13) is maximized at c = 1
W (2)

≈ 1.1729 to attain a

maximum value of around 0.6080, where W (·) is the Lambert-W function. From
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this, we obtain a lower bound on the worst-case risk:

Rn

(

M̂GT
0

)

≥
0.6080

n
± o

(

1

n

)

(4.14)

4.4 Summary

We summarize the results of this chapter in this section. From (4.12) and (4.14),

we have:

Theorem 4.4.1. The worst-case risk of the Good-Turing estimator under the multi-

nomial model satisfies the following bounds:

0.6080

n
± o

(

1

n

)

≤ Rn

(

M̂GT
0

)

≤
0.6179

n
± o

(

1

n

)

. (4.15)

Therefore, the constant in equation (4.12) is fairly tight.
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CHAPTER 5

LOWER BOUNDS ON MINIMAX RISK

In this chapter, we look at lower bounds on the minimax risk of missing mass

estimation under the multinomial model. We explore two techniques to obtain

bounds. The first uses the Bayes risk for missing mass with a chosen prior distri-

bution as a lower bound to the minimax risk. Using a Dirichlet prior, an asymp-

totic lower bound of 4/27n is obtained. The second method reduces the problem

of minimax estimation of missing mass to a distribution estimation problem, for

which there are existing results on minimax risk. This method yields an asymp-

totic lower bound of 1/4n.

5.1 Lower Bounds using Bayes Risk

Computing the minimax risk for missing mass estimation involves solving two op-

timization problems - a maximization over p for every M̂0 and then a minimization

of the worst case risk over M̂0. One approach to simplifying this problem is to

replace the maximization over p with an expectation over a family of distributions

P using a prior distribution P over P - which results in the Bayes Risk for the

prior P . This results in the minimization over M̂0 also becoming easier, as we can

see in the following lemma:

Lemma 5.1.1. Let P be a random variable over a family of distributions P , hav-

ing an alphabet X = {1, 2, . . . k}. Then, we have the following lower bound for



the minimax risk of missing mass:

R∗
n ≥ EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

(5.1)

Proof.

R∗
n = min

M̂0

max
p

EXn

[

(

M0 (X
n, p)− M̂0 (X

n)
)2
]

≥ min
M̂0

max
p∈P

EXn

[

(

M0 (X
n, p)− M̂0 (X

n)
)2
]

≥ min
M̂0

EP

[

EXn|P

[

(

M0 (X
n, P )− M̂0 (X

n)
)2
∣

∣

∣

∣

P

]]

= min
M̂0

EXn

[

EP |Xn

[

(

M0 (X
n, P )− M̂0 (X

n)
)2
∣

∣

∣

∣

Xn

]]

(5.2)

= EXn

[

EP |Xn

[

(

M0 (X
n, P )− EP |Xn [M0 (X

n, P )|Xn]
)2
∣

∣

∣
Xn
]]

(5.3)

= EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

(5.4)

Here, 5.2 follows from the law of total expectation and 5.3 follows from the

fact thatEP |Xn

[

(

M0 (X
n, P )− M̂0 (X

n)
)2
∣

∣

∣

∣

Xn

]

is minimized when M̂0 (X
n) =

EP |Xn [M0 (X
n, P )|Xn] for every Xn.

As it is presented, Lemma 5.1.1 can be used to obtain lower bounds for any

minimax estimation problem. To obtain bounds specific to the missing mass esti-

mation problem, we evaluate the conditional variance:

R∗
n ≥ EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

= EXn

[

varP |Xn

[

∑

u∈X

P (u) I (Nu (X
n) = 0)

∣

∣

∣

∣

∣

Xn

]]

=
∑

u,v∈X

EXn [I (Nu (X
n) = 0, Nv (X

n) = 0)

·covP |Xn [P (u) , P (v)|Xn]
]

(5.5)
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Equation 5.5 gives us a family of lower bounds for the minimax risk for miss-

ing mass estimation, depending on the choice of the prior distribution P . In the

succeeding section, we will evaluate it for specific prior distributions.

