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Abstract

KEYWORDS: Uncertainty, Load Flow, Optimal Power Flow, Interval Arithmetic,

Krawczyk Method, Monte Carlo Simulation

Power Flow analysis is a fundamental tool for the study of power systems. This

work presents a methodology to solve power flow with loads and generation being

uncertain. In order to deal with the effect of uncertainties of loads and generation

on power flow Interval Arithmetic (IA) techniques have been used in literature. In

this present work Krawczyk method, an IA method, is applied to solve the nonlinear

power balance equations of the system. The implementation was performed in

Mathematicar environment. In order to assess the performance of the Krawczyk

algorithm, the method was applied to 2-Bus, 4-Bus and 14-Bus systems and the

results are compared with the results obtained by the Monte Carlo simulations. Later

the same concept was extended to solve Optimal Power Flow with uncertainty, and

the results are compared with the results obtained by the Monte Carlo simulations.
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Chapter 1

Introduction

Power flow is the most important analysis in power systems and is a pre requisite for

several other analysis like stability, state estimation etc. The Power flow problem

is formulated as a set of precisely known nonlinear algebraic equations that must

be solved simultaneously. From the solution of these equations, bus voltages can be

determined precisely.

The load flow approach, referred as Deterministic Load Flow (DLF), requires precise

values to be chosen for each input variable. The solution provides precise network

voltages and flows through each line. The specified values rest upon assumptions

about the operating condition derived from historical measurements or predictions

about future conditions and thus, cannot be considered accurate. Even in the

case where the inputs are based on measurements, inaccuracies arise from time-

skew problems, three-phase unbalance, static modeling approximations of dynamic

components (e.g., transformer tap changers), variations in line parameters, and so

on[1]. Solutions obtained by DLF would be valid only for a single specific system

configuration and operating condition. However, the system evolves through time.

It appears that it would be more reasonable to ask not what the system looks like

at a given instant, but rather to ask for the range of all plausible system conditions

that might be encountered as a result of expected uncertainties in demand and other

system parameters. Thus, loads and other parameters can be characterized not by a

single number but by a range of values, an Interval.

1
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1.1 Motivations and Objectives

The importance of these uncertainties should be recognized and the need for alterna-

tive approaches is needed. At a minimum, running numerous studies varying a few

parameters or operating conditions to obtain a better feel for system performance

should be done. More systematically, the probabilistic load flow (PLF) was proposed

during 1970s [2] and has since been extended by several others [3]-[5].

The PLF considers load and generation as random variables with probability distribu-

tions. The output variables, i.e., voltages and power flows, are then random variables

with the probability distributions obtained using probabilistic techniques. PLF

solutions are typically obtained using a linearized model because of the complexity

introduced by using random variables. Alternatively, one can employ Monte Carlo

method (MC) as in [6] but this is generally too expensive computationally. Recently,

a second family of load flow approaches has arisen based on fuzzy sets [7], termed

here Fuzzy Load Flow (FLF). Later a related approach to FLF based on Interval

Arithmetic(IA) was proposed in [8].

In this work Interval Arithmetic methods are understood and are applied to solve

Load Flow with uncertainties. Similarly the topic is extended for solving OPF with

uncertainties and the results are shown.

1.2 Organization of the Report

The report is organized into 5 chapters.

Chapter 1 gives an outline of the report, motivations and primary objectives of the

work.

Chapter 2 briefly explains Load Flow and Optimal Power Flow and the the reasons

for uncertainty in the power flow analysis are explained. Also MC method is explained

briefly.
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Chapter 3 explains the basics of Interval Mathematics and the different methods

to solve Interval equations. Krawczyk Method is explained in detail. The Krawczyk

algorithm for solving load flow is stated and is demonstrated with an example.

Chapter 4 Krawczyk method is applied to 2-Bus, 4-Bus and 14-Bus systems for

solving probabilistic load flow. Krawczyk is also extended to optimal power flow and

implemented on 3-Bus, 6-Bus and 14-Bus systems. The detailed simulation results

are presented.

Chapter 5 presents the conclusion of this work.

The 14 Bus system data is given in the Appendix.



Chapter 2

Load Flow and Optimal Power

Flow

2.1 Load Flow

Load flow studies are essential for power system planning and operation. Since the

load is a static quantity and it is the power that flows through transmission lines,

the purists prefer to call this Power Flow studies rather than load flow studies.

Through the load flow studies the voltage magnitudes and angles at each bus in the

steady state can be obtained. This is rather important as the magnitudes of the

bus voltages are required to be held within a specified limit. Once the bus voltage

magnitudes and their angles are computed using the load flow analysis, the real and

reactive power flows through each line can be computed. Also based on the difference

between power flows in the sending and receiving ends, the losses in a particular line

can also be computed. Furthermore, from the line flow we can also determine the

over and under load conditions.

4
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2.1.1 Real and Reactive Power Injected at a Bus

For the formulation of the real and reactive power injected at a bus, we need to

define the following quantities. Let the voltage at the ith bus be denoted by

Vi = |Vi|∠δi = |Vi| (cos δi + j sin δi) (2.1)

Also let us define the admittance at bus i as

Yii = |Yii|∠θii = |Yii| (cos θii + j sin θii) = Gii + jBii (2.2)

Similarly the admittance of the branch connected between the buses i and j can be

written as

Yij =
∣∣Yij

∣∣∠θij =
∣∣Yij

∣∣ (cos θij + j sin θij) = Gij + jBij (2.3)

Let N be the total number of buses in the system. The current injected at bus i is

given as

Ii = Yi1V1 + Yi2V2 + .....+ YiNVN

=
N∑
k=1

YikVk

(2.4)

It is to be noted we shall assume the current injected into the bus to be positive and

that leaving the bus to be negative. As a consequence the active power and reactive

power entering a bus will also be assumed to be positive. The complex power at bus
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i is then given by

