
Structured Policy Learning: Hierarchies, Temporal

Abstractions and Meta-Controllers for Deep

Reinforcement Learning

A Project Report

submitted by

L ARAVIND SRINIVAS

in fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2017

THESIS CERTIFICATE

This is to certify that the thesis titled Structured Policy Learning: Hierarchies, Tem-

poral Abstractions and Meta-Controllers for Deep Reinforcement Learning, sub-

mitted by L Aravind Srinivas, to the Indian Institute of Technology, Madras, for the

award of the degree of Bachelor of Technology and Master of Technology, is a

bonafide record of the research work done by him under our supervision. The con-

tents of this thesis, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Dr. Balaraman Ravindran
Research Guide
Associate Professor
Dept. of Computer Science and Engineering
IIT-Madras, 600 036

Dr. Kaushik Mitra
Research Co-Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: May 1, 2017

ACKNOWLEDGEMENTS

I am lucky to have been mentored by Dr. Balaraman Ravindran. His enthusiasm in

Reinforcement Learning and Cognitive Science is contagious and I am happy it rubbed

off on me to the extent that I am motivated to pursue it further during my PhD. I also

wish I can write and communicate as eloquently as him one day. His knack for finding

obvious loopholes in research ideas made me change my outlook to research when I

realized it is more about sticking to intuitive first principles than being lost in the math or

existing work. I love his wit and geeky sense of humour and the fact that he is gracious

and cool to take jokes on himself. By far, he is the coolest professor and adviser I have

met so far, and probably ever will. I am forever grateful for the faith he had in me in

the beginning when I was slow and not too successful in my first research project with

him. His advising and teaching styles have inspired me a lot and I admire the way he

excites the students and gives them a lot of freedom. He has been instrumental in me

being able to build a research profile and supportive of my visiting studentship at the

premier academic Deep Learning Lab in the world headed by Dr. Yoshua Bengio. My

stint there has given me a lot of maturity as a researcher. I can’t thank him enough for

always being helpful and understanding whenever I had any problems. I will try my

best to make him proud through my future research papers.

I would also like to thank my co-advisor Prof. Kaushik Mitra who has been very

supportive and given me a lot of creative, administerial and technical freedom in carry-

ing out my thesis. I am inspired by his patience and calmness all the time.

Next, I would like to thank my collaborators on the papers mentioned in this thesis.

I am happy to have worked with Janarathan Rajendran on Transfer Learning. More than

the publication it lead to at ICLR 2017, it is this project where I learned a lot about my-

self and research. It tested my abilities to design experiments, generate and test ideas

scientifically, debug and refine my thoughts. He has been signficantly helpful by men-

toring me through this phase, patient enough to reply to mails and have long Whatsapp

calls despite timezone differences. I learned a lot from his different style of intuitive

thinking. He is easily one of the very few researchers I have met who have novel ideas.

i

I also thank Mitesh Khapra, Prasanna Parthasarathi, Sahil Sharma and Ramnandan Kr-

ishnamurthy for their time and discussions. I learned different things from each one of

them. Mitesh - the ability to decide among several idea-paths prioritizing what would

lead to a publication, Sahil - knack for identifying logical loopholes, Ramnandan - sys-

tematic way of going about things, Prasanna - building intuitions from first principles.

Apart from my collaborators, I would really like to thank Sherjil Ozair and Yoshua

Bengio from MILA. Sherjil is my closest research buddy till now. He has been in-

strumental in my transition from following papers to judging them. His passion and

attention to detail were humbling and the amount of time we spent and continue to

spend, discussing and critiquing ideas has made me a much better researcher than what

I was before meeting him. Yoshua is an inspiring example for success with humility.

I would also like to thank my lab mates, Vinod, Varun, Priyesh, Vishvesh and Yash

for making my stint at the RISE Lab an enjoyable and memorable one. Among them,

I am very much indebted to Varun Gangal and Vinod Ganesan. Varun was the one

who introduced me to Machine Learning towards the end of my second year when I

absolutely had zero idea of what to do in life. He has always guided me on what to do,

had several late-night dinners and teas and shared useful advice on many decisions I

had to make. I was fortunate to have him as room neighbor in my second year and I am

not even sure if I would have worked in Machine Learning had I not met him. Vinod

has been one of my closest friends and I am fortunate to have met him while working

in the lab several nights on my Transfer Learning project. He has been a big source

of moral support and accompanied me for several dinners and lunches. His insights on

intelligence from someone outside the community were thought-provoking.

Thanks to RISE Lab as a whole for making it possible to work on this thesis. Thanks

to my other friends from IITM, Krishnan, Ranjan, Ajay, Santhosh, Mohana.

I am deeply thankful to my father, uncle and aunt for their help and support. This

thesis is a dedication to my mother, Jayanthi. Words are not sufficient to summarize her

sacrifices for me. I will continue to work hard and make her proud.

ii

ABSTRACT

KEYWORDS: Reinforcement Learning, Deep Learning, Deep Reinforcement

Learning, Meta-Learning, Hierarchical Reinforcement Learning,

Spatio-Temporal Abstractions, Representation Learning

In this thesis, I discuss a combination of three different papers, which attempt to explore

different aspects of a broad theme called Structured Policy Learning for Deep Rein-

forcement Learning. I present models and algorithms to learn efficiently from raw pixel

inputs that handle temporal abstractions, hierarchies and meta-control respectively. For

scalable agents that can learn autonomously, temporal structures in the policy space are

inevitable. Thus, we need to induce different kinds of structural priors in the policy

space to be able to realize such autonomous agents for complex tasks with large state

spaces. I present three different ways to explore structured policy learning: i) Tempo-

ral abstractions in the policy space induced through the structure of repetitive macro-

actions, ii) Segmenting the state-space of the task into weakly connected components

and learning macro-actions that transition across discovered segments (or abstractions),

and iii) Meta-Controller Transfer Learning framework to be able to selectively use pre-

viously learned skills while learning to solve a new task in a continual learning setup.

iii

Contents

ACKNOWLEDGEMENTS i

ABSTRACT iii

1 Overview 2

1.1 Reinforcement Learning . 2

1.2 Deep Learning . 2

1.3 Deep Reinforcement Learning . 3

1.4 Contributions of this thesis . 4

2 Reinforcement Learning Preliminaries 8

2.1 Markov Decision Processes . 8

2.2 Reinforcement Learning Agent . 9

3 Dynamic Action Repetition for Deep Reinforcement Learning 12

3.1 Abstract . 12

3.2 Introduction . 13

3.3 Related work . 15

3.4 Background . 16

3.4.1 Q-Learning algorithm . 16

3.4.2 Deep Q Network (DQN) 17

3.4.3 Advantage Actor-Critic Algorithm 18

3.4.4 Asynchronous Advantage Actor Critic 19

3.5 Dynamic Action Repetition For Deep Reinforcement Learning . . . 20

3.6 Experimental Setup and Results 22

3.6.1 Augmented DQN . 22

3.6.2 Augmented A3C . 25

4 Option Discovery using Spatio-Temporal Clustering 27

4.1 Abstract . 27

iv

4.2 Motivation and Introduction . 27

4.3 Preliminaries . 31

4.3.1 Markov Decision Process 31

4.3.2 Options . 31

4.3.3 SMDP Value Learning . 31

4.3.4 Intra-Option Value Learning 32

4.4 Spectral Graph Theory . 33

4.4.1 Perron Cluster Analysis (PCCA+) 34

4.5 Composing Options from PCCA+ 39

4.6 Option Discovery using Spatio-Temporal Clustering (ODSTC) . . . 40

4.6.1 ODSTC for Small State Spaces 41

4.6.2 Model estimation and incorporation of reward structure . . . 41

4.6.3 Matching options . 42

4.6.4 Experiments on 3 Room Domain 43

4.6.5 Modifying the pipeline for larger state spaces 45

4.6.6 ODSTC for Large State Spaces 48

4.7 Playing video games with options 49

4.7.1 Sampling trajectories . 50

4.7.2 Representation Learning 50

4.7.3 State Aggregation . 52

4.7.4 Model Learning . 53

4.7.5 Intra-option Value Learning 54

5 Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive
Transfer from Multiple Source Tasks 57

5.1 Abstract . 57

5.2 Introduction . 57

5.3 Related Work . 59

5.4 Proposed Architecture . 61

5.4.1 Policy Transfer . 63

5.4.2 Value Transfer . 65

5.5 Experiments and Discussion . 67

5.5.1 Ability to do Selective Transfer 68

v

5.5.2 Ability to Avoid Negative Transfer and Ability to Transfer from
Favorable Task . 71

5.6 Details of the Network Architecture in Value Transfer Experiments . 73

5.7 Training Details . 74

5.7.1 Training Algorithm . 74

5.7.2 Learning Rate . 74

5.8 Blurring Experiments on Pong . 75

5.9 Blurring Mechanism in Pong - Details 75

5.10 Blurring experiments on Breakout 76

5.11 Blurring Mechanism in Breakout - Details 77

5.12 Blurring Attention Visualization on Breakout 78

5.13 Evolution of Attention Weights Visualization 78

5.14 Additional Experiment with Partial Positive Expert 79

5.15 Case study of target task performance limited by data availability . . 81

6 Conclusions and Future Work 83

6.1 Dynamic Action Repetition for Deep Reinforcement Learning . . . 83

6.2 Option Discovery using Spatio-Temporal Clustering 84

6.3 Attend, Adapt and Transfer . 85

Chapter 1

Overview

1.1 Reinforcement Learning

Reinforcement Learning is a division of Machine Learning that deals with the study of

sequential decision making problems. It considers an agent in an environment where

at every time step, the agent decides and executes an action, and receives the next ob-

servation and reward for the executed action from the environment. The agent uses

the relevant history of observations to decide on the next action. The decision is taken

such that the agent tries to maximize the cumulative reward through a trial-and-error

learning process. Chapter 2 provides a more detailed description with a mathematical

formulation of Reinforcement Learning.

1.2 Deep Learning

Deep Learning is a paradigm of Machine Learning that fundamentally thrives on a sim-

ple recipe: choose a loss function, build an expressive function approximator (multiple

layers of a neural network) and learn the parameters of the function approximator with

gradient descent methods. The success of this approach can be seen from the paradigm

shift in computer vision and speech recognition. In computer vision, convolutional neu-

ral networks are typically used for several problems like scene classification, object de-

tection, semantic segmentation, image captioning and region proposals. This has been

possible because of the rich hierarchy of features discovered for optimizing the loss

function. The recipe in Deep Learning involves a reduction from a learning problem to

an optimization problem: in Supervised Learning, we are reducing the problem from

learning a function that makes good predictions on unseen data to that of optimizing

the prediction error plus regularization on the training data using expressive non-linear

functions.

However, the reduction from learning to optimization is less straightforward in Re-

inforcement Learning than it is in Supervised Learning. There are multiple reasons

for this. Firstly, in Reinforcement Learning, it is hard to have an analytic estimate for

the objective function to optimize for, without knowledge of the underlying dynamics

model and the reward function. Secondly, in the case of estimating an approximate ver-

sion of the same, the input data is dependent on the agent’s current behavioral policy,

thereby introducing the problem of non-stationarity that is not prevalent in Supervised

Learning.

1.3 Deep Reinforcement Learning

The intersection of Deep Learning and Reinforcement Learning is a promising direction

to explore for research directed at creating agents that can learn goal-directed behavior

in complex scenarios with minimal human intervention. Reinforcement Learning (RL)

is a natural framework for learning autonomously by exploring the environment, while

Deep Learning (DL) provides an apt function approximation paradigm for discovering

the necessary abstractions to learn from raw sensory inputs without human effort for

feature engineering. Combining RL and DL allows an agent to build abstractions of the

world through the the reward signals acquired while trying to solve the task at hand.

This allows the agent to learn features that naturally combine perception and control

from several experiential trials. A policy is the strategy that tells an RL agent which

action to pick at each state in the world. The agent tries to optimize its policy at each

state so as to maximize the cumulative sum of rewards obtained as a consequence of its

actions. On the other hand, a value function is an evaluation of the policy that the agent

adopts in terms of how good the policy is at optimizing the long-term rewards. A Deep

Reinforcement Learning (DRL) agent attempts to learn the optimal policy and (or) value

function for the specific task using multi-layered neural networks as function approx-

imators for the parametrized policy and (or) value function. This is essential to scale

the learning over large state-spaces where tabular approximate dynamic programming

methods are infeasible for practical purposes. Thus, a DRL agent represents the value

function / policy using highly non-linear transformations of the original state-space.

3

1.4 Contributions of this thesis

Function approximation is a solution for generalizing to similar but unseen states over

large state-spaces. However, that alone does not solve a more important problem - How

do we induce appropriate structure and learn hierarchies? There are different scales of

planning actions to solve a task. For instance, a self-driving car agent aiming to reach a

destination would have low-level actions concerned with acceleration, brakes, etc while

the high level actions would be to deal with the traffic control, and even higher, to plan

the route involved in reaching the destination. This leads us to the question of how to

induce appropriate structures in the policy space that generalize across states so that

the agent can execute scalable control policies at multiple hierarchies. For definition,

let’s call a macro-action as a block of low-level granular actions. One could extend

this hierarchy by defining subsequent levels of macro-actions as being composed of the

previous level of macro-actions. How do we learn the appropriate macro-actions at each

level and learn control policies at the level of macro-actions to maximize the objective

for a specific task? It’s also necessary that the learning methodology we adopt must be

compatible with function-approximation so as to scale across large state-spaces. In this

thesis, I take an attempt to look at the above problem by exploring three different kinds

of structures which I describe in brief detail below.

The first, is to explore the structure of repetitive macro-actions. Here, I constrain

the structure of temporal abstraction to be composed of the same action but such that

the time-scale (length (or) frequency) of the action could vary across the macro-actions.

The agent learns a control policy composed of these macro-actions, whereby, learning

to pick a macro-action becomes equivalent to choosing an action and an appropriate

time scale for executing the action. This could lead to executing a control policy of the

type AABBBBCCDDDDBAAA, where A,B,C,D are different granular actions avail-

able to the agent. AA, BBBB, CC, DDDD, B, AAA are different macro-actions that the

agent picks. This structure, though restrictive, augments the agent with the ability to

look ahead as long as repeating the same action still leads it to a favorable future state.

Such an ability can help speed up the learning process by bypassing the need to decide

on those intermediate states where the agent would be better-off repeating the on-going

action. At present, Scalable Reinforcement Learning and Temporal Abstractions are

still not well understood. Therefore, it is important to explore even simplistic struc-

4

tures as above and adopt them if they lead to more stable learning and better sample

efficiency. I demonstrate the improved sample complexity and better stability in train-

ing through experiments where an agent learns from raw pixels in high dimensional

state-spaces on the Atari 2600 domain. This idea lead to two conference papers - 1.

Dynamic Action Repetition for Deep Reinforcement Learning, Association for the Ad-

vancement of Artificial Intelligence (AAAI), 2017, and 2. Learning to Repeat: Fine

Grained Action Repetition for Deep Reinforcement Learning, International Conference

on Learning Representations (ICLR) 2017. Sahil Sharma was my collaborator in both

of these works. I introduced the idea of dynamic action repetitions and repetitive macro-

actions in the AAAI paper with simple experimental demonstrations on expanding the

action space for each repetitive extent considered, and introduced the framework for

extending it to large number of time scales for a more practical algorithm. The second

paper follows up on this with an implementation of the more practical version and was

lead by Sahil Sharma. I will primarily be talking about the first paper in this thesis, with

a reference to the second for extra reading.

Secondly, I will talk about another approach for inducing spatio-temporal struc-

ture in Reinforcement Learning through segmenting the state-space of the underlying

Markov Decision Process (MDP) into weakly connected components. Each state now

has an associated membership function to its macro-state (component), and a macro-

action here is the sequence of actions that would lead to a change in macro-state. Such

macro-actions can be acquired without learning, by ascending (hill-climbing) on the

membership function. We adopt Perron Cluster Analysis (PCCA+), a spectral cluster-

ing algorithm grounded in Molecular Dynamics, for acquiring the clustering and mem-

bership information. Hierarchical Reinforcement Learning algorithms are then used to

learn a meta-controlling policy over the available options and base actions. However,

this pipeline of option discovery and control relying on MDP segmentation is infeasible

for larger practical problems. This is because the option discovery part of the pipeline

requires the transition matrix (weighted graph of the MDP) to be fed in as an input. It

is infeasible to compute and store a huge sparse transition matrix for larger problems

with exponential state spaces. In this thesis, I will discuss an attempt to scale the above

pipeline using recent advances in Deep Learning. The approach adopted here is to

learn a non-linear projection of the original state space to lower dimensional subspace

through unsupervised learning methods using deep neural networks. The state space is

5

then, aggregated through simple clustering techniques on this lower-dimensional man-

ifold. A transition matrix is then estimated from sampled trajectories on the aggregated

state space. The dimensionality of the aggregated state space is chosen such that a

transition matrix on such a state space is practical to work with. This matrix is then

fed to the PCCA+ clustering algorithm to discover weakly connected components and

macro-actions on the aggregated state space. This way, we acquire macro-actions that

apply to the original state space and can adopt Hierarchical Value / Policy based Deep

Reinforcement Learning algorithms to learn an optimal control policy over the actions

and options. This modified pipeline is again not a perfect solution to the problem of

generalizable hierarchical Reinforcement Learning, but was one of the few approaches

that attempted to answer the question at the time of its introduction in 2016. This was

joint work done with Ramnandan Krishnamurthy and Peeyush Kumar and was accepted

as a workshop contribution at the Abstractions in Reinforcement Learning Workshop

held at the International Conference in Machine Learning, 2016, conducted by Google

DeepMind. The original PCCA+ approach on small state spaces was proposed by

Peeyush Kumar. I contributed by proposing to use an Action Conditional Video Pre-

diction Model for learning unsupervised representations from sampled trajectories, on

which the state-space is clustered and aggregated for PCCA+ to work on the aggregated

state space. This representation proved to be better for clustering as compared to using

Deep Q Learning based representations for the pipeline (which was explored by Ram-

nandan). This is reasonable given that explicit spatio-temporal structure is encoded in

video prediction models and hence aggregation on manifolds encoded with rich spatio-

temporal information is expected to be more aligned for spectral clustering algorithms

tied to the MDP topological structure like PCCA+.

Thirdly, I will discuss recent work in the space of Transfer and Continual Learning

which lead to the conference paper, Attend, Adapt and Transfer: An Attentive Deep

Architecture for Adaptive Transfer from Multiple Source Tasks in the Same Domain at

the International Conference on Learning Representations (ICLR), 2017. This work

attempts to explore meta-controller structure in Reinforcement Learning through the

lens of transfer learning. This work attempts to exploit previously learned skills while

acquiring a new skill. Using previously learned skills selectively can help speed up

the learning of a new skill. At the same time, one must ensure that previously learned

skills which are adversarial and unrelated to the current task are ignored. This is im-

6

portant because acquiring a new skill must not become harder just because of unrelated

previous experience. Thus, we need a robust framework that learns how to selectively

use the prior skills when acquiring a new skill (so that only the useful ones for a given

situation are invoked to speed up the process of learning the new skill) and harmful or

useless prior skills (from the context of the specific skill being acquired) are ignored to

ensure the agent is at least as good as learning the new skill from scratch without prior

experience. To this end, I discuss an attentive meta-controller framework that can help

achieve this, whereby, a soft-attention based meta-controller combines the solutions of

the previously learned tasks and that of the ongoing task, to execute the resultant con-

vex combination of these solutions on the ongoing task. Based on how useful each of

the solutions are, specific to the state at which the agent is, the meta-controller learns

to assign the weights to those solutions accordingly. The solution being learned on the

new task bootstraps knowledge from the samples collected by this aggregate solution

being executed on the task. At the end of the training, the solution for the new task

is sandboxed with the list of prior skills thereby making this framework suitable for a

continual learning setup. The solution for a task could be the optimal policy (or) value

function. My contribution to the paper (on top of Janarthanan Rajendran’s work on pol-

icy transfer with simple toy tasks) was to explore transfer of value functions for more

complex high dimensional tasks. Further, since the network that learns from scratch on

the new task undergoes off-policy learning, value based methods are theoretically sound

and avoid the need for importance sampling. This issue was not addressed in off-policy

learning in Policy Transfer. I present the experiments I designed to show how well this

framework works for Value Transfer with inputs in the space of raw pixels on a couple

of Atari 2600 games, Pong and Breakout, and also discuss possibilities for future work.

