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ABSTRACT

Measuring similarity between nodes is a fundamental problem in the analysis

of information networks, and also plays a key role in collaborative filtering and

information retrieval tasks on networks such as web graphs and bibliographic

networks. SimRank is a widely studied link-based similarity measure that is

known for its simple, yet powerful philosophy that two nodes are similar if

they are referenced by similar nodes. While this philosophy has been the ba-

sis of several improvements, there is another useful, albeit less frequently dis-

cussed interpretation for SimRank known as the Random Surfer-Pair Model.

This interpretation has enabled SimRank to be used in a Monte Carlo frame-

work, and has also led to the formulation of PSimRank which remediates a de-

ficiency in SimRank. In this work, we show that other well known measures de-

rived from SimRank can also be reinterpreted using Random Surfer-Pair Mod-

els, thus establishing them as a general and unifying framework for various

link-based similarity measures. This also serves to provide new insights into

their functioning and allows for using these measures in a Monte Carlo frame-

work, which can potentially allow them to scale to very large graphs. We also

develop a new measure, PSimRank* under this interpretation and demonstrate

its effectiveness, thus opening up numerous possibilities for further develop-

ments. Finally, we investigate possibilities for handling negative examples in

systems that use network data to provide recommendations. We propose an al-

gorithm, PacRank as an attempt to utilize structural similarity measures to this

end.
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Chapter 1

INTRODUCTION

1.1 Information Networks

Numerous situations arise in physical, social, electronic and other systems that

involve many different entities interacting with each other in different ways.

These interactions form vast networks with rich structures. These networks

have been termed Information networks (INs) by Zhao et al. (2009). They are

ubiquitous, with some well known examples being social networks, the World

Wide Web, citation and collaboration networks (bibliometrics), and biological

networks.

As advances in computing and information systems have enabled the collec-

tion of data on such networks on a large scale, the analysis of these networks is

now of paramount importance and yields far reaching benefits. For example,

analysis of transportation networks can be used to discover knowledge leading

to more efficient operation (Jiang et al., 2005). The study of biological interac-

tion networks has been very useful in the study of several kinds of biological

systems (Russell and Aloy, 2008).

It comes as no surprise then, that the information sciences can also benefit from

such studies, one famous work in this field being PageRank (Brin and Page,

1998) that revolutionized information retrieval for the web. Social networks

have also received tremendous attention owing to the rise of social media plat-

forms. Another important application is in bibliometrics, which is concerned

with networks formed by academic publications and collaboration such as ci-

tation and co-authorship networks.



1.2 Formalizing INs

Graphs are a natural way to represent a collection of entities interacting with

or related to each other in some manner. There are many kinds of graphs that

can model different kinds of data. A Web graph for instance would be directed,

with edges indicating that one page links to another. A roadways network

would have weights associated with the edges indicating the length of each

road. There even exist other sophisticated models like hypergraphs used for

more complex data.

This work deals with INs represented by directed graphs with unweighted

edges, where all nodes are of the same kind. Zhao et al. (2009) refer to such INs

as homogeneous INs. Henceforth, the terms “network” and “graph” are used in-

terchangeably to refer to such an IN unless otherwise stated.

The graph is denoted by G = (V,E), where V is the vertex set and E is the

edge set, with elements of the form (a, b) indicating that there is an edge be-

tween nodes a and b. Each node a has associated with it two ordered sets :

I (a), the set of in-neighbors and O (a), the set of out-neighbors. They can be

indexed with an index i as Ii (a) and Oi (a). Sometimes the set of both in and

out neighbors together, which we denote by L (a) is also used. We denote by Q

the column normalized adjacency matrix associated with the graph whose en-

tries Qi,j = 1/|I(i)| if there is an edge from j to i, and 0 otherwise. An example

network is shown in Figure 1.1.

1.3 Structural Similarity Measures

A sizeable amount of data these days is available in the form of networks. Nat-

urally, the need arises to effectively utilize this data in the relevant domains.

One situation where network data proves very useful is in recommender sys-

tems. With the advent of electronic commerce, data is frequently available for

products that customers have purchased. The utilization of this data to provide

recommendations is known as collaborative filtering.
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Figure 1.1: A toy example network.

As human knowledge grows, leading to rapidly expanding bodies of litera-

ture, there is an increasing requirement for effective recommender systems to

aid researchers. Thus, utilizing bibliographic network data such as citation and

co-authorship networks to provide recommendations is of rising importance.

Some form of similarity assessment would of course be a key component of

any information retrieval system. This is specially true of recommender sys-

tems. Obviously, methods that can make use of vast network data would be

at an advantage. In this work, we consider structural similarity measures, which

work with only the link structure of the network. They are also known as link-

based similarity measures. Although many of these were developed in the context

of citation networks, they still apply to any directed networks.

Among the first such well known measures are Co-Citation (Small (1973)) and

its counterpart Bibliographic coupling (Kessler (1963)) that are respectively the

frequency with which nodes refer to two given nodes , and the frequency with

which nodes are referenced together by two given nodes. Amsler (Amsler

(1972)) is a combination of the former two measures.

SimRank (Jeh and Widom (2002)) was a seminal work that dramatically changed
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the landscape of structural similarity. Its elegant and intuitive philosophy has

been the basis of several future works. SimRank and methods derived from it

have been successfully used in a variety of applications including natural lan-

guage processing (Rothe and Schütze (2014)), clustering (Yin et al. (2006)) and

even search query rewriting (Antonellis et al. (2008)).

There have also been similarity measures based on PageRank. Two notable

examples of this are CoSimRank (Rothe and Schütze (2014)), which computes

scores based on Personalized PageRank (Haveliwala (2002)), and PageSim (Lin et al.

(2006)), which is based on propagation of PageRank scores.

1.4 Contributions

At the focus of this work are the similarity measures related to SimRank, partic-

ularly the probabilistic interpretation known as the Random Surfer-Pair model.

A Generalized version of the Random Surfer-Pair model is proposed which

extends this interpretation to several other existing structural similarity mea-

sures. This interpretation is used to develop a new measure which is shown to

perform better than many other measures. The various benefits of such a model

and and the possibilities for further developments are highlighted.

Next, the problem of incorporating negative examples in recommender systems

is investigated. Some possible ways to adapt structural similarity measures for

this purpose are explored. The PacRank algorithm is proposed as one way to

accomplish this.

1.5 Overview

Chapter 2 surveys various structural similarity measures starting with Sim-

Rank. Section 2.1 presents the details of SimRank, followed by a discussion

on its computation. Section 2.1.4 presents the main theoretical issues identi-

fied in SimRank. The remainder of the chapter is devoted to presenting several
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other measures and how they address these issues in SimRank.