5.1.1 Bayes Risk for a Dirichlet Prior

This section requires some background on Dirichlet and related probability dis-

tributions, an exposition can be found in Ng et al. (2011). Under the multinomial

sampling model, each sample in Xn follows a categorical distribution. A natural

choice for a prior would be to have P follow the conjugate prior to the categorical

distribution, which is the Dirichlet distribution.

Specifically, let P follow a Dirichlet distribution Dir (k,α), where k is the

size of the underlying alphabet X and α = (α1, α2, . . . αk) is a vector of hy-

perparameters. The likelihood Xi|P follows a categorical distribution Cat (k, P ).

Thus, the posterior distribution P |Xn will be a Dir (k,α+N (Xn)) distribu-

tion, where N (Xn)
∆
= (N1 (X

n) , N2 (X
n) , . . . Nk (X

n)) is the vector of symbol

counts. Thus, the conditional covariance covP |Xn [P (u), P (v)|Xn] can be evalu-

ated using the expression for the covariance of a Dirichlet distribution:

covP |Xn [P (u), P (v)|Xn] =
1

(α0 + n)2 (α0 + n+ 1)
·

[I (u = v) (αu +Nu (X
n)) (α0 + n)

− (αu +Nu (X
n)) (αv +Nv (X

n))] (5.6)

Here, α0 ,
∑k

i=1 αi. Equation 5.6 also makes use of the fact that
∑k

i=1Ni (X
n) =
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n. Using this in 5.5:

EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

= EXn

[

∑

u,v∈X

I (Nu (X
n) = 0, Nv (X

n) = 0) ·

I (u = v)αu (α0 + n)− αuαv

(α0 + n)2 (α0 + n+ 1)

]

(5.7)

=
∑

u,v∈X

P (Nu (X
n) = 0, Nv (X

n) = 0) ·

I (u = v)αu (α0 + n)− αuαv

(α0 + n)2 (α0 + n+ 1)
(5.8)

Equation 5.7 follows from the fact that I (Nu (X
n) = 0)Nu (X

n) = 0. The

joint distributionP (Nu (X
n) = 0, Nv (X

n) = 0) and the marginal distributionP (Nu (X
n) = 0)

(in the case u = v) are required to evaluate the RHS in 5.8. The conditional

distribution N (Xn) |P is a multinomial distribution Mult (n, P ). Since P ∼

Dir (k,α), the marginal distribution of N (Xn) will be a Dirichlet-Multinomial

distribution DirMult (n,α). From this, we can obtain the required joint and marginal

distributions. In particular, (Nu (X
n) , n−Nu (X

n)) follows a DirMult (n, αu, α0 − αu)

distribution, while (Nu (X
n) , Nv (X

n) , n−Nu (X
n)−Nv (X

n)) has a DirMult (n, αu, αv, α0)

distribution. So, from the PMF of the Dirichlet-Multinomial distribution, we have:

P (Nu (X
n) = 0, Nv (X

n) = 0) =











B(α0,n)
B(α0−αu,n)

if u = v

B(α0,n)
B(α0−αu−αv,n)

if u 6= v

(5.9)
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Here, B (·, ·) is the Beta function. Using this in 5.8:

EXn

[

varP |Xn [M0 (X
n, P )|Xn]

]

=
∑

u=v

P (Nu (X
n) = 0)

αu (α0 + n)− α2
u

(α0 + n)2 (α0 + n+ 1)

−
∑

u 6=v

P (Nu (X
n) = 0, Nv (X

n) = 0) ·

αuαv

(α0 + n)2 (α0 + n+ 1)
(5.10)

=
∑

u

B (α0, n)

B (α0 − αu, n)
·

αu (α0 + n)− α2
u

(α0 + n)2 (α0 + n + 1)

