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ABSTRACT

KEYWORDS: Superscalar; Dual-issue; 5-stage pipeline; Data Dependencies

The number of transistors on a chip is increasing every year (according to Moore’s

law it doubles in every 2 years) and designers are developing different techniques and

architectures to utilize all this hardware to increase the throughput of a processor. This

project aims to design a superscalar processor which in simple terms is like replicating

the hardware units of a processor to execute more than one instruction in the same time

unit which means increasing the throughput. The processor designed in this project is

a dual issue and has 5-stages that are Fetch, Decode, Execute, Memory and Writeback.

Ideally a superscalar processor should give the improvement in multiples of the units

replicated, like a dual issue processor should double the throughput but as this project

will show in real scenario this is not possible due to data dependencies between the

instructions and many multiple cycle operations which stalls the pipeline, a superscalar

processor exploits the Instruction Level Parallelism of the program so it depends on the

program how many of its instructions can be executed in parallel. We will see different

results for different test cases executed on this processor.
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CHAPTER 1

INTRODUCTION

Computer has become a essential part of human lives these days. Microprocessor is

the central component of any computer. Since its advent, microprocessor throughput

has been increasing continuously. It’s either because of technology scaling or the ad-

vancement of architectural techniques which exploit the workload structure. Transistor

density on a chip is approximately doubled every two years due to technology scaling,

this is often referred to as Moore’s law. With every new generation process node, the

transistors get smaller, faster and more power efficient. This results in increase of pro-

cessor clock speed without increasing power or area, and in the same area now we can

pack more transistors that means more hardware which enables more throughput.

1.1 Overview of current processor

The Processor design team of Reconfigurable and Intelligent Systems Engineering (RISE)

Lab in the Computer Science Department of IIT Madras has been actively involved

in building different variants of processors based on RISC-V Instruction Set Archi-

tecture(ISA). One of these processors is a 5-stage In-order scalar processor named "

C-Class processor ". But being a scalar processor the maximum instructions it can ex-

ecute in a single cycle is 1. This project describes the micro-architecture of a 5-stage

in-order dual issue superscalar processor which is designed using C-Class processor

as base. A superscalar processor will have higher throughput than a scalar processor

but on the cost of more hardware. The entire design of the processor is done using a

Hardware Description Language (HDL) called Bluespec SystemVerilog (BSV).

1.2 Changes in the current processor

Here are the main changes which I implemented in the current processor these will be

explained in detail in coming chapters.



• I-Cache changed to supply two instructions.

• Fetch unit changed to receive two instructions attach token to them and then enqueue

in decode buffers.

• A Completion buffer design and implementation.

• Register file changes to handle inter-dependencies between instructions and to handle

other hazards.

1.3 Organization of the thesis

Chapter 2 contains the theory needed for this project. It starts with the single cy-

cle processor design then deals with Pipelining and how it improves the the processor

throughput with little hardware cost then we go to a supescalar design to further im-

prove the throughput. It also briefly discuss about the ISA, mainly about RISC-V ISA

which is used in this processor.Finally it describes about the HDL called Bluespec Sys-

tem Verilog, its key features.

Chapter 3 describes the changes implemented in the current processor using Bluespec

System Verilog and also different problems and errors faced during implementation.

Chapter 4 describes the verification process and results.

Chapter 5 contains a conclusion and description on the future work.
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CHAPTER 2

BACKGROUND

2.1 Micro-architecture Basics

2.1.1 How Does a Machine Process Instructions

What does processing an instruction means? Processing an instruction means trans-

forming present Architectural State to next Architectural State according to the ISA

specification of the instruction.

AS = Architectural (programmer visible) state before an instruction is processed

⇓

Process instruction

⇓

AS’ = Architectural (programmer visible) state after an instruction is processed

ISA specifies abstractly what AS’ should be, given an instruction and AS.

2.1.2 What is ISA

The instruction set, also called instruction set architecture (ISA), is part of a computer

that pertains to programming, which is basically machine language. The instruction set

provides commands to the processor, to tell it what it needs to do. The instruction set

consists of addressing modes, instructions, native data types, registers, memory archi-

tecture, interrupt, and exception handling, and external I/O. Most of the processors in

the present use either Reduced Instruction Set Computer(RISC) ISA or Complex In-

struction Set Computer(CISC) ISA, both of these have their merits and demerits.