7

Chapter 2

Reinforcement Learning Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are a common paradigm used to study Reinforce-

ment Learning Problems (Sutton and Barto, 1998a). An MDP is a mathematical object

describing an agent’s interactions with the environment and is defined by:

• S - state space - set of states in the environment

• A - action space - set of actions available to the agent at every time step

• P (s′|s, a) - transition dynamics - Given state s and action a, provides the prob-
ability distribution over possible next states s′.

• R(s, a, s′) - reward function associated with executing an action a at a state s
and moving to next state s′.

• µ0(s) - initial state distribution

The initial state is drawn from a stationary distribution µ0(s) characteristic to the

MDP. The goal in Reinforcement Learning is to find an optimal policy π which is a

mapping from states to actions. In value based approximate dynamic programming

methods, one typically uses deterministic policies a = π(s) that is greedy with re-

spect to the current estimate of the optimal value function, while in policy optimization

methods, one searches for the ideal stochastic policy π(a|s). The graphical model of

the MDP framework is shown in Figure 2.1 with the same notations as described above.

Figure 2.1: Markov Decision Process

2.2 Reinforcement Learning Agent

A Reinforcement Learning agent tries to maximize the cumulative sum of rewards re-

ceived as a consequence of its actions in the environment. At every time step, the agent

interacts with the environment by executing an action, receiving in return (from the en-

vironment) a reward for the executed action and an observation for the next time step.

The agent executes the action based on the policy it uses to decide on the actions.

A policy π : S ×A→ [0, 1] defines the way an RL agent behaves. The objective of

an RL agent is to find a policy which maximizes its cumulative reward. The cumulative

reward could have a discount factor γ ∈ [0, 1] which balances the tradeoff between

immediate reward and future rewards. A myopic agent would have γ close to 0 not

giving too much importance for future rewards obtained as a consequence of future

actions.

The policy of the agent at any state is driven by the need to maximize the sum

of the reward plus the discounted value of the next state. Value based RL algorithms

maintain an estimate for how valuable it is to be a state in the MDP under the given

policy. The theory defines two coupled value functions for this: V π(s) : S → R which

is the value function of a given state s when the agent follows the policy π in the MDP,

Qπ(s, a) : S×A→ R which is the action-value function for a given state s and action a

when the agent follows policy π. The action value function Qπ(s, a) is by definition the

sum of the expected immediate reward and the value function V π(s′) of the next state.

To put these in mathematical form, consider the notation t for time index and state st

represents the state in the MDP at time step t. Also assume that r(s, a) is the reward for

picking action a at state s, while r(st) is the reward for reaching state st. The definition

for V π(s) assumes that the time counting starts at s with 0.

V π(s) = Eπ[
∞∑
t=1

γtr(st)]

Qπ(s, a) = Eπ[r(s, a) + γV π(s′)]

For an RL agent, the objective is to follow a policy that is argmaxπV
π(s) in the

MDP. Let us define the optimal value functions below:

9

V ∗(s) = maxπV π(s)

Q∗(s, a) = maxπQπ(s, a)

Value based RL methods try to converge to V ∗ or Q∗ from random initial estimates

through approximate value iteration methods in expectation. The agent behaves greed-

ily with respect to the current value function to improve the current policy, and the new

behavior is evaluated to modify the value function. Repeated cycles of the policy im-

provement and evaluation leads to convergence (with guarantees for certain cases) (Sut-

ton and Barto, 1998b). A policy that is greedy with respect to current value function

can be defined comfortably using the Q function as: πi+1(s) = aQi(s, a) where i de-

notes the iteration index. Once the value based methods converge to the optimal value

function Q∗, a policy that is greedy with respect to Q∗ is by definition the optimal value

function.

To drive the learning from initial random estimates of the optimal value function

to correct ones, value based methods exploit the Bellman Equation (Sutton and Barto,

1998b). The state value function V π and the action value function Qπ obey:

V π(s) = Es′,r∼P (s′,r|s,a) a∼π[r + γV π(s′)]

Qπ(s, a) = Es′,r∼P (s′,r|s,a)[r + γEa′∼π[Qπ(s′, a′)]]

When π is a greedy policy π∗ that is optimal, the inner expectation in the Bellman

equation for Qπ goes away and is replaced by maxa′Qπ∗(s′, a′). Since π∗ is greedy and

has no explicit policy representation and is meant to be the optimal policy, we shall just

denote the action value function as Q∗. This gives us the Bellman Optimality Equation:

Q∗(s, a) = Es′,r∼P (s′,r|s,a)[r + γmaxaQ∗(s′, a′)]

Repeatedly enforcing reduction of the Bellman Error between Q∗(s, a) and r +

γQ∗(s′, argmaxa′) converges to Q∗ in expectation. The s, a, r, s′ for learning Q∗ in this

way can be simulated from any policy π since the outer expectation is over the MDP

stochasticity and agnostic to the policy π that simulated s, a, r, s′). This type of learning

10

is called off-policy learning in RL and applying it specifically in the above manner for

learning the optimal action value function Q∗ gives the algorithm called Q-Learning.

Reduction of the Bellman Error to get a better estimate of the value function is the

evaluation step. The policy improvement step comes from being greedy with respect

to the current estimate of the value function. Repeated iterations of better estimates

and greedy policies with respect to the current estimates drive Q-Learning. One caveat

in this is the exploration problem. When the current estimates are bad, being greedy

with respect to the current estimates will simply lead to repeated execution of bad be-

havior leading the agent to unfavorable parts of the state space. Typically, instead of

greedy, ε−greedy methods are adopted so that the agent executes random actions with

ε probability and behaves greedily with 1 − ε probability. ε is typically annealed from

a high value to a low value like 0.05 over the course of the agent executing Q-Learning

induced control policies.

My contributions for this thesis involved value learning methods majorly. However,

I will introduce policy gradients and Actor-Critic briefly in the respective chapters and

cite the relevant papers for further details. This chapter is not a comprehensive intro-

duction to Reinforcement Learning and one should refer to (Sutton and Barto, 1998b)

for an excellent and concise introduction to Reinforcement Learning.

As for deep neural networks (Deep Learning) in RL, it is infeasible to cover back-

ground material without delving into Deep Learning itself. (Goodfellow et al., 2016)

provide an excellent and exhaustive introduction to Deep Learning while for Deep RL,

a brief survey of existing literature is provided by (Li, 2017).

11

Chapter 3

Dynamic Action Repetition for Deep Reinforcement

Learning

3.1 Abstract

One of the long standing goals of Artificial Intelligence (AI) is to build cognitive agents

which can perform complex tasks from raw sensory inputs without explicit supervi-

sion (Lake et al., 2016). Recent progress in combining Reinforcement Learning ob-

jective functions and Deep Learning architectures has achieved promising results for

such tasks. An important aspect of such sequential decision making problems, which

has largely been neglected, is for the agent to decide on the duration of time for which

to commit to actions. Such action repetition is important for computational efficiency,

which is necessary for the agent to respond in real-time to events (in applications such

as self-driving cars). Action Repetition arises naturally in real life as well as simulated

environments. The time scale of executing an action enables an agent (both humans and

AI) to decide the granularity of control during task execution. Current state of the art

Deep Reinforcement Learning models, whether they are off-policy (Mnih et al., 2015a;

Wang et al., 2015) or on-policy (Mnih et al., 2016b), consist of a framework with a static

action repetition paradigm, wherein the action decided by the agent is repeated for a

fixed number of time steps regardless of the contextual state while executing the task. In

this chapter, we propose a new framework - Dynamic Action Repetition which changes

Action Repetition Rate (the time scale of repeating an action) from a hyper-parameter

of an algorithm to a dynamically learnable quantity. At every decision-making step,

our models allow the agent to commit to an action and the time scale of executing the

action. We show empirically that such a dynamic time scale mechanism improves the

performance on relatively harder games in the Atari 2600 domain, independent of the

underlying Deep Reinforcement Learning algorithm used.

3.2 Introduction

There has been a growing interest both in creating AI agents which can play computer

games well (Mnih et al., 2015a; Hausknecht and Stone, 2016; Mnih et al., 2016b), as

well as creating Human-like AI agents against which human opponents can enjoy play-

ing (Hingston, 2010; Ortega et al., 2013; Van Hoorn et al., 2009). Indeed, both the

problems are related. A solution to the former is necessary, but not sufficient for a solu-

tion to the later. This is because agents which can play the game well automatically lead

to AI opponents against which humans might enjoy playing computer games. Hence,

any advancement in the former domain leads to an advancement in the latter. We present

one such advancement in Reinforcement Learning (RL)-based game playing.

Video game domains such as Mario (Togelius et al., 2010), Atari 2600 (Bellemare

et al., 2013) and Half Field Offensive (Hausknecht et al., 2016) have served as a test bed

to measure performance of learning algorithms in AI-based game playing. Such games

present unique challenges to an AI agent since performing well in them requires being

able to understand the current state of the game (involves pattern recognition) as well

as being able to choose actions after considering long term implications of choosing

those actions (involves planning). Recent applications of Deep Reinforcement Learning

(DRL) to these domains has resulted in state-of-the-art performance, when the policies

have to be learnt directly from pixels in a model-free RL setting (Mnih et al., 2015a,

2016b; Hausknecht and Stone, 2016).

Game playing AI should be real-time for it to appear plausible to humans and for it

to have real world applications. This is one of the motivations behind the evolution of

Deep Learning (DL)-based AI agents as a replacement for simulation based AI. How-

ever, DRL agents involve significant computation in the form of convolutional neural

networks and recurrent neural networks. One way to reduce such computation is to

introduce a hyper-parameter in DRL algorithms called the action repetition rate (ARR)

which denotes the number of times an action selected by the agent is to be repeated.

If the ARR is low, the decision making frequency of the agent is high. This leads to

policies which evolve rapidly in space and time. On the other hand, a high ARR causes

infrequent decisions, which reduces the time to train at the cost of losing fine-grained

control. A higher ARR also leads to the agent learning human-like policies for game

play. This is because the policies learnt with a higher ARR have fewer action sequences

13

which exhibit super-human reflexes as compared to an agent which plays with a low

ARR ((Mnih et al., 2015a, 2016b) use an ARR of 4). A reduction in decision making

frequency gives the agent the advantage of not having to learn the control policy in

the intermediate states given that a persistent action from the current state can lead to

an advantageous next state. Such skills would be useful for the agent in games where

good policies require some level of temporal abstraction. An example of this situation

in Seaquest (an Atari 2600 game) is when the agent has to continually shoot at multiple

enemies arriving together and at the same depth, one behind another. In the case of

Space Invaders (Atari 2600 game), the lasers are not visible in every fourth frame, as

noted by (Mnih et al., 2015a). Hence, a higher action repetition could help the agent

avoid the confusion of having to decide an action in such peculiar intermediate states,

where the lasers are not visible.

Having said all of that, there are also situations where agents have to take actions

which require quick reflexes to perform well with an example from Seaquest being

states in which multiple enemies attack simultaneously and are placed at varying depths.

The agent is then expected to manoeuvre skillfully to avoid or kill the enemies. Sim-

ilarly, in Space Invaders the agent needs to avoid multiple lasers being shot simulta-

neously by enemies that are progressively moving closer to the agent. Such situations

merit a finer granularity of control. Therefore, a high but static ARR is probably not

a solution for better game playing strategies in spite of the temporal abstractions it

provides to the agent. As a small step in the direction of temporal abstractions in the

policy space (in the form of temporally elongated actions), we propose a dynamic ac-

tion repetition paradigm of game-playing. The paradigm is generic enough that it can

be combined with any off-the-shelf discrete action space DRL algorithm. The proposed

paradigm presents a more structured policy framework, wherein the policy consists of

the action probabilities (or state-action values) along with the number of times the cor-

responding action is to be repeated, each time a decision is to be made. This is on the

lines of (Hausknecht and Stone, 2016), in which an Actor Critic setup is used in the Half

Field Offense domain (Hausknecht et al., 2016), to learn policies that contain both the

probabilities of selecting actions as well as their associated parameters. Policies learnt

under this paradigm guide the agent in deciding whether it is beneficial to exert super-

human-reflexes, or not. In the case of longer temporal persistence of the chosen action,

the optimal level of persistence would help the agent to get to most advantageous (in

14

terms of expected cumulative discounted future reward) temporally distant state.

One of the major drawbacks of the current DRL game playing algorithms (Mnih

et al., 2015a, 2016b; Wang et al., 2015) is that the action repetition rate is a static

hyper-parameter which has to be tuned using usual hyper-parameter tuning techniques.

We demonstrate that this inability to decide the granularity of control deeply inhibits

the kind of control policies that are learnt by the algorithms. We show the efficacy of

the policies learnt using our paradigm over those learnt using the existing algorithms

by empirically establishing the fact that dynamic action repetition is an important way

in which an AI agent’s capabilities can be extended. This is done by combining exist-

ing DRL algorithms with our paradigm. To demonstrate that this paradigm (Dynamic

Action Repetition) can be combined with any Deep Reinforcement Learning algorithm,

we perform experiments in off-policy (Mnih et al., 2015a) as well as on-policy (Mnih

et al., 2016b) setting. Thereby we make the claim that there is a need to explore and ex-

periment with structured parametrized policies for finding temporal abstractions using

an Actor Critic setup in the Deep Reinforcement Learning based Game Playing domain.

3.3 Related work

One of the first efforts which pushed the state of the art significantly in the domain of

game playing based on raw sensory inputs was (Mnih et al., 2015a). Their architecture,

DQN, motivated the use of convolutional neural networks for playing games in the Atari

2600 domain.

(Braylan et al., 2015) focus on the power of the frame skip rate hyper-parameter

(it is the hyper-parameter in ALE which directly controls the action repetition rate)

with experiments in the Atari 2600 domain. Their learning framework is a variant of

Enforced Sub-Populations (ESP) (Gomez and Miikkulainen, 1997), a neuroevolution

approach which has been successfully trained for complex control tasks such as con-

trolling robots and playing games. They show empirically that the frame skip parameter

is an important factor deciding the performance of their agent in the Atari domain. They

demonstrate for example that Seaquest achieves best performance when an ARR of 180

frames is used. This is equivalent to the agent pausing (continuing the same action) for

three seconds between decisions since the ALE emulator runs at 60 frames per second.

15

They argue that a higher value of action repetition allows the agent to not learn action

selection for the states that are skipped and hence develop associations between states

that are temporally distant. However, they experiment only with a static action repe-

tition setup. The key way in which our work differs from both the ESP and the DQN

approaches is that we make action repetition a dynamic learnable parameter.

The idea of dynamic-length temporal abstractions in the policy space on Atari Do-

main has been explored by (Vafadost, 2013). They use a Monte Carlo Tree Search

(MCTS) planner with macro-actions that are composed of the same action repeated k

times, for different k. The way in which our approach differs from (Vafadost, 2013) is

in terms of using a Deep Neural Network to build non-linear Q-function approximators

instead of making use of search techniques that cannot generalize across unseen states.

We also learn to pick the suitable repetition extent for a state through deep networks

instead of searching through rollouts for the optimal repetition extent k.

The utility of repetitive macro-actions has been pointed out by (Ortega et al., 2013)

in designing high level actions to imitate human-like play in Mario such as Walk, Run,

Right Small Jump, Right High Jump and Avoid enemy, which are composed of varying

length repetitive key presses. For instance, Right High Jump involves pressing the Jump

and Right keys together for 10 frames, while Right Small Jump requires the same for 2

frames.

3.4 Background

The following four sub-sections introduce standard Reinforcement learning algorithms

and their deep counterparts.

3.4.1 Q-Learning algorithm

One of the approaches for solving the sequential decision making problem is to estimate

the optimal value of every state-action pair -Q(s, a). The optimal value of an action a in

a state s is defined as the expected cumulative sum of future rewards on taking a in s and

following the optimal policy thereafter. Q(s, a) is a measure of the long-term reward

obtained by taking action a in state s. Computing approximations for the Q-function

16

enables the agent to select the optimal action a in a state s. Hence, one way for the agent

to learn optimal policies is to estimate Q(s, a) for the given task. Q-learning (Watkins

and Dayan, 1992) is an off-policy Temporal Difference (TD) learning algorithm which

does exactly that. The Q-values are updated iteratively using the Bellman optimality

equation (Sutton and Barto, 1998b) with the rewards obtained from the game as below:

Qt+1(s, a) = E[r + γmaxa′Qt(s
′, a′)|s, a]

Here t denotes the time-step during the episode. During training, the behavioral policy

is ε- greedy with respect to Q(s, a) to ensure sufficient exploration.

3.4.2 Deep Q Network (DQN)

In high dimensional state spaces, it is infeasible to compute optimal Q-values for all

possible state-action pairs explicitly. One way to address this problem is to approxi-

mate Q(s, a) using a parametrized function approximator Q(s, a; θ), thereby gaining

the power to generalize over unseen states by operating on low level features (Sutton

and Barto, 1998b). Recent advances in representation learning using deep neural net-

works (LeCun et al., 2015) provide an efficient mechanism to learn hierarchical features

across large state spaces and avoid feature engineering. DQN (Mnih et al., 2015a) com-

bines the representation learning power of deep neural networks with the Q-Learning

objective to approximate the Q-value function for a given state and action. The loss

function used for learning a Deep Q Network is :

L(θ) = Es,a,r,s′ [(yDQN −Q(s, a; θ))2],

with

yDQN = (r + γmaxa′Q(s′, a′, θ−))

Here, L represents the expected TD error corresponding to current parameter estimate

θ. θ− represents the parameters of a separate target network, while θ represents the

parameters of the online network. The usage of a target network is to improve the

stability of the learning updates. The gradient descent step is as follows:

∇θL(θ) = Es,a,r,s′ [(yDQN −Q(s, a; θ))∇θQ(s, a)]

17

The off-policy nature of the algorithm ensures that DQN is able to avoid correlated up-

dates, which are likely, when learning on temporally correlated transitions that the on-

line network simulates. This is facilitated through an experience replay memory (Lin,

1993) D (of fixed maximum capacity) where the state transitions and rewards experi-

enced by the agent are pooled in a First-In-First-Out (FIFO) fashion.

3.4.3 Advantage Actor-Critic Algorithm

The Q-learning algorithm described in the previous subsections computes only the

value function associated with state-action pairs. Explicit policies are not learnt by

the agent during Q-Learning. Rather, the policy of the agent is induced implicitly (by

picking the action with the maximum Q-value) along with low-probability exploration

based on an ε-greedy approach (Sutton and Barto, 1998b). In contrast, Actor-Critic

methods (Konda and Tsitsiklis, 2003) explicitly model the policy that is executed by

the agent along with a value function component updated using Temporal Difference

(TD) learning methods. Hence, they have two distinct components: an actor and a

critic. We describe the parametric version of Actor Critic below.

The actor proposes a parametrized policy π(at|st; θa) while the critic provides the

basis for improvement in the policy estimation by approximating the optimal value

function V ∗(s) using a parametrized estimate; V (st|θc). We describe a parametric

critic as a general setup applicable to high dimensional state spaces. In principle a

non-parametric critic could also be learnt, using table look ups. The state value func-

tion computed by the critic is used for obtaining the Temporal Difference (TD)-error

term (r + γV (s′) − V (s)) required for computing the updates to the actor parameters

θa. The updates on the actor parameters θa are based on policy gradient methods with

the critic term providing the sign and weight for the updates (Sutton et al., 1999a).

The ideal unbiased policy gradient for updating the parameters of the probability of

execution of action at in state st is ∇θa log π(at|st; θa)E[Rt]. Here Rt is the return

obtained from state st after executing action at. Naturally, based on how Q(st, at) is

defined, ∇θa log π(at|st; θa)Q(st, at) provides a biased estimate for the same but with

lower variance when compared to using a point estimate of Rt as proxy for E[Rt]. The

variance of the former estimator can be improved even further without adding to the

bias by using∇θa log π(at|st; θa)(Q(st, at)−b(st)) where b(st) is a baseline term that’s

18

independent of the entity on whose decision the gradient is computed (at here). The

baseline could however be state-dependent. Often, the baseline used is the value func-

tion estimate of state st: V (st|θc).

The proxy function for the utility Rt is hence Q(st, at) − V (st). This is defined

as the Advantage Function A(st, at). Since this instantiation of Actor Critic uses the

Advantage Function as the proxy utility, this method is referred to as Advantage Actor

Critic. The efficacy of this method relies on the critic approximating the optimal value

function V (st) since the Advantage Function A(st, at) is estimated using the one step

TD error, as described below. The target value forQ(st, at) from the Bellman optimality

criterion (Sutton and Barto, 1998b) is r+γmaxa′Q(st+1, a
′) = r+γV (st+1). Therefore,

A(st, at) is estimated as (r+ γV (st+1))− V (st), which is just the one-step TD error in

estimating V (st).