Pi − jQi = V ∗i Ii = V ∗i

N∑
k=1

YikVk

= |Vi| (cos δi − j sin δi)
N∑
k=1

|YikVk| (cos θik + j sin θik)(cos δk + j sin δk)

=
N∑
k=1

|YikViVk| (cos δi − j sin δi)(cos θik + j sin θik)(cos δk + j sin δk)

(2.5)

Note that

(cos δi−j sin δi)(cos θik+j sin θik)(cos δk+j sin δk) = cos(θik + δk−δi)+j sin(θik + δk−δi)

(2.6)

Substituting (2.6) in (2.5) we get the real and reactive power injected at an ith bus

as

Pi =
N∑
k=1

|YikViVk| cos(θik + δk − δi) (2.7)

Qi = −
N∑
k=1

|YikViVk| sin(θik + δk − δi) (2.8)

2.1.2 Classification of Buses

The four unknown quantities associated with each bus i are Pi, Qi, voltage angle δi

and voltage magnitude |Vi|. The general practice in Power Flow studies is to identify

3 types of buses in the network. At each bus two of the four quantities Pi, Qi, |Vi| and

δi are specified and the remaining two are calculated using the power flow equations

(2.7) and (2.8). Depending on the quantity specified the buses are classified into

three categories namely generation bus, load bus and slack bus.
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Voltage Controlled Buses/PV Buses : These are the buses where generators

are connected. Therefore the power generation at such buses is controlled through a

prime mover while the terminal voltage is controlled through the excitation system.

Keeping the input power constant through turbine-governor control and keeping the

bus voltage constant using automatic voltage regulator, we can specify constant Pgi

and |Vi| for these buses. This is why such buses are also referred to as PV buses. It

is to be noted that the reactive power supplied by the generator Qgi depends on the

system configuration and cannot be specified in advance. Furthermore we have to

find the unknown angle δi of the bus voltage.

Load Buses/PQ Buses : At a PQ bus no generator is connected and hence the

generated real power Pgi and reactive power Qgi are taken as zero. The load drawn

by these buses are defined by real power -Pli and reactive power -Qli in which the

negative sign accommodates for the power flowing out of the bus. This is why these

buses are referred to as PQ bus. The objective of the load flow is to find the bus

voltage magnitude |Vi| and its angle δi at a PQ bus.

Slack/Swing Bus : Usually this bus is numbered 1 for the load flow studies. This

bus sets the angular reference for all the other buses. Since it is the angle difference

between two voltage sources that dictates the real and reactive power flow between

them, the particular angle of the slack bus is not important. However it sets the

reference against which angles of all the other bus voltages are measured. For this

reason the angle of this bus is usually chosen as 0◦. Furthermore it is assumed that

the magnitude of the voltage |Vi| of this bus is known.

The unscheduled bus-voltage magnitudes and angles in the input data of the power

flow study are called state variables or dependent variables since their values, which

describe the state of system, depend on the quantities specified at all the buses.Hence

the power flow problem is to determine values for all state variables by solving an

equal number of power flow equations based on the input data specifications. If there

are Ng number of PV buses in the system of N buses, there will be (2N −Ng − 2)

equations to be solved for (2N −Ng − 2) state variables as shown in Table 2.1.

Once the state variables are calculated, the complete information about the system is

known and all other quantities which depend on the state variables can be determined.
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Bus Type
No. of
Buses

Quantities
Specified

No. of
available
equations

No. of state
variables

Slack: i = 1 1 δ1, |V1| 0 0

PV(i=2,....,Ng + 1) Ng Pi , |Vi| Ng Ng

PQ(i=Ng + 2,....,N ) (N−Ng−1) Pi , Qi 2(N−Ng−1) 2(N−Ng−1)

Total N 2N (2N−Ng−2) (2N−Ng−2)

Table 2.1: Classification of Buses for Power Flow Analysis

P1 , Q1 at the slack bus , Qi at each voltage controlled bus, the power loss PL of the

system can be easily found with the obtained results from the Load flow.

2.1.3 Methods to solve power flow equations

The functions Pi and Qi of (2.7) and (2.8) are non linear functions of state variables

δi and |Vi|. We therefore would require iterative methods for solving these non-linear

equations. Several techniques are used to solve these non-linear equations like:

1. Gauss – Seidal Method

2. Newton Raphson Method

3. Fast Decoupled Power Flow etc.

The systems of equations are solved using the above iterative techniques[9]. Newton

Raphson method has fast convergence and will be explained in the next section.

2.1.4 Newton Raphson(NR) Method

Taylor’s series expansion for a function of two or more variables is the basis for the

Newton Raphson Method of solving the power-flow problem.

Given a set of nonlinear equations

yi = fi(x1, x2, ......, xn) (i = 1, 2, ...., n) (2.9)
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And the initial estimate for the solution vector be x(0) = x
(0)
1 , x

(0)
2 , ....., x

(0)
n . Assuming

∆x1,∆x2, .....,∆xn are the corrections required for x
(0)
1 , x

(0)
2 , ....., x

(0)
n respectively, so

that the equations (2.9) are solved i.e.

yi = fi(x
(0)
1 + ∆x1, x

(0)
2 + ∆x2, ......, x

(0)
n + ∆xn) (i = 1, 2, ...., n) (2.10)

Each equation of set can be expanded by Taylor’s series for a function of two or more

variables.

yi = fi(x
(0)
1 + ∆x1, x

(0)
2 + ∆x2, ......, x

(0)
n + ∆xn)

= fi(x
(0)
1 , x

(0)
2 , ....., x(0)n ) + ∆x1

∂fi
∂x1

∣∣∣∣
x(0)

+ ∆x2
∂fi
∂x2

∣∣∣∣
x(0)

+ ...+ ∆xn
∂fi
∂xn

∣∣∣∣
x(0)

