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ABSTRACT

KEYWORDS: Fish-eye camera ; 360o panorama; Image super resolution; Rolling

shutter effect; Global shutter cameras; Motion blur; Alternating

Minimisation; Magnetoencephalography; Epilepsy; Coherence

From medical imaging to self-driving cars, the role of post processing in imaging sys-

tems is increasing at an exponential rate. In this thesis, we identify and solve three

different problems from three different domains.

In applications such as self-driving cars, a full 360o view of the world is often re-

quired to make quick decisions in real time. The limited Field-of-View (FOV) of con-

ventional cameras make the imaging system bulky. Also, the processing required to

stitch several images may not be feasible in real time. Wide-angle cameras such as fish-

eye cameras offer a hardware solution to this problem. An imaging system consisting

of two back-to-back fish eye cameras can capture the whole 360o world. However these

images are affected by barrel distortion due to their projection models. To make image

processing efficient, it is required to convert these images to rectilinear domain before

attempting to stitch the panorama. In this thesis, we use geometric projection models to

rectify the distortion induced by fish eye cameras. We propose an algorithm that works

with the knowledge of FOV alone, and camera calibration is not required.

For the second problem, we consider the domain of image super-resolution. The

need for images with better resolution has been rising steady over the past few years

with the abundance of consumer cameras available in the market. However, the maxi-

mum resolution that the camera hardware can support is limited by both space and cost

constraints. Image super-resolution offers an image processing solution to this prob-

lem. Conventional super-resolution algorithms, however work for images captured in

stationary environment and do not take into account the camera motion during expo-

sure. We propose an alternating-minimisation based algorithm that super resolves low

resolution images captured in the presence of camera motion, for CMOS cameras used

in smart phones, where motion blur and rolling shutter effect degrades the quality of the
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image.

For our third problem, we consider Magnetoencephalography (MEG) signals used

in the imaging of the brain. MEG data can be used to analyse the brain waves during

various states of activities. In particular, we analyse the MEG signals for a subject with

drug resistant epilepsy. During an episode of epileptic discharge, it is observed that

the connectivity among various regions of the brain increases. We use coherence as a

measure of connectivity, and also explores if the increase in coherence between pairs of

sensors can be used to detect epilogenetic regions in the brain

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 Introduction 1

1.1 Distortion Correction in Fish-eye Images . . . . . . . . . . . . . . . 1

1.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Super Resolution with Motion Artefacts . . . . . . . . . . . . . . . 3

1.2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Analysis of MEG Data . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Generating Panorama from Fish-eye Images 7

2.1 Fish-eye Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Projection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Panorama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Super Resolution with Motion Artefacts 15

iv



3.1 Image Formation Model . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Classical Super-Resolution . . . . . . . . . . . . . . . . . . 15

3.1.2 Super-Resolution with camera motion . . . . . . . . . . . . 15

3.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Trajectory Estimation . . . . . . . . . . . . . . . . . . . . . 18

3.2.3 HR Image Estimation . . . . . . . . . . . . . . . . . . . . . 21

3.3 Initial Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Initial Trajectory Coefficients . . . . . . . . . . . . . . . . 22

3.3.2 Initial Image Estimation . . . . . . . . . . . . . . . . . . . 22

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Synthetic Examples . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Analysis of MEG Data for Subjects with Drug-Resistant Epilepsy 31

4.1 Coherence Analysis of MEG Data . . . . . . . . . . . . . . . . . . 31

4.1.1 Magnetoencephalography . . . . . . . . . . . . . . . . . . 31

4.1.2 Coherence Analysis . . . . . . . . . . . . . . . . . . . . . 32

4.2 Detection of Epileptic Regions . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Graphical Analysis . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions 40



LIST OF TABLES

2.1 Fish eye projection models . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Average Coherence Values . . . . . . . . . . . . . . . . . . . . . . 36

vi



LIST OF FIGURES

2.1 Fish eye camera lens . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Central perspective projection model . . . . . . . . . . . . . . . . . 8

2.3 Fish eye projection model . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 3D coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Angles made by the line connecting 3D point and the center to X-Y
plane and X axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Fisheye to rectilinear transformation. (a)-(b) Transformation for an
FOV of 210o. (c)-(d) Transformation for an FOV of 180o . . . . . . 12

2.7 Panorama Generation (a)-(b) Pair of fish eye images. (c) The 360o

panoramic image . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Multi-image super resolution. An HR image of SR factor s can be
obtained from s LR images. Each image adds extra information by
virtue of its motion, which can be captured to form the HR image . . 16

3.2 Illustration of image formation in camera (a) GS acquisition. It can be
seen that β is zero and hence all rows are exposed simultaneously. (b)
RS acquisition. Different rows begin exposure at different times due
to non-zero β. By varying α/β, the amount of MB and RS can be
adjusted. (c) Image with motion blur alone (d) Image with both MB
and RS (Image Courtesy (a) and (b) [15] . . . . . . . . . . . . . . 18

3.3 Synthetic result for non-blind SR, where image trajectory is known be-
forehand. A PSNR of 31 was obtained in this case. The algorithm was
run for 10 iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Approximation of camera motion trajectory by a 4th order polynomial
for an exposure duration of 1

3
seconds. The red curve shows the real tra-

jectory from Kohler database and the blue curve shows its approxima-
tion by a polynomial for translation in horizontal and vertical directions
and rotation along camera axis. . . . . . . . . . . . . . . . . . . . 20

3.5 Synthetic result for blind SR with initial trajectory estimates. (a) - (e)
shows the input LR images. (f) Original Image (g) Estimated image
after 7 iterations for good initial trajectory estiation. The algorithm
converges with a PSNR of 33.42 (h) Estimated image after 10 iterations
for poor initial estimates. Here the algorithm fails to produce a good
HR estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Result of Sroubek’s MCBD algorithm. The algorithm is run for 10
iterations to obtain an initial estimate . . . . . . . . . . . . . . . . . 23

vii



3.7 Synthetic result for blind SR with initial image estimate.(a) - (e) Input
LR images. (i) The plot of PSNR as a function of iterations. It can
be seen that the PSNR improves consistently as the algorithm proceeds
(j) The shift map, which shows the translation in the image. Highest
PSNR is obtained for a shift of approximately 0.4 pixels. The PSNR
plot is plotted for the highest PSNR obtained in the image. . . . . . 24