3.4.4 Asynchronous Advantage Actor Critic

On-policy Actor Critic algorithms are non-trivial to model with Deep Neural Networks.

This is because the on-policy nature of the learning leads to correlated updates by vi-

olating an important assumption made by popular stochastic gradient descent-based

parameter update algorithms that the input data points are independently and identi-

cally distributed. Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016b)

overcomes this problem by running multiple actor threads which explore different parts

of the state space in parallel. The updates from the multiple threads are synchronized

with respect to the global policy network parameters θa. This ensures that the updates

made to the global policy parameters are reasonably uncorrelated. Due to multiple actor

learner threads operating at different parts of the state space and pooling in gradient up-

dates in an Advantage Actor Critic paradigm, this method is referred to as Asynchronous

Advantage Actor Critic.

19

Figure 3.1: DQN’s architecture under the proposed Paradigm. The upper part of the
final layer corresponds to Q-values for actions that operate at action repe-
tition rate r1 and lower part corresponds to same actions which operate at
action repetition rate of r2.

3.5 Dynamic Action Repetition For Deep Reinforcement

Learning

The key motivation behind the Dynamic Action Repetition paradigm is the observa-

tion that when humans execute tasks (such as playing games), the actions tend to be

temporally correlated and elongated, almost always. Such behavior occurs because ex-

pectancy for upcoming action requirements is a fundamental prerequisite for human

action control (Gilbert and Wilson, 2007; Thomaschke and Dreisbach, 2013). For cer-

tain states of the game, we play long sequences of the same action whereas for some

states, we switch the actions performed quickly. We base these decisions on what we

expect from the temporally distant future, as a result of these actions. For example, in

Seaquest, if the agent is low on oxygen and deep inside the sea, we would want the

agent to resurface and fill up oxygen using a long sequence of up actions.

Although the framework we propose is generic enough to be combined with any

discrete-action space DRL algorithm, we take the example of DQN to explain the Dy-

namic Action repetition scheme. To demonstrate the generality of the paradigm, exper-

20

iments are performed with DQN as well as A3C. The paradigm, explained with the help

of DQN is as follows:

Let A = {a1, · · · , a|A|} denote the set of all legal actions for a game (for Seaquest

A = {0, 1, · · · , 17}). We introduce |A| new actions {a|A|+1, · · · , a2|A|}. Figure 1

depicts this scheme using a diagram.

The semantics associated with the actions are as follows: action ak results in the

same basis action being played in the ALE as the action a(k%|A|). The difference is in

terms of the number of times the basis action is repeated by the ALE emulator. DQN

as well A3C operate with a static action repetition hyper-parameter which is equal to

4. Hence any selected action is repeated 4 times by ALE. In our model, action ak is

repeated r1 number of times if k < |A| and r2 number of times if k ≥ |A|. One can

think about each ak as representing a temporally repeated action or in RL terms as a

macro-action. This scheme is implemented by doubling the number of neurons in the

final layer of the DQN architecture. For a given state s, the augmented model (with

double the number of output neurons as DQN) thus outputs the discrete set of value

function approximations {Q(s, a1), · · · , Q(s, a2|A|)}. Q(s, ak) representing an approx-

imation to the return the agent would get on taking action ak in state s and following the

optimal policy thereafter. In the case of the augmented A3C model, the output would be

a probability distribution over all the actions {a1, · · · , a2|A|}. These new macro-actions

can lead to more-frequent and larger rewards, and thus significantly impact the value

functions learnt by the augmented model. Note that r1 and r2 are hyper-parameters in

this model and must be chosen before the learning begins. This paradigm presents the

agent with 2 discrete levels of control, as far as action repetition is concerned, regardless

of the underlying Reinforcement Learning algorithm. It is ideal to learn policies in a

parametrized action space where the agent outputs an action ak and a parameter r where

r denotes the number of times that the agent wants to repeat action ak consecutively.

Such a framework would have the representative power to select the optimal number of

times an action is to be executed. But, it would also be proportionately complex and as

a result difficult to train. Our paradigm seeks to provide an approximation to this richer

model and favors simplicity over optimality of game play, which would come at the

cost of a more complicated learning procedure. We leave it to future work, to explore

the learning of policies paramaterized by the ARR in the Game Playing domain, learnt

with the help of an actor-critic algorithm.

21

3.6 Experimental Setup and Results

To demonstrate the generality of our framework, experiments were conducted with 2

DRL algorithms: DQN and A3C. The following sub-sections document the respective

experimental setup and the results.

3.6.1 Augmented DQN

General game-playing evaluation was performed on 4 Atari 2600 domain games: Seaquest,

Space Invaders, Alien and Enduro. A single algorithm and architecture, with a fixed

set of hyper-parameters was used to play all 4 games. The combination of DQN with

our paradigm results in a model (Augmented DQN) which has the same low-level con-

volutional structure and input preprocessing of DQN (Mnih et al., 2015a). Due to the

partially observable nature of the Atari 2600 domain games, the last 4 frames are com-

bined and given as a 84× 84× 4 multi-channel input to the model. This is followed by

3 convolutional layers, which are in turn followed by 2 fully-connected layers.

Since the augmented model has double the number of output neurons as a static

action-repetition model, we wanted to give more representational power to it, for be-

ing able to decide from a larger set of actions. Therefore, the augmented model has

1024 units in the pre-output hidden layer as compared to 512 units used in the DQN

architecture (Mnih et al., 2015a).

22

(a) Seaquest Training Comparison(b) Space Invaders Training Com-
parison

(c) Alien Training Comparison

Figure 3.2: DQN vs DFDQN comparison for Seaquest, Space Invaders and Alien

S.No. Game HLS ARR Arch AS

1 Seaquest 1024 4 DQN 5450

2 Seaquest 1024 20 DQN 1707

3 Seaquest 1024 D DFDQN 10458

4 Seaquest 512 4 DQN 5860

5 SI 1024 4 DQN 1189

6 SI 1024 D DFDQN 2796

7 SI 512 4 DQN 1692

8 Alien 1024 4 DQN 2085

9 Alien 1024 D DFDQN 3114

10 Alien 512 4 DQN 1620

11 Enduro 1024 4 DQN 707

12 Enduro 512 4 DQN 729

13 Enduro 1024 D DFDQN 1002

14 Enduro 1024 20 DQN 124

Table 3.1: Experimental results for DQN architectures. AS denotes the average score
in the best testing epoch. SI is the game of Space Invaders. HLS denotes the
pre-final layer hidden layer size.

The values of r1, r2 (defined in the previous section) are kept the same for all three

games and are equal to 4 and 20 respectively. To ensure sufficient exploration (given

that the augmented model has double the number of actions), the exploration probability

ε is annealed from 1 to 0.1 over 2 million steps as against 1 million steps used in DQN.

We claim that the improvement in performance is not just due to the increase in the

23

representational power by having double the number of pre-final hidden layer neurons.

to validate this hypothesis, we run DQN baselines with 1024 units in the pre-final layer

for all three games. We also report the scores obtained from original DQN architecture

with 512 pre-final hidden layer neurons from a recent usage of DQN in (Wang et al.,

2015), where DQN is reported as baseline for the Duelling DQN model. A training

epoch consists of 250000 steps (action selections). This is followed by a testing epoch

which consists of 125000 steps. The score of a single episode is defined to be the sum

of the rewards received from the ALE (Bellemare et al., 2013) emulator in that episode.

The score of a testing epoch is defined to be the average of the scores obtained in all

of the complete episodes played during that testing epoch. The scores reported in this

section are for the testing epoch with the highest average episode score (known as the

best score for a game). Table 1 presents the experimental results. Since the hyper-

parameter for action repetition is known as Frame Skip in the ALE, the augmented

model is referred to as DFDQN (Dynamic Frameskip DQN). HLS denotes the pre-final

hidden layer size. SI stands for Space Invaders. ARR stands for the action-repetition

rate used. A value of D for ARR represents that the action repetition rate is dynamic.

Arch. denotes the architecture used. AS denotes the best average testing epoch score as

defined above.

In each of plots in Fig 3.2, one epoch consists of 125000 steps (decisions). DQN-a-b

refers to DQN architecture that has b units in the pre-output layer and operates with an

ARR of a. DFDQN-b is the Dynamic Action Repetition variant of Deep Q-Network

architecture with b units in pre-final layer.

An interesting characteristic of all the graphs is that Augmented Model’s scores-

graph has a large slope even at the end of 200 epochs. This means that there is still scope

for the performance to improve on further training beyond 200 epochs. To verify our

claim that temporally extended actions can lead to better policies, we did an analysis

of the percentage of times the longer sequence of basis actions was selected. Using

the network which yielded the best score (notion of best score defined in the previous

section), we ran a testing epoch of 10000 decision-making steps, which resulted in 17

episodes for Seaquest, 18 episodes for Space Invaders, 18 episodes for Alien and 17

episodes for Enduro. We recorded the actions executed at each decision-step.

The table above shows that the augmented model is able to make good use of the

24

S.No. Game Percentage
1 Seaquest 69.99
2 Space Invaders 78.87
3 Alien 71.31
4 Enduro 67.84

Table 3.2: Longer action selection percentages for DFDQN

longer actions most of the times, but does not ignore the temporally shorter actions

either. The agent has learnt through repeated exploration-feedback cycles to prefer the

extended actions but still exercises the fast reflexes when the situation needs it to do so.

We can safely claim that the addition of these higher action repetition options has been

an important contributing factor to the improvement in performance. To strengthen

our claim that there is a need for dynamic action repetition, we show results on two

of the games (Seaquest and Enduro) in which the DQN operates with just the higher

but static ARR of 20. Not surprisingly, it scores poorly during gameplay. Videos of

some of the learned policies for Space Invaders, Seaquest and Alien are available at

https://goo.gl/VTsen0, https://goo.gl/D7twZc and https://goo.

gl/aCcLb7) respectively.

3.6.2 Augmented A3C

To demonstrate that the proposed paradigm is not specific to the DQN algorithm but

rather works across different types of DRL Algorithms for game playing, we con-

ducted similar game-playing experiments using the Asynchronous Advantage Actor

Critic (Mnih et al., 2016b) model as well. Unlike in the case of Augmented DQN, all

the hyper-parameters were kept exactly the same as that in the case of A3C. This rep-

resents an adversarial setting for the augmented A3C case since deciding the optimal

ARR could possibly benefit from having a larger state-representation as well as changes

in other hyper-parameters. We used the LSTM-controller and the best-performing open

source implementation of A3C algorithm. The baseline A3C models as well as the

augmented A3C models were trained for 100 million decision steps.

Evaluation was performed by sampling from the probability distribution represent-

ing the final policy and averaging the scores over 100 episodes. The results are pre-

sented in table 3. A3C denotes the implementation of A3C used by us. DFA3C denotes

25

https://goo.gl/VTsen0
https://goo.gl/D7twZc
https://goo.gl/aCcLb7
https://goo.gl/aCcLb7

the A3C model Augmented with Dynamic Action Repetition. A3CP denotes the scores

of the published A3C models (Mnih et al., 2016b), which have been included for the

sake of completeness. A note of caution is to not compare the scores obtained in this

S.No. Game Arch AS
1 Seaquest A3C 1769.12
2 Seaquest DFA3C 2047.74
3 Seaquest A3CP 1326.1
4 SI A3C 603.04
5 SI DFA3C 2220.18
6 SI A3CP 23846.0
7 Alien A3C 1440.82
8 Alien DFA3C 2722.19
9 Alien A3CP 945.3
10 Enduro A3C 0.77
11 Enduro DFA3C 497.29
12 Enduro A3CP -82.5
13 Q*bert A3C 21184.75
14 Q*bert DFA3C 21405.35
15 Q*bert A3CP 21307.5

Table 3.3: Experimental results for A3C architectures. AS denotes the average score in
the final testing epoch. SI is the game of Space Invaders.

work with the published scores in (Mnih et al., 2016b) since they use a very different

evaluation strategy called human starts, which is impossible to replicate exactly in the

absence of human testers. We clearly see that when compared to A3C, DFA3C leads to

improved metrics on all 5 tasks with the improvement on Enduro being as high as 645

times better.

26

Chapter 4

Option Discovery using Spatio-Temporal Clustering

4.1 Abstract

This chapter introduces an automated skill acquisition framework in Reinforcement

Learning which involves identifying a hierarchical description of the given task in terms

of abstract states and extended actions between abstract states. Identifying such struc-

tures present in the task provides ways to simplify and speed up Reinforcement Learn-

ing algorithms. These structures also help to generalize such algorithms over multiple

tasks without relearning policies from scratch. We use ideas from dynamical systems to

find metastable regions in the state space and associate them with abstract states. The

spectral clustering algorithm PCCA+ is used to identify suitable abstractions aligned to

the underlying structure. Skills are defined in terms of the sequence of actions that lead

to transitions between such abstract states. The connectivity information from PCCA+

is used to generate these skills or options. These skills are independent of the learning

task and can be efficiently reused across a variety of tasks defined over the same model.

This approach works well even without the exact model of the environment by using

sample trajectories to construct an approximate estimate. We present our approach to

scaling the skill acquisition framework to complex tasks with large state spaces for

which we perform state aggregation using the representation learned from an action

conditional video prediction network and use the skill acquisition framework on the

aggregated state space.

4.2 Motivation and Introduction

The core idea of hierarchical Reinforcement Learning is to break down the Reinforce-

ment Learning problem into subtasks through a hierarchy of abstractions. In terms of

Markov Decision Processes (MDP), a well studied framework in Reinforcement Learn-

ing literature (Sutton and Barto, 1998a), one way of looking at the full Reinforcement

Learning problem is to assume that the agent is in one state of the MDP at each time

step. The agent then performs one of several possible primitive actions which along

with the current state decides the next state. However, for large problems, this can lead

to too much granularity: when the agent has to decide on each and every primitive ac-

tion at every granular state, it can often lose sight of the bigger picture (Finney et al.,

2002). If a series of actions can be abstracted out as a single macro action, the agent can

just remember the series of actions that was useful in getting it to a temporally distant

useful state from the initial state. This is typically referred to as a skill and more specif-

ically, as an option in (Sutton et al., 1999b). A good analogy is a human planning his

movement from current location A to destination B. We identify intermediate destina-

tions Ci to lead us from A to B when planning from A rather than worrying about the

exact mechanisms of immediate movement atA which are abstracted over. Options are

a convenient way to formalise this abstraction. In keeping with the general philosophy

of Reinforcement Learning, we want to build agents that can automatically discover

options without prior knowledge, purely by exploring the environment. Thus, our ap-

proach falls into the broad category of automated discovery of skills. Such skills which

are learnt in one task could be easily reused in a different task if necessary. Options

also make exploration more efficient by providing the decision maker with a high-level

behavior to look ahead to the completion of the corresponding subroutine. This helps

to come up with scalable approaches in Reinforcement Learning.

Our focus in this chapter is to present our framework on automated discovery of

skills. Automated discovery of skills or options has been an active area of research and

several approaches have been proposed for the same. The current methods could be

broadly classified into sample trajectory based and partition based methods. Some of

them are:

• Identifying bottlenecks in the state space, where the state space is partitioned into
sets. The transitions between two sets of states that are rare introduce bottleneck
states at the respective points of such transitions. Policies to reach such bottleneck
states are cached as options - for example, (McGovern and Barto, 2001).

• Using the structure present in a factored state representation to identify sequences
of actions that cause what are otherwise infrequent changes in the state variables:
these sequences are cached away as options (Hengst, 2004).

• Obtaining a graphical representation of an agent’s interaction with its environ-
ment and using betweenness centrality measures to identify subtasks (Şimşek
and Barreto, 2009).

28

• Using clustering methods (spectral or otherwise) to separate out different strongly
connected components of the MDP and identifying bottlenecks that connect dif-
ferent clusters (Menache et al., 2002).

There are certain deficiencies with the above methods, even though they have had

varying degrees of success. Bottleneck based approaches do not have a natural way

of identifying the part of the state space where options are applicable without external

knowledge about the problem domain. Spectral methods need some form of regulariza-

tion in order to prevent unequal splits that might lead to arbitrary splitting of the state

space. There have also been attempts to learn skill acquisition in robotics. (Konidaris

et al., 2011) attempt to discover skills for a robot given abstractions of the surroundings

it has to operate with. (Ranchod et al., 2015) try to use inverse Reinforcement Learning

for skill discovery with reward segmentation. However, the above two works assume

the knowledge of the abstractions of the world and demonstrations of expert trajectories

respectively while our goal is to acquire skills and discover the abstractions without any

prior knowledge.

We adopt a framework that detects well-connected or meta-stable regions of the

state space from an MDP model estimated from trajectories. We use PCCA+, a spectral

clustering algorithm from conformal dynamics (Weber et al.) that not only partitions

the MDP into different regions but also returns the connectivity information between the

regions, unlike other clustering approaches used earlier for option discovery. This helps

us to build an abstraction of the MDP, where we call the regions identified by PCCA+

as abstract states. Then we define options that take an agent from one abstract state to

another connected abstract state. Since PCCA+ also returns the membership function

between states and abstract states, we propose a very efficient way of constructing op-

tion policies directly from the membership function, which is to perform hill climbing

at the granular states on the membership function of the destination abstract state, to

yield the option policy without further learning. Since the abstract states are aligned

with the underlying structure of the MDP the same option policies could be efficiently

reused across multiple tasks in the same MDP. Once we have these options, we could

use standard Reinforcement Learning algorithms to learn a policy over these subtasks

to solve a given task. Specifically, we use SMDP Q-Learning (Sutton et al., 1999b) and

Intra Option Q-Learning (Sutton et al.) for our experiments. Note that our approach

works well even without the exact model of the full MDP, by being able to work on

29

approximate estimate of the model using sample trajectories, as demonstrated by the

experiments.

Finally, we present our attempt to extend our pipeline to large state spaces where

spectral methods on the original state space are infeasible. We therefore propose to

operate the PCCA+ pipeline on an aggregated state space. The original state space

is aggregated through clustering on the representation of the state space learned using

deep neural networks. Specifically, we try to learn a representation that captures spatio-

temporal structure of the state-space, for which we borrow the framework of (Oh et al.,

2015a) which uses a Convolutional-LSTM Action Conditional Video Prediction Net-

work to predict the next frames of the game conditioned on the trajectory so far. We

use the Arcade Learning Environment (ALE) platform (Bellemare et al., 2012) which

provides a simulator for Atari 2600 games. We present our results on the Atari 2600

game Seaquest which is a relatively complex game and requires abstract moves like

filling up oxygen, evading bullets, shooting enemies.

We summarize the components of this chapter below:

• A novel automated skill acquisition pipeline to operate without prior knowledge
or abstractions of the world. The pipeline uses a spectral clustering algorithm
from conformal dynamics - PCCA+, which builds an abstraction of the MDP by
segmenting the MDP into different regions called abstract states and also pro-
vides the membership function between the MDP states and abstract states.

• An elegant way of composing options (sequence of actions to move from one
abstract state to another) from the membership function so obtained by doing hill
climbing on the membership function of the target abstract state at the granular
states belonging to the current abstract state.

• Extension of the pipeline to complex tasks with large state spaces, for which we
propose to run the pipeline on an aggregated state space due to infeasibility to
operate on the original state space of the MDP. To aggregate the state space, we
learn a representation capturing spatio-temporal aspects of the state space using
a deep action-conditional video prediction network.

Our approach can be considered as an attempt to address automated option dis-

covery in RL using spatio-temporal clustering: Spatial because the abstract states are

segmenting the state space into abstractions (clusters); and Temporal since the transition

structure of the MDP is used to discover these abstractions.

30

4.3 Preliminaries

4.3.1 Markov Decision Process

Markov Decision Process (MDP) is a widely used framework on which Reinforcement

Learning algorithms are used to learn control policies. A finite discrete MDP is for-

malised as M = (S,A, P,R) with S with a finite discrete state space S, finite action

space A, a distribution over the next states P (s, a, s′) when an action a is performed at

state s, and a corresponding reward R(s, a, s′) specifying a scalar cost or reward asso-

ciated with that transition. A policy is a sequence of actions involved in performing a

task on the MDP, while value functions are a measure of the expected long term return

in following a policy in the MDP.

4.3.2 Options

The option framework is one of the formalisations used to represent hierarchies in

RL (Sutton et al., 1999b). Formally, an option is a tuple O = (I, µ, β) here:

• I ⊆ S is the initiation set: a set of states from which the action can be activated

• µ : S × A → (0, 1) is a policy function where µ(s, a) represents the preference
value given to action a in state s following option O.

• β : S → (0, 1) is the termination function: When an agent enters a state s while
following option O, the option could be terminated with a probability β(s).