In Chapter 3, the original Random Surfer-Pair formulation is introduced in Sec-

tion 3.1. Then the Generalized Random Surfer-Pair model is developed in Sec-

tions 3.2 and 3.3. The application of the model to several existing measures is

demonstrated in Section 3.4. Section 3.5 discusses the use of Monte Carlo meth-

ods with the Generalized Random Surfer-Pair model. A theoretical deficiency

of an existing measure, P-Rank under the new model is discussed in Section

3.6, followed by the corrected measure P+Rank. Next, a new measure, PSim-

Rank* is proposed in Section 3.7. Experiments are performed in Section 3.8 to

assess the performance of P+Rank and PSimRank. The chapter concludes after

a summary of the advantages of the new formulation in Section 3.10.

Chapter 4 presents the problem of incorporating negative examples in recom-

mender systems, and moves on to some attempts to utilize similarity measures

for this purpose. The PacRank algorithm is proposed in Section 4.2, followed

by ways to efficiently process queries with this algorithm in the practical setting

of a paper recommender system in Section 4.3.
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Chapter 2

STRUCTURAL SIMILARITY MEASURES

In this chapter, we begin with a discussion on SimRank, and highlight the ma-

jor issues present in SimRank. Then, we discuss several other measures and

how they solve these issues. Throughout this work, the notation s (a, b) is used

to denote the similarity of nodes a and b under the similarity measure being

discussed in the context unless stated otherwise.

2.1 SimRank

2.1.1 Definition

SimRank is known for its simple, yet powerful philosophy :

Two nodes are similar if they are referenced by similar nodes.

which leads to the recursive form that is most commonly used. Formally, the

SimRank score of a pair of nodes a and b is the average of the SimRank scores

of their in-neighbors taken pairwise, and damped by a constant C < 1 :

s (a, b) =





1 if a = b

0 if |I(a)| = 0 or |I(b)| = 0

C
|I(a)||I(b)|

∑|I(a)|
i=1

∑|I(b)|
j=1 s (Ii(a), Ij(b)) otherwise

(2.1)

The base cases for the recursion are that a node is maximally similar to it-

self, and that SimRank is taken to be zero (unavailable) when either node has

no in-neighbors.



It is also possible to express the above definition in matrix form (Rothe and Schütze

(2014); Yu et al. (2013)) :

S = C ·
(
QT · S ·Q

)
+ (1− C) · I (2.2)

2.1.2 Computing SimRank

The recursive definition lends itself to a natural iterative algorithm whose iter-

ations are as follows :

sk+1 (a, b) =





1 if a = b

0 if |I(a)| = 0 or |I(b)| = 0

C
|I(a)||I(b)|

∑|I(a)|
i=1

∑|I(b)|
j=1 sk (Ii(a), Ij(b)) otherwise

(2.3)

With the initial conditions set according to the base cases as discussed above

:

s0 (a, b) =




1 if a = b

0 if a 6= b

(2.4)

It is shown that the recursive form in equation 2.1 has a unique solution and

that the above iterative process converges in the limit to this unique solution.

The iterations are also monotonically increasing, that is sk+1 (a, b) ≥ sk (a, b) for

all node pairs (a, b).

Applying these iterations as such gives a time complexity of O (N4) in the worst

case for computing similarity between all pairs of nodes. Radius based pruning

is suggested in Jeh and Widom (2002) where similarities of nodes that are more

than a particular distance (usually 2 or 3) apart (i.e outside a particular radius

of each node) are set to zero as they are unlikely to be similar.
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A dynamic programming based approach was proposed in Lizorkin et al. (2010)

that reduces the complexity to O (N3). This approach involves memoization of

partial sums in a manner similar to dynamic programming. Other optimiza-

tions such as selecting only “essential” node pairs and threshold sieving in or-

der to avoid computing scores between pairs that are close to zero to further

reduce computation are also presented in the same paper.

2.1.3 Variants of SimRank

A bipartite version is presented in Jeh and Widom (2002) that extends the intu-

ition of SimRank to domains where nodes are of two different types and edges

represent relationships between nodes of different classes. An example of such

a situation would be people and items purchased by people. Here, the similar-

ity between two nodes of one class is determined by how much they are refer-

enced by or refer to similar nodes of the other class. This can also be applied to

homogeneous domains to get a similarity analogue of HITS scores (Kleinberg

(1999)).

Reverse SimRank, denoted as rvs-SimRank is a version of SimRank that uses

out-links instead of in-links.

2.1.4 Deficiencies in SimRank

There have been numerous efforts to improve SimRank ever since its introduc-

tion. New algorithms that have been proposed try to rectify theoretical defi-

ciencies in SimRank. Hamedani and Kim (2016) identify three main problems

that most improvements to SimRank try to solve :

• The In Links Consideration Problem : SimRank is unavailable when either
node has no in-neighbors, even though there may be evidence of similar-
ity in the out-neighbors.

• The Pairwise Normalization Problem : This is the counter-intuitive effect
that the SimRank score of a pair of nodes can decrease as there are more
and more nodes referring to both of them. This will be discussed in more
detail in Section 2.3.1.
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• The Level-wise computation problem : SimRank is unavailable for node
pairs that don’t have any paths of equal length to a common node.

These issues will be discussed in detail alongside existing works that solve

them in the upcoming sections.

2.2 P-Rank

P-Rank (Zhao et al. (2009)) was proposed to take into account out-links as well

in computing similarity. It has the following recursive form :

s (a, b) = λ×
C

|I(a)||I(b)|

|I(a)|∑

i=1

|I(b)|∑

j=1

s (Ii(a), Ij(b))

+ (1− λ)×
C

|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

s (Oi(a), Oj(b)) (2.5)

It essentially adds an additional clause :

two entities are also similar if they reference similar entities

The base cases are similar to those of SimRank, except that only the term that

corresponds to in (out) neighbors gets zeroed out if one or both of (a, b) doesn’t

have in (out) neighbors. This ensures that P-Rank is not unavailable for node

pairs without in-links as is the case with SimRank, as long as they have out

links.

A similar iterative procedure can be written, with the same convergence guar-

antees as for SimRank. The partial sums memoization approach of Lizorkin et al.

(2010) can also be directly used to provide the same complexity reduction to

O (N3).

λ is a tunable parameter that controls how much preference to give to in-links

and out-links. SimRank and rvs-SimRank are in fact special cases when λ = 1

9



Figure 2.1: Illustration for the pairwise normalization problem. Source :
Fogaras and Rácz (2005)

and λ = 0 respectively.

Co-citation, Bibliographic Coupling and Amsler can also be achieved as spe-

cial cases when considering only one iteration of P-Rank.

2.3 PSimRank

2.3.1 The Pairwise normalization problem

Consider the situation shown in Figure 2.1. Two nodes u and v have several (say

k) nodes that cite both of them. Now, if these nodes are unrelated to each other

(i.e they have zero similarity), the SimRank score between u and v is found to

be C
k

, which decreases with k. Thus, even though there are more witnesses to

the similarity of u and v, their SimRank score is reduced. This is known as the

pairwise normalization problem.