+ Ψi

(2.11)

where Ψi a function of higher powers of ∆x1,∆x2, .....,∆xn and 2nd, 3rd, ... derivatives

of the function fi. Neglecting Ψi, the linear set of equations resulting is as follows:

y1 = f1(x
(0)
1 , x

(0)
2 , ....., x(0)n ) + ∆x1

∂f1
∂x1

∣∣∣∣
x(0)

+ ∆x2
∂f1
∂x2

∣∣∣∣
x(0)

+ ...+ ∆xn
∂f1
∂xn

∣∣∣∣
x(0)

y2 = f2(x
(0)
1 , x

(0)
2 , ....., x(0)n ) + ∆x1

∂f2
∂x1

∣∣∣∣
x(0)

+ ∆x2
∂f2
∂x2

∣∣∣∣
x(0)

+ ...+ ∆xn
∂f2
∂xn

∣∣∣∣
x(0)

...

yn = fn(x
(0)
1 , x

(0)
2 , ....., x(0)n ) + ∆x1

∂fn
∂x1

∣∣∣∣
x(0)

+ ∆x2
∂fn
∂x2

∣∣∣∣
x(0)

+ ...+ ∆xn
∂fn
∂xn

∣∣∣∣
x(0)

(2.12)


y1 − f1(x(0)1 , x

(0)
2 , ....., x

(0)
n )

y2 − f2(x(0)1 , x
(0)
2 , ....., x

(0)
n )

...

yn − fn(x
(0)
1 , x

(0)
2 , ....., x

(0)
n )

 =



∂f1
∂x1

∣∣∣
x(0)

∂f1
∂x2

∣∣∣
x(0)

. . . ∂f1
∂xn

∣∣∣
x(0)

∂f2
∂x1

∣∣∣
x(0)

∂f2
∂x2

∣∣∣
x(0)

. . . ∂f2
∂xn

∣∣∣
x(0)

...
...

. . .
...

∂fn
∂x1

∣∣∣
x(0)

∂fn
∂x2

∣∣∣
x(0)

. . . ∂fn
∂xn

∣∣∣
x(0)




∆x1

∆x2
...

∆xn

 (2.13)

or,

D = J M

Where J is the Jacobian for the functions fi and M is the change vector ∆xi. In
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Iterative form, it is written as:

D(k) = J (k)M (k)

M (k) = [J (k)]−1D(k)
(2.14)

The new values of xi are calculated from

x
(k+1)
i = x

(k)
i +M (k) (2.15)

The process is repeated until two successive values for each xi differ only by a specified

tolerance. In this process J can be evaluated in each iteration or may be evaluated

only once provided ∆xi are changing slowly. Because of quadratic convergence,

Newton’s method is mathematically superior to Gauss-Seidel method and is less

prone to divergence with ill conditioned problems.

Newton-Raphson method is more efficient and practical for large power systems.

Main advantage of this method is the number of iterations required to obtain a

solution is independent of the size of the problem and computationally it is very fast.

The Power Flow equations given by (2.7) and (2.8) are

Pi =
N∑
k=1

|YikViVk| cos(θik + δk − δi)

Qi = −
N∑
k=1

|YikViVk| sin(θik + δk − δi)

The above equations constitute a set of nonlinear algebraic equations in terms of the

independent variables, voltage magnitude in per unit and phase angles in radians, it

can be easily observed that there are two equations for each load bus given by (2.7)

and (2.8) and there is one equation for each voltage controlled bus, given by (2.7).

Expanding the above equations in Taylor-series and neglecting higher-order terms.
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We obtain,



∆P
(k)
2

...

∆P
(k)
N

∆Q
(k)
Ng+1
...

∆Q
(k)
N


=



(
∂P2

∂δ2

)(k)
. . .

(
∂P2

∂δN

)(k) (
∂P2

∂|V2|

)(k)
. . .

(
∂P2

∂|VN |

)(k)
...

. . .
...

...
. . .

...(
∂PN

∂δ2

)(k)
. . .

(
∂PN

∂δN

)(k) (
∂PN

∂|V2|

)(k)
. . .

(
∂PN

∂|VN |

)(k)(∂QNg+1

∂δ2

)(k)
. . .

(∂QNg+1

∂δN

)(k) (∂QNg+1

∂|V2|

)(k)
. . .

(∂QNg+1

∂|Vn|

)(k)
...

. . .
...

...
. . .

...(
∂QN

∂δ2

)(k)
. . .

(
∂QN

∂δN

)(k) (
∂QN

∂|V2|

)(k)
. . .

(
∂QN

∂|VN |

)(k)





∆δ
(k)
2
...

∆δ
(k)
N

∆
∣∣VNg+1

∣∣(k)
...

∆|VN |(k)


(2.16)

Where ∆P
(k)
2 ,..., ∆P

(k)
N and ∆Q

(k)
Ng+1,....., ∆Q

(k)
N are mismatches in active and reactive

powers respectively. In the above equation, bus-1 is assumed to be the slack bus.

Equation (2.16) can be written as∆P

∆Q

 =

J1 J2

J3 J4

 ∆δ

∆|V |

 (2.17)

The Jacobian matrix is inverted and the mismatch vector is found, it is then added

to the initial guess to find the next iteration value. The process is continued until the

values no longer vary. This interesting property of weak coupling between P − δ and

Q− V variables gave the necessary motivation in developing the Decoupled Load

Flow method, in which P − δ and Q− V problems are solved separately.
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2.2 Uncertainty in Power Flows

The models used in Deterministic Load Flow analysis are only approximations. The

available conventional methodology does not answer the presence of uncertainties

in the mathematical modeling of power systems. Modeling and computation of

engineering aspects of power systems is subject to many sources of uncertainty.

2.2.1 Sources of Uncertainty

There can be several reasons for uncertainty like:

1. Representation of the model.

2. Representation of various physical components.

3. Introduction of noise at the inputs.

4. Errors in the measured parameters of the system.

5. Errors in the magnitude of the demand assumed for the system.

6. Errors due to Numerical Modeling using finite arithmetic.

In addition, environmental, regulatory and technology change considerations often

introduce uncertainties that are of greater significance, yet less quantifiable in nature.