When the agent is in state s where it can start an option, it can choose from all the

options O for which s ∈ I(O) and all primitive actions that can be taken in s. This

choice is dictated by the policy guiding the agent.

4.3.3 SMDP Value Learning

An MDP appended with a set of options is a Semi-Markov Decision Process (SMDP).

In an SMDP, at each time step, the agent selects an option which can be initiated at that

state and follows the corresponding option policy until termination. In SMDP theory,

the effects of an option are modelled using ros and po
ss′

which represent the total return

31

and the probability of terminating at state s′ for an option o initiated at state s.

ros = E{rt + · · ·+ γk−1rt+k−1|st = s, ot = o}

po
ss′

=
∞∑
j=0

γjPr{st+j = s
′ |st = s, ot = o}

Each option is viewed as an opaque, indivisible unit and its structure not utilized. The

update rule of SMDP Q-learning (Sutton et al., 1999b) is given by

Q(s, o)← Q(s, o) + α[r + γkmaxa∈OQ(s, a)−Q(s, o)]

where Q is the action/option value function.

4.3.4 Intra-Option Value Learning

A major drawback of SMDP learning methods is that we need to execute an option

completely upto termination before we begin to learn about its outcome. At any point

of time, we would potentially be learning about the value function of only either an

option standalone or primitive action standalone. This slows down the learning signifi-

cantly because an option is treated as a black-box and structure within the option is not

exploited while learning. The motivation for intra-option value learning methods comes

from being able to bootstrap the structural commonalities among options and primitive

actions for more efficient Reinforcement Learning (Sutton et al., 1998).

In intra-option methods, we allow all options that are consistent with an observed

trajectory to have their values updated, effectively making these methods off-policy

since they learn about one policy (or sub-policy) while actually executing a different

policy (or sub-policy). It can therefore help the agent to learn the values of certain

options without even executing those options.

True to the motivation, Intra-option value learning is much more efficient than

SMDP methods. Let us consider the following example. Let o be an option chosen

at state st at time t which terminates at time t + τ . In SMDP methods, we obtain a

single training example to update Q(st, o) for the τ time steps. However if option o is

Markov, then each of the transitions in the τ time steps are also valid training examples

32

since o was initiated at each of the time steps. These can be used to learn Q(si, o) for

i ∈ [t, t + τ]. Further, if the action taken at some of these time steps is consistent with

any other option o′ , we can update Q-value of these actions as well, based on this tran-

sition. Thus, intra-option value learning methods are able to use behavioral transitions

collected from different policies much more effectively than SMDP methods.

Suppose action at is executed at a state st to produce next state st+1 and reward rt+1.

Let us assume that at was selected in a way consistent with the Markov policy µ of an

option o =< µ, β, I >. The following intra-option Q-learning update rule applies to

every option o consistent with action at:

Q(st, o)← Q(st, o) + α[(rt+1 + γQ(st+1, o))−Q(st, o)]

4.4 Spectral Graph Theory

We wish to identify spatial structures in the environment in order to generate tempo-

ral abstractions which are aligned to the structure of the underlying MDP. It has been

observed that the spectra of a graph, constituted by the eigensystem, provides an em-

bedding of the underlying graph. The eigenvalues are closely related to most major

invariants of the graph and link one extremal property to another.

The Laplacian (L) is an algebraic representation of a graph which allows a natural

link between discrete representations such as graphs and continuous representations

such as manifolds and vector spaces. One of the most important applications of the

Laplacian is spectral clustering used in the graph partitioning problem (Luxburg, 2007).

Thus, it provides an elegant way to detect spatial abstractions in the environment.

The automated option discovery framework proposed in (Kumar et al., 2012) uses

the normalized graph Laplacian L = D−1(D −W) whereW is the adjacency matrix

representation of the underlying MDP graph andD is the valency matrix, i.e., a diagonal

matrix with entries corresponding to the degree of each vertex.

There have been many successful applications of spectral clustering methods for

spatial abstraction in a wide range of domains (Shi and Malik, 2000a; White and Smyth,

2005; Simsek et al., 2005; Xu et al., 2003; Cai et al., 2005). As mentioned above, there

33

are strong connections between the topological properties of a graph and the graph

Laplacian matrix, which spectral clustering methods exploit for graph partitioning.

The framework described in (Kumar et al., 2012) uses a spectral clustering approach

that attempts to exploit the structural properties in the configuration space of the objects

as well as the spectral subspace. This approach draws inspiration from the conformal

dynamics literature (Weber et al., 2004) where a similar analysis is done to detect con-

formal states of a dynamical system and they proposed a spectral clustering algorithm

PCCA+.

The advantages of PCCA+ include:

• Global as well as local information to define spatial abstractions. It exploits the
local structural properties of the underlying data space by using pairwise sim-
ilarity functions, while using spectral methods to encode the global structural
properties.

• A formal notion of macro states as vertices of a simplex in the eigen-subspace
of the Laplacian. The clustering is performed by minimizing deviations from
a simplex structure and hence does not require any arbitrary regularization term.
The clustering procedure does not assume anything about the underlying structure
and the mapping to a simplex is inherently built in the properties of the Laplacian.

• Characteristic functions that describe the degree of membership of each state to
a given abstract state. We can interpret the membership functions as the likeli-
hood of a state belonging to a particular abstract state. The algorithm could also
generate crisp partitioning of the states into abstract states, as and when required.

• Connectivity information between the abstract states which is seldom required in
dynamical systems. For example one might be interested to know the connectivity
information between abstract states to learn decision policies across such states.

4.4.1 Perron Cluster Analysis (PCCA+)

Given an algebraic representation of the graph representing an MDP, we want to find

suitable abstractions aligned to the underlying structure. A spectral clustering algorithm

can be used to do this. Central to the idea of spectral clustering is the graph Laplacian

which is obtained from the similarity graph. In this approach, the spectra of the Lapla-

cian L (derived from the adjacency matrix S) is constructed and the best transformation

of the spectra is found such that the transformed basis aligns itself with the clusters of

data points in the eigenspace. A projection method described in (Weber et al.) is used

to find the membership of each of the states to a set of k special points lying on the

34

transformed basis, which are identified as vertices of a simplex in the Rk subspace (the

Spectral Gap method is used to estimate the number of clusters k). For the first order

perturbation, the simplex is just a linear transformation around the origin and to find the

simplex vertices, one needs to find the k points which form a convex hull such that the

deviation of all the points from this hull is minimized. This is achieved by finding the

data point which is located farthest from the origin and iteratively identify data points

which are located farthest from the hyperplane fit to the current set of vertices. Refer to

Algorithm 1 for details.

Figure 4.1: Simplex First order and Higher order Perturbation: Shows the visualization
of the first order perturbation assumption to identify the simplex vertices
on data points which have higher order perturbations. The first case shows
data points which satisfy the first order assumption and hence the simplex
fits perfectly without any noise. In the second case, the simplex vertices ob-
tained through the linear transformation are only able to capture the struc-
ture with some noise and these deviations could be understood as the effect
of the higher order perturbations present.

35

(a) PCCA+ vs rest - Room-in-a-room Domain (b) PCCA+ vs rest - Maze Domain

(c) PCCA+ vs NCut - Real Image (d) PCCA+ Membership functions visualization

Figure 4.2: PCCA+ visualizations

Algorithm 1 PCCA+
1: Construct Laplacian L

2: Compute n (number of vertices) eigenvalues of L in descending order

3: Choose first k eigenvalues for which ek−ek+1

1−ek+1
> tc (Spectral Gap Threshold).

4: Compute the eigenvectors for corresponding eigenvalues (e1, e2, · · · , ek) and stack

them as column vectors in eigenvector matrix Y .

5: Let’s denote the rows of Y as Y(1),Y(2), · · · ,Y(N) ∈ Rk.

6: Define π(1) as that index, for which ||Y (π(1))||2 is maximal. Define γ1 =

span{Y (π(1))}.

7: For i = 2, · · · , k: Define πi as that index, for which the distance to

the hyperplane γi−1, i.e., ||Y(πi) − γi−1||2 is maximal. Define γi =

span{Y(π1), · · · ,Y(πi)}. To compute ||Y(πi) − γi−1||2, use ||Y(πi) − γi−1||2 =

||Y(πi)− γTi−1((γi−1γTi−1)−1γi−1)Y(πi)T)||

36

Comparison to other clustering algorithms

We are in particular concerned with dynamical systems where there are no a priori

assumptions on the size and the relative placements of the metastable states. So it be-

comes essential for the clustering algorithm to work in a generalized setting as far as

possible. When different spectral clustering algorithms are tested on different classes of

problems, PCCA+ was found to give better results (Fig 4.2) in capturing the structure

(topology) (Kumar et al., 2012). Normalized Cut (NCut) Algorithms by (Shi and Malik,

2000b),(Ng et al., 2002) and PCCA+ by (Weber et al.) have deep similarities, but the

main difference behind the usage of PCCA+ is the change of point of view for identifi-

cation of metastable states from crisp clustering to that of relaxed almost invariant sets.

Both the methods are similar till the identification of the eigenvector matrix as points in

n dimensional subspace but after this, (Shi and Malik, 2000b),(Ng et al., 2002) use stan-

dard clustering algorithms like K-Means while PCCA+ uses a mapping to the simplex

structure. Since the bottlenecks occur rather rarely, it is shown by (Weber et al.) that

in general for such cases, soft methods outperform crisp clustering. Although the other

spectral algorithms result in good clusters for the simple room-in-a-room domain, they

give poor results on more topologically complex spaces and need some form of regu-

larization to work well in such settings (Fig 4.2). PCCA+ has an intrinsic regularization

mechanism by which it is able to cluster complex spaces neatly.

Spatial Abstraction using PCCA+

Although the spectra of the Laplacian preserves the structural properties of the graph,

clustering data in the eigenspace of the Laplacian does not guarantee this. For example,

k-means clustering (Ng et al., 2001) in the eigenspace of the Laplacian will only work

if the clusters lie in disjoint convex sets of the underlying eigenspace. Partitioning the

data into clusters by projecting onto the largest k-eigenvectors (Meila and Shi, 2001)

does not preserve the topological properties of the data in the eigenspace of the Lapla-

cian. For the task of spatial abstraction, the proposed framework requires a clustering

approach that exploits the structural properties in the configurational space of objects as

well as the spectral sub-space, quite unlike earlier methods. They take inspiration from

the work of (Weber et al., 2004) which proposes a spectral clustering algorithm PCCA+

based on the principles of Perron Cluster Analysis of the transition structure and ex-

37

tends their analysis to detect spatial abstractions in autonomous controlled dynamical

systems. In this approach, the spectra of the Laplacian L (derived from the adjacency

matrix S) is constructed and the best transformation of the spectra is found such that

the transformed basis aligns itself with the clusters of data points in the eigenspace. A

projection method described in (Weber et al., 2004) is used to find the membership of

each of the states to a set of special points lying on the transformed basis, which are

identified as vertices of a simplex in the Rk subspace (the Spectral Gap method is used

to estimate the number of clusters k). For the first order perturbation, the simplex is just

a linear transformation around the origin and to find the simplex vertices, one needs

to find the k points which form a convex hull such that the deviation of all the points

from this hull is minimized. This is achieved by finding the data point which is farthest

located from the origin and iteratively identify data points which are located farthest

from the hyperplane fit to the current set of vertices.

The PCCA+ algorithm returns a membership function, χ, defining the degree of

membership of each state s to an abstract state Sj . The connectivity information be-

tween two abstract states (Si, Sj) is given by (i, j)th entry of χTLχ while the diago-

nal entries provide relative connectivity information within a cluster. The connectivity

information is utilized to learn decision policies across abstract states. This frame-

work also contains an intrinsic mechanism to return information about the goodness of

clustering of states from the presence of sharp peaks (indicates good clustering) in the

eigenvalue distribution.

The transition structure of the MDP could be arbitrarily complex and hence, to

identify abstractions that are well aligned to the state space transition structure, we use

PCCA+ to abstract the MDP in place of other clustering algorithms. This is inpired by

(Weber et al.) who use PCCA+ to detect the conformal states of a dynamical system

by operating on the transition structure. On providing the graph (transition structure) of

the MDP to PCCA+, we derive the abstraction of the MDP where the simplex vertices

identified by PCCA+ are the abstract states. We also get a membership function from

PCCA+, χ, which defines the degree of membership of each state s to an abstract state

S. We describe how this information can used to compose options in the next section.

38

4.5 Composing Options from PCCA+

Given the membership functions and the abstractions discovered by PCCA+, there is a

very elegant way to compose option policies to move from one abstract state to another.

The transition to another abstract state is done simply by following the positive gradient

(hill climbing) of the membership value to the destination abstract state (Kumar et al.,

2012). This navigates the agent through states whose membership functions to the target

abstract state progressively increases.

Specifically, consider that we have N states s1, s2, s3, · · · , sN and k abstract states

S1, S2, · · · , Sk. Typically, N � k. Let χij denote the membership of state si to the

abstract state Sj . si is said to belong to abstract state Sa, where a = argmaxjχij . Thus,

any option between abstract states Si and Sj will start at a state in Si and end at a state

in Sj . The connectivity information between two abstract states (Si, Sj) is given by the

(i, j)th entry of χTLχ where L is the Laplacian corresponding to the MDP transition

matrix. The diagonal entries provide the relative connectivity information within a

cluster. An option is generated for every pair of connected abstract states. For an option

from Si to Sj:

• The initiation set I represents states that belong to S.

• The option policy µ(s, a) that takes the agent from abstract state Si to Sj is a
stochastic gradient function given by:

µ(s, a) = α(s)
[
max

(
(χSjSi

(s, a)− χSj
(s)), 0

)]
where

χSjSi
(s, a) =

[(∑
s′

P (s, a, s′)χSj
(s′)

)
− χSj

(s)

]
∀ s ∈ Si

α(s) is a normalisation constant to ensure µ represents a probability function in
the range [0, 1].

• Finally, termination condition β is a function which assigns the probability of
termination of the current option at a state s. It could also be viewed as the prob-
ability of a state s being decision epoch given the current option being executed.
For an option taking the agent from abstract state Si to Sj , we define β as follows:

β(s) = min
(

log(χSi
(s))

log(χSj
(s))

, 1

)
∀ s ∈ Si

We offer an intuitive explanation for the choice of the option policy µ and option

termination condition β. χSjSi
(s, a) is the expected increase in the membership function

39

to abstract state Sj on taking action a at state s, while χSj
(s) is the membership function

to Sj at current state s. The probability of an action a involved in taking the agent from

state s ∈ Si to an abstract state Sj must proportional to the expected increase in the

membership function to the abstract state Sj if positive and 0 if the expected increase

is negative. The choice for the termination condition also has a simple heuristic: When

transitioning from Si to Sj , the agent would encounter bottleneck state(s) s∗ which

would approximately satisfy χSi
(s) = χSj

(s), and hence be suitable for the termination

of the option. Till then, the membership value of Si would be higher than Sj (with the

difference gradually reducing along the option trajectory), and hence the probability to

terminate would be proportional to how much of a bottleneck the current state s is. Even

though we do not look for bottleneck states directly in our approach unlike (McGovern

and Barto, 2001), the termination condition proposed by (Kumar et al., 2012) naturally

captures transitioning through bottleneck states.

4.6 Option Discovery using Spatio-Temporal Cluster-

ing (ODSTC)

The previous section discussed how to discover options given that abstract states are

obtained through the PCCA+ approach operating on the transition structure of the MDP.

However, an online agent has no prior knowledge of the model of the MDP and has to

learn these abstractions from scratch. In this section, I will discuss the ODSTC pipeline,

first for small state spaces as envisioned by (Kumar et al., 2012). We shall first see

how the pipeline works in terms of a pseudocode of the pipeline. This is followed by

some additional aspects that can be injected into this pipeline such as grounding the

abstractions discovered with the reward function of the MDP and results on the 3-room

domain task. Once we understand the efficacy of the pipeline for small problems, we

shall delve into the problems in using it for larger state spaces, how to modify the

pipeline to be usable for larger problems and results for the same.

40

4.6.1 ODSTC for Small State Spaces

Let us look at Algorithm 2 for an online agent to perform Option Discovery using

Spatio-Temporal Clustering (ODSTC) in the case of small state spaces where it is fea-

sible to compute transition matrices over the entire state space by bootstrapping from

trajectories sampled from different policies. We call this as the ODSTC Online Agent

Pipeline - Small.

Let O be the set of options available to the agent after every iteration. Initially, we

assume that the agent starts without prior knowledge. Hence, to begin with, O is empty.

We denote the set of new options discovered at the end of the iteration as o and augment

the agent with these additional options.

Algorithm 2 ODSTC Online Agent Pipeline - Small
1: while Not Converged do

2: Sample trajectories τiki=i using current behavioral policy π.

3: Estimate transition model T (s′|s, a) from sample trajectories τiki=i.

4: Operate PCCA+ on the estimated model T to derive abstract states and member-

ships.

5: Discover options o = oi
N
i=1 from the abstract states and memberships through

hill climbing.

6: Augment the agent with new options: O = O ∪ o.

7: Update value functions Q and behavioral policy π using SMDP Q Learning

8: end while

4.6.2 Model estimation and incorporation of reward structure

For every sampled trajectory, we maintain transition counts φass′ of the number of times

the transition s
a−→ s′, starting from φ0. These transition counts are used to popu-

late the local adjacency matrix D and the transition count model as: Dposterior(s, s
′) =

Dprior(s, s
′) +

∑
a φ

a
ss′ , Uposterior(s, a, s

′) = Uprior(s, a, s
′) + φass′ , after every sampled

trajectory. PCCA+ is used to find suitable spatial abstractions and subtask options

where the transition probabilities in the hill-climbing step are calculated as P (s, a, s′) =
U(s,a,s′∑
s′ U(s,a,s′)

. We then use an SMDP value learning algorithm to find the optimal policy

over the constructed options.

41

The underlying transition structure φass′ encodes only the topological properties of

the state space. There are other kinds of structures in the environments which we would

like an autonomous agent to discover. For example, a monkey climbing a tree to pick

up a fruit abstracts the task as to reach the branch of the tree nearest to the fruit. These

structures are functional in nature, depending on the functional properties of the task.

We use reward counts for each transition to encode the functional properties in the tran-

sition structure. The idea is that the spatio-temporal abstractions should degenerate

in places where there is a spike in the reward distribution, so that our agent interprets

a state of high reward (as goal states typically are) as a different abstract state, and

naturally composes options that would lead it to that state. Let Ra
ss′ be the reward in

performing a transition s a−→ s′. We modify the local adjacency matrixD’s posterior up-

date as: Dposterior = Dprior(s, s
′)+

∑
a φ

a
ss′e
−v|Ra

ss′ | where v is the regularization constant

that balances the relative weight of the underlying reward and transition distribution.

We use an exponential weighting for rewards to ensure that the adjacency function has

a very low value at the spike points where we want to abstraction to degenerate. It also

returns a value of 1 for zero rewards, preserving the original transition structure and

allows easy tuning of relative weights (v).

4.6.3 Matching options

Constructing spatio-temporal abstractions as described above poses a matching problem

for learning policies using SMDP learning techniques. With every sampled trajectory,

the structure of the transition matrix changes which in turn changes the spatial abstrac-

tions identified. In order to define the SMDP update rule, we still need a mechanism to

match the previous options to new ones. This can be done easily by mapping the ver-

tices of the simplex returned by PCCA+. Hence, consider two iterations which returned

the simplex vertices Ỹ1 and Ỹ2 where Ỹ1 and Ỹ2 are matrices whose rows denote the

location of these vertices. The matching criteria κ12 = Ỹ1Ỹ2
−1

is used to assign vertex

i of simplex 1 to vertex j of simplex 2 using the Munkres algorithm (a.k.a Hungarian

Method) where the match weighting between i and j is κ12(i, j).

42

4.6.4 Experiments on 3 Room Domain

Let us consider a simple 3 room domain as shown, borrowed from (Kumar et al., 2012).

Below are a few experimental results from (Kumar et al., 2012) that are illustrative

to elucidate the efficacy of the PCCA+ pipeline for small state spaces. The world is

composed of rooms separated by walls as shown in Figure 4.3a. For the task at hand,

let us assume that the goal of the agent is to start from the tile marked S and reach the

goal tile markedG. The agent can either move a step in the direction towards north, east,

west or south. PCCA+ discovers three abstract states without incorporating the reward

structure, each corresponding to one room in the 3-room world. On incorporation of the

reward structure, there would be 4 abstract states, with the additional one corresponding

to the goal state alone. The doorway could be seen as bottleneck states at which the

membership functions lead to termination conditions of options exiting one abstract

state (current room) and entering another abstract (destination room). The navigation

task could simply be abstracted as exiting the current room by moving to the doorway

and entering the correct room to reach the goal state in it. We visualize the membership

function identified by PCCA+ on the 3-room world in Fig 4.3b without reward structure

incorporation. It is clear that each abstract state can be identified with one of the three

rooms in the world and the MDP transition structure has been neatly segmented by

PCCA+. Fig 4.3c shows the MDP segmentation and the option policies discovered

without and with the reward structure incorporated. For the first case (left), without

the reward structure, there are only 3 abstract states corresponding to each room and

hence the option policies discovered would be navigation from one room to another.