2.3.2 A solution : PSimRank

The recursive form of PSimRank (Fogaras and Rácz (2005)) is as follows :

10



s (a, b) =
C|I (a) ∩ I (b) |

|I (a) ∪ I (b) |

+
C

|I (a) ∪ I (b) ||I (b) |

∑

a
′

∈I(a)\I(b)

b
′

∈I(b)

s
(
a

′

, b
′

)
(2.6)

+
C

|I (a) ∪ I (b) ||I (a) |

∑

b
′

∈I(b)\I(a)

a
′

∈I(a)

s
(
a

′

, b
′

)

PSimRank solves the pairwise normalization problem by assigning greater

importance to common in-neighbors. This is done via the Jaccard coefficient of

the sets of in-neighbors. The properties of PSimRank will be revisited under a

different context subsequently.

2.4 C-Rank

C-Rank (Yoon et al. (2016)) is a version of PSimRank that operates on the un-

derlying undirected network in order to consider out-links as well as solve the

pairwise normalization problem like PSimRank. The recursive form is :

s (a, b) =
C|L (a) ∩ L (b) |

|L (a) ∪ L (b) |

+
C

|L (a) ∪ L (b) ||L (b) |

∑

a
′

∈L(a)\L(b)

b
′

∈L(b)

s
(
a

′

, b
′

)
(2.7)

++
C

|L (a) ∪ L (b) ||L (a) |

∑

b
′

∈L(b)\L(a)

a
′

∈L(a)

s
(
a

′

, b
′

)

This has the advantage that there is no parameter analogous to λ in P-Rank

that needs to be chosen beforehand, while still retaining the benefits of PSim-

Rank.
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2.5 SimRank*

Figure 2.2: An example of the level-wise computation problem: There are no
paths of equal length from a to d and h. This means that SimRank
will ignore a as a source of similarity. Image source : Yu et al. (2013)

SimRank* (Yu et al. (2013)) was proposed to solve the third problem, the

level-wise computation problem of SimRank. SimRank insists that a pair of

nodes need to be at the same “level” from other nodes in order for the measure

to be available for that pair. This means that it disregards any paths of unequal

length meeting at a common node as evidence of similarity. An example of this

is illustrated in Figure 2.2. SimRank* considers these paths with appropriate

weights, leading to the following elegant matrix form :

S =
C

2
·
(
Q · S+ S ·QT

)
+ (1− C) · I (2.8)

The recursive form as it turns out is even simpler than SimRank :

s (a, b) =
C

2|I(a)|

|I(a)|∑

i=1

s (Ii(a), b) +
C

2|I(b)|

|I(b)|∑

i=1

s (a, Ii (b)) (2.9)

The measure is derived in Yu et al. (2013) by actually enumerating all pairs

of paths of (possibly) unequal length from a and b to a common node and com-

puting the weighted sum of an exponentially decayed score associated with

each path. Later on in Section 3.4.5, we present a much simpler explanation as

to how it works under the Random Surfer-Pair model interpretation.

12



Even using the naive iterations to compute SimRank* incurs only O (N3) com-

plexity, whereas SimRank takes O (N4). A partial sums memoization approach

is also proposed that reduces this further to only O (N2) in the worst case (which,

it should be noted is the bare minimum if all pairs of similarities are to be com-

puted). Thus, SimRank* is faster and at the same time resolves a major issue in

SimRank.

2.6 MatchSim

MatchSim (Lin et al. (2012)) also solves the pairwise normalization problem, but

in a different way. Instead of using the average similarity of all neighbors, only

the most similar neighbor pairs are used. The most similar pairs are selected by

finding the maximum matching between the neighbors of the two nodes, with

the weight of the matching being the current estimate for the similarity. This

leads to the following recursive form :

s (a, b) =
Ŵ (a, b)

max (|I (a)| , |I (b)|)
(2.10)

Where Ŵ (a, b) is the total weight of the maximum matching between the

neighbors of a and b.

2.7 CoSimRank

CoSimRank (Rothe and Schütze (2014)) has a matrix form not unlike the others

discussed so far :

S = C ·
(
QT · S ·Q

)
+ I (2.11)

It turns out that this is equivalent to computing the following expressions:

s (a, b) =

∞∑

k=0

ck
〈
p(k) (a) , p(k) (b)

〉
(2.12)
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Where p(k) (a) is the Personalized PageRank (PPR) vector of node a com-

puted using k iterations. This form can be computed element wise unlike all of

the measures discussed so far, though it requires the PPR vectors to be avail-

able.
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Chapter 3

GENERALIZED RANDOM SURFER-PAIR MODELS

Although SimRank is known by its recursive formulation, there is another use-

ful, albeit less frequently discussed interpretation for SimRank known as the

Random Surfer-Pair Model, which was proposed alongside SimRank (Jeh and Widom

(2002)). PSimRank was another major work to use this interpretation. However,

apart from these, it seems to have gone largely unnoticed. This probabilistic

interpretation is the focus of the chapter and is discussed in detail in the up-

coming section in the context of SimRank and PSimRank and later generalized

to other measures.

3.1 Existing Random Surfer-Pair Models

3.1.1 SimRank

The Random Surfer-Pair interpretation for Simrank is based on a random ex-

periment involving two random walks (or surfers) starting at the given nodes

a and b, and traversing the graph backwards until they meet. That is, at the end

of each step, each walk transitions to a randomly chosen in-neighbor. If either

of the current nodes have no in-neighbors, the experiment is stopped.

Definition 1. Let L(a, b) be the random variable that gives the number of steps

taken until the surfers meet starting from a and b respectively. The expected f -

meeting distance between a and b is defined for a given function f as E [f (L (a, b))].

The f -meeting distance can be viewed as a score resulting from each in-

stance of the experiment, and is itself a random variable. It turns out that for a

specific choice of f , the expected score is nothing but the SimRank of (a, b). This

equivalence of the Random Surfer-Pair formulation and the recursive form in

equation 2.1 are stated in Jeh and Widom (2002) as the following theorem :



Theorem 2. SimRank as defined by equation (2.1) is the same as the expected f -

meeting distance between a and b for f(t) = Ct.

If the experiment is stopped because of unavailability of neighbors, L (a, b)

is considered to be infinite, thus making the f -meeting distance zero for that

run of the experiment. Also, the base case of a node being maximally similar

to itself follows naturally because if a = b, the surfers deterministically meet at

time t = 0, giving a score of 1 always.

In this interpretation, two nodes are similar if they are close to some source(s)

of similarity.

3.1.2 PSimRank

In the Random Surfer-Pair Model, it becomes clearer as to how PSimRank solves

the problem of pairwise normalization. It is done by increasing the tendency for

the surfers to meet when they have more neighbors in common. Of course, as

with SimRank, this model can be shown to be equivalent to its recursive form.