2.2.2 Characterization of Uncertainty

The purpose of a formal characterization of uncertainty is to gain a greater un-

derstanding of a system or process. Single-solution answers, although pleasing in

traditional engineering terms, often give an incomplete picture of the behavior of a

system. A characterization that explicitly considers uncertainty allows us to create

models and answer questions that are either impossible or difficult to answer with

deterministic methods.

Several roles in the characterization of uncertainty are:
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1. Uncertainty as an aid in the decision making process. Decision makers often

consider the risk associated with a particular decision. The nature of the

uncertainty also has an influence on the decision: overestimating a number

may result in slightly higher costs of operation, but underestimating the same

number could result in severe effects on a system, which will translate into

considerably higher costs.

2. Deterministic solutions in the presence of uncertainty give deterministic answers

which most probably will not be correct. Of greater value would be to bracket

the solution and either give intervals guaranteed to contain the solution, or

probabilistic measures guaranteed to contain the solution at a given level of

confidence.

3. Certain types of solutions are often unacceptable: the design must be sure to

exclude them. For example, designs that result in unstable eigenvalues are

usually unacceptable.

4. Uncertainty is essential when reconciling mathematical models with measure-

ments on physical systems. The classic example of this use of uncertainty is the

state estimation problem in power systems, where more measurements than

strictly needed are made on a system, and the state of the system is determined

under the assumption that measurements are subject to error.

Methods for handling uncertainty can be applied to determine both engineering

and economic parameters, such as current flows, voltages, cost and reliability (or

security). Of increasing interest are methods capable of characterizing important

externalities of a power system, such as environmental effects. These externalities

are often associated with greater degrees of uncertainty than is customary within

traditional engineering models. The fact that uncertainty exists is no reason, however,

for simply ignoring an important concern. Rather, methods for capturing the inherent

uncertainty must be used and incorporated into the more traditional ways of assessing

the system.
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2.2.3 Probabilistic Load Flow

Deterministic Load Flow(DLF) uses specific values of power generations and load

demands of a selected network configuration to calculate system states and power

flows. Therefore, DLF ignores uncertainties in the power systems, e.g. uncertainties as

described above, the outage rate of generators, the change of network configurations

and the variation of load demands. Furthermore, modern power systems with

integration of Distributed Generation units, such as Wind Turbines and photo

voltaic systems, introduce additional power fluctuations into the system due to their

uncontrollable prime sources. Therefore, the deterministic approach is not sufficient

for the analysis of modern power systems and the results from DLF may give an

unrealistic assessment of the system performance. In order to take uncertainties

into consideration, different mathematical approaches for uncertainty analysis can

be used, such as the probabilistic approach, fuzzy sets [10]. Each method uses the

notion of an “uncertain variable.” An uncertain variable is a variable that can take

more than one numeric value according to the point of view of the method. For

probabilistic methods, uncertain variables are better known as random variables,

for Interval methods they are known as Interval variables, and for fuzzy arithmetic

methods are known as fuzzy or possibilitic variables. In this work Interval methods

have been used to solve the Load flow with uncertainty and extend the topic to

Optimal Power Flow.

The probabilistic approach has a solid mathematical background and has been

applied to power systems in different areas. The Probability Load Flow(PLF)

was first proposed in 1974 and has been further developed and applied into power

system normal operation, short-term/long-term planning as well as other areas. The

PLF requires inputs with Probability Distribution Function (PDF) or Cumulative

Distribution Function (CDF) to obtain system states and power flows in terms of

PDF or CDF, so that the system uncertainties can be included and reflected in the

outcome. The PLF can be solved numerically, i.e. using a Monte Carlo method, or

analytically, e.g. using a convolution method, or a combination of them. We discuss

the Monte Carlo Method in the next section.
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2.3 Monte Carlo(MC) Method

As we discussed above the uncertainty in inputs can be expressed as PDF and

CDF. MC method is adopted for the PLF analysis. The two main features of MC

simulation are random number generation and random sampling. Softwares such as

MATLAB and MATHEMATICA provide algorithms for Pseudo Random Number

generation. Refer to [11] for different techniques of random sampling, e.g. simple

random sampling, stratified random sampling, etc. Although sampling techniques

can be rather sophisticated, the PLF using MC is in principle doing Deterministic

Load Flow for a large number of times with inputs of different combinations of nodal

power values. Therefore, the exact nonlinear form of Load Flow equations can be

used in the PLF analysis.

The capability to use the exact non-linear LF equations is the reason why results

obtained from the PLF using MC are usually taken as a reference to the results

obtained from other PLF algorithms with simplified LF equations, so as to check

the accuracy of the algorithms. In spite of its relatively high accuracy, the MC

method requires large amount of computation time due to the large number of LF

calculations.

2.3.1 Example

Consider a 2 Bus system with a generator and a load as shown in Fig. 2.1.

Figure 2.1: Single Line Diagram of a Two Bus System
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With 100 MVA base, allowing the demand to vary by ±20%, we get the mean and

deviation of the demands as

For PD, µ = 1 pu and σ = 2/30 pu.

For QD, µ = 0.5 pu and σ = 1/30 pu.

Here we consider the fact that µ± 3σ covers 99.7% under the Normal Distribution

Function.

The Power injection equations obtained for the given system are:

15.8V2 cos(108.43◦ − δ2) + 5V 2
2 + PD = 0 (2.18)

15V 2
2 − 15.8V2 sin(108.43◦ − δ2) +QD = 0 (2.19)

Using a Random Number generator in Mathematica we take 1000 samples of both PD

and QD with mean as 1 and 0.5 and standard deviation as 2/30 and 1/30 respectively

and solve the Load Flow equations for each such sample. The results obtained for

those 1000 samples are gathered together and are formed into a Gaussian Distribution

and the Mean and Deviation of those distributions are found. The obtained results

are as follows:

For V2, µ = 0.944927 pu and σ = 0.00282622 pu.