3.8 Synthetic example for α = 100, β = 1.(a) - (e) Input LR images. (k)
The plot of PSNR as a function of iterations. A PSNR of 29 is ob-
served for this case (l) Comparison of ground truth trajectory with esti-
mated trajectory as a function of number of poses. The red curve rep-
resents ground truth and the blue curve represents estimates trajectory.
Columns represent Tx, Ty and Rz respectively while rows represent the
5 input images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Synthetic example for α = 100, β = 1.(a) - (e) Input LR images. (k)
The plot of PSNR as a function of iterations. A PSNR of 27 is ob-
served for this case (l) Comparison of ground truth trajectory with esti-
mated trajectory as a function of number of poses. The red curve rep-
resents ground truth and the blue curve represents estimates trajectory.
Columns represent Tx, Ty and Rz respectively while rows represent the
5 input images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Synthetic example for α = 100, β = 1.(a) - (e) Input LR images. (k)
The shift plot for the example. A translational shift of around 5 pix-
els is observed for maximum PSNR, which is 30.88 (l) Comparison of
ground truth trajectory with estimated trajectory as a function of num-
ber of poses. The black curve represents ground truth and the blue
curve represents estimates trajectory. Columns represent Tx, Ty and Rz
respectively while rows represent the 5 input images . . . . . . . . 28

3.11 Comparison with state of the art super resolution techniques. (a) Our
results are compared with MCBD algorithm by Sroubek et.al. Our algo-
rithm is superior since MCBD is unable to handle RS effects and space
varying blur. (b) - (m) shows the corresponding images for the all the
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 MEG data for epileptic and resting state . . . . . . . . . . . . . . . 33

4.2 Alpha Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Beta Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Gamma Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Delta Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Theta Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Sensor coherence graphs. (a) Sensor pairs which marks an increase on
4 times in coherence (b) Sensor pairs which marks an increase of 10
time in coherence. The graph is highly connected in (a) and hence do
not yield useful results . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



ABBREVIATIONS

FOV Field of View

HR High Resolution

LR Low Resolution

SR Super Resolution

MB Motion Blur

RS Rolling Shutter

GS Global Shutter

AM Alternating Minimization

MCBD Multi-Channel Blind Deblurring

MEG Magnetoencephalography

EEG Electroencephalography

tSSS temporal Signal Space Seperation

PSD Power Spectral Density

ix



NOTATION

U Latent HR image
u HR image vector
H Warping Matrix
D Decimation Matrix
v LR image vector
P Camera Motion Trajectory
α Row exposure time
β Inter-row delay time
ri ith row
θk Trajectory coefficients for kth image
J Jacobian
γ Coherence
S Power spectral density / cross spectral density

x



CHAPTER 1

Introduction

Image processing and its associated fields find applications in a wide spectrum of fields

from meteorology to medicine. Conventional image processing algorithms aim at image

enhancement, trying to eliminate various artefacts introduced by the imaging process.

In conventional photography, image processing find use in applications such as image

de-blurring, image warping and image super resolution. Also, inaccurate image cap-

turing techniques result in distortions such as rolling shutter effect or barrel distortion

in the image. Research in classical image processing aim to rectify these problems.

There has also been an increase of image processing in domains such as medical imag-

ing. Medical imaging aims both at artefact reduction, such as in MRI, as well in image

analysis, such as MEG analysis. In this thesis, we consider the applications of image

processing in image distortion correction, image super resolution, image de-blurring

and panorama stitching. We also analyse medical imaging data originated from brain

MEG, to observe coherent regions in the brain.

1.1 Distortion Correction in Fish-eye Images

With the advent of new technologies such as virtual reality and self-driving cars, the

significance of 360o images and videos are increasing exponentially. However, conven-

tional camera provide a field of view (FOV) of merely 60o and this hinders the process

of acquiring a 360o image. Hence there is a growing research on the development of

cameras with a large FOV. In the literature, several methods have been proposed to in-

crease the FOV of cameras [1].The first one consists of a moving camera set up, which

captures images and then combines them, which may not be feasible in a real time set-

ting. A second solution consists of combining conventional cameras and mirrors. These

type of sensors are called catadioptric systems. However, these systems create a dead

spot at the center of the image, which cannot be removed. Also, the presence of mirrors

causes the system to be bulky. The last class of camera with a wide field of view belong



to the class of dioptric systems. Fish-eye camera,which uses fish eye lens to generate

really wide angle images belongs to this category. They can produce images with FOV

of 180o and upward, without introducing any dead or blind spots. Hence, a 360o image

can easily be obtained by a system of 2 fish eye lens aligned back to back and can be

processed easily in real time.

Fish-eye cameras produce images with high FOV by foregoing the rectilinear map-

ping common in conventional cameras and seeking for mappings that map the entire

frontal hemispherical scene on to a flat surface. Hence this produces a severe barrel

distortion in the image. As a result, the image looks as if it has been stretched about a

sphere which causes the straight lines in the real images to bulge outwards and curved.

Due to this distortion, the stitching of fish-eye images is a non-trivial task, and requires

certain simplifying assumptions. In this thesis, we discuss an algorithm to rectify the

distortion causes about by the fish eye camera, and also how to stitch two fish eye im-

ages together to obtain a 360o view.

1.1.1 Related Works

There has been several research works on image distortion correction for wide angle and

conventional cameras. [7] talks about a lens distortion model for general cameras. The

fish eye camera is explored in detail in [2]. [5] and [6] explores the various calibration

techiniques used in wide angle cameras. There has also been significant research in

panoramic stitching of fish eye images such as [4] where, panorama is created using

point correspondences in fish eye images. Application of 360o are also popular such as

[3], where object tracking in full-view panorama is explored.

1.1.2 Contributions

• Our algorithm rectifies the barrel distortion obsereved in fish eye images without
the knowledge of intrinsic camera parameters. Even in the absence of camera
calibration, our algorithm works excellent for full frame fish eye, with the knowl-
edge of FOV, where the assumption of equidistant image is valid.

• We also propose an algorithm to combine two fish-eye images to produce a full
360o panorama.
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1.2 Super Resolution with Motion Artefacts

With the ever-growing demand for high resolution images and videos, image super-

resolution becomes an important area of research, which offers a signal processing

solution to otherwise, an inherently hardware oriented problem. In multi-image su-

per resolution (SR), the goal is to recover a high-resolution image (HR) from multiple

low-resolution (LR) images. The principle behind multi-image super resolution is that

the inevitable camera motion between images introduces new information to each new

image. The super resolution attempts to create HR images from this additional infor-

mation available in each subsequent image. Super resolution models assume a latent

HR image, onto which pose matrices are applied to obtain images in different poses.

These images get down-sampled in the camera sensor array to produce the LR images.

If the poses or the in-between matrices are known, then the problem becomes a straight

forward estimation of the latent HR image. However, in most cases, the information on

the pose is unknown, making the SR problem hard and ill-posed.

Classical image SR algorithms try to handle the in-between image motion. But they

do not take into account the handshake which happens during image exposure, which

results in a camera motion during the image capture. This further worsens the problem.