The precise statement is as follows (Fogaras and Rácz (2005)) :

Theorem 3. The recursive PSimRank score between nodes a and b defined by equation

(2.6) is nothing but the expected f -meeting distance with f(t) = Ct of two random

surfers Xa and Xb starting from a and b that move in the following way. If Xa(t) = u

and Xb(t) = v are their positions at some time t :

• With probability |I(u)∩I(v)|
|I(u)∪I(v)|

(which is the Jaccard coefficient of the sets of in-neighbors

of u and v), they both move to the same uniformly chosen node in the set of com-
mon in-neighbors I (u) ∩ I (v).

• With probability |I(u)\I(v)|
|I(u)∪I(v)|

, Xa moves to a uniformly chosen node in I (u) \ I (v)

and the walk Xb steps to an independently chosen uniform vertex in I (v).

• With probability |I(v)\I(u)|
|I(u)∪I(v)|

, Xa moves to a uniformly chosen node in I (u) and the

walk Xb steps to an independently chosen uniform vertex in I (v) \ I (u).

One thing to note here is that the surfers are now coupled as opposed to

being independent in the case of SimRank. That is, the transitions of one surfer

do influence the other.
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3.2 Generalizing the Random Surfer-Pair Model

An interesting observation to be made is that PSimRank was formulated as a

Random Surfer-Pair Model and then cast as a recursive definition, in contrast to

SimRank. Given its success, it is natural to consider the possibility of a general

version that can be applied to many of the measures discussed here.

The generalization that will be presented here treats the Random Surfer-Pair

experiment as a single random walk, but on a compound state space that con-

sists of vertex pairs from V × V to indicate the positions of both surfers, and

also a “stopped” state, which represents unavailability. We use the letter h to

denote a typical state from this space, which we denote by S.

The transition probabilities for this random walk are denoted as p
(
h

′
∣∣h

)
, the

probability of transitioning to h
′

from h. The stopped state is an absorbing state,

that is once the state is reached, it is impossible to leave. We can collect these

probabilities into a matrix P.

The idea is that different measures can be realized for different choices of tran-

sition probabilities, formalized by the following definition of the Generalized

Random Surfer-Pair Model :

Definition 4. For a particular matrix of transition probabilities P, consider the

following combined random walk experiment over the compound state space

S starting from (a, b) at time t = 0:

• If the current state of the walk is h, the walk moves to the next state with
probability p

(
h

′
∣∣h

)
∀h

′

∈ S as specified by P.

• The walk ends when a state of the form (x, x) is reached, for some x ∈ V .

Let L(a, b) be the random variable that gives the number of steps taken until

the walk ends. The expected f -meeting distance between a and b is defined for this

combined walk for the function f(t) = Ct as E [f (L (a, b))]. This is a function

of (a, b) which we call the similarity measure induced by P under the Generalized

Random Surfer-Pair model.

17



The termination condition is equivalent to the random surfers meeting at

some node for the first time. If the walk goes into the stopped state, it stays

there forever, and does not reach a state of the form (x, x). This gives an infinite

number of steps, thus leading to a score of zero. Again, the base case of maximal

self-similarity applies here as well.

3.3 Equivalence to recursive form

It is straightforward to see that the coefficients of any s
(
a

′

, b
′
)

in the recursive

formulations of SimRank (Equation 2.1) and PSimRank (Equation 2.6) are the

same as the transition probabilities for the surfers in their respective Random

Surfer-Pair Models going from (a, b) to
(
a

′

, b
′
)
. This leads one to believe there

could be a similar relationship to a recursive form for any transition probabili-

ties P. Indeed, this is true and the results are formally presented in the remain-

der of this section.

For a given transition probability matrix P, consider the following set of re-

cursive equations defined for all node pairs (a, b) :

s (a, b) = C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
s
(
a

′

, b
′

)
(3.1)

Here, R ((a, b)) is a region of support (which we will also refer to as support

set) for (a, b) under P, that is where the transition probability p
((
a

′

, b
′
) ∣∣ (a, b)

)

is non-zero. Note that this does not include the stopped state, which means the

sum of the coefficients appearing in the above equation need not be 1 (of course,

they have to be less than 1).

The same base case of s (a, a) = 1 ∀ a ∈ V is used. If R ((a, b)) = {φ}, s (a, b)

is taken to be zero unless a = b. These equations define what is called the recur-

sive similarity measure induced by P.
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As before, an iterative form is also defined :

sk+1 (a, b) = C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
sk

(
a

′

, b
′

)
(3.2)

Theorem 5. The following results hold true for this iterative form :

• Monotonicity and boundedness :

0 ≤ sk (a, b) ≤ sk+1 (a, b) ≤ 1 ∀ (a, b) ∈ V × V

• Convergence to limit : The sequence sk (a, b) converges to a limit (obviously
between 0 and 1 by the previous part) for all (a, b) ∈ V × V

From the above, the following result follows :

Theorem 6. There exists a unique solution to the system of equations defined by equa-

tion 3.1.

Which leads to the following central result :

Theorem 7. The similarity measure induced by P according to definition 4 is the same

as the recursive similarity measure induced by P (Equation 3.1).

The above theorems generalize the results in Jeh and Widom (2002). The

proofs are also done in a similar manner and are presented in Appendix A.

Theorem 7 is the result necessary to convert an existing recursive form into

a Random Surfer-Pair Model. All that needs to be done is to read off the non-

zero coefficients into the appropriate places into the matrix, or equivalently get

the support set and the corresponding transition probabilities as a function of

(a, b). One thing to note here is that the probabilities corresponding to actual

node pair destinations from (a, b) need not sum to 1, because it could go into

the stopped state as well.

It would of course be more illustrative to get a concise description of the ma-

trix. Our formulation allows for transitions from one compound state to any

arbitrary state, and any number of destination states with non-zero transition
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probability. However, as we will see in the upcoming sections, in existing mea-

sures, there are only a few possible transitions from any given state (a, b), and

that too involving the neighbor pairs of a and b. This means that P is usually

sparse, so even though there are N2 states, only a few of them are involved in

transitions from any given state, and it is no more complicated than the exist-

ing recursive formulations. However, we note that the above results continue

to hold for any P regardless of sparsity.

3.4 Reinterpreting Existing Measures

3.4.1 SimRank

• Support set : R ((u, v)) = I (u)× I (v).

• Transition probabilities : 1
|I(u)×I(v)|

∀ x ∈ I (u)× I (v)

R ((a, b)) is simply all neighbor pairs of u and v with the transition probabili-

ties being uniform over this set. If either node has no in-neighbors, it transitions

to the stopped state with probability 1 (i.e unavailable).

3.4.2 PSimRank

From the Random Surfer-Pair formulation in Theorem 3, it is straightforward

to find :

• Support set : R ((u, v)) = I (u)× I (v).