For δ2, µ = -0.0530822 pu and σ = 0.00437375 pu.

Taking the range as µ± 3σ, we get the outputs as:

V2 = [0.935791 , 0.953406]

δ2 = [-0.066204 , -0.039961]

Which mean that for a deviation of ±20% in the demands, the voltage V2 lies between

the values 0.935791 pu and 0.953406 pu and δ2 lies between the values -0.066204 pu

and -0.039961 pu.
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MC method provides results with a high accuracy but the time required for the

computation is large. So alternate methods like Interval Arithmetic is used which

provides results with almost the same accuracy as MC but with less computational

time. Interval Arithmetic based Load Flow is discussed in next Chapter.

2.4 Optimal Power Flow

2.4.1 Economic Dispatch

Electrical energy cannot be stored; it is generated from natural sources and delivered

to the demands. A transmission system is used for delivery of electrical energy to

the load points. In brief, an interconnected power system consists of three parts:

1. Generators, which produce the electrical energy.

2. Transmission lines, which transmits the produced energy to demands.

3. Loads, which consume the energy.

Since it is not possible to store electrical energy, the net energy generation in the

system must be equal to the total system load and power losses. The main objective

of power system is to supply the load continuously and as economic as possible.

Planning the power generated by each generation unit and the system analysis is

done in different steps from weeks until minutes before real time.

Economic Load Dispatch (ELD) is the process of allocating generation among different

generating units; in such a way that the overall cost of generation is minimized.

In ELD problem we do not consider the power losses in transmission lines and

transmission limit constraints, so the total power generation must be equal to the

total load. ELD is allocating loads to generation units with minimum cost while

meeting the constraints. It is formulated as an optimization problem of minimizing

the total costs of generation units. The total cost of generation includes fuel costs,

costs of labor, supplies, maintenance. This cost depends on the amount of real power
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produced by the generator. Generation cost is considered as a quadratic function in

terms of real power produced.

Fi(Pgi) = aiP
2
gi

+ biPgi + ci Rs/h (2.20)

Thus, the total cost C is given by

C =

Ng∑
i=1

Fi(Pgi) (2.21)

The Economic Load Dispatch (ELD) problem can therefore be stated as:

Minimize

Ng∑
i=1

Fi(Pgi)

Subjected to: the energy balance

Ng∑
i=1

Pgi = PD (2.22)

and the inequality constraints

Pmin
gi
≤ Pgi ≤ Pmax

gi
i = 1, 2, 3, ...., Ng (2.23)

where,

Pgi is the real power generation

PD is the real power demand

Ng is the number of generator buses

Pmin
gi

is the lower limit of generation at ith bus

Pmax
gi

is the upper limit of generation at ith bus

Fi(Pgi) is the operating fuel cost of the ith generator
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The above constrained optimization problem is converted into an unconstrained

optimization problem. Using Lagrange multiplier method, a function L is defined as

L(Pgi , λ) = Fi(Pgi) + λ(PD −
Ng∑
i=1

Pgi) (2.24)

where λ is the Lagrangian Multiplier.

Applying Karush–Kuhn–Tucker (KKT) conditions,

∂L(Pgi , λ)

∂Pgi
= 0 (2.25)

∂L(Pgi , λ)

∂λ
= 0 (2.26)

By (2.25),

∂L(Pgi , λ)

∂Pgi
=
∂Fi(Pgi)

∂Pgi
− λ = 0 =⇒ ∂Fi(Pgi)

∂Pgi
= λ (2.27)

where,
∂Fi(Pgi )

∂Pgi
is the incremental fuel cost of the ith generator.

By (2.26),

PD −
Ng∑
i=1

Pgi = 0 (2.28)

Considering the cost function given by (2.20), the incremental cost can be defined as,

∂Fi(Pgi)

∂Pgi
= 2aiPgi + bi (2.29)

Substituting the incremental cost into (2.27), the equation becomes

2aiPgi + bi = λ i = 1, 2, ..., Ng (2.30)
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Rearranging (2.30) to get Pgi

Pgi =
λ− bi

2ai
(i = 1, 2, ..., Ng) (2.31)

Substituting the value of Pgi in (2.28), we get

λ =

PD +
Ng∑
i=1

bi
2ai

Ng∑
i=1

1
2ai

(2.32)

If any particular generator either hits Pmin
gi

or Pmax
gi

, its loading is held fixed at that

value and the balance load is shared among other generators by running ELD again

excluding the generator hitting the limit.

2.4.2 Optimal Power Flow

The optimal power flow or OPF has had a long history in its development. It was

first discussed by Carpentier in 1962 [12] and took a long time to become a successful

algorithm that could be applied in everyday use. Current interest in the OPF centers

around its ability to solve for the optimal solution that takes account of the security

of the system.

We can solve the OPF for the minimum generation cost and require that the

optimization calculation also balance the entire power flow at the same time. Note

also that the objective function can take different forms other than minimizing the

generation cost. It is common to express the OPF as a minimization of the electrical

losses in the transmission system, or to express it as the minimum shift of generation

and other controls from an optimum operating point. We could even allow the

adjustment of loads in order to determine the minimum load shedding schedule under

emergency conditions. Regardless of the objective function, however, an OPF must

guaranty that all security constraints are satisfied at the solution.
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Highlights of OPF:

1. If the entire set of power flow equations are solved simultaneously with the

generation cost minimization, the representation of incremental losses is exact.

Further, with an objective function that minimizes the losses themselves, the

power flow equations are quite necessary.