The figure shows stochastic option policies to navigate to room 3 from the other two

rooms. In the second case (right), with the reward (goal) considered in the transition

structure, 4 abstract states are identified, with the new one lonely being the goal state in

the bottom right corner as indicated. The figure shows the (stochastic) option policies in

getting to room 3 from rooms 1 and 2, and in getting from the group of granular states

other than the goal state in room 3 to goal state. We hence clearly see the advantage

of discovering these structural (from transition structure) and functional (from reward

structure) abstractions since the solving the task now is as simple as planning to move

from one abstract state to another instead of trying to learn the optimal policy at every

granular state in the MDP.

43

(a) 3-Room domain (b) Membership Function

(c) Effect of Reward Structure Incorporation

Figure 4.3: 3 Room Domain Visualization

We next look at plots in Figure 4.4 of the membership function and the termination

criterion in 3D. The membership plot in 3D reveals a lot more in terms of understanding

how naturally an option arises by ascending the membership function, or in other words,

hill climbing. For instance, in Figure 4.4a, one can think of moving from abstract state

1 to abstract 2 by climbing on sloped surface of states that are part of the abstract state 1

until the flat surface of abstract state 2 is attained. The gradient between the membership

functions of abstract states 1 and 2 provides a natural way to perform this hill climbing.

The next plot in Figure 4.4 allows us to better understand the termination criterion

pictorially. To recount what the termination criterion is, for an option taking the agent

from abstract state Si to Sj , we defined β as β(s) = min
(

log(χSi
(s))

log(χSj
(s))
, 1
)
∀ s ∈ Si. We

see from the 3D intensity plot that the probability of an option leading from abstract

44

state 1 to 2 gradually increases on hill climbing, getting closer to a probability of 1 as

you approach the bottleneck states separating the two abstract states. This is distinctly

visible by the darker regions marked on the top. The visualization is consistent with the

math in the termination criterion where the membership functions are approximately

the same and log 1 = 0.

(a) Membership Function 3D (b) Termination Condition

Figure 4.4: 3 Room Domain 3D Visualization

4.6.5 Modifying the pipeline for larger state spaces

Seaquest

Consider the task of Seaquest, which is an Atari 2600 game in which the goal of the

RL agent is to retrieve as many divers as possible while destroying enemy submarines

and killer sharks before the oxygen runs out. The reward structure is as follows: At

the beginning of the game, killing any of the enemies is worth 20 points and retrieving

a diver is worth 50 points. Every time the agent reaches the surface with 6 divers, the

reward for killing an enemy is increased by 10 and that of retrieving a diver is increased

by 50. Also, the agent receives an extra life and receives a bonus based on how much

oxygen it has left. On the other hand, if the agent resurfaces with less than 6 divers for

oxygen, it doesn’t receive any bonus. In the extreme scenario of it resurfacing with 0

divers, it loses a life. We use the Arcade Learning Environment simulator (Bellemare

et al., 2013) for running experiments with Seaquest.

We chose Seaquest for experimentation among the Atari 2600 games since it is one

45

of the games for which the Deep Q-network performs inferior to a human expert. The

reason for this is that killing enemies is rewarded immediately while retrieving divers

is rewarded only after 6 of them have been retrieved. This makes it a complex RL task

which requires long-term planning.

Figure 4.5: A visual scene from Seaquest

Problems with the pipeline so far

Figure 4.6 shows the flowchart for the pipeline so far. It pictorially summarizes the

pseudocode for ODSTC for small state spaces. The problems in using this pipeline

for larger state spaces mainly comes from having to estimate transition dynamics of

the MDP. For MDPs with exponential state spaces operating on pixel-level input such

as Atari 2600 games like Seaquest, the transition matrix is over such large dimensions

and incredibly sparse. It is practically infeasible to think of constructing such matrices

owing to memory and sparsity issues. On the other hand, the PCCA+ pipeline is rigid

that you need to feed in a weighted graphical transition structure for the abstractions to

be discovered through spectral clustering.

Secondly, similar to the motivation for using Deep Q Networks, it is infeasible to

perform tabular SMDP learning methods for large state space problems like Seaquest

for the same reasons that transition matrices are infeasible. Storing explicit action and

option values for every state is not a practical approach.

46

Figure 4.6: Option generation pipeline

Modified pipeline with function approximation

To address the problem of estimating the transition dynamics on the original state space,

I propose a simple and reasonably effective solution. Instead of having to estimate the

transition matrix on the original state space, we learn a lower dimensional represen-

tation of the original state space by mapping the original state space through a highly

non linear mapping to a much lower dimensional manifold. The state space can then

by binned by performing simple K-Means clustering on the lower dimensional repre-

sentation. This leads us to a discrete state space of much lower dimensionality than the

original discrete state space of exponential dimensions. The transition matrix can then

be estimated on this lower dimensional aggregated state space for PCCA+ to operate

on. PCCA+ would then discover macro-states corresponding to the aggregated state

space. As long as the aggregation is tied to the underlying spatio-temporal structure

of the MDP in the way the non-linear mapping is done, the discovered macro-states

(from PCCA+ on the aggregated state sapce) can qualify to be the right abstractions for

the original MDP. I will discuss the details in the next section on how the non-linear

mapping is learned using deep neural networks and unsupervised learning. Figure 4.7

summarizes the modified pipeline with a flowchart where I retain the previous compo-

nents in green and indicate the new components added in blue for easier understanding.

As for the second problem of having to perform tabular value learning methods on

large problems, we borrow ideas from DQN (Mnih et al., 2015b) again. We learn the

action and option value functions with function approximation based on deep neural

networks. Specifically, for Seaquest, we adopt a similar deep convolution architecture

as adopted in (Mnih et al., 2015b). The difference from (Mnih et al., 2015b) is that

we learn value functions for options as well. Once again, due to the better efficiency

47

of intra-option value learning methods over SMDP value learning methods, we adopt

Intra-Option Q Learning (Sutton et al.) instead of SMDP Q Learning for driving the

learning in the function approximation setting.

Figure 4.7: Modified Option Generation Pipeline

4.6.6 ODSTC for Large State Spaces

We present the modified pipeline in terms of pseudocode below. We call this modified

pipeline as Option Discovery using Spatio-Temporal Clustering (ODSTC) for Large

State Spaces. Once again, let the set of options the agent has be denoted by the set O

while the new set of options discovered at every iteration o.

48

Algorithm 3 ODSTC Online Agent Pipeline - Large
1: while Not Converged do

2: Sample trajectories using current behavioral policy π.

3: Run the trajectory data points τiki=i through an Action Conditional Video Predic-

tion Network.

4: Use the learned representation to aggregate states into microstates using K-

Means Clustering.

5: Estimate the model T (s′|s, a) on the microstate space from sample trajectories

τi
k
i=i.

6: Operate PCCA+ on the estimated model to derive abstract macrostates and mem-

berships.

7: Discover options from the abstract macrostates and memberships through hill

climbing.

8: Augment agent with new options: O = O ∪ o.

9: Update value functionsQ and behavioral policy π using Intra-Option Q Learning

with DQN

10: end while

Here are two caveats in the above pipeline though:

• It might be too expensive to perform PCCA+ for large scale problems after every
episode simulated by the agent’s current policy and hence we could update the
skills or options from PCCA+ after a fixed number of episodes depending on the
problem complexity.

• Though for small scale problems, the first initial exploration could come from
random policies, this wouldn’t work for large problems like Seaquest, where an
informed exploration with a partially trained Deep Q Network (DQN) is neces-
sary to ensure sufficient portion of the state space is seen for learning a good
enough aggregate space for PCCA+ to operate on.

4.7 Playing video games with options

In this section, we delve into the difficulties faced in complex tasks such as learning to

play video games due to high dimensionality of the state space and (or) complexity of

the task. We ran experiments on the Atari 2600 game, Seaquest to test our proposed

model. Atari games such as Seaquest provide a pixel-space representation to the agent

49

which makes object detection an added task for the agent. We present the model for this

task since it is more general with respect to planning based on perception.

4.7.1 Sampling trajectories

Spatial abstraction using PCCA+ is essentially breaking down the MDP into metastable

states which are densely connected within and have sparse connections to other metastable

states. These densely connected regions have low mixing times and hence particles stay

in same region of state space for long periods of time without external stimulus (an idea

originating from conformal dynamics theory). The important assumption here is that

particles are performing random walks. For hard tasks such as playing video games, we

cannot sample trajectories where the agent is performing random walks since it would

very rarely cross the initial region of the state space due to enemies and obstacles.

Hence, we need guided exploration to help the agent cross enemies and obstacles and

at the same time, not get restricted to visiting particular parts of the state space if the

guiding policy is executed greedily.

We train a Deep Q-network (with primitive actions) as explained in the paper (Mnih

et al., 2015a). The Deep Q-network (DQN) combines the compositional representation

capabilities of convolutional neural networks with the robustness of a Q learning setup,

predicting the action-value Q(s, a) for each primitive action a for a state s. We sample

trajectories from a partially trained DQN (12.5 million frames) with exploration factor

ε annealed from 0.5 to 0.3.

Once options are generated based on the initial set of sampled trajectories (from

a primitive action based DQN), the agent begins executing options which would lead

to unexplored (yet) regions of the state space. Hence, we need to sample trajectories

periodically as the agent trains using options to capture the changes in the structure of

the transition matrix, and hence, improve our option learning.

4.7.2 Representation Learning

Due to infeasibility in applying the PCCA+ framework directly on the exponential state

space, we perform a state space aggregation by using K-Means clustering. However,

50

aggregating directly on the input pixel space (210 × 160 × 3) in Seaquest is infeasi-

ble and no latent concepts (spatial and temporal) are captured in such a space. We are

therefroe interested in the transformation of high-dimensional visual input data which

are RGB pixel images to a lower-dimensional space using a non-linear transformation.

We wanted to capture spatio-temporal information in the latent space representation

more effectively. There are multiple objects in a video game screen with objects being

controlled directly by the agent’s action as well as indirectly (such as enemy sharks en-

tering or leaving the game screen in Seaquest). Thus, there is deep partial observability

which needs to be addressed in the learnt representation. This prompted us to incor-

porate recurrent and convolutional neural networks in order to capture temporal and

spatial information from the sequence of images observed into the state representation.

We adopt the work on action-conditional video modelling problem (Oh et al.,

2015b). In this work, the authors propose and evaluate architectures to generate fu-

ture frames given the sequence of frames observed conditioned on the agent’s action.

Inspired by their work, we closely follow their deep neural network architecture, which

we refer to as TemporalRepLearner that performs the task of an encoder. The archi-

tecture involves an LSTM (Hochreiter and Schmidhuber, 1997) layer after the convolu-

tional layers to capture temporal information in the latent space representation. In order

to capture the effect of the agent’s action on the objects in the game screen, there are

multiplicative (element-wise) interactions between the LSTM’s hidden representation

and the action variable to predict the next frame in the high-level latent representation.

The decoder uses deconvolution layers to reconstruct the image for the next frame using

the high-level encoder representation. Figure 4.8 presents the architecture adopted by

(Oh et al., 2015b).

Figure 4.8: Architecture of TemporalRepLearner

Since the encoding layers involve both convolution layers as well as an RNN, we

refer to it as a recurrent encoding. The input to TemporalRepLearner is a frame of the

51

game for each time-step. There are 4 convolutional layers with rectifier nonlinearity

applied after each, followed by a dense layer consisting of 2048 hidden units. The

LSTM layer with 2048 hidden units is unrolled through last 11 frames. Thus, there

are 2048 factors in the action-conditional transformation. A fully connected layer is

then used to construct a 3D feature map from which the 4 deconvolution layers in the

decoder finally output a pixel space prediction for the next frame.

The recurrent network is trained using frames partitioned into training and test sets

from the trajectories sampled using the trained Deep Q-network. We use the same splits

as (Oh et al., 2015b). The 2048-dimensional hidden state of the LSTM layer is used as

the lower dimensional representation for the state space in Seaquest.

4.7.3 State Aggregation

We observe that in order to model the transition dynamics, we need to perform aggre-

gation of the game states so as to capture the dynamics of an exponential state space in

a matrix. This is equivalent to discretizing the state space.

K-Means algorithm, a well-known clustering algorithm has an average complexity

of O(n ∗ k ∗ d ∗ i) where n is the number of data points, k is the number of cluster

centroids, d is the dimensionality of the space and i is the number of iterations where

we begin with a new random initialization of the cluster centroids. This presents a

scalability problem for the video game setting - the learnt representation has a high

dimensionality (2048) and the number of data points is large owing to the exponential

state space. Also in high dimensional spaces, it is very common that for any two data

points, there exist at least two dimensions along which the points are far apart from each

other. Distance functions that use all the input dimensions are thus not effective and we

need feature selection prior to clustering.

We utilize mini-batch based K-Means to handle the issue of scalability with respect

to number of data points.The main idea proposed in (Sculley, 2010) is to use randomly

sampled batches (of a fixed small batch-size) at each iteration. Each mini-batch updates

the cluster centroids using a convex combination of existing centroids and the mean of

the mini-batch data points. With respect to curse of dimensionality, global feature se-

lection techniques are not apt for discovering clusters that exist in different subspaces.

52

Each dimension could possess information that is relevant to a particular cluster which

makes global pruning of features globally inefficient . In order to capture the correla-

tions among the features while clustering, feature selection must be performed locally.

(Parsons et al., 2004) propose a soft feature selection procedure in which features are

assigned local weights based on correlation among data points in each dimension. This

is used to assign to each cluster a weight vector for the dimensions based on the corre-

lation of points in that cluster represented by them.

4.7.4 Model Learning

Post state-aggregation, sampled trajectories of game play (in terms of aggregated micro-

states) are used to populate a count matrix which keeps track of the number of transi-

tions seen for every (s, a, s′) tuple. That is, if at a particular time step, an agent is at

state s, takes action a and moves to state s′, we increment the element corresponding to

(s, a, s′) in the matrix. Note that the states here are not the original states (at pixel level),

but the aggregated micro-states found after Deep Representation Learning & K-Means

clustering.

We also tried to incorporate the reward structure of the environment into the transi-

tion matrix: the idea is that our spatial abstractions should degenerate in places where

there is a spike in the reward distribution so that our agent interprets a state of high

reward (as goal states typically are) as a different abstract state, and naturally composes

options that lead the agent to that state. The update equations when we see a transition

from state s to state s′ on taking action a and obtaining reward r are given by:

φ(s, a, s′) = φ(s, a, s′) + 1

V (s, a, s′) = V (s, a, s′) + φ(s, a, s′)e−ν|r|

where ν is a regularization parameter

53

Now, with the transition count matrix V , we estimate the following matrices:

D(s, s′) =
∑
a

V (s, a, s′)

T (s, s′) =
D(s, s′)∑
s′ D(s, s′)

P (s, a, s′) =
V (s, a, s′)∑
s′ V (s, a, s′)

The state-to-state transition matrix T is supplied as input to the spectral cluster-

ing algorithm PCCA+ from which options are generated. The probability matrix P is

utilized in defining the option policy.

4.7.5 Intra-option Value Learning

In section, we introduced TemporalRepLearner, which is a deep neural architecture

involving convolutional and recurrent layers in order to encode spatio-temporal history

into the learnt representation. We feed the learnt representation as input to a Multi

Layer Perceptron (MLP) with one fully connected hidden layer and a sigmoid activation

function. The output linear layer has as many units as the sum of number of primitive

actions and options. The representation learner layers are frozen while the MLP is

trained using stochastic gradient descent.

Training this architecture involves adjusting its parameters at each iteration to mini-

mize a cost function. There hasn’t been any work in the past which combines an options

framework with a non-linear function approximator. It is to be noted that there are added

features to the non-linear function approximator such as an experience replay memory

and a separate target Q-network to break correlations among successive updates, thus

reducing variance in the updates and avoiding unnecessary feedback loops.

The cost function of the above network is designed such that the parameters θi at it-

eration i are adjusted according to the Intra-option Q learning rule (Sutton et al., 1998).

For a single transition sampled from the experience replay, we may need to apply mul-

tiple updates to the network. In order to do this in minimal time, we designed a dictio-

nary in order to map a (micro-state, primitive action) pair to the set of options which

are consistent with executing the primitive action at that micro-state. This dictionary is

54

populated once before training begins.

When the agent is at play, primitive actions are used at the emulator level even when

an option is being executed. Thus, when transitions are dumped into the experience

replay, they consist of only primitive actions. When a transition (s, a, s
′
, r) is sampled

from the experience replay, we compute the micro-state assignment of s - say cs, lookup

the dictionary using the key (cs, a) to find the set of all options O which are consistent

with this primitive action. For the nodes corresponding to each option o ∈ O in the

output layer along with the node for the primitive action a, we apply the Intra-option

Q-value update.

Figure 4.9: Comparing performance of SeaDQNPrimitive, SeaDQNOptions and
SeaRNNOptions

Figure 4.9 plots the average score per episode against training epochs. SeaDQN-

Primitive corresponds to a DQN trained on Seaquest with only primitive actions while

SeaDQNOptions corresponds to a modified DQN which is trained with the output layer

having both primitive actions and the options generated by our approach. SeaRNNOp-

tions corresponds to the model described in section above where a latent representation

55

is learnt using TemporalRepLearner. Intra-option Q-learning is used in both SeaD-

QNOptions and SeaRNNOptions. Figure 4.10 helps to appreciate the semantics of an

example option generated in Seaquest. We plot the agent’s membership in the abstract

state corresponding to the particular option for a random episode’s trajectory. The skill

learnt here corresponds to resurfacing to replenish oxygen in Seaquest.

Figure 4.10: Visualization of an option in terms of membership value in corresponding
abstract state in Seaquest which corresponds to resurfacing to replenish
oxygen

56

Chapter 5

Attend, Adapt and Transfer: Attentive Deep

Architecture for Adaptive Transfer from Multiple

Source Tasks

5.1 Abstract

Transferring knowledge from prior source tasks in solving a new target task can be

useful in several learning applications. The application of transfer poses two serious

challenges which have not been adequately addressed. First, the agent should be able

to avoid negative transfer, which happens when the transfer hampers or slows down the

learning instead of helping it. Second, the agent should be able to selectively transfer,

which is the ability to select and transfer from different and multiple source tasks for

different parts of the state space of the target task. We propose A2T (Attend, Adapt and

Transfer), an attentive deep architecture which adapts and transfers from these source

tasks. Our model is generic enough to effect transfer of either policies or value func-

tions. Empirical evaluations on different learning algorithms show that A2T is an effec-

tive architecture for transfer by being able to avoid negative transfer while transferring

selectively from multiple source tasks in the same domain.

5.2 Introduction

One of the goals of Artificial Intelligence (AI) is to build autonomous agents that can

learn and adapt to new environments. Reinforcement Learning (RL) is a key technique

for achieving such adaptability. The goal of RL algorithms is to learn an optimal policy

for choosing actions that maximize some notion of long term performance. Transfer-

ring knowledge gained from tasks solved earlier to solve a new target task can help,

either in terms of speeding up the learning process or in terms of achieving a better

solution, among other performance measures. When applied to RL, transfer could be

accomplished in many ways (see (Taylor and Stone, 2009, 2011) for a very good survey

of the field). One could use the value function from the source task as an initial estimate

in the target task to cut down exploration [(Sorg and Singh, 2009)]. Alternatively one

could use policies from the source task(s) in the target task. This can take one of two

forms - (i) the derived policies can be used as initial exploratory trajectories [(Atkeson

and Schaal, 1997; Niekum et al., 2013)] in the target task and (ii) the derived policy

could be used to define macro-actions which may then be used by the agent in solving

the target task [(Mannor et al., 2004; Brunskill and Li, 2014)].

While transfer in RL has been much explored, there are two crucial issues that

have not been adequately addressed in the literature. The first is negative transfer,

which occurs when the transfer results in a performance that is worse when compared

to learning from scratch in the target task. This severely limits the applicability of many

transfer techniques only to cases for which some measure of relatedness between source

and target tasks can be guaranteed beforehand. This brings us to the second problem

with transfer, which is the issue of identifying an appropriate source task from which

to transfer. In some scenarios, different source tasks might be relevant and useful for

different parts of the state space of the target task. As a real world analogy, consider

multiple players (experts) who are good at different aspects of a game (say, tennis).