• Transition probabilities :
– For common in-neighbors :

p ((x, x) | (u, v)) =
1

|I (u) ∪ I (v) |
∀ x ∈ I (u) ∩ I (v)

– For first surfer not choosing common neighbor :

p
((

u
′

, v
′

) ∣∣∣ (u, v)
)
=

1

|I (u) ∪ I (v) ||I (v) |
∀ u

′

∈ I (u) \I (v) , ∀v
′

∈ I (v)

– For second surfer not choosing common neighbor :

p
((

u
′

, v
′

) ∣∣∣ (u, v)
)
=

1

|I (u) ∪ I (v) ||I (u) |
∀ v

′

∈ I (v) \I (u) , ∀u
′

∈ I (u)
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Again, if either of the nodes do not have in-neighbors, the walk goes to the

stopped state like SimRank.

3.4.3 C-Rank

C-Rank being an undirected variant of PSimRank, the Random Surfer-Pair Model

follows right away from PSimRank by replacing in-neighbors with the set of

undirected neighbors everywhere.

3.4.4 P-Rank

From definition 2.5, we have :

• Support set : R ((a, b)) = (I (a)× I (b)) ∪ (O (a)× O (b))

• Transition probabilities :
– In-neighbors : p

((
a

′

, b
′
) ∣∣ (a, b)

)
= λ

|I(a)×I(b)|
∀
(
a

′

, b
′
)
∈ I (a) × I (b).

If |I(a)| = 0 or |I(b)| = 0, it goes to the stopped state instead with
probability λ.

– Out-neighbors : p
((
a

′

, b
′
) ∣∣ (a, b)

)
= 1−λ

|O(a)×O(b)|
∀
(
a

′

, b
′
)
∈ O (a) ×

O (b). If |O(a)| = 0 or |O(b)| = 0, it goes to the stopped state instead
with probability 1− λ.

This is essentially the following : a coin with probability λ is tossed, and

based on its result, both surfers move backward or forward and choose from

applicable edges uniformly.

3.4.5 SimRank*

From definition 2.9, we have :

• Support set : R ((a, b)) = ({a} × I (b)) ∪ (I (a)× {b})

• Transition probabilities :

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
=

{
1

2|I(a)|
∀
(
a

′

, b
′
)
∈ {a} × I (b)

1
2|I(b)|

∀
(
a

′

, b
′
)
∈ I (a)× {b}

The unavailability of in-neighbors is treated the same way as SimRank,
except that one of the two cases above can still be “active” and not go to
the stopped state in situations where |I(a)| = 0, |I(b)| 6= 0 or vice-versa.
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The notable feature here is that only one of the surfers is allowed to move at

each step. The choice as to which surfer moves is made uniformly. This can be

summed up as : toss a fair coin, based on the outcome, one surfer chooses an

in-neighbor uniformly.

From this, it becomes clear how SimRank* manages to consider paths of un-

equal length. The surfers need not have made an equal number of jumps to

meet at some node. By allowing only one to move at a time, it is ensured that

all pairs of paths from (a, b) to a common node that have the same total length

also have the same weight or probability.

3.5 Monte Carlo Computation

The Monte Carlo paradigm is a widely used one across many fields because it

is applicable whenever a quantity can be computed as an expected value. Nat-

urally, it also applies to the Generalized Random Surfer-Pair model. A straight-

forward way to use it would be to simulate the random walk starting from a

given pair of nodes for some number of times, and return the average score as

the similarity.

In practice, the surfers would have to be truncated after some of steps Lmax,

and only a limited number of samples NS can be drawn in the interest of fast

querying, but Fogaras and Rácz (2005) provide decent guarantees for accuracy

in practice. As with all the recursive measures, radius based pruning can be

done to reduce the amount of nodes that need to be considered for top-k simi-

larity queries.

Typically, there is an easy way to generate a transition from any given state

in constant time. In SimRank* for instance, all that needs to be done is to toss a

coin, and advance one surfer to a randomly chosen in-neighbor. Therefore, the

complexity of a single similarity computation is just O (NSLmax), where these

quantities are much smaller than the size of the network.
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Even with more complicated transitions like those involving the Jaccard Coeffi-

cient in PSimRank, it is possible to use efficient indexing for fast querying. The

indexing approach presented in Fogaras and Rácz (2005) is based on generating

several coalescing random walks and organizing them in a compact manner in

what is called a Fingerprint Graph. This structure enables fast querying of first

meeting times starting from any two nodes. However, this approach might not

work for all kinds of transitions. For instance, with SimRank*, since at any step,

only one of the surfers can move, it would be impossible to generate a set of co-

alescing random walks in a consistent manner because in a typical set of such

walks, there would be many pairs where both move or neither move at some

step. Nevertheless, this is a highly useful approach, specially in the setting of

an actual query engine.

3.6 P+Rank : A more consistent measure

The Random Surfer-Pair formulation for P-Rank presented in section 3.4.4 is

essentially the following : a coin with probability λ is tossed, and based on

its result, both surfers move backward or forward and choose from applicable

edges uniformly. This coupling of the walks seems to be unnecessary, and in

theory discards common sources of similarity that would be reachable if each

surfer could choose direction independently.

The straightforward way to remove the coupling would be to make the surfers

choose a direction independently, using two separate coin tosses. Thus, there

is a possibility for one surfer to move forward and the other backward, or vice-

versa. This measure is termed P+Rank. The equivalent recursive formulation

for P+Rank would be :
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s (a, b) = λ2 ×
C

|I(a)||I(b)|

|I(a)|∑

i=1

|I(b)|∑

j=1

s (Ii(a), Ij(b))

+ λ(1− λ)×
C

|I(a)||O(b)|

|I(a)|∑

i=1

|O(b)|∑

j=1

s (Ii(a), Oj(b))

+ (1− λ)λ×
C

|O(a)||I(b)|

|O(a)|∑

i=1

|I(b)|∑

j=1

s (Oi(a), Ij(b))

+ (1− λ)2 ×
C

|O(a)||O(b)|

|O(a)|∑

i=1

|O(b)|∑

j=1

s (Oi(a), Oj(b)) (3.3)

a

b

d e

f c

g

Figure 3.1: Example of P-Rank ignoring paths because only one of them
changes direction : P-Rank is unavailable for (b, g) because there are
no paths that follow the constraint that both must choose the same
direction. P+Rank however considers the paths indicated in blue
and green.

This change makes P+Rank consider more common sources of similarity

that P-Rank doesn’t. An example of this is a situation where the path of exactly

one of the surfers needs to change direction in order to meet at a source of sim-

ilarity, illustrated in Figure 3.1. Thus, P+Rank is theoretically more consistent

as a direction aware measure (and direction awareness is the improvement that

P-Rank makes over SimRank).

P+Rank also has the advantage that because of the surfers being independent,
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the Monte Carlo indexing algorithm in Fogaras and Rácz (2005) can be used

directly. All that needs to be done to adapt the algorithm for P+Rank is to gen-

erate the fingerprints by choosing edges as described above. This will not work

for P-Rank, where the coupling of the surfers means that the random finger-

prints used in the indexing can’t be consistent. That is, there will be coalescing

random walks that move in different directions, which is not allowed in P-Rank.