2. The Economic Load Dispatch solutions only observed the generation limits

Pmin
gi
≤ Pgi ≤ Pmax

gi
. With all of the power flow constraints included in the

formulation, many more of the power system limits can be included. These

include limits on the generator reactive power(Qmin
gi
≤ Qgi ≤ Qmax

gi
), limits on

the voltage magnitude at generation and load buses (V min
i ≤ Vi ≤ V max

i ), and

the flows in transmission lines or transformers expressed in either MW or MVA

(MVAminij ≤MVAij ≤MVAmaxij ). These operating constraints now allows the

user to dispatch generation such that the constraints are not violated.

3. The OPF can also include constraints that represent operation of the system

after contingency outages. These “security constraints” allow the OPF to

dispatch the system in a defensive manner. That is, the OPF now forces the

system to be operated so that if a contingency happened, the resulting voltages

and flows would still be within limit. Thus, constraints such as the following

might be incorporated:

V min
i ≤ Vi (with line nm out) ≤ V max

i

MVAminij ≤MVAij (with line nm out) ≤MVAmaxij

which implies that the OPF would prevent the post-contingency voltage on

bus k or the post-contingency flow on line ij from exceeding their limits for an

outage of line nm. This special type of OPF is called a “security-constrained

OPF”.

4. In the ELD calculation developed, the only adjustable variables were the

generator MW outputs themselves. In the OPF, there are many more adjustable

or “control” variables that can be specified. Thus, the OPF gives us a framework

to have many control variables adjusted in the effort to optimize the operation

of the transmission system.
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5. The ability to use different objective functions provides a very flexible analytical

tool. The objective can be Minimization of generator cost, Minimization of

losses, etc.

Mathematical Representation of OPF

Minimize operation cost of Generating stations

C =

Ng∑
i=1

Fi(Pgi) =

Ng∑
i=1

(aiP
2
gi

+ biPgi + ci) (2.33)

Subjected to:

1. active power balance in the network

Pi(V, δ)− Pgi + Pdi = 0 (i = 1, 2, ..., N) (2.34)

2. reactive power balance in the network

Qi(V, δ)−Qgi +Qdi = 0 (i = Nv + 1, Nv + 2, ..., N) (2.35)

3. Security-related constraints called soft constraints.

• limits on real power generation

Pmin
gi
≤ Pgi ≤ Pmax

gi
(i = 1, 2, ..., Ng) (2.36)

• limits on voltage magnitudes

V min
i ≤ Vi ≤ V max

i (i = Nv + 1, Nv + 2, ..., N) (2.37)

• limits on voltage angles

δmini ≤ δi ≤ δmaxi (i = 2, 3, ..., N) (2.38)

4. Functional constraint with a function of control variables



Chapter 2. Load Flow and Optimal Power Flow 23

• limits on reactive power

Qmin
gi
≤ Qgi ≤ Qmax

gi
(i = 1, 2, ..., Ng) (2.39)

• limits on MVA rating of the transmission lines

MVAminij ≤MVAij ≤MVAmaxij (2.40)

Real Power flow equations are:

Pi(V, δ) = Vi

N∑
j=1

Vj(Gij cos(δi − δj) +Bij sin(δi − δj)) (2.41)

Reactive Power flow equations are:

Qi(V, δ) = −Vi
N∑
j=1

Vj(Gij cos(δi − δj)−Bij sin(δi − δj)) (2.42)

where,

N is the number of buses

Ng is the number of generator buses

Nv is the number of voltage controlled buses

Pi is the active power injection into bus i

Qi is the reactive power injection into bus i

Pdi is the active power load demand on bus i

Qdi is the reactive power load demand on bus i

Pgi is the real power generation on bus i

Qgi is the reactive power generation on bus i

Pmin
gi

is the lower limit of generator on bus i

Pmax
gi

is the upper limit of generator on bus i

Vi is the magnitude of voltage on bus i

δi is the phase of voltage on bus i

Yij = Gij + jBij are elements of admittance matrix
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The load flow constraints are augmented into the objective function. The additional

variables are known as Lagrange Multiplier functions or incremental cost functions.

The cost function becomes:

L(Pg, V, δ) = F (Pgi)+
N∑
i=1

λPi
[Pi(V, δ)−Pgi+Pdi ]+

N∑
i=1

λQi
[Qi(V, δ)−Qgi+Qdi ] (2.43)

Applying KKT conditions.

∂L

∂Pgi
=

∂F

∂Pgi
− λPi

(2.44)

∂L

∂δi
=

N∑
j=1

[λPj

∂Pj
∂δi

] +
N∑

j=Nv+1

[λQj

∂Qj

∂δi
] (i = 2, 3, ...., N) (2.45)

∂L

∂Vi
=

N∑
j=1

[λPj

∂Pj
∂Vi

] +
N∑

j=Nv+1

[λQj

∂Qj

∂Vi
] (i = Nv + 1, Nv + 2, ...., N) (2.46)

∂L

∂λPi

= Pi(V, δ)− Pgi + Pdi (2.47)

∂L

∂λQi

= Qi(V, δ)−Qgi +Qdi (2.48)

Now the equations (2.44) - (2.48) are solved simultaneously using Newton Raphson

Method to obtain the solution of the OPF.



Chapter 2. Load Flow and Optimal Power Flow 25

Problem
Name

Includes
Voltage
angle
con-

straints?

Includes
Voltage

magnitude
con-

straints?

Includes
Transmission
constraints?

Includes
losses

Includes
generator

costs?

Includes
contin-
gency
con-

straints?

Remarks

Load
Flow

No, but
can be
added

Yes
No, but can

be added
Yes No No -

ELD No No No Depends Yes No

No Trans-
mission

Constraints

OPF Yes Depends Yes Yes Yes Yes -

Table 2.2: Types of Power System Problems

2.4.3 Uncertainty in OPF

Very often OPF is addressed as a deterministic optimization problem with fixed model

parameters and input variables. Such solutions provide no information regarding

the degree of importance or likelihood of constraint violations. However, many

random disturbances or uncertain factors exist during power system operations

due to measurement errors, forecast inaccuracies or outages of system elements as

discussed for the load flow. These uncertainties mainly come from bus loads, changes

in network configuration and power supplies and so on. The dispatch scheduling

for power system operations is highly related to load forecasting whose errors are

inherently stochastic. Network parameters, such as the values of capacitances,

resistances and inductances, will change unexpectedly due to weather changes or

unexpected events. The availability of power generation is another uncertain factor

in power systems. In particular, recent attention is paid to the increasing penetration

of renewable generation in power systems such as wind and solar energy which

necessitates the modeling of stochastic generation outputs. These uncertainties

inevitably introduce errors in the optimal solutions and thus degenerate the decisions

of a deterministic OPF[13].