−
∑

u 6=v

B (α0, n)

B (α0 − αu − αv, n)
·

αuαv

(α0 + n)2 (α0 + n+ 1)
(5.11)

Thus, from equations 5.5 and 5.11, we have:

R∗
n ≥

B (α0, n)

(α0 + n)2 (α0 + n + 1)

(

∑

u

αu (α0 + n)− α2
u

B (α0 − αu, n)

−
∑

u 6=v

αuαv

B (α0 − αu − αv, n)

)

(5.12)

The expression in equation 5.12 provides a family of lower bounds for the

minimax MSE - one for each choice of the parameters k and α, which may both

depend on n in turn.

Let α =
(

1
n
, 1
n
, 1
n
, . . . , 1

n

)

and k = cn2, where c is a positive constant. For this
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choice of parameters, α0 = cn. Using these parameters:

R∗
n ≥

B (cn, n)

(cn + n)2 (cn+ n + 1)

(

(

cn2 − 1
)

·
1
n
· (cn+ n)− 1

n2

B
(

cn− 1
n
, n
)

−cn2
(

cn2 − 1
)

·
1
n
· 1
n

B
(

cn− 2
n
, n
)

)

&
1

n
·

1

(c+ 1)3

(

c (c+ 1) ·
B (cn, n)

B
(

cn− 1
n
, n
)

−c2 ·
B (cn, n)

B
(

cn− 2
n
, n
)

)

=
1

n
·

1

(c+ 1)3

(

c (c+ 1) ·
Γ (cn)

Γ
(

cn− 1
n

) ·
Γ
(

(c+ 1)n− 1
n

)

Γ ((c + 1)n)

−c2 ·
Γ (cn)

Γ
(

cn− 2
n

) ·
Γ
(

(c+ 1)n− 2
n

)

Γ ((c+ 1)n)

)

&
1

n
·

1

(c+ 1)3

(

c (c+ 1)

(

cn

(c + 1)n

)
1

n

− c2
(

cn

(c+ 1)n

)
2

n

)

&
1

n
·

1

(c+ 1)3
(

c (c+ 1)− c2
)

=
1

n
·

c

(c+ 1)3
(5.13)

where x & y means x ≥ y ± o(y). The coefficient of 1
n

attains a maximum

value of 4
27

when c = 1
2
. Thus, we have:

R∗
n ≥

4

27n
± o

(

1

n

)

(5.14)
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5.2 Lower Bound using Distribution Estimation

A second approach to bound the minimax risk for missing mass estimation is

to reduce the problem to that of estimating a distribution. Let P be the set of

distributions over the set X = {0, 1} such that for all p ∈ P , p (0) ≥ 1
2
. A known

result (refer Lehmann and Casella (1998) for instance) states that the minimax ℓ2

risk in estimating p(0) is 1
4n

. More precisely, let p̂(Xn) be an estimator for p(0)

from a random sample Xn distributed according to p. Then, we have:

Lemma 5.2.1.

min
p̂(0)

max
p∈P

EXn∼p (p (0)− p̂ (Xn))2 =
1

4n
+ o

(

1

n

)

For an arbitrary positive integer k, let Pc be the set of distributions over the

set X = {0, 1, 2, . . . k − 1}, such that for any pc ∈ Pc, we have pc (0) ≥ 1
2

and pc (i) = 1−pc(0)
k

for all i ≥ 1. We can use Lemma 5.2.1 to obtain minimax

bounds in estimating pc (0) for this family of distributions as well. Let p̂c(X
n)

be an estimator for pc from a random sample Xn distributed according to pc. Let

p̂c(X
n, i) be the probability p̂c assigns to the symbol i.