Although Equation 3.3 appears to be more complicated than the recursive form

for P-Rank in Equation 2.5, both measures take nearly the same time when us-

ing Monte Carlo methods, with P+Rank requiring only an additional coin toss

at each step.

3.7 PSimRank* : Combining the Best of Both Worlds

Previously, we have described how PSimRank solves the Pairwise Normaliza-

tion problem, and SimRank* solves the Level Wise Computation problem, and

what they entail in the Random Surfer “domain”, so to speak. Now, we attempt

to combine these two benefits in the hope that it will result in a better measure

because of solving both the problems (the name is a portmanteau of PSimRank

and SimRank*).

The combination is straightforward; to make the surfers meet at a common in-

neighbor with probability equal to the Jaccard coefficient just like in PSimRank,

but the remainder of the time behave like SimRank*, moving only one at a time.

Therefore, the Random Surfer-Pair model for this is given by :

• Support set : R ((a, b)) = I (a)× I (b).

• Transition probabilities :
– For common in-neighbors :

p ((x, x) | (a, b)) =
1

|I (a) ∪ I (b) |
∀ x ∈ I (a) ∩ I (b)

– If not choosing a common neighbor, behave like SimRank* :

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
=





(
1− |I(a)∩I(b)|

|I(a)∪I(b)|

)
× 1

2|I(a)|
∀
(
a

′

, b
′
)
∈ {a} × I (b)(

1− |I(a)∩I(b)|
|I(a)∪I(b)|

)
1

2|I(b)|
∀
(
a

′

, b
′
)
∈ I (a)× {b}
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The equivalent recursive form for this would be :

s (a, b) =
C|I (a) ∩ I (b) |

|I (a) ∪ I (b) |
(3.4)

+

(
1−

|I (a) ∩ I (b) |

|I (a) ∪ I (b) |

)
 C

2|I(a)|

|I(a)|∑

i=1

s (Ii(a), b) +
C

2|I(b)|

|I(b)|∑

i=1

s (a, Ii (b))




Where we have used s (x, x) = 1 in the first term.

3.8 Experiments

In this section, the two new measures that have been discussed, P+Rank and

PSimRank* are put to test on a real-world dataset alongside many of the ex-

isting measures. P+Rank and P-Rank being parametric, a sweep over the λ

parameter is performed for both and the best performing value of λ is used for

comparison. The other measures are all non-parametric. Reported for compar-

ison are the scores for SimRank, Rvs-SimRank, PSimRank and SimRank*.

We use the Arnetminer dataset (Tang et al. (2008)), which is a citation network

of papers extracted from DBLP1. A portion of these papers have been man-

ually annotated and given labels corresponding to 10 different topics (clus-

ters). The evaluation consists of running a top-k similarity query on some ran-

domly chosen labeled nodes, and finding the Mean Average Precision (MAP)

(Manning et al. (2008)) for the answer set having the same label as the query.

The rationale behind this is that papers in the same topic as the query are likely

to be similar.

For all measures used here, pruning was done to radius 4 (in the undirected

graph). The Random Surfer simulations were performed 200 times per query,

and truncated after at most 15 steps. Top-100 queries were run on 50 randomly

chosen labeled nodes that had at least 5 citations and 5 references to ensure that

1DBLP website
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λ MAP: P-Rank MAP: P+Rank

0.1 0.75 0.76
0.2 0.75 0.76
0.3 0.76 0.75
0.4 0.76 0.71
0.5 0.76 0.73
0.6 0.72 0.73
0.7 0.73 0.72
0.8 0.71 0.72
0.9 0.70 0.73

Measure Best MAP

SimRank 0.73
Rvs-SimRank 0.71

P-Rank 0.76
P+Rank 0.76

SimRank* 0.80
PSimRank 0.80
PSimRank* 0.81

Table 3.1: Left : MAP values attained for various values of λ by P-Rank and
P+Rank. Right : Best MAP values compared to other measures.

the measures wouldn’t become unavailable. Since not all the nodes are labeled,

only the nodes in the answer set that have a label are considered for calculating

the MAP scores. Further, 50 such trials are performed and the averaged MAP

scores are reported in Table 3.1.

It is observed that PSimRank* outperforms all the other measures, improv-

ing on both PSimRank and SimRank* on which it is based, thus demonstrating

the effectiveness of combining the behavior of PSimRank and SimRank* in the

Random Surfer-Pair interpretation.

Additionally, PSimRank and SimRank* outperform all others except PSimRank*,

indicating that solving the pairwise normalization problem and the level-wise

computation problem brings a greater benefit (more so when both are solved

together as in PSimRank*) than just taking into account directions like in P-

Rank and P+Rank.

Regarding the comparison between P-Rank and P+Rank, we see that they are

both tied in their best MAP scores, with 0.76. Thus, P+Rank performs at least

as well as P-Rank while being a more theoretically sound measure. P-Rank

and P+Rank both perform better than SimRank and Rvs-SimRank (in their best

scores after parameter tuning), which shows that there is some benefit to con-

sidering out-links, just not as much as solving the other two issues.

It is worthwhile to note that these experiments could be run on a commod-
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ity PC with a 4 core Intel i5 processor, with each query finishing in about a

second. That is, about 100,000 similarity computations (after pruning) could

be performed in that time frame. On a heavy duty machine with more CPUs

and more cores per CPU, this number only increases, thus demonstrating the

computational efficiency and scalability of the Monte Carlo approach. The im-

plementations were made in C++ with the Boost Graph Libraries running on

Ubuntu 14.04 LTS.

3.9 Other Possibilities :

3.9.1 Incorporating edge weights :

The model proposed allows for any distribution over the next states. These

probabilities could be obtained from normalized edge weights, or using a soft-

max function. Thus, it would for example be possible to incorporate a text

based similarity measure through edge weights.

3.9.2 Termination and Scoring :

Scope for further generalization exists in the scoring and termination criteria

used in the experiment. For instance, if one were to allow the walks to continue

indefinitely regardless of how many times they meet, but change the scoring to

add f (t) to the score for each time t at which the surfers meet, this would em-

ulate a measure like Generalized Co-Citation (Narwekar (2016)) but with prob-

abilistic weights for the paths. Also a version that considers paths of unequal

lengths can also be made by applying this in conjunction with the “one-at-a-

time” principle of SimRank*.
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3.10 Benefits of the Generalized Random Surfer-Pair

Model

3.10.1 Unification and Generalization

Several seemingly disparate measures have been brought under the same uni-

fying framework. Any properties that are discovered for this model would also

apply to these measures.

The model has helped create a hybrid measure, PSimRank* that successfully

combines the benefits of two different measures, PSimRank and SimRank* that

have different properties to create a better performing measure.

The framework can also be used in many other ways, as illustrated in section

3.9, opening up possibilities for discovering many new classes of measures.

3.10.2 New Insights Into Existing Work

By reinterpreting the measures under this framework, salient features are brought

to light that aren’t at all obvious in the recursive formulations :

• A quirk of P-Rank is exposed wherein both surfers have to move in the
same direction. This is not at all evident from the recursive form in Equa-
tion 2.5.