2.1.2.1 The RISC

A RISC was realized in the late 1970s by IBM. Researchers discovered that most

programs did not take advantage of all the various address modes that could be used

with the instructions. By reducing the number of address modes and breaking down

multi-cycle instructions into multiple single-cycle instructions several advantages were

realized:[2]

• compilers were easier to write (easier to optimize)

• performance is increased for programs that did simple operations

Evaluation of RISC

• Emphasis on software

• Register to register

• "LOAD" and "STORE" are independent instructions

• Low cycles per second,large code sizes

2.1.2.2 The CISC

Complex instruction set computing(CISC) is a processor design, where single instruc-

tions can execute several low-level operations (such as a load from memory, an arith-

metic operation, and a memory store) or are capable of multi-step operations or ad-

dressing modes within single instructions.

Evaluation of CISC

• Emphasis on hardware

• Memory-to-memory

• "LOAD" and "STORE" incorporated in instructions

• Small code sizes, high cycles per second

The Overall RISC Advantage

Today, the Intel x86 is arguable the only chip which retains CISC architecture. This

is primarily due to advancements in other areas of computer technology. The price of

RAM has decreased dramatically. In 1977, 1MB of DRAM cost about $5,000. By

1994, the same amount of memory cost only $6 (when adjusted for inflation). Compiler

technology has also become more sophisticated, so that the RISC use of RAM and em-

phasis on software has become ideal.
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Our processor is based on RISC-V ISA which is a new instruction set architecture (ISA)

that was originally designed to support computer architecture research and education,

it’s a completely open ISA that is freely available to academia and industry.

2.1.3 Single-cycle and Multi-cycle Machines

This section contains theory on single cycle and multicycle machine and why a mul-

ticycle machine is better than single cycle, this multicycle machine is the base for our

dual issue supersclar processor.

2.1.3.1 Single-cycle machine

A Single-cycle processor does all the instruction processing for a instruction in single

cycle i.e. it fetches instruction from memory, executes, and the results are stored all in

a single clock cycle. The benefits of single-cycle processors is that they tend to be the

most simple in terms of hardware requirements, and they are easy to design. Unfor-

tunately, they tend to have poor data throughput, and require long clock cycles (slow

clock rate) in order to perform all the necessary computations in time.

Figure 2.1: Single cycle processor datapath

The length of the cycle must be long enough to accommodate the longest possible prop-

agation delay in the processor. This means that some instructions (typically the arith-

metic instructions) will complete quickly, and time will be wasted each cycle. Other
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instructions (typically memory read or write instructions) will have a much longer prop-

agation delay.

Figure 2.2: Instruction processing in single cycle machine

2.1.3.2 Multi-Cycle pipelined machine

In single cycle machine even when an instruction has completed one stage that stage is

still not used till the present instruction completes the processing. In multicycle machine

this idle stage can process another instruction so at a time more than one instructions

are being processed in the processor but these instructions are in different stages. Here

we have 5 stages in our processor these are Fetch(F), Decode(D), Execute(E), Memory

operation (M) and Write-back(WB).

Figure 2.3: Instruction processing in multi cycle machine

In figure 2.3 we can see more than one instructions are processing in different stages in

a clock cycle.

2.1.3.3 Improvements through pipeling

First we need to understand difference between Latency and Throughput.

Latency - After being fetched each instruction takes certain amount of time to complete

all the stages and update the register file this is called the latency of that instruction.
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Throughput - It is the number of instructions executed(completed) per unit of time.

In a pipelined processor the latency to complete an instruction is same or slightly greater

than the single cycle machine but the throughput increases because in pipelined proces-

sor after 1st instruction we get the output in each cycle.

2.1.3.4 Single cycle vs pipeline example

In an ideal pipeline all the stages take same time to execute and the pipe continues with-

out any interrupts.Making these assumptions here is an example to compare advantage

of pipeline over single cycle machine.

A non pipelined machine with 5 stages, each stage takes 50ns to execute, we want to

execute 100 instructions.