In a standard CCD sensor, which is used in most digital cameras, the whole camera sen-

sor space is exposed at once to the image. Hence any motion encountered by the camera

affects the scene as a whole. These kinds of cameras are generally called global shutter

cameras (GS). Any camera motion during the exposure time period, hence manifests as

a motion blur (MB) artefact in the final image, which cannot be handled by traditional

SR algorithms.

This problem is further aggravated in CMOS sensors, which are used in smart-

phone cameras. To save buffer space. these cameras use a rolling shutter, wherein

only a few rows in the sensor array are exposed at any given time. For this reason,

these cameras are also called rolling shutter cameras (RS). In these types of cameras,

each row experiences a different camera motion as compared to other rows. Hence,

we have to solve not just for a single camera pose or motion, but for multiple camera

motions. These camera motions introduce an artefact which we call RS affect. The RS

3



effect distorts images according to the camera motion. Hence an actual straight line in

a scene may appear sheared or curved in the image depending on the camera motion.

A motion blur may also be introduced depending on the camera motion during row

exposure time. In this chapter, an algorithm which attempts to solve multi-image super

resolution problem in the presence of RS and MB artefacts is discussed.

1.2.1 Related Works

Classical multi-image super resolution is an extensively researched topic. [8] provides

an excellent overview of various super resolution techniques available. The early works

on super resolution focusses mainly in the frequency domain, as pioneered by Tsai and

Hung in their seminal paper [9]. However the frequency domain approaches are limited

in the images they can handle and performed poorly on complex real world examples.

Researchers have shifted their focus onto spatial domain approaches.

In addition to multi-image super resolution, hallucination based single image super-

resolution techniques are on the rise. These methods, learn relations between LR and

HR image patches, and use these priors on new problems [10]. [11] uses deep convo-

lutional neural networks to solve the single image super resolution problem. However

the learning based SR algorithms, tend to introduce image patches that might not be

present in the actual image ( hallucinations).

The above mentioned works assume a stationary camera and do not account for RS

or MB effects. [12] uses introduces multi-channel blind deconvolution, which super re-

solves LR images affected by space invariant blur. [13] extends this problem to include

space invariant blur. In [14], the authors try to solve super-resolution problem for RS

affected ( but no motion blur ) LR images under the constraint that atleast one image in

RS free. [15] removes this constraint, but adds an additional constraint of burst mode.

1.2.2 Contributions

• Our work, as opposed to previous works on multi-image SR, attempts to solve for
LR images affected by both MB as well as SR
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• Also, our model rectifies image artefacts on the knowledge of exposure time pa-
rameters, and no other assumptions are made.

1.3 Analysis of MEG Data

The human brain is a vast network of connected pathways that communicate through

synchronized electric brain activity along neurons. Methods such as EEG and MEG can

used to detect the electrical and magnetic activities in the brain. This data can further

be analysed to obtain useful insights into the brain network connectivity. Advances in

brain network analysis illustrates the brain as a dynamic interconnected network, capa-

ble of plasticity and adaptation.[18][19].

There are predominantly three types of network types that are used to investigate

communication within the brain. Structural Connectivity analyses the physical con-

nection of neurons among different regions of the brain. These are the anatomical net-

work maps that indicate possible pathways that signals can travel in the brain. Func-

tional Connectivity identifies brain regions which have similar frequency, phase or

amplitude of correlated activity. This is typically carried out in various states of the

brain, such as resting state or emotional processing to analyse enhanced connectivity

between different regions of the brain for specialized activity. Effective Connectivity,

in addition to analysing correlation between different regions of the brain, also deter-

mines the direction of information flow in the brain.

In this study, we attempt to verify if epilepsy leads to enhanced connectivity among

various region of the brain. This is in fact, a first step towards understanding the role of

communication networks in brain disorders. We use coherence of MEG data from the

brain as a measure of connectivity, since connected regions seem to be synchronous,

and can be quantified using coherence.

5



1.3.1 Related Works

There have been several studies in the past to correlate brain disorders with functional

connectivity and coherence in the brain[20][21][22]. Ozerdam et al. [27] found that

patients with bipolar disorder showed a diminished coherence in the gamma frequency

region between frontal and temporal lobes. In Alzheimer’s, a decrease in coherence

is observed in alpha and beta bands between distant structures in resting state [26].

In schizophrenia, Yeragani et al.[28] found a decrease in sleep coherence in both beta

and gamma frequency bands. Brazier [29] was the first to use coherence to detect the

influence of one brain region over the other during epileptic discharge. Song et al. has

shown that EEG coherence can be used to characterise a pattern of strong coherence in

temporal lobe structures for epilpetic patients [30].

1.3.2 Contributions

• Using coherence as a measure of brain network connectivity, we establish an
increase in connectivity among various regions of the brain during an epileptic
discharge.

• We also propose a method to identify epilogenetic regions in the brain using net-
work analysis. This method, when combined with existing methods for MRI
coregistration and source localisation, makes a powerful visualisation tool.
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CHAPTER 2

Generating Panorama from Fish-eye Images

2.1 Fish-eye Lens

Fish eye lens is an ultra wide angle lens producing strong visual distortion, intended to

create a wide panoramic image. The term fish-eye was coined in 1906 by American

physicist and inventor Robert Wood, based on how a fish sees the ultrawide hemispher-

ical view of the sky from below water. There are two kinds of fish eye lenses used

commercially : circular and full frame fish eye.

A circular fish eye camera takes a wide angle FOV image and inscribes this as a

circle within the film frame. These have vertical, horizontal and diagonal FOVs of 180o

assuming a 180o fish eye. Full-frame fish eye lenses enlarge the central part of the

circular fish eye and fit it into a rectangular region. They have a diagonal FOV of 180o.

However, the horizontal and vertical FOVs are much less. For an equisolid angle type

15mm full-frame fisheye, the horizontal FOV will be 147o and vertical FOV will be 94o.

Figure 2.1 shows an example for circular and full frame fish eye.

(a) Fish eye lens (b) Circular view (c) Full frame view

Figure 2.1: Fish eye camera lens



Figure 2.2: Central perspective projection model

2.2 Projection Model

Conventional cameras follow the central perspective projection algorithm to map the

real world data to the image sensor plane. In this projection, the incident angle on to the

camera sensor is equal to the outgoing angle. As seen from Figure 2.2, to realize a wide

FOV for a conventional camera, either the screen size should be large or the distance of

the screen from the aperture should be small. There are practical limits for both these

parameters and hence realizing high FOVs is practically impossible. Let θ be the angle

of incidence of a ray with the optical axis, f be the focal length of the camera and R be

the distance of the image point from the center. Then the central perspective projection

is given by

R = f. tan(θ) (2.1)

From equation 3.2, it is clear that for an FOV of 180o, the angle of incidence is 90o

and hence the the distance of the image point approaches∞.