Probabilistic methods have been applied to power systems, especially for the solution

of probabilistic power flow problems(PLF). Borkowska [2] addressed an uncertain

power flow problem by adopting a probabilistic linear transformation and normal
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random variables were considered to model the uncertainty. Several studies inves-

tigated how the power flow problem can be modeled and solved probabilistically

instead of deterministically. In this work, we use Interval Arithmetic methods to

solve OPF probabilistically by taking the uncertain variables as Intervals instead of

specific values.

Summary

In this chapter, Load Flow and the methods to solve power flow equations are

discussed. The reasons for uncertainty in the power flow analysis are explained.

Monte Carlo simulations are the best way to take uncertainty into account. But

the main drawback of MC method is the time taken. MC method is explained

briefly taking an example. The importance of Optimal Power Flow is discussed and

the mathematical representation of OPF is stated. Interval Methods are far more

superior to MC method for solving Load Flow and OPF with uncertainties. Interval

Arithmetic based Load Flow and OPF will be discussed in the next chapters.



Chapter 3

Interval Arithmetic

Interval Arithmetic, interval mathematics, interval analysis, or interval computation,

is a method developed by mathematicians since the 1950s and 1960s, as an approach

to putting bounds on rounding errors and measurement errors in mathematical

computation and thus developing numerical methods that yield reliable results. Very

simply put, it represents each value as a range of possibilities.

3.1 Definition of an Interval

The closed Interval denoted by [a , b] is the set of real numbers given by

[a, b] = {x ∈ R : a ≤ x ≤ b} (3.1)

Endpoint Notation

We will adopt the convention of denoting intervals and their endpoints by capital

letters. The left and right endpoints of an interval X will be denoted by X1 and X2,

respectively. Thus,

X = [X1, X2] (3.2)

27
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Interval Equality

Two intervals X and Y are said to be equal if they are the same sets. Operationally,

this happens if their corresponding endpoints are equal:

X = Y if X1 = Y1 and X2 = Y2 (3.3)

Degenerate Intervals

We say that X =[X1 , X2] is degenerate if X1 = X2. Such an Interval contains a

single real number X. By convention, we agree to identify a degenerate interval

[X, X ] with the real number X. In this sense, we may write such equations as

0 = [0, 0]

3.2 Operations

The four basic arithmetic operations (Addition, Subtraction, Multiplication, Division)

are given as:

[X1 , X2] op [Y1 , Y2] = [Min(X1 op Y1 , X1 op Y2 , X2 op Y1 , X2 op Y2),

Max(X1 op Y1 , X1 op Y2 , X2 op Y1 , X2 op Y2)]

Here, op is either +,−,× or ÷
Provided that X op Y is allowed for all X ∈ [X1, X2] and Y ∈ [Y1, Y2].

For practical applications this can be simplified further:

1. Addition: [X1, X2] + [Y1, Y2] = [X1 + Y1, X2 + Y2]

2. Subtraction : [X1, X2]− [Y1, Y2] = [X1 − Y2, X2 − Y1]

3. Multiplication : [X1, X2] ∗ [Y1, Y2] = [Min(X1 ∗ Y1 , X2 ∗ Y1 , X1 ∗ Y2 , X2 ∗ Y2)
, Max(X1 ∗ Y1 , X2 ∗ Y1 , X1 ∗ Y2 , X2 ∗ Y2) ]

4. Division : [X1, X2]/[Y1, Y2] = [X1, X2] ∗ (1/[Y1, Y2])

Where, 1
[Y1,Y2]

= [ 1
Y2
, 1
Y1

] provided 0 6∈ [Y1, Y2]



Chapter 3. Interval Arithmetic 29

For Y1 < 0 < Y2 ,

1

[Y1, Y2]
= [−∞, 1

Y2
] ∪ [

1

Y1
,∞] (3.4)

This is called Extended Interval Arithmetic.

3.3 Properties of Intervals

Intersection and Union

For two intervals, X = [X1, X2] and Y = [Y1, Y2], we may define the intersection

X ∩ Y as the interval

X ∩ Y = Z : Z ∈ X and Z ∈ Y = [Max(X1, Y1) , Min(X2, Y2)] (3.5)

Similarly in case of the union of X and Y is also an interval:

X ∪ Y = Z : Z ∈ X or Z ∈ Y = [Min(X1, Y1) , Max(X2, Y2)] (3.6)

Eq (3.5) and (3.6) are valid only for X2 < Y1. Which mean that there is an intersec-

tion for both the Intervals. Intersection plays a key role in Interval Analysis. If we

have two intervals containing a result of interest regardless of how they were obtained

,then the intersection, which may be narrower, also contains the result. This is the

basis for the iterations in our Iterative Methods.

Width of an Interval

The Width of an Interval X = [X1, X2] is defined and denoted by

w(X) = X2–X1 (3.7)
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Absolute Value of an Interval

The absolute value of X = [X1, X2] , denoted | X |, is the maximum of the absolute

values of its endpoints:

| X |= Max{| X1 |, | X2 |} (3.8)

Note that | x | ≤ | X | for every x ∈ X.