Sol. Instruction latency = 50 x 5 = 250 ns

Time to execute 100 instructions = 100x250 = 25000ns

Now lets take a 5 stage pipelined processor with same execution time of each stage and

5ns overhead due to pipeline registers.

Sol. Latency = 50x5 + 5 = 255ns

Time to execute 100 instructions = time to execute 1st instruction + 50x rest of the in-

structions = 255 + 50x99 = 5205ns

Speedup obtained for 100 instructions = 25000/5205 = 4.8
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2.1.4 Pipeline in detail

In this section I’ll explain different stages of pipelined processor and their function.

Figure 2.4: 5-stage pipelined processor

2.1.4.1 Fetch Unit

The instruction fetch unit takes instruction from the I-cache and feeds it into the pro-

cessor. And it also calculates the next PC.

2.1.4.2 Decode Unit

The purpose of the instruction decode stage is to understand the semantics of an instruc-

tion and this will define how the instruction will be executed by the processor. In this

stage processor identifies

• Which registers to read and write

• Type of instruction- ALU, memory, control etc.

2.1.4.3 Execution Unit

In this stage the operands are send to processor’s computational unit along with the

operation to be performed. In this stage

• arithmetic operations (addition,multiplication, etc.) are performed.
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• effective address calculation is done for Load/Store instruction.

• for control-flow instructions change the value of the Program Counter (PC) register.

2.1.4.4 Memory access

In this stage Load and Store operations are performed. Load and store operation are

generally multicycle in that case we have to stall the pipe till these operations are com-

pleted. If the instruction is not load/store then it will just bypass the memory stage and

go to write-back buffer directly.

2.1.4.5 Write-back

This reads the data from imem_wb buffer and updates the register file. If any instruction

is waiting for the updated result of a register then that instruction can only execute when

the register is updated from write-back stage.

2.1.5 Pipeline hazards

In the previous section we assumed that our processor is ideal each stage takes equal

time and processor never stalled but in reality a processor will have many stalls, a stall

is when the processor can not execute the next instruction because of some exceptions

or dependence of present instruction on previous instructions.

2.1.5.1 Types of Hazard

• Data Hazard - Occurs when present instruction depends on the result previous in-

struction.

• Structural Hazards - Occurs when there is resource conflict.

• Control Hazards- Arises due to branches and other instructions which can change

program counter.

We will discuss mainly on the Data Hazards.
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2.1.5.2 Data Hazards

These occurs when there are some register dependency between present and past/future

instructions. There are three types of data hazard, a hazard can only occur if the register

value is being updated and that register is being used by future/past instruction, that’s

why RAR is not a hazard.

Lets assume two instruction A and B where A should execute before B. Now

• RAW (Read After Write) hazard occurs when B tries to read a register in which A

has yet to update the value so B gets the old value which is incorrect so there should be

stall till A updates the register.

A: R3 <– R1 op R2

B: R5 <– R3 op R4

• WAR (Write After Read) hazard occurs when B tries to update a register from which

A has yet to read. So B should not update the value till A has read the register.

A: R3 <– R1 op R2

B: R1 <– R4 op R5

• WAW (Write After Write) occurs when B updates the same register before A.

A: R3 <– R1 op R2

B: R3 <– R4 op R5

• RAR(Read After Read) is not a hazard and it wont stall the pipe.

RAW is also called True dependency and they are always need to be obeyed.

WAW is called Output dependency and WAR is called Anti dependency, these exits

due to limited number of architectural registers. They are dependence on a name, not a

value.

2.1.5.3 Dependence handling

Anti and output dependencies are easier to handle: write to the destination in one stage

and in program order.

RAW or True dependencies are little difficult, few ways to handle them are:

• Detect and wait until value is available in register file, this will create many bubbles

in the pipeline.

• Detect and forward/bypass data to dependent instruction, we forward the data after

execution back to the register decode stage and if any other instruction is waiting for the

10



register value then that instruction can execute now, this way we save bubbles in pipe.

2.1.6 From scalar to superscalar

As we know the Moore’s law is still being realized by the engineers so the number of

transistors in the same are is increasing, that means we have more hardware in the same

are area it enables us to design different architectures which will improve the processor

throughput. In superscalar pipelined architecture we replicate the hardware of single

issue pipeline processor so that we can issue and execute more than one instruction per

cycle this increases the throughput and so the performance of processor.