For fish eye projection, a ray incident at an angle of 90o to the optical axis has to

be mapped to a point at a finite distance from the image center. For this a different

projection model becomes necessary. The fish eye projection model is based on the

principle that in the ideal case, the distance between the image and the principle axis

is a linear function of the angle of incidence. Hence a ray of light incident at 0o gets
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Figure 2.3: Fish eye projection model

mapped to the center of the circular image, while a ray incident at 90o gets mapped to

the periphery of the circular region. As seen in Figure 2.3, the rays incident on the lens

in refracted towards the principle axis. This is achieved by the types and configuration

of the lenses of a fish eye lens system. A summary of the various projection models

used by fish eye lens system is shown in Table 2.1. In our algorithm we follow the

equidistant projection model

Projection Model Math Real Lenses
Equidistant R = f.θ e.g. Peleng 8mm f/3.5 Fisheye

Stereographic R = 2f. tan( θ
2

e.g. Samyang 8 mm f/3.5
Orthographic R = f. sin(θ) e.g. Yasuhara - MADOKA 180 circle fisheye lens

Equisolid R = 2f. sin( θ
2

e. g. Sigma 8mm f/4.0 AF EX
Thoby fisheye R = k1.f. sin(k2.θ) e. g. AF DX Fisheye-Nikkor 10.5mm f/2.8G ED

Table 2.1: Fish eye projection models

2.3 Algorithm

In this section, an algorithm to convert a given fish eye image to equirectangular pro-

jection is discussed. For the development of this algorithm, it is assumed that a circular

image is converted to a square image. We use inverse mapping to tranform the image

which is a common method used in image transformation. In inverse mapping, for each

pixel of the output image, the corresponding pixel value in the input fish-eye image is

9



Figure 2.4: 3D coordinate system

computed. Here we discuss the transformation used to map rectiliner coordinates to

fish-eye coordinates.

In spherical coordinate system, the 3D world can be defined by the parameters

(z, θ, φ). θ corresponds to the angle of a point in the horizontal direction and varies

from −π to π. φ corresponds to the angle the point makes in the vertical direction and

varies from−π/2 to π/2 (Figure 2.4). Let Ir represent the rectilinear image and If rep-

resent the fish-eye image. Let (ir, jr) represent the coordinates in the rectilinear space

(row number, column number). Let the rectilinear image be of dimensions M ×M .

The rectilinear image of a 360o degree encompasses the whole 3D space. Hence the

coordinates can be transformed into corresponding angle as follows:

θ = π(
jr
M

)

φ = π(
ir
M

)
(2.2)

For an equidistant image, z can be taken as constant. Here we assume z to be 1.
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Figure 2.5: Angles made by the line connecting 3D point and the center to X-Y plane
and X axis

Then corresponding 3D points can be written as

x = sin(φ). cos(θ)

y = sin(φ). sin(θ)

z = cos(φ)

(2.3)

Let us define angle a and b as shown in Figure 2.5. a is the angle made by the line

connecting the 3D point to the centre and the horizontal plane, while b is the angle made

by the projection of the line with the X axis. It is to be noted that a represents the angle

at which a ray is incident on the fish eye camera aperture.

a = tan−1(

√
x2 + z2

y
)

b = tan−1(
z

x
)

(2.4)

In the equidistant projection system for fish eye images, the distance of an image

point from the centre is proportion to the angle of incidence of a ray. Following this

model, we can define r as,

r = M.
a

FOV
(2.5)
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(a) Fish-eye image (b) Rectilinear Image

(c) Fish-eye Image (d) Rectilinear Image

Figure 2.6: Fisheye to rectilinear transformation. (a)-(b) Transformation for an FOV of
210o. (c)-(d) Transformation for an FOV of 180o

Here, a represents the angle of incidence and FOV is the Field-of-View of the fish

eye camera. Finally, the coordinates in the fish-eye domain can be represented as

if = 0.5M + r.sin(b)

jf = 0.5M + r.cos(b)
(2.6)

Figure 2.6 shows some examples of the algorithm. The two image pairs in the

example shown corresponds to FOV of 210o and 180o respectively. In the second pair,

barrel distortion induced by the fish eye camera is clearly visible in the vertical parts of

the building. Our algorithm rectifies this distortion as is evident from the straight pillars

of the rectified image. Since our algorithm assumes equiplanar scene, a distortion is

observed in parts closer to the camera. However, for a full-frame fish eye, this problem

12



(a) (b)

(c) Panorama

Figure 2.7: Panorama Generation (a)-(b) Pair of fish eye images. (c) The 360o

panoramic image

is of no significance as only the central part of the image is displayed there.

2.4 Panorama

Two back-to-back aligned fish-eye cameras are required to generate 360o panoramic

images. Conventional panorama generation algorithms require one to match feature

points using algoirthms such as SIFT, and then a homography estimation to generate the

panorama. However, for this problem, we can take advantage of the inherent alignement

of the camera system. Hence the panoramic image can easily be obtained by stitching

the two final output images. A histogram normalization may be performed to account

for lighting differences in indoor scenes. Figure 2.7 shows an example of generating

panorama from 2 images. The individual images correspond to a FOV of 210o and

hence the uncropped panoramic image corresponds to a horizontal FOV of 420o.

13



2.5 Conclusions

In this chapter, generation of full view panoramic image from a pair of fish-eye lenses

is discussed. Fish-eye lenses are wide angle lenses which are capable of capturing

images with FOV greater than 180o. However this added flexibility comes with the cost

of heavy barrel distortion by virtue of the fish eye projection technique. We illustrate

an algorithm which can correct these distortions to project the fish eye image back to

the rectilinear plane. It requires only the knowledge of FOV and informtation on other

camera parameters and calibration is not needed. There is scope for improvement in

the image stitching process. Also, the algorithm could be extended to process incoming

video stream in real time. This would be useful for application such as self-driving cars.
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CHAPTER 3

Super Resolution with Motion Artefacts

3.1 Image Formation Model

3.1.1 Classical Super-Resolution

We first briefly review the super-resolution model without image degradations and sub-

sequently develop an acquisition model for images with RS and MB artefacts. Let U

represent the required HR image of dimensions sP×sQ, where s is the super-resolution

factor, and P and Q represent the dimensions of the LR image. Let u represent the lex-

icographically ordered image vector of size s2PQ × 1. Let H be a warping matrix of

dimensions s2PQ × s2PQ which multiplies u to produce a warped latent image. In

the absence of RS-MB artefacts, each of the LR image is a manifestation of a single

warp on the original HR image u. Hence each row of H contains a maximum of four

non-zero entries corresponding to the bilinear interpolation coefficients obtained on ap-

plication of the warp at a given pixel location. Let D be the decimation matrix which

multiplies the warped HR image vector to produce the observed LR image vector v of

dimensions P ×Q. The decimation matrix is of dimensions PQ× s2PQ and it down-

samples an HR image into its LR correspondence. Then the super-resolution problem

in the absence of RS-MB artefacts can be formulated as

v = DHu (3.1)

The principle of multi-image super resolution is illustrated in Figure 3.1.