For example, Player 1 is good at playing backhand shots while Player 2 is good at

playing forehand shots. Consider the case of a new player (agent) who wants to learn

tennis by selectively learning from these two experts. We handle such a situation in our

architecture by allowing the agent to learn how to pick and use solutions from multiple

and different source tasks while solving a target task, selectively applicable for different

parts of the state space. We call this selective transfer. Our agent can transfer knowledge

from Player 1 when required to play backhand shots and Player 2 for playing forehand

shots. Further, let us consider consider the situation that both Player 1 and Player 2 are

bad at playing drop shots. Apart from the source tasks, we maintain a base network

that learns from scratch on the target task. The agent can pick and use the solution

of the base network when solving the target task at the parts of the state space where

transferring from the source tasks is negative. Such a situation could arise when the

source task solutions are irrelevant for solving the target task over a specific portion

of the state space, or when the transferring from the source tasks is negative over a

specific portion of the state space (for example, transferring the bad drop shot abilities

58

of Players 1 and 2). This situation also entails the first problem of avoiding negative

transfer. Our framework allows an agent to avoid transferring from both Players 1 and

2 while learning to play drop shots, and rather acquire the drop shot skill by learning

to use the base network. The architecture is trained such that the base network uses

not just the experience obtained through the usage of its solutions in the target task, but

the overall experience acquired using the combined knowledge of the source tasks and

itself. This enables the base network solutions to get closer to the behavior of the overall

architecture (which uses the source task solutions as well). This makes it easier for the

base network to assist the architecture to fine tune the useful source task solutions to

suit the target task perfectly over time.

The key contribution in the architecture is a deep attention network, that decides

which solutions to attend to, for a given input state. The network learns solutions as

a function of current state thereby aiding the agent in adopting different solutions for

different parts of the state space in the target task.

To this end, we propose A2T: Attend, Adapt and Transfer, an Attentive Deep Archi-

tecture for Adaptive Transfer, that avoids negative transfer while performing selective

transfer from multiple source tasks in the same domain. In addition to the tennis exam-

ple, A2T is a fairly generic framework that can be used to selectively transfer different

skills available from different experts as appropriate to the situation. For instance, a

household robot can appropriately use skills from different experts for different house-

hold chores. This would require the skill to transfer manipulation skills across objects,

tasks and robotic actuators. With a well developed attention mechanism, the most ap-

propriate and helpful combination of object-skill-controller can be identified for aiding

the learning on a related new task. Further, A2T is generic enough to effect transfer of

either action policies or action-value functions, as the case may be. We also adapt differ-

ent algorithms in Reinforcement Learning as appropriate for the different settings and

empirically demonstrate that the A2T is effective for transfer learning for each setting.

5.3 Related Work

As mentioned earlier, transfer learning approaches could deal with transferring policies

or value functions. For example, (Banerjee and Stone, 2007) describe a method for

59

transferring value functions by constructing a Game tree. Similarly, (Sorg and Singh,

2009) use the value function from a source task as the initial estimate of the value

function in the target task.

Another method to achieve transfer is to reuse policies derived in the source task(s)

in the target task. Probabilistic Policy Reuse as discussed in (Fernández and Veloso,

2006) maintains a library of policies and selects a policy based on a similarity metric,

or a random policy, or a max-policy from the knowledge obtained. This is different

from the proposed approach in that the proposed approach can transfer policies at the

granularity of individual states which is not possible in policy-reuse rendering it un-

able to learn customized policy at that granularity.(Atkeson and Schaal, 1997; Niekum

et al., 2013) evaluated the idea of having the transferred policy from the source tasks

as explorative policies instead of having a random exploration policy. This provides

better exploration behavior provided the tasks are similar. (Talvitie and Singh, 2007)

try to find the promising policy from a set of candidate policies that are generated using

different action mapping to a single solved task. In contrast, we make use of one or

more source tasks to selectively transfer policies at the granularity of state. Apart from

policy transfer and value transfer as discussed above, (Ferguson and Mahadevan, 2006)

discuss representation transfer using Proto Value Functions.

The idea of negative and selective transfer have been discussed earlier in the litera-

ture. For example, (Lazaric and Restelli, 2011) address the issue of negative transfer in

transferring samples for a related task in a multi-task setting. (Konidaris et al., 2012)

discuss the idea of exploiting shared common features across related tasks. They learn

a shaping function that can be used in later tasks.

The two recent works that are very relevant to the proposed architecture are dis-

cussed in (Parisotto et al., 2015) and (Rusu et al., 2016). (Parisotto et al., 2015) explore

transfer learning in RL across Atari games by trying to learn a multi-task network over

the source tasks available and directly fine-tune the learned multi-task network on the

target task. However, fine-tuning as a transfer paradigm cannot address the issue of neg-

ative transfer which they do observe in many of their experiments. (Rusu et al., 2016)

try to address the negative transfer issue by proposing a sequential learning mechanism

where the filters of the network being learned for an ongoing task are dependent through

lateral connections on the lower level filters of the networks learned already for the pre-

60

vious tasks. The idea is to ensure that dependencies that characterize similarity across

tasks could be learned through these lateral connections. Even though they do observe

better transfer results than direct fine-tuning, they are still not able to avoid negative

transfer in some of their experiments.

5.4 Proposed Architecture

Let there be N source tasks and let K1, K2, . . . KN be the solutions of these source

tasks 1, . . . N respectively. Let KT be the solution that we learn in the target task T .

Source tasks refer to tasks that we have already learnt to perform and target task refers

to the task that we are interested in learning now. These solutions could be for example

policies or state-action values. Here the source tasks should be in the same domain as

the target task, having the same state and action spaces. We propose a setting where KT

is learned as a function ofK1, . . . , KN , KB, whereKB is the solution of a base network

which starts learning from scratch while acting on the target task. In this work, we use

a convex combination of the solutions to obtain KT .

KT (s) = wN+1,sKB(s) +
N∑
i=1

wi,sKi(s) (5.1)

N+1∑
i=1

wi,s = 1, wi,s ∈ [0, 1] (5.2)

wi,s is the weight given to the ith solution at state s.

The agent uses KT to act in the target task. Figure 5.1a shows the proposed archi-

tecture. While the source task solutions K1, . . . , KN remain fixed, the base network

solutions are learnt and hence KB can change over time. There is a central network

which learns the weights (wi,s, i ∈ 1, 2, . . . , N + 1), given the input state s. We refer to

this network as the attention network. The [0, 1] weights determine the attention each

solution gets allowing the agent to selectively accept or reject the different solutions,

depending on the input state. We adopt a soft-attention mechanism whereby more than

one weight can be non-zero [(Bahdanau et al., 2014)] as opposed to a hard-attention

mechanism [(Mnih et al., 2014)] where we are forced to have only one non-zero weight.

61

wi,s =
exp (ei,s)

N+1∑
j=1

exp (ej,s)

, i ∈ {1, 2, . . . , N + 1} (5.3)

(e1,s, e2,s, . . . , eN+1,s) = f(s; θa) (5.4)

Here, f(s; θa) is a deep neural network (attention network), which could consist of

convolution layers and fully connected layers depending on the representation of input.

It is parametrised by θa and takes as input a state s and outputs a vector of length N+1,

which gives the attention scores for the N + 1 solutions at state s. Eq.(5.3) normalises

this score to get the weights that follow Eq.(5.2).

If the ith source task solution is useful at state s, then wi,s is set to a high value by

the attention network. Working at the granularity of states allows the attention network

to attend to different source tasks, for different parts of the state space of the target

task, thus giving it the ability to perform selective transfer. For parts of the state space

in the target task, where the source task solutions cause negative transfer or where the

source task solutions are not relevant, the attention network learns to give high weight

to the base network solution (which can be learnt and improved), thus avoiding negative

transfer.

Depending on the feedback obtained from the environment upon following KT , the

attention network’s parameters θa are updated to improve performance.

As mentioned earlier, the source task solutions,K1, . . . , KN remain fixed. Updating

these source task’s parameters would cause a significant amount of unlearning in the

source tasks solutions and result in a weaker transfer, which we observed empirically.

This also enables the use of source task solutions, as long as we have the outputs alone,

irrespective of how and where they come from.

Even though the agent follows KT , we update the parameters of the base network

that produces KB, as if the action taken by the agent was based only on KB. Due to

this special way of updating KB, apart from the experience got through the unique and

individual contribution of KB to KT in parts of the state space where the source task

solutions are not relevant, KB also uses the valuable experience got by using KT which

uses the solutions of the source tasks as well.

62

(a) (b)

Figure 5.1: (a) A2T architecture. The doted arrows represent the path of back propaga-
tion. (b) Actor-Critic using A2T.

This also means that, if there is a source task whose solution Kj is useful for the

target task in some parts of its state space, then KB tries to replicate Kj in those parts

of the state space. In practise, the source task solutions though useful, might need to

be modified to suit perfectly for the target task. The base network takes care of these

modifications required to make the useful source task solutions perfect for the target

task. The special way of training the base network assists the architecture in achieving

this faster. Note that the agent could follow/use Kj through KT even when KB does

not attain its replication in the corresponding parts of the state space. This allows for

a good performance of the agent in earlier stages training itself, when a useful source

task is available and identified.

Since the attention is soft, our model has the flexibility to combine multiple solu-

tions. The use of deep neural networks allow the model to work even for large, complex

RL problems. The deep attention network, allows the agent to learn complex selection

functions, without worrying about representation issues a priori. To summarise, for a

given state, A2T learns to attend to specific solutions and adapts this attention over

different states, hence attaining useful transfer. A2T is general and can be used for

transfer of solutions such as policy and value.

5.4.1 Policy Transfer

The solutions that we transfer here are the source task policies, taking advantage of

which, we learn a policy for the target task. Thus, we have K1, . . . , KN , KB, KT ←

π1, . . . πN , πB, πT . Here π represents a stochastic policy, a probability distribution over

63

all the actions. The agent acts in the target task, by sampling actions from the probability

distribution πT . The target task policy πT is got as described in Eq.(5.1) and Eq.(5.2).

The attention network that produces the weights for the different solutions, is trained by

the feedback got after taking action following πT . The base network that produces πB

is trained as if the sampled action came from πB (though it originally came from πT),

the implications of which were discussed in the previous section. When the attention

network’s weight for the policy πB is high, the mixture policy πT is dominated by πB,

and the base network learning is nearly on-policy. In the other cases, πB undergoes off-

policy learning. But if look closely, even in the latter case, since πB moves towards πT ,

it tries to be nearly on-policy all the time. Empirically, we observe that πB converges.

This architecture for policy transfer can be used alongside any algorithm that has an

explicit representation of the policy. Here we describe two instantiations of A2T for

policy transfer, one for direct policy search using REINFORCE algorithm and another

in the Actor-Critic setup.

Policy Transfer in REINFORCE Algorithms using A2T:

REINFORCE algorithms [(Williams, 1992)] can be used for direct policy search by

making weight adjustments in a direction that lies along the gradient of the expected

reinforcement. The full architecture is same as the one shown in Fig.5.1a with K ← π.

We do direct policy search, and the parameters are updated using REINFORCE. Let

the attention network be parametrized by θa and the base network which outputs πB be

parametrized by θb. The updates are given by:

θa ← θa + αθa(r − b)
∂
∑M

t=1 log(πT (st, at))

∂θa
(5.5)

θb ← θb + αθb(r − b)
∂
∑M

t=1 log(πB(st, at))

∂θb
(5.6)

where αθa , αθb are non-negative factors, r is the return obtained in the episode, b is some

baseline and M is the length of the episode. at is the action sampled by the agent at

state st following πT . Note that while πT (st, at) is used in the update of the attention

network, πB(st, at) is used in the update of the base network.

64

Policy Transfer in Actor-Critic using A2T:

Actor-Critic methods [(Konda and Tsitsiklis, 2000)] are Temporal Difference (TD)

methods that have two separate components, viz., an actor and a critic. The actor

proposes a policy whereas the critic estimates the value function to critique the ac-

tor’s policy. The updates to the actor happens through TD-error which is the one step

estimation error that helps in reinforcing an agent’s behaviour.

We use A2T for the actor part of the Actor-Critic. The architecture is shown in

Fig.5.1b. The actor, A2T is aware of all the previous learnt tasks and tries to use those

solution policies for its benefit. The critic evaluates the action selection from πT on the

basis of the performance on the target task. With the same notations as REINFORCE

for st, at, θa, θb, αθa , αθb , πB, πT ; let action at dictated by πT lead the agent to next state

st+1 with a reward of rt+1 and let V (st) represent the value of state st and γ the discount

factor. Then, the update equations for the actor are as below:

δt = rt+1 + γV (st+1)− V (st) (5.7)

θa ← θa + αθaδt

∂ log πT (st,at)
∂θa∣∣∣∂ log πT (st,at)
∂θa

∣∣∣ (5.8)

θb ← θb + αθbδt

∂ log πB(st,at)
∂θb∣∣∣∂ log πB(st,at)
∂θb

∣∣∣ (5.9)

Here, δt is TD error. The state-value function V of the critic is learnt using TD learning.

5.4.2 Value Transfer

In this case, the solutions being transferred are the source tasks’ action-value functions,

which we will call asQ functions. Thus,K1, . . . , KN , KB, KT ← Q1, . . . , QN , QB, QT .

LetA represent the discrete action space for the tasks andQi(s) = {Q(s, aj) ∀ aj ∈ A}.

The agent acts by using QT in the target task, which is got as described in Eq.(5.1) and

Eq.(5.2). The attention network and the base network of A2T are updated as described

in the architecture.

65

Value Transfer in Q learning using A2T:

The state-action value Q function is used to guide the agent to selecting the optimal

action a at a state s, where Q(s, a) is a measure of the long-term return obtained by

taking action a at state s. One way to learn optimal policies for an agent is to estimate

the optimal Q(s, a) for the task. Q-learning [(Watkins and Dayan, 1992)] is an off-

policy Temporal Difference (TD) learning algorithm that does so. The Q-values are

updated iteratively through the Bellman optimality equation [(Puterman, 1994)] with

the rewards obtained from the task as below:

Q(s, a)← E[r(s, a, s′) + γmaxa′Q(s′, a′)]

In high dimensional state spaces, it is infeasible to update Q-value for all possible

state-action pairs. One way to address this issue is by approximating Q(s, a) through

a parametrized function approximator Q(s, a; θ),thereby generalizing over states and

actions by operating on higher level features [(Sutton and Barto, 1998a)]. The DQN

[(Mnih et al., 2015b)] approximates the Q-value function with a deep neural network to

be able to predict Q(s, a) over all actions a, for all states s.

The loss function used for learning a Deep Q Network is as below:

L(θ) = Es,a,r,s′ [
(
yDQN −Q(s, a; θ)

)2
],

with

yDQN =
(
r + γmaxa′Q(s′, a′, θ−)

)
Here, L represents the expected TD error corresponding to current parameter estimate

θ. θ− represents the parameters of a separate target network, while θ represents the

parameters of the online network. The usage of a target network is to improve the

stability of the learning updates. The gradient descent step is shown below:

∇θL(θ) = Es,a,r,s′ [(yDQN −Q(s, a; θ))∇θQ(s, a)]

To avoid correlated updates from learning on the same transitions that the current net-

work simulates, an experience replay [(Lin, 1993)] D (of fixed maximum capacity) is

66

used, where the experiences are pooled in a FIFO fashion.

We use DQN to learn our experts Qi, i ∈ 1, 2 . . . N on the source tasks. Q-learning

is used to ensure QT (s) is driven to a good estimate of Q functions for the target task.

Taking advantage of the off-policy nature of Q-learning, bothQB andQT can be learned

from the experiences gathered by an ε-greedy behavioral policy based on QT . Let the

attention network that outputs w be parametrised by θa and the base network outputting

QB be parametrised by θb. Let θa− and θb− represent the parameters of the respective

target networks. Note that the usage of target here is to signify the parameters (θ−a , θ
−
b)

used to calculate the target value in the Q-learning update and is different from its usage

in the context of the target task. The updates equations are:

yQT = (r + γmaxa′QT (s
′, a′; θa

−, θb
−)) (5.10)

LQT (θa, θb) = Es,a,r,s′ [(yQT −QT (s, a; θa, θb))
2] (5.11)

LQB(θb) = Es,a,r,s′ [(yQT −QB(s, a; θb))
2] (5.12)

∇θaL
QT = E[(yQT −QT (s, a))∇θaQT (s, a)] (5.13)

∇θbL
QB = E[(yQT −QB(s, a))∇θbQR(s, a)] (5.14)

θa and θb are updated with the above gradients using RMSProp. Note that the Q-learning

updates for both the attention network (Eq.(5.11)) and the base network (Eq.(5.12))

use the target value generated by QT . We use target networks for both QB and QT to

stabilize the updates and reduce the non-stationarity as in DQN training. The parameters

of the target networks are periodically updated to that of the online networks.

5.5 Experiments and Discussion

We evaluate the performance of our architecture A2T on policy transfer using two sim-

ulated worlds, viz., chain world and puddle world as described below. The main goal

of these experiments is to test the consistency of results with the algorithm motivation.

Chain world: Figure 5.2a shows the chain world where the goal of the agent is to go

from one point in the chain (starting state) to another point (goal state) in the least num-

ber of steps. At each state the agent can choose to either move one position to the left

67

(a) Chain World (b) Puddle World 1 (c) Puddle World 2

Figure 5.2: Different worlds for policy transfer experiments

or to the right. After reaching the goal state the agent gets a reward that is inversely

proportional to the number of steps taken to reach the goal.

Puddle worlds: Figures 5.2b and 5.2c show the discrete version of the standard

puddle world that is widely used in Reinforcement Learning literature. In this world, the

goal of the agent is to go from a specified start position to the goal position, maximising

its return. At each state the agent can choose one of these four actions: move one

position to the north, south, east or west.With 0.9 probability the agent moves in the

chosen direction and with 0.1 probability it moves in a random direction irrespective

of its choice of action. On reaching the goal state, the agent gets a reward of +10.

On reaching other parts of the grid the agent gets different penalties as mentioned in

the legend of the figures. . We evaluate the performance of our architecture on value

transfer using the Arcade Learning Environment (ALE) platform [(Bellemare et al.,

2012)]. Atari 2600: ALE provides a simulator for Atari 2600 games. This is one of the

most commonly used benchmark tasks for Deep Reinforcement Learning algorithms

[(Mnih et al., 2015b), (Mnih et al., 2016a), (Parisotto et al., 2015), (Rusu et al., 2016)].

We perform our adaptive transfer learning experiments on the Atari 2600 game Pong.

5.5.1 Ability to do Selective Transfer

In this section, we consider the case when multiple partially favorable source tasks are

available such that each of them can assist the learning process for different parts of the

state space of the target task. The objective here is to first show the effectiveness of the

attention network in learning to focus only on the source task relevant to the state the

agent encounters while trying to complete the target task and then evaluating the full

architecture with an additional randomly initialised base network.

68

(a) The weights given by the attention network. Se-
lective transfer in REINFORCE

(b) Selective transfer in Actor-Critic

Figure 5.3: Results of the selective policy transfer experiments

This is illustrated for the Policy Transfer setting using the chain world shown in (Fig.

5.2a). Consider that the target task LT is to start inA orB with uniform probability and

reach C in the least number of steps. Now, consider that two learned source tasks, viz.,

L1 and L2, are available. L1 is the source task where the agent has learned to reach the

left end (A) starting from the right end (B). In contrast, L2 is the source task where the

agent has learned to reach the right end (B) starting from the left end (A). Intuitively, it

is clear that the target task should benefit from the policies learnt for tasks L1 and L2.

We learn to solve the task LT using REINFORCE given the policies learned for L1 and

L2. Figure 5.3a (i) shows the weights given by the attention network to the two source

task policies for different parts of the state space at the end of learning. We observe that

the attention network has learned to ignore L1, and L2 for the left, and right half of the

state space of the target task, respectively. Next, we add base network and evaluate the

full architecture on this task. Figure 5.3a (ii) shows the weights given by the attention

network to the different source policies for different parts of the state space at the end

of learning. We observe that the attention network has learned to ignore L1, and L2

for the left, and right half of the state space of the target task, respectively. As the base

network replicates πT over time, it has a high weight throughout the state space of the

target task.