Figure 2.5: Instruction processing in a pipelined superscalar processor

Figure 2.5 shows an ideal superscalar processor in which each stage of the pipeline

is duplicated and instruction are independent of each other so pipe is not stalling, but in

reality its very hard to replicate all the stages and also there will be many stalls due to

the instruction dependencies.
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2.1.7 Superscalar processor design

We will now look into details how do we design a superscalar pipeline from a single

issue pipeline and also problems in doing so. We are designing an in-order superscalar

processor, these are less complex so have less hardware overhead but still can give some

improvement over single issue.

Figure 2.6: A dual issue pipelined processor

Figure 2.6 shows 5-stage dual issue superscalar processor we will discuss the prob-

lems in implementing each stage.

2.1.7.1 Dual Issue Fetch Unit

The first step in making a dual issue processor is to fetch two instruction from the

instruction cache and enqueue them into the next stage buffer. But fetching two in-

struction from cache is not so simple, if the PC is for the last block of the cache line

then the cache can only send one instruction because for next instruction it will have to

read from memory. There are some cache designs to overcome this problem but in our

processor we only take one instruction if the PC is for last block of the cache.

12



2.1.7.2 Dual Issue Decode

Problem is decoding two instruction- decoding two instructions is easy if we have fix

length instruction i.e. RISC, we just need two decoders.

2.1.7.3 Dual Execution

We need two ALUs its not so expensive to add ALU but if there are floating point mul-

tiplier of divider then its very costly to duplicate them as multipliers and dividers are

very big in term of hardware, in those cases we make one execution unit to have both

ALU and FP units and other execution unit to have only ALU, but in this case we will

need a dispatch unit to send the instruction appropriately into the correct execution unit.

In our processor we are fetching operands in execution stage so the Second problem is

dependence check between the instructions which generates the stall signal.It is difficult

if there is data forwarding from memory and writeback stage, we will have to compare

source registers of 1st and 2nd instruction with the destination register forwarded and

also the we need to check the dependence of the 2nd instruction on the first one, because

only if the source of 2nd instruction is not using the destination register of 1st then only

2nd can be executed. The data forwarded from memory will be compared first then the

data from the writeback stage and if the register is not in these stages then the data will

be taken from register file, and this will be done for all the 4 sources so it uses a lot of

comparators.

Example -

if(rs1(D1) = rd(M1)) then rs1(D1) gets the rd(M1) data

else if (rs1(D1) = rd(M2)) then rs1(D1) gets the rd(M2) data

else if (rs1(D1) = rd(WB1)) then rs1(D1) gets the rd(WB1) data

else if (rs1(D1) = rd(WB2)) then rs1(D1) gets the rd(WB2)

else rs1(D1) gets the data from the register file

this will be done for rs1(D1),rs2(D1),rs1(D2) and rs2(D2), along with these compar-

isons we also need to compare the rs1(D2) and rs2(D2) with the destination of 1st

stage.

13



2.1.7.4 Dual Memory access

For dual memory access we need different type of D-cache, but in our processor we are

only using single memory access we have superscalar design till execute stage only as

dual memory access in same cycle is not yet possible for our cache design.

14



2.2 Bluespec System Verilog

2.2.1 Building a design in BSV

Figure 2.7: Building a design in BSV

15



• Designer writes a BSV program. It may optionally include Verilog, SystemVerilog,

VHDL,and C components.

• The BSV program is compiled into a Verilog or Bluesim specification. This step has

two distinct stages: 1. pre-elaboration - parsing and type checking 2. post-elaboration -

code generation

• The compilation output is either linked into a simulation environment or processed by

a synthesis tool.

2.2.2 Rules

BSV does not have always blocks like Verilog. Instead, rules are used to describe all

behavior (how state evolves over time). Rules are made up of two components: Rule

Condition: a Boolean expression which determines if the rule body is allowed to exe-

cute("fire").

Rule Body: a set of actions which describe the state updates that occur when the rule

fires.

We can logically think of a rule’s execution as instantaneous, complete and ordered

w.r.t execution of all other rules.