3.1.2 Super-Resolution with camera motion

Consider image acquisition in the global shutter case. Let T be the trajectory followed

by the GS camera during the exposure time interval te. The image produced by the



Figure 3.1: Multi-image super resolution. An HR image of SR factor s can be obtained
from s LR images. Each image adds extra information by virtue of its mo-
tion, which can be captured to form the HR image

camera will be the average of the images seen by the camera during te. This can be

formulated as

g =
1

te

∫ te

0

HT (t)udt (3.2)

where HT (t) denotes the warping matrix of the trajectory at the time instant t and g is

the image vector for global shutter camera motion.

In the case of rolling shutter cameras, all the rows do not get exposed simultaneously

as in the case of GS. Instead, there is an inter-row delay of β between the exposure start

times of subsequent rows. As a result, each row gets exposed to different parts of the

whole camera trajectory, even though the row exposure time, α is the same for all the

rows. Hence each row has to be treated as a separate GS case. Let ri and ui be the

vectors corresponding to the ith rows in the rolling shutter affected image, R, and U

respectively. Then,

ri =
( 1

α

∫ ti+α

ti

HT (t)udt
)
i

(3.3)

Here ti the time at which the row i begin to get exposed and α is the row exposure

duration. Also,

ti = (i− 1)× β (3.4)
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For practical purposes, the continuous trajectory can be approximated as a set of

distinct poses along the trajectory. We define P as the discreet pose space over the

whole trajectory, and Pi as the poses row i is exposed to. Then,

ri =
1

A

∑
p∈Pi

Hpui (3.5)

whereA is the number of discreet poses within the row exposure time, α and Hpui is the

warping matrix corresponding to the pose p. The warping matrix for the complete RS

image can be represented as H(P), where H is a function of P . Hence, the complete

image model for super-resolution in the presence of camera motion as,

v = DH(P)u (3.6)

H(P) contains at most 4A non zero entries per row. H(P) represents an average of

sPA distinct poses. The image formation for GS and RS cases are illustrated in figure

3.2.

3.2 Optimization Problem

3.2.1 Objective Function

Consider the set of observed LR image vectors {ik}, where k = {1, 2, ..., 2s}. The HR

image vector u is to be estimated from these images. From equation 3.6, the objective

function can be written as,

min
u,Pk

s2∑
k=1

||DH(Pk)u− vk||22 + αuTLu (3.7)

Here Pk denotes the camera motion trajectory for the kth image. The second term in

the equation is a regularization term with positive constant value α. L is the discrete

form of variational prior, which is a positive semi-definite block tridiagonal matrix con-

structed of values depending on the gradient of u. If the camera trajectory is known,

H(Pk) can be estimated easily, and this becomes an example of non-blind super reso-

lution. Figure 3.3 shows an example of non-blind multi image SR. Once one LR image
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(a) Scanlines for GS (b) Scanlines for RS

(c) GS image (d) RS image

Figure 3.2: Illustration of image formation in camera (a) GS acquisition. It can be seen
that β is zero and hence all rows are exposed simultaneously. (b) RS acqui-
sition. Different rows begin exposure at different times due to non-zero β.
By varying α/β, the amount of MB and RS can be adjusted. (c) Image with
motion blur alone (d) Image with both MB and RS (Image Courtesy (a) and
(b) [15]

is shown here for ease of comparison. The LR images were generated synthetically.

In blind super resolution, the trajectory information is missing, and it has to be es-

timated along with the latent HR image. The estimation of u and Pk simultaneously is

a heavily ill-posed problem. Hence we follow the Alternating Minimization(AM) strat-

egy. In AM, we alternate between the estimation of u and Pk in subsequent iterations

assuming separate convex optimization problems. Starting with an initial estimate of

the image u0, we estimate the trajectory Pk1 and the process is continued till conver-

gence. This process is elaborated below.

3.2.2 Trajectory Estimation

Following the work of Su et al[17], we model the camera motion as a polynomial tra-

jectory. From the analysis of 40 publicly available camera trajectory datasets by Kohler
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(a) Input LR image (b) Output HR image

Figure 3.3: Synthetic result for non-blind SR, where image trajectory is known before-
hand. A PSNR of 31 was obtained in this case. The algorithm was run for
10 iterations

et al[16], it was observed that the camera motion trajectory can be modelled by 3rd or

4th order polynomial. Figure 3.4 shows camera motion for trajectory 1 in the kohler

database, and its approximation by a 4th order polynomial. Hence a camera motion

trajectory can be written as

P = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 (3.8)

Let θk denote the set of polynomial coefficients corresponding to the kth image.

Now equation 3.7 reduces to

min
u,θ

s2∑
k=1

||DH(θk)u− vk||22 + γuTLu (3.9)

For a general camera motion, the trajectory consists of motion in 6 dimensions,

3 translational motions and 3 rotational motions (tx, ty, tz, rx, ry, rz) where, z is the

camera axis. However the 6D camera trajectory can be approximated by a 3D motion

(tx, ty, rz) or (rx, ry, rz) for an approximately planar scene, or a scene with less depth

variations. We use the trajectory set (tx, ty, rz) for our experiments. Hence the problem

of warp estimation reduces to the estimation of 15 polynomial coefficients, assuming a

4th order polynomial trajectory for each dimension.
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Figure 3.4: Approximation of camera motion trajectory by a 4th order polynomial for
an exposure duration of 1

3
seconds. The red curve shows the real trajec-

tory from Kohler database and the blue curve shows its approximation by a
polynomial for translation in horizontal and vertical directions and rotation
along camera axis.

Following equation 3.9, the estimation of θk for the jth iteration can be written as,

θk
j = arg min

θk
||DH(θk)uj − vk||22 (3.10)

where uj is the HR image estimated from the jth iteration. H(θk) can be estimated with

the assumption of polynomial trajectory and the knowledge of exposure parameters α

and β.