• The original derivation for SimRank* (Yu et al. (2013)) that analytically
computes a measure that includes paths of unequal lengths is involved
and laborious. Under this interpretation however, it becomes intuitive as
to why it works.

3.10.3 Computational Advantages

By bringing several existing measures under this model, Monte Carlo methods

can be applied to compute them. Therefore, the advantages of Monte Carlo

methods are also inherited. We present these advantages below.
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The first advantage that comes to mind is intrinsic to the Monte Carlo frame-

work, and that is extensive parallelizability of simulations : every instance of

the random experiment can be run separately and concurrently.

Typically in the context of similarity measures, one important application is

a top-k query, which would involve computation of similarity between many

pairs of nodes. Under Random Surfer-Pair models, these computations can all

be performed independently, unlike when solving the entire system of recur-

sive similarity equations. This adds yet another layer of parallelizability.

Next is the dramatically low memory requirement : only a constant amount

of memory is needed for each similarity being computed. All pairs of node

similarities are almost never required to be computed, and only much fewer

than the total
(
N

2

)
similarities are required. Solving the recursive forms on the

other hand would mean having to store all of them, and the O (N2) memory

requirement would be prohibitive even for medium sized graphs with N ≈ 106.

Monte Carlo methods also have an advantage in terms of computation time:

it is independent of the size of the network.

3.11 Conclusions :

A generalized Random Surfer-Pair model has been developed which subsumes

many well known similarity measures in one unifying framework. Admittedly,

it is not all-encompassing; it is not at all evident how it can be applied to Match-

Sim and CoSimRank. Reinterpreting P-Rank and SimRank* under this frame-

work has provided interesting insights as to their functioning.

Working under this interpretation has enabled the development of a better per-

forming measure, namely PSimRank*. A theoretical deficiency in P-Rank was

also exposed and easily remedied under this framework. Most importantly, it

has enabled Monte Carlo methods to be applied to these measures, along with

many computational advantages. Hopefully, this work has opened up many
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possibilities for theoretical dissection and development of better measures.
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Chapter 4

NEGATIVE EXAMPLES IN RECOMMENDATIONS

Academic search engines such as Google Scholar, Microsoft Academic Search

and CiteSeerX are becoming increasingly important as tools for performing re-

search efficiently. Providing recommendations based on query papers would

obviously be a fundamental part of these systems. These recommendations can

be made more effective if it were possible to specify not just papers that the

user considers relevant, but also papers that are not like what the user requires,

i.e negative examples. This problem is formally stated as follows for recom-

menders that use some notion of similarity :

Recommendations with negative examples : Given a database of items D, a

seed set of positive examples X ⊆ D, and a negative seed set Y ⊆ D, recom-

mend a set of items R such that each item r ∈ R is similar to as many items in

X as possible while being dissimilar to as many items in Y as possible.

An added feature would be to be able to set user preferences for each of the

seed examples. Most importantly, for such capabilities to be most useful, the

method would have to be flexible in allowing how many seeds of each type

are allowed. That is, it should be possible for example to give only negative

examples with no positive examples.

4.1 Possibilities for handling negative examples with

link based measures

In this section, we investigate possible ways of adapting structural similarity

measures to enable them to make use of negative examples.



There appears to be very little existing literature along these lines to the best of

the author’s knowledge. To the best of the author’s knowledge, only one work

(Küçüktunç et al. (2012)) even attempts to use this manner of relevance feed-

back. The way it deals with it is also rather trivial; it suggests simply dropping

nodes from the graph when marked as a negative example and then issuing

queries on the changed graph. Still, this could be useful as a baseline for future

work.

Absorbing random walks (Mavroforakis et al. (2015); Singh et al. (2007)) seem

at first to be a good prospect to use in a Personalized PageRank setup : the neg-

ative examples in Y could be made into absorbing states for the PPR random

walk, while X is the set of starting nodes, with a ranking based on the expected

number of visits by the random walk before getting absorbed. The fatal flaw of

such an approach is that it is ill defined when there are no X or Y nodes, that is

it does not have the flexibility described earlier.

A straightforward way to use any structural similarity measure is to use a

weighted sum of similarities of a query node q with positive weights for X

nodes and negative weights for Y nodes as a score like so :

∑

x∈X

wxs(x, q)−
∑

y∈Y

wys(y, q) (4.1)

Where wx and wy are normalizing weights that could be based on user pref-

erence.

4.2 PacRank

Equation 4.1 involves using a similarities that are computed for each seed node

completely independently of the other seed nodes. We propose PacRank1, an

algorithm where nodes from X and Y compete for sources of similarity with q

1The name is an allusion to the famous video game Pacman, with the random surfers exper-
iment being reminiscent of the ghosts chasing the player in the game.
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rather than working separately. It is an extension of the Random Surfer-Pair

model, with the following changes :

• There are now three random surfers :
– One starting at a node in X with probabilities based on given prefer-

ences, which we will refer to as the X surfer.

– One starting at a node in Y with probabilities based on given prefer-
ences, which we will refer to as the Y surfer.

– A third walk starting at query node q (query surfer).

– If there are no X or Y nodes, the corresponding surfer is simply dis-
pensed with.

• The experiment ends when the query surfer is “caught” by either the X
or the Y surfer, after L steps.

• The score is the expected value of a random variable S defined as follows
:

– S = CLif caught by the X walk.

– S = −CLif caught by the Y walk.

In this “Random Surfer-Triplet” model, the X and Y surfers try to “capture”

sources of similarity, and the score helps to discriminate between them in terms

of how often they can do so.

Unfortunately, there are hurdles preventing effective evaluation of any method

for handling negative examples. First is the lack of any publicly available anno-

tated dataset that is large enough. User studies to evaluate the quality of recom-

mendations are also expensive and time-consuming to conduct. Unlike simple

structural similarity measures, there is also no straightforward “intrinsic” way

to evaluate effectiveness like the cluster based evaluation that was performed

earlier. Thus, while we theorize that PacRank should perform better, we do not

perform evaluation in this work.

4.3 Incremental Feedback Based Querying :

A search engine interface would allow the user to give relevance feedback dy-

namically, that is to mark part of the results as positive or negative examples,

and then receive updated results. This would require the algorithm to be able
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to incrementally update results.

In PacRank, we exploit the fact that the score for given seed sets X and Y is

simply a weighted sum of scores w.r.t each pair (x, y) ∈ X × Y . That is, run

PacRank assuming X = {x} and Y = {y} for possible pairs (x, y) ∈ X × Y , and

then take the weighted average. The weights are nothing but the probabilities

of the X and Y surfers starting from x and y respectively. This follows directly

from the linearity of expectation used on the first step.

All that needs to be done is to store such scores for each query node, for each

of the pairs (x, y) ∈ X × Y . Note that not all nodes in the network need to

be involved when pruning is done, and only scores for the nodes that are not

pruned need be stored. Typically, since the seed sets are specified by the user,

their size would be in comparison to the entire network O (1), so the memory

requirements would be reasonable throughout the search session.