We also evaluate our architecture in a relatively more complex puddle world shown

in Figure 5.2c. In this case, L1 is the task of moving from S1 to G1, and L2 is the

task of moving from S2 to G1. In the target task LT , the agent has to learn to move

to G1 starting from either S1 or S2 chosen with uniform probability. We learn the

69

Figure 5.4: Visualisation of the attention weights in the Selective Transfer with Atten-
tion Network experiment: Green and Blue bars signify the attention prob-
abilities for Expert-1 (L1) and Expert-2 (L2) respectively. We see that in
the first two snapshots, the ball is in the lower quadrant and as expected,
the attention is high on Expert-1, while in the third and fourth snapshots,
as the ball bounces back into the upper quadrant, the attention increases on
Expert-2.

task LT using Actor-Critic method, where the following are available (i) learned policy

for L1 (ii) learned policy for L2 and (iii) a randomly initialized policy network (the

base network). Figure 5.3b shows the performance results. We observe that actor-critic

using A2T is able to use the policies learned for L1, and L2 and performs better than a

network learning from scratch without any knowledge of source tasks.

We do a similar evaluation of the attention network, followed by our full architecture

for value transfer as well. We create partially useful source tasks through a modification

of the Atari 2600 game Pong. We take inspiration from a real world scenario in the sport

Tennis, where one could imagine two different right-handed (or left) players with the

first being an expert player on the forehand but weak on the backhand, while the second

is an expert player on the backhand but weak on the forehand. For someone who is

learning to play tennis with the same style (right/left) as the experts, it is easy to follow

the forehand expert player whenever he receives a ball on the forehand and follow the

backhand expert whenever he receives a ball on the backhand.

We try to simulate this scenario in Pong. The trick is to blur the part of the screen

where we want to force the agent to be weak at returning the ball. The blurring we

use is to just black out all pixels in the specific region required. To make sure the

blurring doesn’t contrast with the background, we modify Pong to be played with a

black background (pixel value 0) instead of the existing gray (pixel value 87). We

construct two partially helpful source task experts L1 and L2. L1 is constructed by

training a DQN on Pong with the upper quadrant (the agent’s side) blurred, while L2 is

constructed by training a DQN with the lower quadrant (the agent’s side) blurred. This

70

essentially results in the ball being invisible when it is in the upper quadrant for L1 and

lower quadrant for L2. We therefore expect L1 to be useful in guiding to return balls on

the lower quadrant, and L2 for the upper quadrant. The goal of the attention network is

to learn suitable filters and parameters so that it will focus on the correct source task for

a specific situation in the game. The source task experts L1 and L2 scored an average

of 9.2 and 8 respectively on Pong game play with black background. With an attention

network to suitably weigh the value functions of L1 and L2, an average performance

of 17.2 was recorded just after a single epoch (250,000 frames) of training. (The score

in Pong is in the range of [−21, 21]). This clearly shows that the attention mechanism

has learned to take advantage of the experts adaptively. Fig. 5.4 shows a visualisation

of the attention weights for the same.

Figure 5.5: Selective Value Transfer.

We then evaluate our full architecture

(A2T) in this setting, i.e with an addition

of DQN learning from scratch (base net-

work) to the above setting. The architec-

ture can take advantage of the knowledge of

the source task experts selectively early on

during the training while using the exper-

tise of the base network wherever required,

to perform well on the target task. Figure

5.5 summarizes the results, where it is clear

that learning with both the partially useful experts is better than learning with only one

of them which in turn is better than learning from scratch without any additional knowl-

edge.

5.5.2 Ability to Avoid Negative Transfer and Ability to Transfer

from Favorable Task

We first consider the case when only one learned source task is available such that its

solutionK1 (policy or value) can hamper the learning process of the new target task. We

refer to such a source task as an unfavorable source task. In such a scenario, the attention

network shown in Figure 5.1a should learn to assign a very low weight (ignore) to K1

. We also consider a modification of this setting by adding another source task whose

71

Figure 5.6: Avoiding negative transfer and transferring policy from a favorable task.

solution K2 is favorable to the target task. In such a scenario, the attention network

should learn to assign high weight (attend) to K2 while ignoring K1.

We now define an experiment using the puddle world from Figure 5.2b for pol-

icy transfer. The target task in our experiment is to maximize the return in reaching

the goal state G1 starting from any one of the states S1, S2, S3, S4. We artificially

construct an unfavorable source task by first learning to solve the above task and then

negating the weights of the topmost layer of the actor network. We then add a favorable

task to the above setting. We artificially construct a favorable source task simply by

learning to solve the target task and using the learned actor network. Figure 5.6 shows

the results. The target task for the value transfer experiment is to reach expert level

performance on Pong. We construct two kinds of unfavorable source tasks for this ex-

periment. Inverse-Pong: A DQN on Pong trained with negated reward functions, that

is with R′(s, a) = −R(s, a) where R(s, a) is the reward provided by the ALE emulator

for choosing action a at state s. Freeway: An expert DQN on another Atari 2600 game,

Freeway, which has the same range of optimal value functions and same action space as

Pong. We empirically verified that the Freeway expert DQN leads to negative transfer

when directly initialized and fine-tuned on Pong which makes this a good proxy for a

negative source task expert even though the target task Pong has a different state space.

We artificially construct a favorable source task by learning a DQN to achieve expertise

on the target task (Pong) and use the learned network. Figure 5.7a compares the perfor-

mance of the various scenarios when the unfavorable source task is Inverse-Pong, while

Figure 5.7b offers a similar comparison with the negative expert being Freeway.

From all the above results, we can clearly see that A2T does not get hampered by

the unfavorable source task by learning to ignore the same and performs competitively

72

(a) Avoiding negative transfer(Pong) and transfer-
ring from a favorable task

(b) Avoiding negative transfer(Freeway) and trans-
ferring from a favorable task

Figure 5.7: Avoiding negative transfer and transferring value from a favorable task.
Specific training and architecture details are mentioned in APPENDIX.

with just a randomly initialized learning on the target task without any expert available.

Secondly, in the presence of an additional source task that is favorable, A2T learns to

transfer useful knowledge from the same while ignoring the unfavorable task, thereby

reaching expertise on the target task much faster than the other scenarios.

5.6 Details of the Network Architecture in Value Trans-

fer Experiments

For the source task expert DQNs, we use the same architecture as (Mnih et al., 2015b)

where the input is 84 × 84 × 4 with 32 convolution filters, dimensions 8 × 8, stride

4× 4 followed by 64 convolution filters with dimensions 4× 4 and stride 2× 2, again

followed by 64 convolution filters of size 3×3 and stride 1×1. This is then followed by

a fully connected layer of 512 units and finally by a fully connected output layer with

as many units as the number of actions in Pong (Freeway) which is 3. We use ReLU

nonlinearity in all the hidden layers.

With respect to the A2T framework architecture, we have experimented with two

possible architectures:

• The base and attention networks following the NIPS architecture of (Mnih et al.,
2013) except that the output layer is softmax for the attention network.

• The base and attention networks following the Nature architecture of (Mnih et al.,
2015b) with a softmax output layer for the attention network.

73

Specifically, the NIPS architecture of (Mnih et al., 2013) takes in a batch of 84 ×

84× 4 inputs, followed by 16 convolution filters of dimensions 8× 8 with stride 4× 4,

32 convolution filters with dimensions 4× 4 and stride 2× 2, a fully connected hidden

layer of 256 units, followed by the output layer. For the Selective Transfer with Blurring

experiments described in Section 4.1, we use the second option above. For the other

experiments in Section 4.2 and the additional experiments in Appendix, we use the first

option. The attention network hasN+1 outputs whereN is the number of source tasks.

5.7 Training Details

5.7.1 Training Algorithm

For all our experiments in Value Transfer, we used RMSProp as in (Mnih et al., 2015b)

for updating gradient. For Policy Transfer, since the tasks were simple, stochastic gra-

dient descent was sufficient to provide stable updates. We also use reward clipping,

target networks and experience replay for our value transfer experiments in exactly the

same way (all hyper parameters retained) as (Mnih et al., 2015b). A training epoch

is 250,000 frames and for each training epoch, we evaluate the networks with a test-

ing epoch that lasts 125,000 frames. We report the average score over the completed

episodes for each testing epoch. The average scores obtained this way are averaged

over 2 runs with different random seeds. In the testing epochs, we use ε = 0.05 in the

ε-greedy policy.

5.7.2 Learning Rate

In all our experiments, we trained the architecture using the learning rates, 0.0025 and

0.0005. In general, the lower learning rate provided more stable (less variance) training

curves. While comparing across algorithms, we picked the best performing learning

rate out of the two (0.0025 and 0.0005) for each training curve.

74

5.8 Blurring Experiments on Pong

The experts are trained with blurring (hiding the ball) and black background as illus-

trated in Figure 5.8. Therefore, to compare the learning with that of a random network

without any additional knowledge, we ran the baseline DQN on Pong with a black back-

ground too. Having a black background provides a rich contrast between the white ball

and the black background, thereby making training easier and faster, which is why the

performance curves in that setting are different to the other two settings reported for In-

verse Pong and Freeway Negative transfer experiments where no blacking is done and

Pong is played with a gray background. The blurring mechanism in Pong is illustrated

in the next section.

5.9 Blurring Mechanism in Pong - Details

The figures in Figure 5.8 explain the blurring mechanism for selective transfer experi-

ments on Pong. The background of the screen is made black. LetX (84×84) denote an

array containing the pixels of the screen. The paddle controlled by the agent is the one

on the right. We focus on the two quadrants X1 = X[: 42, 42 :] and X2 = X[42 :, 42 :]

of the Pong screen relevant to the agent controlled paddle. To simulate an expert that

is weak at returning balls in the upper quadrant, the portion of X1 till the horizontal

location of agent-paddle, ie X1[:, : 31] is blacked out, while similarly, for simulating

weakness in the bottom quadrant, we blur the portion of X2 till the agent-paddle’s hor-

izontal location, ie X2[:, : 31] = 0. Figures 5.8a and 5.8b illustrate the scenarios of

blurring the upper quadrant before and after blurring; and similarly do 5.8c and 5.8d

for blurring the lower quadrant. Effectively, blurring this way with a black screen is

equivalent to hiding the ball (white pixel) in the appropriate quadrant where weakness

is to be simulated. Hence, Figures 5.8b and 5.8d are the mechanisms used while train-

ing a DQN on Pong to hide the ball at the respective quadrants, so to create the partially

useful experts which are analogous to forehand-backhand experts in Tennis. X[: a, : b]

indicates the subarray ofX with all rows upto row index a and all columns upto column

index b.

75

(a) Ball in upper

quadrant

(b) Blurring the upper

quadrant

(c) Ball in lower

quadrant

(d) Blurring the

lower quadrant

Figure 5.8: Figures supplementing the explanation in the above section

5.10 Blurring experiments on Breakout

Similar to our Blurring experiment on Pong, we additionally ran another experiment on

the Atari 2600 game, Breakout, to validate the efficiency of our attention mechanism.

We consider a setup with two experts L1 and L2 along with our attention network. The

experts L1 and L2 were trained by blurring the lower left and right quadrants of the

breakout screen respectively. We don’t have to make the background black like in the

case of Pong because the background is already black in Breakout and direct blurring is

sufficient to hiding the ball in the respective regions without any contrasts introduced.

We blur only the lower part so as to make it easy for the agent to at least anticipate the

ball based on the movement at the top. We empirically observed that blurring the top

half (as well) makes it hard to learn any meaningful partially useful experts L1 and L2.

The goal of this experiment is to show that the attention network can learn suitable

filters so as to dynamically adapt and learn to select the expert appropriate to the situa-

tion (game screen) in the task. The expert L1 which was blurred on the left bottom half

is bound to weak at returning balls on that region while L2 is expected to be weak on

the right. This is in the same vein as the forehand-backhand example in Tennis and its

synthetic simulation for Pong by blurring the upper and lower quadrants. During game

play, the attention mechanism is expected to ignore L2 when the ball is on the bottom

right half (while focusing on L1) and similarly ignore L2 (while focusing on L1) when

the ball is on the left bottom half. We learn experts L1 and L2 which score 42.2 and 39.8

respectively. Using the attention mechanism to select the correct expert, we were able

to achieve a score of 94.5 after training for 5 epochs. Each training epoch corresponds

to 250, 000 decision steps, while the scores are averaged over completed episodes run

76

(a) Ball in lower left quad-
rant

(b) Blurring the lower left
quadrant

(c) Ball in lower right
quadrant

(d) Blurring the lower
right quadrant

Figure 5.9

for 125, 000 decision steps. This shows that the attention mechanism learns to select the

suitable expert. Though the performance is limited by the weaknesses of the respective

experts, our goal is to show that the attention paradigm is able to take advantage of both

experts appropriately. This is evident from the scores achieved by standalone experts

and the attention mechanism. Additionally, we also present a visualization of the atten-

tion mechanism weights assigned to the experts L1 and L2 during game play in Section

5.12. The weights assigned are in agreement with what we expect in terms of selective

attention. The blurring mechanism is visually illustrated in the next section.

5.11 Blurring Mechanism in Breakout - Details

The figures in Figure 5.9 explain the blurring mechanism used for selective transfer

experiments on Breakout. The background the screen is already black. Let X (84× 84)

denote an array containing the pixels of the screen. The paddle controlled by the agent

is the one on the right. We focus on the two quadrants X1 = X[31 : 81, 4 : 42] and

X2 = X[31 : 81, 42 : 80]. We perform blurring in each case by ensuring X1 = 0

and X2 = 0 for all pixels within them for training L1 and L2 respectively. Effectively,

this is equivalent to hiding the ball in the appropriate quadrants. Blurring X1 simulates

weakness in the lower left quadrant, while blurringX2 simulates weakness in the lower

right quadrant. We don’t blur all the way down upto the last row to ensure the paddle

controlled by the agent is visible on the screen. We also don’t black the rectangular

border with a width of 4 pixels surrounding the screen. Figures 5.9a and 5.9b illustrate

the scenarios of blurring the lower left quadrant before and after blurring; and similarly

do 5.9c and 5.9d for blurring the lower right quadrant.

77

5.12 Blurring Attention Visualization on Breakout

Figure 5.10: Visualisation of the attention weights in the Selective Transfer with Atten-
tion for Breakout: Green and Blue bars signify the attention probabilities
for Expert-1 (L1) and Expert-2 (L2) respectively on a scale of [0, 1]. We
see that in the first two snapshots, the ball is in the lower right quadrant and
as expected, the attention is high on Expert-1, while in the third and fourth
snapshots, the ball is in the lower right quadrant and hence the attention is
high on Expert-2.

5.13 Evolution of Attention Weights Visualization

We present the evolution of attention weights for the experiment described earlier where

we focus on the efficacy of the A2T framework in providing an agent the ability to avoid

negative transfer and transfer from a favorable source task. Figure 5.11 depicts the evo-

lution of the attention weights (normalised in the range of [0, 1]) during the training of

the A2T framework. The corresponding experiment is the case where the target task

is to solve Pong, while there are two source task experts, one being a perfect Pong

playing trained DQN (to serve as positive expert), and the other being the Inverse-Pong

DQN trained with negated reward functions (to serve as negative expert). Additionally,

there’s also the base network that learns from scratch using the experience gathered by

the attentively combined behavioral policy from the expert networks, the base network

and itself. We train the framework for 30 epochs, and the plot illustrates the atten-

tion weights every second epoch. We clearly see that there is no weird co-adaptation

that happens in the training, and the attention on the negative expert is uniformly low

throughout. Initially, the framework needs to collect some level of experience to figure

out that the positive expert is optimal (or close to optimal). Till then, the attention is

mostly on the base network, which is learning from scratch. The attention then shifts

to the positive expert which in turn provides more rewarding episodes and transition

78

Figure 5.11: Visualization of the attention weights with one positive and one negative
expert

tuples to learn from. Finally, the attention drifts slowly to the base network from the

positive expert again, after which the attention is roughly random in choosing between

the execution of positive expert and the base network. This is because the base network

has acquired sufficient expertise as the positive expert which happens to be optimal for

the target task. This visualization clearly shows that A2T is a powerful framework in

ignoring a negative expert throughout and using a positive expert appropriately to learn

quickly from the experience gathered and acquire sufficient expertise on the target task.

5.14 Additional Experiment with Partial Positive Ex-

pert

In our experiments so far that dealt with the prevention of negative transfer and using

a favorable source task, we consider the positive expert as a perfect (close to optimal)

expert on the same task we treat as the target task. This raises the question of relying

on the presence of a perfect expert as a positive expert. If we have such a situation, the

obvious solution is to execute each of the experts on the target task and vote for them

with probabilities proportional to the average performance of each. The A2T framework

is however generic and not intended to just do source task selection. We illustrate this

79

Figure 5.12: Learning curves with partial positive expert

with an additional baseline experiment, where the positive source task is an imperfect

expert on the target task. In such a case, just having a weighted average voting among

the available source task networks based on their individual average rewards is upper

bounded by the performance of the best available positive expert, which happens to be

an imperfect expert on the target task. Rather, the base network has to acquire new skills

not present in the source task networks. We choose a partially trained network on Pong,

that scores an average of 8 (max: 21). The graph in Figure 5.12 clearly shows that the

A2T framework with a partial Pong expert and a negative expert performs better than i)

learning from scratch, ii) A2T with only one negative expert, and performs worse than

A2T with one perfect positive expert and one negative expert. This is expected because

a partial expert cannot provide as much of expert knowledge as a perfect expert, but

still provides some useful knowledge in speeding the process of solving the target task.

An important conclusion from this experiment is that the A2T framework is capable

of discovering new skills not available among any of the experts when such skills are

required for optimally solving the target task. To maintain consistency, we perform the

same number of runs for averaging scores and experimented with both learning rates

and pick the better performing one (0.00025).

80

5.15 Case study of target task performance limited by

data availability

This experiment is a case study on a target task where the performance is limited by

data availability. So far, we focused on experiments where the target task is to solve

Pong (normal or black background) for Value Transfer, and Puddle Worlds for Policy

Transfer. In both these cases, a randomly initialized value (or policy) network learning

without the aid of any expert network is able to solve the target task within a reasonable

number of epochs (or iterations). We want to illustrate a case where solving the target

task in reasonable time is hard and the presence of a favorable source task significantly

impacts the speed of learning. To do so, we consider a variant of Pong as our target task.

In this variant, only a small probability ρ of transition tuples (s, a, r, s′) with non-zero

reward r are added to the Replay Memory (and used for learning through random batch

sampling). This way, the performance on the target task is limited by the availability

of rewarding (positive or negative) transitions in the replay memory. This synthetically

makes the target task of Pong a sparse reward problem because the replay memory is

largely filled with transition tuples that have zero reward. We do not use any prioritized

sampling so as to make sure the sparsity has a negative effect on learning to solve the

target task. We use a version of Pong with black background (as used in Section 4.1 for

the Blurring experiments) for faster experimentation. ρ = 0.1 was used for the plots

illustrated above. Figure 5.13a clearly shows the difference between a normal Pong

task without any synthetic sparsity and the new variant we introduce. The learning is

much slower and is clearly limited by data availability even after 20 epochs (20 million

frames) due to reward sparsity. Figure 5.13b describes a comparison between the A2T

setting with one positive expert which expertly solves the target task and one negative

expert, learning from scratch, and direct fine-tuning on a negative expert. We clearly

see the effect of having the positive expert in one of the source tasks speeding up the

learning process significantly when compared to learning from scratch, and also see

that fine-tuning on top of a negative expert severely limits learning even after 20 epochs

of training. We also see that the A2T framework is powerful to work in sparse reward

settings and avoids negative transfer even in such cases, while also clearly learning to

benefit from the presence of a target task expert among the source task networks. Im-

portantly, this experiment demonstrates that transfer learning has a significant effect on

81

tasks which may be hard (infeasible to solve within a reasonable training time) without

any expert available. Further, A2T is also beneficial for such (sparse reward) situations

when accessing the weights of an expert network is not possible, and only outputs of the

expert (policy or value-function) can be used. Such synthetic sparse variants of existing

tasks is a good way to explore future directions in the intersection of Inverse Reinforce-

ment Learning and Reward-Based Learning, with A2T providing a viable framework

for off-policy and on-policy learning.

(a) Comparison of Sparse Pong to Normal Pong (b) A2T with a positive and negative expert

Figure 5.13

82

Chapter 6

Conclusions and Future Work

In this chapter, I summarize the contents of each chapter and touch upon possible av-

enues of future research in each of them.