This non-linear least squares problem can be solved using Gauss-Newton method. In

each iteration, this algorithm updates θk as follows

θj+1
k = θk

j + ∆θ (3.11)
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∆θ is determined as below

∆θ = (JTJ)−1JT(DH(θk
j)uj − vk) (3.12)

where J is the Jacobian of the vector (DH(θk
j)uj − vk). Let

vest(k,θ) = DH(θ)uj − vk (3.13)

Then,

J = lim
h→0

vest(k,θk + h)− vest(k,θk)

h
(3.14)

3.2.3 HR Image Estimation

Once the trajectory coefficients are estimated, we use equation 3.7 to estimate the HR

image for the j + 1th iteration.

uj+1 = arg min
u

s2∑
k=1

||DH(Pj
k)u− vk||22 + γuTLu (3.15)

For simplicity, we denote H(Pj
k) by Hk. To solve equation 3.15, we differentiate

the right hand side of the equation w.r.t u and set the value to zero to obtain

s2∑
k=1

Hk
TDTDHku + γLu =

2s∑
k=1

Hk
TDTvk (3.16)

The matrix D spreads intensity equally to s2 pixels in the LR image. The matrix Hk

is the warping function to produce the required RS image. We use a constant value of α

based on visual assessment. We use the method of conjugate gradients (pcg in Matlab

R2014b) to solve the above equation.
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3.3 Initial Estimates

By alternating through the image subspace and trajectory subspace, the AM algorithm

is guaranteed to hit a local minimum. However, due to the heavily ill posed nature of

the problem, particularly due to the presence of RS effect, this local minimum may not

be the required HR image. Hence a good initial estimate of the trajectory coefficients

or the latent HR image is required to kick start the AM sequence. In this chapter, we

examine the use and viability of using initial estimates.

3.3.1 Initial Trajectory Coefficients

In this section, we demonstrate the power of a good initial estimate on the trajectory

on the final image estimate. In figure 3.5 the algorithm is initialized with a zero image

and the original trajectory coefficients. The input to the algorithm is five LR images

degraded by RS and MB. The figure also shows the same example where the algorithm

is initialized with a zero image, but the initial trajectory coefficients are offset by 90%

from the actual value. It is evident from the illustrations that the result of the algorithm

is heavily dependent on the initial estimates.

(a) (b) (c) (d) (e)

(f) Original Image (g) Output with good estimates (h) Output with poor estimates

Figure 3.5: Synthetic result for blind SR with initial trajectory estimates. (a) - (e) shows
the input LR images. (f) Original Image (g) Estimated image after 7 iter-
ations for good initial trajectory estiation. The algorithm converges with
a PSNR of 33.42 (h) Estimated image after 10 iterations for poor initial
estimates. Here the algorithm fails to produce a good HR estimate
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3.3.2 Initial Image Estimation

Getting a good initial estimate for camera motion trajectory is not always feasible. In

this section, we examine the algorithm with initial image estimate. For Estimating ini-

tial images alone, we assume that the image is locally free of RS effect. We partition

the image into smaller non-overlapping image patches which are assumed to be free

of RS effect. Also the motion blur is assumed to be space invariant foe each of the

image patches (again, for initialisation purposes only). We now use multichannel blind

deconvolution (MCBD) method outlined by Sroubek et al. [citiation]on the LR image

patches to obtain HR image patches. The resulting HR images are then combined back

to obtain the initial HR image estimate. Figure 3.6 shows an example of an LR patch

super resolved using MCBD.

(a) LR Patch (b) HR Patch

Figure 3.6: Result of Sroubek’s MCBD algorithm. The algorithm is run for 10 iterations
to obtain an initial estimate

Since the distorted image is a convolution of the HR image matrix with warping

matrix, a translated HR image matrix convolved with a translated warping matrix also

produces the same LR image. However, a small global translation in the x or y direction

is admissible if an undistorted HR image is obtained. An overview of the SR algorithm

is given in algorithm 1. Figure 3.7 shows an illustration of the algorithm graphically.
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(a) (b) (c) (d) (e)

(f) Initial Image Estimate (g) Estimated HR image after 1
iteration

(h) Estimated HR image after
150 iterations

(i) PSNR plot (j) Shift map

Figure 3.7: Synthetic result for blind SR with initial image estimate.(a) - (e) Input LR
images. (i) The plot of PSNR as a function of iterations. It can be seen
that the PSNR improves consistently as the algorithm proceeds (j) The shift
map, which shows the translation in the image. Highest PSNR is obtained
for a shift of approximately 0.4 pixels. The PSNR plot is plotted for the
highest PSNR obtained in the image.

Algorithm 1 Overview of the SR Algorithm
Input s images

Execute patch-wise multichannel deconvolution to obtain initial image

while No. of iterations/convergence do
Estimate trajectory coefficients θk

Estimate HR image u

end
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3.4 Experimental Results

In this chapter, some more examples of our algorithm is provided along with compar-

isons with state-of-the-art SR methods.

3.4.1 Synthetic Examples

Figures 3.8 and 3.9 shows synthetic examples with synthetic trajectories. Parameter

values of α = 100 and β = 1 were used for the experiments. The extracted image patch

clearly shows the SR algorithm in action. A sufficiently good PSNR was observed for

all the experiments, and the outputs are visually pleasing with a shift within acceptable

boundaries. The estimate trajectories look structurally same with the ground truth tra-

jectories, with a slight shift.

Figure 3.10 shows an example of a synthetic example on a real trajectory. The

trajectories are obtained from Kohler’s database which captures actual handshakes of 6

subjects. The parameter values of α = 100 and β = 1 is used for generating RS images

as earlier. We used a row exposure time of 1/20 seconds for our experiments. The

trajectory is estimated with a second order a polynomial in this example, and produces

remarkable results with a PSNR of 30.88.

3.4.2 Comparisons

We compare our algorithm with state of the art SR algorithms. We consider only those

methods which take into account the camera motion during the capture. Our algorithm

is compared with the multi-channel blind deconvolution algorithm by Sroubek et.al

in figure 3.11. It can be seen that, our algorithm significantly outperforms the other

algorithms for all the cases.
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(a) (b) (c) (d) (e)

(f) Ground truth image (g) Initial image estimate (h) Estimated HR image

(i) LR patch (j) Est. HR patch

(k) PSNR plot (l) Trajectory Estimation

Figure 3.8: Synthetic example for α = 100, β = 1.(a) - (e) Input LR images. (k) The
plot of PSNR as a function of iterations. A PSNR of 29 is observed for this
case (l) Comparison of ground truth trajectory with estimated trajectory as a
function of number of poses. The red curve represents ground truth and the
blue curve represents estimates trajectory. Columns represent Tx, Ty and
Rz respectively while rows represent the 5 input images
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(a) (b) (c) (d) (e)

(f) Ground truth image (g) Initial image estimate (h) Estimated HR image

(i) LR patch (j) Est. HR patch

(k) PSNR plot (l) Trajectory Estimation

Figure 3.9: Synthetic example for α = 100, β = 1.(a) - (e) Input LR images. (k) The
plot of PSNR as a function of iterations. A PSNR of 27 is observed for this
case (l) Comparison of ground truth trajectory with estimated trajectory as a
function of number of poses. The red curve represents ground truth and the
blue curve represents estimates trajectory. Columns represent Tx, Ty and
Rz respectively while rows represent the 5 input images
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(a) (b) (c) (d) (e)