Instantaneous:

• Conceptually, all the actions in the rule body occur at a single,common instant - there

is no sequencing of actions within a rule.

Complete:

• When fired, the entire rule body executes. There is no concept of "partial" execution

of a rule body.

Ordered:

• Each rule execution conceptually occurs either before or after every other rule execu-

tion, but never simultaneously.

16



Some constraints are imposed on rules. These constraints are:

• Each rule fires at most once within a clock.

• Certain pairs of rules, which we will call conflicting, cannot both fire in the same

clock.

2.2.3 Module hierarchy and Interfaces

In BSV, a module’s interface is an abstraction of its verilog port list. In BSV, the inter-

face declaration and module declaration are separate. So, a common interface can be

used by several modules, with out having to repeat the declaration in each of its imple-

mentation modules.

An interface declaration specifies the methods provided by every module that pro-

vides the interface,but does not specify the methods implementation. The implemen-

tation of the interface methods can be different in each module that provides that in-

terface. The definition of the interface and its methods is contained in the providing

module. BSV classifies interface methods into three types:

• Value Methods: These are methods which return a value to the caller, and have no

"actions"(i.e., when these methods are called, there is no change of state, no side effect).

• Action Methods: These are methods which cause actions (state changes) to occur.

One may consider these as input methods, since they typically take data into the module.

• Action Value Methods: These methods couple Action and Value methods, caus-

ing an action (state change) to occur and they return a value to the caller.

Every module uses the interface(s) just below it in the hierarchy. Every module pro-

vides an interface to the module above it in the hierarchy.
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CHAPTER 3

IMPLEMENTATION

In this chapter I’ll discuss in detail the design and implementation of different units to

change the C-Class single issue processor into a 5-stage in-order dual issue processor.

Figure 3.1: Designed dual issue processor pipeline

Figure 3.1 shows the dual issue pipeline which I implemented. It’s not an ideal

dual issue, it has dual superscalar pipeline till execution stage only. This is because we

can only handle one memory operation at a time and also we are committing only one

instruction at a time. But we are issuing and executing two instructions in parallel. The

design and implementation of each stage will be discussed in detail in the next sections.



3.1 Fetch Unit Design

For making a dual issue processor first we need two instruction from the cache and then

the processor should move these instruction into the decode stage and also the next PC

calculations should be done perfectly, so let’s start with the design changes I made in

instruction cache to send two instructions.

3.1.1 Cache Design for Dual issue

Figure 3.2: Cache interface

Changes in I-Cache

1. Data line for CPU response from i-cache changed to 64 bit , to receive two instruc-

tions.

2. Upper and lower offset calculation algorithm changed.

3. Simultaneous_word_send algorithm changed and added a 64 bit register in simulta-

neous_word_send rule to store and send two instructions.

Changes in detail

1. CPU data line width is increased to accommodate two instructions from i-cache. In

terms of hardware number of wires increase.
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2. After getting the address from the processor we need fetch instruction at that address

but now we need two instruction so the lower offset and and upper offset of the cache

line should be 64 bit wide, previously it was 32.

So now we have, lower_offset=fromInteger(v_word_size)*8*fromInteger(i)

and the upper_offset = lower_offset + 63

but this is true only if the address is not for the last block of the cache line because then

we can only give one instruction so in that case what I’m doing is, I’m just sending

the 6th block and 7th block data but in the fetch unit of the processor it will only take

the upper 32 bits if the PC is for last block of the cache and for detecting the address

if it is for last block we compare the [4:2] bit of PC to 3’b111, if [4:2] bits are 111

then the request is for 7th block of the cache line and in that case we only get one valid

instruction.

Figure 3.3: Single cache line and blocks

3. If there is miss for the address then we have to fetch the instruction from the memory,

and for that we send the current address to the memory and fetch the 8 blocks of data

to the cache. While doing so we can directly send the data for the requested address to

the processor when we get that block but now we need to send two instructions so we

have to wait for one cycle and also store the previous value in a register so that when

next instruction comes we send both to the processor. Here also we have to take into

account if the address is for the last block then we can only send one valid instruction.

These changes are implemented in rule called simultaneous_word_send in the i-cache.