Lemma 5.2.2.

min
p̂c(0)

max
pc∈Pc

EXn∼pc (pc (0)− p̂c (X
n, 0))2 ≥

1

4n
+ o

(

1

n

)

Proof. Suppose we want to estimate an unknown distribution p ∈ P and we have

an estimator p̂c for distributions in Pc. Then we can use p̂c to estimate p as fol-

lows. Take the observed sample distributed according to p, and if it is 0, keep it

unchanged. If it is 1, then replace it with an uniformly sampled random variable

over {1, 2, . . . k}. The result of this sampling process is a distribution pc in Pc
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with pc (0) = p (0). Thus, any estimator for distributions in Pc can be reduced to

an estimator for distributions in P and

min
p̂(0)

max
p∈Pc

EXn∼pc (pc (0)− p̂c (X
n, 0))2

≥ min
p̂(0)

max
p∈P

EXn∼p (p (0)− p̂ (Xn))2

and the proof follows from Lemma 5.2.1.

Lemma 5.2.3. Let k = en. With probability at least 1 − 1/2n, the missing mass

M0 (X
n) satisfies

M0 (X
n) = 1− p (0) +O

(

ne−n
)

.

Proof. The probability of symbol 0 appearing at least once in Xn is 1 − (1 −

p(0))n ≥ 1−1/2n. Furthermore, at most n distinct symbols from 1, 2, . . . k−1 can

appear in Xn. Hence, with probability 1− 1/2n, the observed mass 1−M0 (X
n)

satisfies

p (0) ≤ 1−M0 (X
n) ≤ p (0) + (1− p (0))ne−n, (5.15)

and hence follows the lemma.

From Lemmas 5.2.2 and 5.2.3, we can obtain a lower bound on the minimax

risk of missing mass estimation:

R∗
n = min

M̂0

max
p

E

(

M0 (Xn, p)− M̂0 (Xn)
)2

≥ min
M̂0

max
p∈Pc

E

(

M0 (Xn, p)− M̂0 (Xn)
)2

≥ min
M̂0

max
p∈Pc

(

1−
1

2n

)

E

[

p (0)−
(

1− M̂0 (Xn)
)

− O
(

ne−n
)

]2

=
1

4n
+ o

(

1

n

)
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∴ R∗
n ≥

1

4n
+ o

(

1

n

)

(5.16)

This bound improves upon the 4/27n lower bound obtained in the previous

section, at the cost of somewhat lower generalizability.
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SUMMARY AND FUTURE WORK

We looked at the problem of missing mass estimation and the Good-Turing esti-

mator. The Good-Turing estimator was shown to have a worst case risk of 1/n

under the Poisson sampling model and was proven to be asymptotically optimal

among all linear estimators. Under the multinomial sampling model, the Good

Turing estimator was shown to have a worst case risk between 0.6080/n and

0.6179/n. We also looked at multinomial lower bounds for the minimax risk;

a bound of 4/27n is obtained using Bayes risk and can be improved to 0.25/n us-

ing distribution estimation. Combined with the earlier result on the Good-Turing

estimator, we give the following guarantee on the minimax risk of missing mass

estimation:

0.25

n
≤ R∗

n ≤
0.6179

n

Thus, the Good-Turing estimator is order-optimal for missing mass estimation

under the multinomial model.

The following are some suggestions for further directions this work can be

taken in:

1. While the Good-Turing estimator was shown to be optimal among linear es-

timators under the Poisson model, it is possible that it can be outperformed

by another linear estimator under the multinomial model. The analysis of

chapter 3 could possibly be extended to give bounds on the worst case risk

for arbitrary linear estimators.

2. The Bayes risk bound could also be used to obtain lower bounds for the

minimax risk under the Poisson model.
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3. The lower bound on minimax risk using Bayes risk could be improved,

either by choosing better hyperparameters(k and α) or by using a different

prior distribution altogether.

4. Similar techniques could be used to obtain minimax results for other esti-

mation problems. This includes distribution estimation and estimating Mk,

which is the total probability of all symbols seen k times in the sample.
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