(f) Ground truth image (g) Initial image estimate (h) Estimated HR image

(i) LR
patch

(j) Est.
HR
patch

(k) Shift map (l) Trajectory Estimation

Figure 3.10: Synthetic example for α = 100, β = 1.(a) - (e) Input LR images. (k)
The shift plot for the example. A translational shift of around 5 pixels is
observed for maximum PSNR, which is 30.88 (l) Comparison of ground
truth trajectory with estimated trajectory as a function of number of poses.
The black curve represents ground truth and the blue curve represents es-
timates trajectory. Columns represent Tx, Ty and Rz respectively while
rows represent the 5 input images
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(a)

(b) Ground Truth (c) Sroubek (d) Punnapurath (e) Our

(f) Ground Truth (g) Sroubek (h) Punnapurath (i) Our

(j) Ground Truth (k) Sroubek (l) Punnapurath (m) Our

Figure 3.11: Comparison with state of the art super resolution techniques. (a) Our re-
sults are compared with MCBD algorithm by Sroubek et.al. Our algorithm
is superior since MCBD is unable to handle RS effects and space varying
blur. (b) - (m) shows the corresponding images for the all the algorithms
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3.5 Conclusions

In this chapter, we presented the problem of multi-image super resolution in the pres-

ence of camera motion. Classical super resolution algorithms are designed for station-

ary cameras. With the advance of mobile cameras, the assumption of stationary camera

becomes obsolete and algorithms which takes into account the handshake during camera

exposure becomes essential. We developed an algorithm which can handle the motion

blur due to camera motion as well as the rolling shutter effect observed in CMOS sen-

sor cameras used in smartphones. We propose a model in which we alternate between

the estimation of the super resolved image and the camera trajectory during the expo-

sure. The camera trajectory is modelled as a polynomial and experiments on Kohler

database show that common handshake motion can be approximated by a polynomial

of degree at most four. Once the trajectory is known, latent image can be estimated

given the knowledge of row exposure duration and inter-row delay times, which are

defined in section 3.1.2. We also showed the effects of initial estimates on the quality of

the final image and derived a method for image initialisation. Our results are compared

with some of the state of the art super resolution techniques and our algorithm produces

images which are visually and quantitatively acceptable. We used PSNR of between

estimated and ground truth images as a quantitative measure.

As an extension of the problem, learning based methods could be explored for cam-

era motion estimation, which would produce a boosted performance in speed, once the

training is over. Also algorithms which remove the dependency on the camera exposure

parameters can also be explored.
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CHAPTER 4

Analysis of MEG Data for Subjects with Drug-Resistant

Epilepsy

4.1 Coherence Analysis of MEG Data

4.1.1 Magnetoencephalography

Magnetoencephalography (MEG) is a non-invasive functional neuro-imaging technique,

which measures the magnetic fields associated with primary intracellular currents in the

brain. A majority of MEG signals are caused by excitatory postsynaptic potentials, due

to the flow of ions into the postsynaptic dendritic membranes of the apical dendritic

pyramidal cells. For a detectable MEG signal outside the scalp, approximately 1 mil-

lion non-radially symmetric, spatially aligned neurons are synchronously activated, and

they produce an externally observable magnetic field, which generates about a 100-fT

magnetic field[23]. A magnetically sealed room is essential for MEG measurement due

to strong external magnetic interference. The pyramidal cells are located near the sur-

face of the scalp. Due the attenuation of magnetic signals, a clinically useful method

for measuring deep brain (non-cortical) MEG signals is still unavailable.

Although, MEG and EEG signals originate from the same neuro-physiological pro-

cesses, there are important differences. Magnetic fields are less distorted than electric

fields by the skull and the scalp, which results in better spatial resolution in MEG. Also,

the decay of magnetic fields as a function of distance is more pronounced than for elec-

trical fields. Hence, MEG is more sensitive to superficial cortical activity, which makes

it useful for the study of neocortical epilepsy.



Data Acquisition

30 seconds of MEG data was obtained from a patient with drug-resistant epilepsy for

epileptic and resting cases(Courtesy of Dr. Jyotirmoy, NBRC, Gurgaon). Interference

caused by external and nearby sources is suppressed from the data using tSSS artefact

reduction method[24]. A sampling rate of 1 kHz was used for the acquisition, and

the signal was low-pass filtered to 70 Hz, since most of the clinically relevant brain

activities occur in this region. The MEG data was analysed using the MNE package

provided by python. A screenshot of the acquired MEG for epileptic and non - epileptic

case for a patient is provided in Figure 4.1.

4.1.2 Coherence Analysis

Coherence is a mathematical technique that quantifies the frequency and amplitude of

the synchronization of neuronal patterns of oscillating brain activity. Coherence is an

estimate of the consistency of relative amplitude and phase between signals detected in

coils or electrodes within a set frequency band. In sensor space, if signals are in phase

then their amplitudes will add, if they are out of phase the signals will subtract possibly

reducing the coherence value. In source space, the amplitude of the underlying source

can be used to determine the strength of the connectivity.

Coherence is a linear math method in the frequency domain for calculating neuronal

networks. The result is a symmetrical matrix that provides no information on direction-

ality. Coherence is the most common measure used to determine if different areas of

the brain are generating signals that are significantly correlated(coherent) or not signifi-

cantly correlated (not coherent). Coherence is preferred over time domain analysis such

as correlation due to its superior tolerance to noise in the data, since MEG signals are

highly prone to external magnetic noise.

Strictly speaking coherence is a statistic that is used to determine the relationship

between two data sets (i.e. coils or electrodes). It is used to determine if the signal con-

tent of two inputs are the same or different. If the signals measured by two electrodes or

coils are identical then they have a coherence value of 1; depending on how dissimilar

32



(a) MEG data with epilepsy

(b) MEG data without epilepsy

Figure 4.1: MEG data for epileptic and resting state
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they are the coherent value will approach 0.

Let x and y be the two signals whose coherence is to be estimated. Let Sxx and

Syy be the power spectral densities(PSD) of the signals x and y. Let Sxy be the cross

spectral density of the two signals. We define the coherence between the two signals,

γxy as,

γ2xy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(4.1)

The cross-spectral density and power spectral density are the Fourier transforms of

cross-correlation and auto-correlation respectively. For each pair of sensors, we com-

pute the coherence using Welch’s method [25], which is an improved estimator of the

PSD. The method consists of dividing the time series into segments, computing a pe-

riodogram for each segment and then averaging the PSD estimates. The averaging of

periodogram estimates tends to decrease the variance of the estimate in comparison to

a single periodogram estimate of the whole data. A non-rectangular window such as a

Hamming window is used to reduce the weight of end- samples in the segments.