In this I have added a 64 bit register " rg_mem_resp_data " of Maybe type. When there

is miss and cache is reading from the memory in blocks, when the correct block matches

with the address, it stores that instruction into the register and tag the register valid so

when in the next cycle it checks if the register is tagged valid it will get a hit and then it

puts the 2nd instruction in register too and enq the data into the response_to_cpu fifo.
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3.1.2 Fetch Unit changes

The fetch unit changed to take two instructions from the I-cache and enq them into the

IF_ID buffers (FIFO between Fetch and Decode stage), as now we need two FIFOs for

two instructions they are named ff_if_id_1 and ff_if_id_2.

Figure 3.4: Fetch Unit

Figure 3.4 shows the design of my fetch unit, as we can see there are tokens coming

to the fetch unit, these tokens are attached to the instructions and when the execution

unit gives the result we write back the result at the specific token. These tokens are

issued from a Completion buffer whose design I’ll explain next. The result from the

completion buffer can only be retrieved in the token order and the token order matches

the PC order so this makes sure that we write in correct program order into the register

file.

Here also we check if the PC[4:2] = 111 then we only get one valid instruction from the

cache and so we only enq one instruction in decode FIFO and PC also in this case will

increase only by 4 but if PC[4:2] != 111 then the next PC will be current PC + 8 if there

is no branch.
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3.2 Completion Buffer Design

A CompletionBuffer is like a FIFO except that the order of the elements in the buffer

is independent of the order in which the elements are entered. Each element obtains a

token, which reserves a slot in the buffer. Once the element is ready to be entered into

the buffer, the token is used to place the element in the correct position. When removing

elements from the buffer, the elements are delivered in the order specified by the tokens,

not in the order that the elements were written.

The Completion Buffer in bluespec library can issue only one token at a time and also

there is not method to partially clear the buffer and for our design we wanted a Comple-

tionBuffer which can issue two tokens, can write results at two tokens, can give results

of one or two registers depending on method called and also has a method to clear it

partially which is used in case of branch to clear the result already stored in the buffer.

Figure 3.5: Circuit implementation of CReg

The basic register modules in bluespec have scheduling annotations that do not al-

low two rules to read and write a register concurrently (that is, sequentially in the same

clock cycle). But we wanted our buffer to have read write access to a register in the

same cycle so we used CReg family registers. These are concurrent register in these

registers values written by one rule are visible to another rule in the same cycle so one
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rule can write and another rule can read in the same clock cycle.

CReg are used to design the required completion buffer, this section explains the imple-

mentation details.

Figure 3.6: Interface of CompletionBuffer

Figure 3.6 shows the interface of the CBuff(CompletionBuffer). The buffer de-

signed has 16 registers of CReg family and each register is of type "Maybe" with hold-

ing the data of type IE_IMEM_type as the buffer is being used between the execution

stage and memory stage.

The buffer is being used in between execution and memory stage because the processor

can only have one memory access at a time and also only one writeback, but it can ex-

ecute two instruction in parallel so when both instruction gets executed they will write

the result in the completion buffer and then the memory stage will read one value from

the buffer in the program order and execute the memory operation on it and then pass

in to the writeback stage which will be then written to the register file. The ideal design

will have the buffer in between the memory stage and the writeback stage but its not

possible with the current memory and register file design.

Details of the interface methods:

• GetOneToken and GetTwoToken : as name suggest these two methods are used to

get the token from the buffer, there is a register pointer named iidx in the buffer which

stores the latest token number of the register which has not been issued yet so if the
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request is to issue one token it will give the present value and increment itself by one, it

also invalidates the current register issued which will be validated when the processor

writes the result at that token. Similarly if the request is for two tokens the pointer will

give present value and the next value and invalidate both the registers. But this rule can

only give the value if the head pointer(from which it gives the result) named "ridx" is

not equal to the present tail pointer + 1 or tail pointer + 2 for two tokens.

• put_1 and put_2 methods : These methods are used to write the result back into the

completion buffer at the specific token, these methods take data and token as the input

and write the data at the token and validate the register so that the head pointer can read

the register and give the data. The processor can write the value at any issued token in

any order through these put rules and they will validate that registers but the result can

only be read if the top token is tagged valid where the head is pointing to.