When feedback is given for a new node, scores are computed for the pairs in-

volving that node, and the full scores are updated incrementally with these new

scores.

4.4 Conclusions

There has been little work done on handling negative examples with structural

similarity measures. One way would be to use a (signed) weighted combination

of similarities as scores to induce a ranking. An approach that discriminates

between candidate nodes based on how much they tend to capture sources of

similarity is proposed, namely PacRank. An incremental version of this algo-

rithm is also given for applying in a real time querying setting. Although this is

in theory a viable approach, evaluation could not be performed due to several

problems.
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Appendix A

PROOFS OF THEOREMS

A.1 Theorem 5

The monotonicity and boundedness are proved by induction. The inductive

hypothesis is that

0 ≤ sk−1 (a, b) ≤ sk (a, b) ≤ 1 ∀ (a, b) ∈ V × V

The base case of this for k = 0 is trivial since s0 (x, x) = 1 and s0 (a, b) = 0

∀ a 6= b, and so is the case with a = b . The inductive step is as follows :

A.1.1 Monotonicity :

We have

sk+1 (a, b)−sk (a, b) = C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
) [

sk

(
a

′

, b
′

)
− sk−1

(
a

′

, b
′

)]

But sk
(
a

′

, b
′
)
−sk−1

(
a

′

, b
′
)
≥ 0 by the inductive hypothesis, and p

((
a

′

, b
′
) ∣∣ (a, b)

)
≥

0 since it is a probability, thus proving the monotonicity.

A.1.2 Boundedness :

From the inductive hypothesis, 0 ≤ sk (a, b) ≤ 1. Therefore,

sk+1 (a, b) = C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
sk

(
a

′

, b
′

)

≤ C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
· 1

≤ C ≤ 1



Where we have used the fact that
∑

(a′ ,b′)∈R((a,b)) p
((
a

′

, b
′
) ∣∣ (a, b)

)
≤ 1, since

it is a sum of transition probabilities out of (a, b) (possibly less than one because

of the stopped state). Similarly, it can be shown that sk+1 (a, b) ≥ 0.

A.1.3 Convergence :

Since sk (a, b) is bounded and non-decreasing, by the Completeness Axiom of

Calculus, sk (a, b) converges to a limit ∀ (a, b) ∈ V × V , which we denote by

g (a, b). Of course, this limit must be between 0 and 1 as the sequence itself is

bounded in that range.

A.2 Theorem 6

First, we show that a solution exists for the recursive form and then that there

cannot be two different solutions.

A.2.1 Existence

From the above, we know that sk (a, b) converges to a limit g (a, b). So passing

to the limit:

lim
k→∞

sk+1 (a, b) = C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
lim
k→∞

sk

(
a

′

, b
′

)

Since limk→∞ sk+1 (a, b) =limk→∞ sk (a, b) = g (a, b), we have

g (a, b) = C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
g
(
a

′

, b
′

)

Thus, g (a, b) is a solution to the general recursive form of Equation 3.1.
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A.2.2 Uniqueness

Let two solutions to Equation 3.1 be s1 and s2. Define their difference

δ (a, b) = s1 (a, b)− s2 (a, b)

Let M be the maximum absolute value of δ, that is max(a,b) |δ (a, b)|. Let this

maximum value be achieved for (a, b), that is M = |δ (a, b)|. If a = b, then

clearly M = 0 as both s1 and s2 must satisfy the maximal self-similarity base

case. Otherwise, we have

M =

∣∣∣∣∣∣∣
C

∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
) [

s1

(
a

′

, b
′

)
− s2

(
a

′

, b
′

)]
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
C

∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
δ
(
a

′

, b
′

)
∣∣∣∣∣∣∣

≤ C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
) ∣∣∣δ

(
a

′

, b
′

)∣∣∣

≤ C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
M

≤ CM

Here, we have used the fact that since (a, b) maximizes |δ (·, ·)|,
∣∣δ
(
a

′

, b
′
)∣∣ ≤

M and again the fact that
∑

(a′ ,b′)∈R((a,b)) p
((
a

′

, b
′
) ∣∣ (a, b)

)
≤ 1.

Now, since M is an absolute value, and M ≤ CM with C < 1, we must have

M = 0. This proves that s1and s2 are always the same. Thus, there exists a

unique solution to the recursive form of Equation 3.1, and that solution can be

obtained as the limit of the iterative form.

38



A.3 Theorem 7

We first need to show that the expected f -meeting distances, for which we over-

load the notation s (a, b) satisfy the recursive form. Let Wa,b be the set of all com-

pound walks from (a, b) to a state of the form (x, x). Let l (w) denote the length

of such a walk w, and p (w) the total probability, which is the product of the

probabilities of the individual transitions. Then, by definition of the expected

f -meeting distance,

s (a, b) =
∑

w∈Wa,b

p (w)C l(w) (A.1)

Now, consider the set of all such compound walks from one step ahead,

that is,
⋃
(a′ ,b′)∈R((a,b))Wa

′
,b

′ . Note that all the individual sets Wa
′
,b

′ are disjoint.

Now, clearly this collection of walks differs from Wa,b only in the inclusion of

the first transition to some
(
a

′

, b
′
)
. Therefore, a bijection exists between this set

and Wa,b, and so Wa,b can be enumerated in terms of the new collection.

This means that for every member w of Wa,b, there is some unique
(
a

′

, b
′
)

and

some unique w
′

∈ Wa
′
,b

′ . Thus, it is possible to group the terms of the summa-

tion in Equation A.1 by
(
a

′

, b
′
)
. Now, the corresponding w

′

will have one step

lesser, so l
(
w

′
)
+ 1 = l (w), and it omits the transition probability for the step

from (a, b) to
(
a

′

, b
′
)
, so

p (w) = p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
p
(
w

′

)

Thus, Equation A.1 is rewritten as:

s (a, b) =
∑

(a′ ,b′)∈R((a,b))

∑

w
′∈W

a
′
,b
′

p
((

a
′

, b
′

) ∣∣∣ (a, b)
)
p
(
w

′

)
C

l
(

w
′
)

+1

= C
∑

(a′ ,b′)∈R((a,b))

p
((

a
′

, b
′

) ∣∣∣ (a, b)
) ∑

w
′
∈W

a
′
,b
′

p
(
w

′

)
C

l
(

w
′
)
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But, by definition,

s
(
a

′

, b
′

)
=

∑

w
′∈W

a
′
,b
′

p
(
w

′

)
C

l
(

w
′
)

This completes the proof that the expected f -meeting distances satisfy the

recursive form of Equation 3.1. By the uniqueness result of Theorem 6, it fol-

lows that this is the same as the solution that can be arrived as a limit of the

iterative form, thus establishing the equivalence of the Generalized Random

Surfer-Pair model and its recursive form.
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