For our experiments, we choose an epoch size(segment length) of 1 second and a

Hamming window. The resultant signal is then analysed for five major frequency bands

where most of the clinically relevant activities take place : alpha (8 - 13 Hz), beta

(15 - 29 Hz), theta (4 - 8 Hz), delta (1 - 4 Hz), gamma ( 28-42 Hz)[23]. For each of

the frequency bands, coherence is estimated as the average of coherence values in that

interval. Let γk be the coherence estimate for the kth frequency band. Then,

γ2k =
1

BandLength

∑
f∈k

γ2(f) (4.2)

The coherence maps of the sensor space are given in figures 4.2 - 4.6. The white

regions in the coherence map denote the sensor pairs with a coherence value greater

than 0.9. The x and y axis corresponds to the sensor space. Hence, the intensity at

a pixel (x, y) gives the coherence value between sensors x and y for that particular

band. From the figures, it can be seen that the white region is concentrated along the
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(a) epileptic (b) resting

Figure 4.2: Alpha Band

(a) epileptic (b) resting

Figure 4.3: Beta Band

diagonal. This is expected since diagonal entries represent adjacent sensors, and they

are highly correlated due to MEG smearing. The point of interest, however, is the white

blocks away from the diagonal. These regions show that there is coherence between

regions not adjacent to each other. It can also be seen that the white regions increase for

epileptic case, which shows an enhanced connectivity among the regions of the brain

during epilepsy. The average coherence values for the five bands of interest are give

in Table 4.1. As seen from the table, the average coherence values are higher for each

of the bands in the epileptic state in comparison to resting state. Notably, beta band

registers an increase of 35% in the epileptic case. Hence, it can be argued that, epilepsy

indeed is characterised by an increase in coherence among various regions of the brain,

which translates to enhanced connectivity which could be a possible cause for epilepsy.
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(a) epileptic (b) resting

Figure 4.4: Gamma Band

(a) epileptic (b) resting

Figure 4.5: Delta Band

(a) epileptic (b) resting

Figure 4.6: Theta Band

Frequency Band Non-Epileptic Epileptic

Alpha 0.212 0.242
Beta 0.323 0.431
Delta 0.179 0.208
Gamma 0.334 0.378
Theta 0.189 0.208

Table 4.1: Average Coherence Values
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4.2 Detection of Epileptic Regions

4.2.1 Graphical Analysis

In a healthy brain, the electrical activity is non-synchronous. This activity is controlled

by the type, number and distribution of ion channels. However, changes in ion channels

or malfunctioning of inhibitory neurons may cause the resistance of excitatory neurons

to decrease. This is characterized by epileptic discharge where neurons fire with exces-

sive synchrony.

Coherence analysis of the epileptic signals can be useful in detecting the epiloge-

netic regions in the brain. An epileptic episode is characterised by strong synchronisa-

tion of neuronal firing, which manifests in the coherence data. So a huge increase in

coherence value between two sensors signifies that these sensors correspond to a source

which is epilogentic. For our experiments, we analysed the MEG data before and dur-

ing an epileptic discharge and marked the sensor pairs which showed an increase in

coherence. We analysed the beta band alone, since this frequency band produced the

most change in average epilepsy.

To group the sensor pairs corresponding to epileptic regions, we constructed a graph

from the sensor space. The nodes of the graph denote the sensors, and edges denote the

sensor pairs which marked an increase in coherence between the events. A graph which

shows all sensor pairs which marks an increase in coherence would be a highly con-

nected and dense graph, and would not help in segregating the sensor space. Hence we

constructed graphs in such a way that an edge is formed between two nodes, only if the

coherence value between the two nodes (sensors) marks an increase of x%. The graph

for x = 400% and x = 1000% is given in figure 4.7.

The epilogenetic sensors can be identified by analysing the connected components

of the graph. If {sensor A, sensor B} and {sensor B, sensor C} are synchronised, we

can conclude that {sensor A, sensor B, sensor C} represent similar excitatory regions.

Hence, the epilogenetic sensors can be identified by analysing the connected the com-
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(a) 400 %

(b) 1000 %

Figure 4.7: Sensor coherence graphs. (a) Sensor pairs which marks an increase on 4
times in coherence (b) Sensor pairs which marks an increase of 10 time in
coherence. The graph is highly connected in (a) and hence do not yield
useful results
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ponents of the graph. It was found that, 95 % of the sensors belonged to the same

connected component for the 400 % case, while only 30 % of the sensors belonged to

the same connected component for the 1000 % case. By defining a proper threshold,

the epilogenetic sensors can be estimated. Data from several patients would be a useful

resource to define a threshold.

4.3 Conclusions

In this chapter, we analysed the relationship between epilepsy and coherence between

MEG sensors. We established that an epileptic discharge is characterised by increase in

average coherence and subsequently an increase in connectivity among various regions

of the brain. It is possible to identify the epilogenetic regions in the brain by analysing

the increase in coherence values pre and post epilepsy. A graphical method for this

analysis in the sensor space is also done.

As an extension, it will be interesting to map epilogenetic regions back to the brain.

This would help a medical professional to analyse data efficiently. A source localisa-

tion needs to be performed to this end.This is an ill posed inverse problem of finding

the region in the brain an MEG signal originates from. As a first step to this MRI-MEG

coregistration, which maps a sensor into an MRI image. Once this is done our can be

done to map the epilogenetic regions in the MRI.

It will also be interesting to analyse whether epilepsy is caused by increase in con-

nectivity between regions. For this, the resting state MEG data of an epileptic patient

needs to compared with that of a healthy subject
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CHAPTER 5

Conclusions

In this thesis, the applications of image processing in various domains were examined.

In particular, we addressed the problem of barrel distortion in wide eye fish eye lenses

and the problem of rolling shutter distortion and motion blur in image super resolution.

We also demonstrated the power of signal coherence in detecting epilogenetic regions

in the brain.

In Chapter 2 we devised an algorithm to project images captured in the fish eye

plane to the conventional rectilinear image plane. We also demonstrated generation of

panorama from a pair of fish eye images. In Chapter 3, we formulated and solved the

problem of super resolution in the presence of motion blur and rolling shutter effects.

We used a parametric method to estimate the image trajectory during exposure. We

also demonstrated the power of a good initial estimate on the final output, and devised a

method for a good initial image estimate. In Chapter 4, we examined enhanced connec-

tivity among regions of the brain during epileptic discharge using coherence between

sensor pairs.
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[21] T. Harmony, E. Marosi, T. FernÃąndez,J. Bernal, J. Silva, M. RodrÃ guez,
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