• GetResult methods : theses methods are used to get the result from the buffer,

the result from the buffer can only come in the token ascending order processor can

write result in any any order but this method will only fire if the current head token in

tagged valid. Buffer can give one result or two result according to request, in present

design the processor is only using to get one result but in future modifications we can

use it to get two results. Two results will only be given if the present and the next reg-

isters are tagged valid.

• clear_partial method : this method is used if we want to clear the registers. In

this case clearing the register means tagging it invalid because if the register is tagged

invalid the get result rule can’t read its value. This method also resets the tail pointer

because the cleared register can be reissued now. The input to this method is the clear

index from which we want to start cleaning. This method is called by execution unit

when there is branch, then it resets the tail pointer.
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3.3 Decode Stage Changes

Changes in decode stage are simple compared to other changes, in this stage we just

need to add and extra decoder which decodes the 2nd instruction and then we enq the

decoded data into the execution buffers. As the designed processor is completely in-

order so the enq in both execution stage buffers will happen together which means

both previous instructions has finished their execution and data has been stored in the

completion buffer then only decode stage can enq.

Figure 3.7: Decode stage design

3.4 Register File changes

Major changes are done in register file because it is where processor checks the de-

pendencies, remove the hazards and get the data to the source registers. The register

file has been modified to remove RAW, WAW and WAR as the modified design is a

dual issue so these hazards will come while in single issue processor we don’t explic-

itly need to take care of these, they will be automatically taken care by the pipeline as

the instructions are executing one at a time and completing in strict program order.But

in dual issue processor the execution is happening in parallel and the register value is

being stored in the completion buffer which is not visible to the register file.
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Figure 3.8: New register file design

Figure 3.8 shows the new register file design. Now all the register has been changed

to CReg type to implement concurrency so that we can compare second instruction with

the first instruction and some other facilities can happen in same cycle, these will be ex-

plained in working of register file. As we can see in the figure, there are three register

arrays, these are: 1. Valid registers 2. data registers 3. token registers.

Data registers: these are the registers which stores the data. There are 32 register

and these has been changes to CReg type. In previous processor design there was only

this data register file but for dual issue design we need valid and token registers also to

handle the hazards.

Valid register: These registers are necessary to eliminate the Read After Write haz-

ard. In the present design the register file is not able to read the completion buffer so

if a instruction has been completed but the value is still in the completion buffer and

some other instruction needs the value of that register then it will read the old incorrect

value so we need to tag the destination register invalid till the processor writes back the

updated data in it and till then the present instruction will stall.

Token registers: These registers are used to eliminated the Write After Write haz-

ards. If processor completes multiple instructions which are writing to same register

then the valid bit has to be validated only when the latest instruction writes in the regis-
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ter, because if it validates the register with previous value then current instruction will

get a wrong value.

3.4.1 Working of register file

As the design has been changed for dual issue the register file now gets request from

two instructions that means 4 source register reads. For 1st instruction the read is sim-

ple it will check the forwarded data from each stage and if the destination matches the

source it will get the data or else it will get the data from the data register file given that

the register is tagged valid. Once both source operands of the 1st instruction are read

the destination of that instruction is tagged invalid with the present token attached to it.

After reading the 1st instruction operands, the second instruction operands are fetched,

but here it has to check if the destination of 1st instruction is source for the 2nd instruc-

tion then the 2nd instructions can’t get the data, else we start the matching like the 1st

instruction. we match the sources with the forwarded data from each stage and if they

don’t match we get the data from the data register file if that register is tagged valid.

If the destination of the 2nd instruction is same as of the 1st instruction the token at-

tached to it will be of the 2nd instruction.

Figure 3.9: Data write back in register file
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Figure 3.9 illustrate the working of the write back in register file. We can see the

data will be written in all the cases but the Valid bit will only be validated if the token

attached to the data coming from writeback stage matches the token stored for that

register.