6.1 Dynamic Action Repetition for Deep Reinforcement

Learning

In this chapter, we introduced a novel paradigm to strengthen existing Deep Reinforce-

ment Learning agents by providing them the ability to decide the time scale of executing

an action in addition to deciding the specific action to execute. This scheme enables AI

agents to dynamically decide how long a chosen action in the current state is to be re-

peated. The ability to decide dynamically, the extent of the repetition of an action can

be seen as a skill in the direction of looking ahead (planning). Our scheme allows the

agent to exert quick reflexes when required and to continue performing the same action

as long as the chosen macro-action leads the agent to an advantageous (valuable) next

state. Through this paradigm, we present an elegant way to introduce temporal structure

in discrete-action space policies with the extent of repetition of the chosen action being

decided based on the current state. We show empirically that this setup leads to signif-

icant improvement in performance, regardless of the underlying Deep Reinforcement

Learning algorithm used, and regardless of the nature of the algorithm (off-policy or

on-policy), with results on five relatively harder Atari 2600 domain games: Seaquest,

Space Invaders, Alien, Enduro and Q*Bert. The improvement in performance has been

achieved without much tuning of the DQN (Mnih et al., 2015a) network parameters.

In the case of Augmented A3C, no tuning of hyperparameters was performed. The dy-

namic time scale mechanism can be incorporated into any existing Deep Reinforcement

Learning methods (both value and policy based) and an exhaustive analysis on its utility

for different methods is an interesting direction for future work

Our work naturally leads to a parametrized policy setup, where each action has an

associated parameter: its Action Repetition Rate (ARR). An Actor Critic setup simi-

lar to (Mnih et al., 2016b) to learn such structured policies with multiple time scales

for both discrete and continuous action spaces is a compelling future direction. The

structure in the policy naturally introduces temporal abstractions through macro-actions

composed of the same action being repeated, with different lengths. (Sharma et al.,

2017) provide a thorough empirical analysis of this setup on several Atari games and

a few continuous control tasks. Another direction to deal with action space explosion

when considering more time scales is to investigate the use of action embeddings for

value-based methods. In our setup, we do not consider the ability to stop executing a

macro-action that the agent has committed to. However, this is a necessary skill in the

event of unexpected changes in the environment while executing a chosen macro-action.

Thus, stop and start actions for exiting and committing to plans can be augmented with

the dynamic time scale setup for more robust planning.

6.2 Option Discovery using Spatio-Temporal Cluster-

ing

In this chapter, we presented another paradigm to incorporate structure in policy learn-

ing for Deep Reinforcement Learning agents through abstractions derived from metasta-

bility. This was an extension of (Kumar et al., 2012) to be scalable for larger state

spaces. Scaling approaches based on spectral connectivity like PCCA+ or other graph

based approaches that rely on knowing the structure of the graph in entirety to operate,

is not an easy problem. Our approach is heuristic and exploits the expressiveness in

the representations uncovered by deep neural networks driven by self-supervised learn-

ing like video prediction models. As future work, we wish to investigate the options

this pipeline discovers on more tasks which require planning such as continuous con-

trol with sparse rewards and hierarchies and more visual planning tasks. One negative

about the experiments is that we relied on demonstrations from a partially trained expert

on the task to learn our abstractions and options. Thus, this is not a perfect autonomous

way of doing hierarchical Reinforcement Learning. However, innovative forms of self-

supervised learning to provide reasonable base policies or representations to start with

84

can help avoid the dependence on an expert. A more interesting and deeper question is

to make this framework end-to-end and differentiable instead of having the representa-

tion learning and option discovery parts of the pipeline decoupled as is now. This is a

hard problem since it is not very clear how to make clustering approaches end-to-end in

machine learning. Exploring other ideas in hierarchical Reinforcement Learning with

function approximation maybe more viable in that case.

6.3 Attend, Adapt and Transfer

In this chapter we presented a very general deep neural network architecture, A2T for

transfer learning that avoids negative transfer while enabling selective transfer from

multiple source tasks in the same domain. We show simple ways of using A2T for

policy transfer and value transfer. We empirically evaluate its performance with differ-

ent algorithms, using simulated worlds and games, and show that it indeed achieves its

stated goals. Apart from transferring task solutions, A2T can also be used for transfer-

ring other useful knowledge such as the model.

While in this work we focused on transfer between tasks that share the same state

and action spaces and are in the same domain, the use of deep networks opens up the

possibility of going beyond this setting. For example, a deep neural network can be

used to learn common representations (Parisotto et al., 2015) for multiple tasks thereby

enabling transfer between related tasks that could possibly have different state-action

spaces. A hierarchical attention over the lower level filters across source task networks

while learning the filters for the target task network is another natural extension to trans-

fer across tasks with different state-action spaces. We would also like to explore this

setting in avoiding negative transfer in continuous control tasks since negative transfer

has practical importance in Robotics.

The nature of tasks considered in our experiments is very naturally connected to Hi-

erarchical Reinforcement Learning and Continual Learning. For instance, the blurring

experiments inspired from Tennis based on experts for specific skills like Forehand and

Backhand could be considered as learning sub-goals (program modules) like Forehand

and Backhand, and learning to solve a more complex and broader task like Tennis by

invoking relevant sub-goals (program modules). This could be very useful to build a

85

household robot for general navigation and manipulation, by invoking specific skills

such as manipulation of different objects, navigating across different source-destination

points, etc. The A2T framework will be a powerful tool in using Continual Learning for

worlds where a wide variety of sub-goals are present and re-used. Additionally, we be-

lieve that this framework is an important tool to build upon and apply for source-domain

adaptation, where we could selectively decide to pick information of the source domain

(model) in addition to using the solutions of the source tasks while learning to solve

the target task. This way, model based approaches could take advantage of the model

information from the source tasks in addition to the source task solutions (policies or

value functions). Over all, A2T is a novel way to approach transfer learning that opens

up many new avenues of research in this area.

86

Bibliography

1. Atkeson, C. G. and S. Schaal, Robot learning from demonstration. In In Proceedings
of International Conference on Machine Learning, volume 97. 1997.

2. Bahdanau, D., K. Cho, and Y. Bengio (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

3. Banerjee, B. and P. Stone, General game learning using knowledge transfer. In In The
20th International Joint Conference on Artificial Intelligence. 2007.

4. Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2012). The arcade
learning environment: An evaluation platform for general agents. arXiv preprint
arXiv:1207.4708.

5. Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelli-
gence Research, 47, 253–279.

6. Braylan, A., M. Hollenbeck, E. Meyerson, and R. Miikkulainen (2015). Frame skip
is a powerful parameter for learning to play atari. AAAI workshop.

7. Brunskill, E. and L. Li, Pac-inspired option discovery in lifelong reinforcement learn-
ing. In Proceedings of the 31st International Conference on Machine Learning (ICML-
14). 2014.

8. Cai, D., X. He, and J. Han (2005). Document clustering using locality preserving
indexing. IEEE Transactions on Knowledge and Data Engineering, 17(12), 1624–1637.

9. Ferguson, K. and S. Mahadevan (2006). Proto-transfer learning in markov decision
processes using spectral methods. Computer Science Department Faculty Publication
Series, 151.

10. Fernández, F. and M. Veloso, Probabilistic policy reuse in a reinforcement learning
agent. In Proceedings of the fifth international joint conference on Autonomous agents
and multiagent systems. ACM, 2006.

11. Finney, S., N. H. Gardiol, L. P. Kaelbling, and T. Oates, The thing that we tried didn’t
work very well: deictic representation in reinforcement learning. In Proceedings of
the Eighteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc., 2002.

12. Gilbert, D. T. and T. D. Wilson (2007). Prospection: Experiencing the future. Science,
317(5843), 1351–1354.

13. Gomez, F. and R. Miikkulainen (1997). Incremental evolution of complex general
behavior. Adaptive Behavior, 5(3-4), 317–342.

14. Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning.

87

15. Hausknecht, M., P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and
P. Stone, Half field offense: An environment for multiagent learning and ad hoc team-
work. In AAMAS Adaptive Learning Agents (ALA) Workshop. 2016.

16. Hausknecht, M. and P. Stone (2016). Deep reinforcement learning in parametrized
action space. 4th International Conference on Learning Representations.

17. Hengst, B., Model approximation for hexq hierarchical reinforcement learning. In
European Conference on Machine Learning. Springer, 2004.

18. Hingston, P. (2010). A new design for a turing test for bots. IEEE Conference on
Computational Intelligence and Games (CIG).

19. Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural compu-
tation, 9(8), 1735–1780.

20. Konda, V. and J. Tsitsiklis, Actor-critic algorithms. In SIAM Journal on Control and
Optimization. MIT Press, 2000.

21. Konda, V. R. and J. N. Tsitsiklis (2003). On actor-critic algorithms. SIAM journal on
Control and Optimization, 42(4), 1143–1166.

22. Konidaris, G., S. Kuindersma, R. A. Grupen, and A. G. Barto, Autonomous skill
acquisition on a mobile manipulator. 2011.

23. Konidaris, G., I. Scheidwasser, and A. G. Barto (2012). Transfer in reinforcement
learning via shared features. The Journal of Machine Learning Research, 13(1), 1333–
1371.

24. Kumar, P., V. Mathew, and B. Ravindran, Abstraction in reinforcement learning in
terms of metastability. In European Workshop on Reinforcement Learning (EWRL).
2012.

25. Lake, B. M., T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman (2016). Building
machines that learn and think like people. arXiv preprint arXiv:1604.00289.

26. Lazaric, A. and M. Restelli, Transfer from multiple mdps. In Advances in Neural
Information Processing Systems. 2011.

27. LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. Nature, 521(7553),
436–444.

28. Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

29. Lin, L.-J. (1993). Reinforcement learning for robots using neural networks. Technical
report, DTIC Document.

30. Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Comput-
ing, 17(4), 395–416. ISSN 1573-1375. URL http://dx.doi.org/10.1007/
s11222-007-9033-z.

31. Mannor, S., I. Menache, A. Hoze, and U. Klein, Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on
Machine learning. ACM, 2004.

88

http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z

32. McGovern, A. and A. G. Barto (2001). Automatic discovery of subgoals in reinforce-
ment learning using diverse density.

33. Meila, M. and J. Shi, A random walks view of spectral segmentation. 2001.

34. Menache, I., S. Mannor, and N. Shimkin, Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In European Conference on Machine Learning. Springer, 2002.

35. Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu (2016a). Asynchronous methods for deep reinforcement learning.
arXiv preprint arXiv:1602.01783.

36. Mnih, V., A. P. enech Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Sil-
ver, and K. Kavukcuoglu (2016b). Asynchronous methods for deep reinforcement
learning. arXiv preprint arXiv:1602.01783.

37. Mnih, V., N. Heess, A. Graves, et al., Recurrent models of visual attention. In Ad-
vances in Neural Information Processing Systems. 2014.

38. Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

39. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Has-
sabis (2015a). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533. URL http://dx.doi.org/10.1038/nature14236.

40. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015b). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529–533.

41. Ng, A. Y., M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algo-
rithm. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS. MIT
Press, 2001.

42. Ng, A. Y. et al. (2002). On spectral clustering: Analysis and an algorithm.

43. Niekum, S., S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski, Incremental se-
mantically grounded learning from demonstration. In Robotics: Science and Systems,
volume 9. 2013.

44. Oh, J., X. Guo, H. Lee, R. L. Lewis, and S. Singh, Action-conditional video prediction
using deep networks in atari games. In Advances in Neural Information Processing
Systems. 2015a.

45. Oh, J., X. Guo, H. Lee, R. L. Lewis, and S. Singh, Action-Conditional Video Predic-
tion using Deep Networks in Atari Games. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, R. Garnett, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 28. Curran Associates, Inc., 2015b, 2845–2853.

46. Ortega, J., N. Shaker, J. Togelius, and G. N. Yannakakis (2013). Imitating human
playing styles in Super Mario Bros. Entertainment Computing, Elsevier, 4, 93–104.

89

http://dx.doi.org/10.1038/nature14236

47. Parisotto, E., J. Ba, and R. Salakhutdinov (2015). Actor-mimic: Deep multitask and
transfer reinforcement learning. CoRR, abs/1511.06342.

48. Parsons, L., E. Haque, and H. Liu (2004). Subspace clustering for high dimensional
data: a review. ACM SIGKDD Explorations Newsletter, 6(1), 90–105.

49. Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic
programming.

50. Ranchod, P., B. Rosman, and G. Konidaris, Nonparametric bayesian reward segmen-
tation for skill discovery using inverse reinforcement learning. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015.

51. Rusu, A. A., N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell (2016). Progressive neural networks.
CoRR, abs/1606.04671.

52. Sculley, D., Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web, WWW ’10. ACM, New York, NY, USA, 2010.
ISBN 978-1-60558-799-8. URL http://doi.acm.org/10.1145/1772690.
1772862.

53. Sharma, S., A. S. Lakshminarayanan, and B. Ravindran (2017). Learning to re-
peat: Fine grained action repetition for deep reinforcement learning. arXiv preprint
arXiv:1702.06054.

54. Shi, J. and J. Malik (2000a). Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8), 888–905. URL http://dx.doi.org/10.
1109/34.868688.

55. Shi, J. and J. Malik (2000b). Normalized cuts and image segmentation. IEEE Trans-
actions on pattern analysis and machine intelligence, 22(8), 888–905.

56. Şimşek, Ö. and A. S. Barreto, Skill characterization based on betweenness. In Ad-
vances in neural information processing systems. 2009.

57. Simsek, Ö., A. P. Wolfe, and A. G. Barto, Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005.
2005. URL http://doi.acm.org/10.1145/1102351.1102454.

58. Sorg, J. and S. Singh, Transfer via soft homomorphisms. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 2.
International Foundation for Autonomous Agents and Multiagent Systems, 2009.

59. Sutton, R. S. and A. G. Barto, Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1998a, 1st edition. ISBN 0262193981.

60. Sutton, R. S. and A. G. Barto (1998b). Introduction to reinforcement learning. MIT
Press.

61. Sutton, R. S., D. A. McAllester, S. P. Singh, Y. Mansour, et al., Policy gradient
methods for reinforcement learning with function approximation. In Conference on
Neural Information Processing Systems, volume 99. 1999a.

90

http://doi.acm.org/10.1145/1772690.1772862
http://doi.acm.org/10.1145/1772690.1772862
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1109/34.868688
http://doi.acm.org/10.1145/1102351.1102454

62. Sutton, R. S., D. Precup, and S. Singh (1999b). Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1), 181–211.

63. Sutton, R. S., D. Precup, and S. P. Singh, Intra-option learning about temporally ab-
stract actions.

64. Sutton, R. S., D. Precup, and S. P. Singh, Intra-option learning about temporally ab-
stract actions. In ICML ’98: Proceedings of the Fifteenth International Conference
on Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1998. ISBN 1558605568. URL http://portal.acm.org/citation.cfm?
id=657453.

65. Talvitie, E. and S. Singh, An experts algorithm for transfer learning. In Proceedings
of the 20th international joint conference on Artifical intelligence. Morgan Kaufmann
Publishers Inc., 2007.

66. Taylor, M. E. and P. Stone (2009). Transfer learning for reinforcement learning do-
mains: A survey. The Journal of Machine Learning Research, 10, 1633–1685.

67. Taylor, M. E. and P. Stone (2011). An introduction to intertask transfer for reinforce-
ment learning. AI Magazine, 32(1), 15.

68. Thomaschke, R. and G. Dreisbach (2013). Temporal predictability facilitates action,
not perception. Psychological science, 24(7), 1335–1340.

69. Togelius, J., S. Karakovskiy, and R. Baumgarten, The 2009 mario ai competition. In
IEEE Congress on Evolutionary Computation. IEEE, 2010.

70. Vafadost, M. (2013). Temporal abstraction in monte carlo tree search. Master’s thesis,
Department of Computer Science, University of Alberta.

71. Van Hoorn, N., J. Togelius, D. Wierstra, and J. Schmidhuber, Robust player imita-
tion using multiobjective evolution. In 2009 IEEE Congress on Evolutionary Compu-
tation. IEEE, 2009.

72. Wang, Z., Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas
(2015). Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.

73. Watkins, C. J. and P. Dayan (1992). Q-learning. Machine learning, 8(3), 279–292.

74. Weber, M., W. Rungsarityotin, and A. Schliep, Perron cluster analysis and its con-
nection to graph partitioning for noisy data.

75. Weber, M., W. Rungsarityotin, and A. Schliep (2004). Perron cluster analysis and its
connection to graph partitioning for noisy data. Technical Report 04-39, ZIB, Takustr.7,
14195 Berlin.

76. White, S. and P. Smyth, A spectral clustering approach to finding communities in
graphs. In In SIAM International Conference on Data Mining. 2005.

77. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4), 229–256.

91

http://portal.acm.org/citation.cfm?id=657453
http://portal.acm.org/citation.cfm?id=657453

78. Xu, W., X. Liu, and Y. Gong, Document clustering based on non-negative matrix fac-
torization. In Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Informaion Retrieval, SIGIR ’03. ACM, New York,
NY, USA, 2003. ISBN 1-58113-646-3. URL http://doi.acm.org/10.1145/
860435.860485.

92

http://doi.acm.org/10.1145/860435.860485
http://doi.acm.org/10.1145/860435.860485

LIST OF PAPERS BASED ON THESIS

1. Aravind S. Lakshminarayanan*, Sahil Sharma*, Balaraman Ravindran, “Dynamic
Action Repetition for Deep Reinforcement Learning", Proceedings of 31st In-
ternational Conference of AAAI, February 2017, https://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14866.

2. Janarthanan Rajendran*, Aravind S. Lakshminarayanan*, Mitesh M. Khapra,
Prasanna P, Balaraman Ravindran, “Attend, Adapt and Transfer: Attentive
Deep Architecture for Adaptive Transfer from multiple sources in the same
domain", Proceedings of the International Conference on Learning Representa-
tions, May 2017, https://openreview.net/pdf?id=Sy6iJDqlx.

3. Aravind S. Lakshminarayanan*, Ramnandan Krishnamurthy*, Peeyush Kumar*,
Balaraman Ravindran, “Hierarchical Reinforcement Learning using Spatio-
Temporal Abstractions and Deep Neural Networks", Proceedings of the Ab-
straction in Reinforcement Learning Workshop at International Conference in
Machine Learning, June 2016, http://media.wix.com/ugd/3195dc_
cad805b14f2e44babc108a147c5f785e.pdf.

* - Equal Contribution

93

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14866
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14866
https://openreview.net/pdf?id=Sy6iJDqlx
http://media.wix.com/ugd/3195dc_cad805b14f2e44babc108a147c5f785e.pdf
http://media.wix.com/ugd/3195dc_cad805b14f2e44babc108a147c5f785e.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	Overview
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning
	Contributions of this thesis

	Reinforcement Learning Preliminaries
	Markov Decision Processes
	Reinforcement Learning Agent

	Dynamic Action Repetition for Deep Reinforcement Learning
	Abstract
	Introduction
	Related work
	Background
	Q-Learning algorithm
	Deep Q Network (DQN)
	Advantage Actor-Critic Algorithm
	Asynchronous Advantage Actor Critic

	Dynamic Action Repetition For Deep Reinforcement Learning
	Experimental Setup and Results
	Augmented DQN
	Augmented A3C

	Option Discovery using Spatio-Temporal Clustering
	Abstract
	Motivation and Introduction
	Preliminaries
	Markov Decision Process
	Options
	SMDP Value Learning
	Intra-Option Value Learning

	Spectral Graph Theory
	Perron Cluster Analysis (PCCA+)

	Composing Options from PCCA+
	Option Discovery using Spatio-Temporal Clustering (ODSTC)
	ODSTC for Small State Spaces
	Model estimation and incorporation of reward structure
	Matching options
	Experiments on 3 Room Domain
	Modifying the pipeline for larger state spaces
	ODSTC for Large State Spaces

	Playing video games with options
	Sampling trajectories
	Representation Learning
	State Aggregation
	Model Learning
	Intra-option Value Learning

	Attend, Adapt and Transfer: Attentive Deep Architecture for Adaptive Transfer from Multiple Source Tasks
	Abstract
	Introduction
	Related Work
	Proposed Architecture
	Policy Transfer
	Value Transfer

	Experiments and Discussion
	Ability to do Selective Transfer
	Ability to Avoid Negative Transfer and Ability to Transfer from Favorable Task

	Details of the Network Architecture in Value Transfer Experiments
	Training Details
	Training Algorithm
	Learning Rate

	Blurring Experiments on Pong
	Blurring Mechanism in Pong - Details
	Blurring experiments on Breakout
	Blurring Mechanism in Breakout - Details
	Blurring Attention Visualization on Breakout
	Evolution of Attention Weights Visualization
	Additional Experiment with Partial Positive Expert
	Case study of target task performance limited by data availability

	Conclusions and Future Work
	Dynamic Action Repetition for Deep Reinforcement Learning
	Option Discovery using Spatio-Temporal Clustering
	Attend, Adapt and Transfer