3.5 Execution Stage Changes

This is the stage where both instructions will be executed and get the result of the

operation, the result is stored in the completion buffer. The enq in execution buffers

always happen together and only after enq in execution stage the decode buffers will be

dequeued so if any instruction stalls here the pipe will not move till that instruction is

completed. After enq in the EXE buffers it will fetch operands from the RF and do the

operation, there can be a branch misprediction by any of the two instruction but as this

is completely in-order if the 1st pipe gets misprediction it will clear the 2nd execution

buffer and call to the clear_partial method of the completion buffer which will reset the

token issue head. But if the misprediction is in the 2nd pipe it will not clear the 1st

execution buffer as the instruction in the 1st buffer is the previous instruction, this will

also call to same clear_partial method. If both of them have branch then the 1st pipe

will get priority and will clear the 2nd pipe. On branch misprediction both of the fetch

and decode stage buffers will also be cleared.

3.6 Memory Stage Changes

The fifo between execution and memory stage has been removed, now there is com-

pletion buffer in place of it. The memory stage will read the completion buffer, one

register at a time and execute the memory operation if it’s Load/Store operation else it

will bypass the result and enq it into the writeback buffer.
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Figure 3.10: Memory stage

3.7 Write Back Stage

There are no logical changes in the write back stage, the only change is while sending

the result back to the register file it will also send the token number attached to the

result, in the register file it will be compared with the token stored for that register and

if it matches the valid bit in register file will be validated.
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CHAPTER 4

VERIFICATION AND RESULTS

This chapter describes how the new processor design is verified in Bluespec, it also

compares the result of the dual issue processor with the single issue design.

4.1 Verification Flow

Figure 4.1: Verification flow



Figure 4.1 illustrates the verification flow. We write the code in Bluespec which has

file extension of " .bsv ". The "code.mem" file contains the instruction, these are gen-

erated using AAPG. We give the .bsv files and code.mem to the Bluesim compiler and

linker and it generated the "out.so" file. Now from out.so we get the register_dump.txt

which contains the register file values for each instruction. Finally we compare this

register_dump with the golden output generated using spike, if both are identical then

our processor has worked correctly.

4.2 Debugging the code

After comparing the rtl_register_dump.txt file with the spike_register_dump.txt if I get

some register mismatch between the two files then I followed these steps to debug the

code :

1. Note down the program counter from where the error starts.

2. Note down the register number for which wrong value is showing.

3. Now from the log file check at that program counter why the register file is being

updated with the wrong value.

4. Make changes in the code and repeat till both register files are identical.

4.3 Results

When both rtl_register_dump.txt and spike_register_dump.txt are identical then we

know the processor has executed the instructions correctly. Now we compare the num-

ber of cycles it took to complete the program and compare it with the original processor.

As a superscalar processor exploit the Instruction-level parallelism in the program so

some program which has more ILP will give better results than other.

Test results:

Test1 Test2 Test3

Improvement 5.6% 3.1% 4.5%
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Synthesis Report:

Current Processor:

Figure 4.2: Device Utilization

Designed Dual Issue Processor:

Figure 4.3: Device Utilization

Timing:

Current processor : Maximum frequency- 84.765 MHz

Dual issue processor : Maximum frequency- 54.811 MHz

This is due to the critical path length increase in the operand fetch stage, as now the

processor needs to fetch operands for two instructions.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

An ideal superscalar pipelined processor will double the throughput compared to a sin-

gle issue processor but in reality a superscalar processor exploits the Instruction Level

Parallelism of the program, which varies widely depending on the type of program, so

it did not show the improvements we expected but surely it showed some improvements

over the single issue design. A superscalar design comes on the cost of hardware but

as the Moore’s law says, number of transistors double every 18 month so the hardware

overhead can be managed if the performance improvement is good.

In this processor the fetch, decode and execute stages are dual issue but the memory

and writeback stages are still single issue. It has a completion buffer after the execution

stage which works based on token mechanism. The register file is also changed to han-

dle different types of hazards. The processor completed all the programs correctly and

showed improvements compared to its single issue design.

5.2 Future Work :

The designed processor is still not completely dual issue due to limitation of single D-

cache access and Writeback stage CSR access and also as the processor has become

dual issue the operand fetch from register file has increased the critical path. There are

good projects to improve this design further :

1. Make an extra stage for operand fetch to reduce the critical path length.

2. Changing D-cache design and making memory stage and write back stage dual issue.
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