Mid Point of an Interval

The midpoint of X = [X1, X2] is given by

m(X) =
1

2
(X1 +X2) (3.9)

Any Interval X can be represented as:

X = m(X) +
[−1

2
w(X),

1

2
w(X)

]
= m(X) +

[1

2
w(X)[−1, 1]

] (3.10)

Commutativity and Associativity

Interval addition and Multiplication are commutative and associative. We have

X + Y = Y +X (3.11)

XY = Y X

For any 3 Intervals X , Y and Z, we have

X + (Y + Z) = (X + Y ) + Z (3.12)

X(Y Z) = (XY )Z
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Additive and Multiplicative Identity Elements

The degenerate intervals 0 and 1 are Additive and Multiplicative identity elements

in the system of intervals. For ant Interval X

0 +X = X + 0 = X (3.13)

1 ·X = X · 1 = X

Subdistributivity

The distributive law X(Y + Z) = XY +XZ of ordinary arithmetic fails to hold for

Intervals. An easy counterexample can be obtained by taking

X = [1, 2], Y = [1, 1] and Z = [−1,−1]

X(Y + Z) = [1, 2] · ([1, 1] + [−1,−1])

= [1, 2] · [0, 0]

= [0, 0]

whereas,

XY +XZ = [1, 2] · [1, 1]− [1, 2] · [1, 1]

= [min(1, 2),max(1, 2)]− [min(1, 2),max(1, 2)]

= [1, 2]− [1, 2]

= [−1, 1]

Clearly we observe that the Distributive law fails in case of Intervals. However, there

is a Subdistributive law. For any three Intervals X, Y and Z

X(Y + Z) ⊆ XY +XZ (3.14)
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3.4 Interval Functions

Let f be a real-valued function of a single real variable x. The precise range of values

taken by f(x) as x varies through a given interval X is the image of the set X under

the mapping f.

f(X) = {f(x) : x ∈ X} (3.15)

More generally, given a function f = f(x1, ..., xn) of several variables, we have to

find the image set

f(X1, ..., Xn) = {f(x1, ..., xn) : x1 ∈ X1, ..., xn ∈ Xn} (3.16)

Interval Dependency

Consider the function

f(x) = x2

If X = [X1, X2] , it is evident that the set

f(X) = {x2 : x ∈ X} (3.17)

can be expressed as

f(X) =


[X2

1 , X
2
2 ], 0 ≤ X1 ≤ X2

[X2
2 , X

2
1 ], X1 ≤ X2 ≤ 0

[0,Max
{
X2

1 , X
2
2

}
], X1 < 0 < X2

(3.18)

We will use (3.17) as the definition of X2. This is not the same as X ·X. For instance

[−1, 1]2 = [0, 1], whereas [-1, 1]·[-1, 1] = [-1, 1]

However, [-1, 1] does contain [0, 1]. The overestimation when we compute a bound

on the range of X2 as X · X is due to the phenomenon of Interval Dependency.
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Namely, if we assume x is an unknown number known to lie in the interval X, then,

when we form the product x · x, the x in the second factor, although known only to

lie in X must be the same as the x in the first factor, whereas, in the definition of

the interval product X · X, it is assumed that the values in the first factor and the

values in the second factor vary independently.

Interval dependency is a crucial consideration when using interval computations. It

is a major reason why simply replacing floating point computations by intervals in

an existing algorithm is not likely to lead to satisfactory results

Monotonic Functions

For Monotonic functions i.e. either increasing or decreasing functions, the mapping

is done straight forward.

• Let f(x) be an increasing function and X = [X1, X2] be an Interval.

The function maps the interval X into the interval

f(X) = [f(X1), f(X2)] (3.19)

Let us take an example. As x varies through an interval X = [X1, X2] , the

exponential function

f(x) = ex x ∈ R

takes values from eX1 to eX2 since it is an Increasing function. That is, we can

define

eX = [eX1 , eX2 ] (3.20)

• Let f(x) be an decreasing function and X = [X1, X2] be an Interval.

The function maps the interval X into the interval

f(X) = [f(X2), f(X1)] (3.21)
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Let us take an example. As x varies through an interval X = [X1, X2] , the

function

f(x) = e−x x ∈ R

takes values from e−X2 to e−X1 since it is a Decreasing function. That is, we

can define

e−X = [e−X2 , e−X1 ] (3.22)

We should also note that some restrictions of a non-monotonic function could be

monotonic. The function f given by

f(x) = sinx x ∈ R

is not monotonic, but its restriction fA to the

Set A = [−π
2
, π
2
] is increasing, thus

sin(X) = [sinX1, sinX2] for X ⊆ [−π
2
,
π

2
] (3.23)

Similarly for Set B = [π
2
, 3π

2
] is decreasing, thus

sin(X) = [sinX2, sinX1] for X ⊆ [
π

2
,
3π

2
] (3.24)

3.5 Methods to Solve Interval Functions

Functions with Interval variables and Interval numbers are known as Interval functions.

There are several iterative methods to solve Interval functions like:

1. Interval Gauss – Seidal method

2. Interval Newton method

3. Krawczyk Method
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The most widely used method to solve Interval Linear equations is Interval Gauss –

Seidal method. While this may seem like a bad idea, the purpose of Gauss – Seidal

iterations here is not to solve the power flow problem, but to solve the linear –

equations that result from the Interval Newton Method and to do so with a little

conservatism as possible.

Interval Newton method is the most popular one, but it requires to invert an Interval

Matrix which is computationally expensive for higher orders. The next iteration of

Interval Newton Method is given by (3.25).

Xn+1 :=
(
m(Xn)− f(m(Xn))

f ′(Xn)

)
∩Xn (3.25)

Here calculation of 1
f ′(Xn)

is computationally expensive. So, therefore Krawczyk

Method is widely used for solving non-linear equations especially for power flow

equations. Krawczyk Method is described in the next section.

3.6 Krawczyk Method

We consider finite systems of non-linear equations of multiple variables.

f1(x1, x2, ......, xn) = 0

...

...

fn(x1, x2, ......, xn) = 0

Which we may write in vector notation as

f(x) = 0 (3.26)

Suppose that f in (3.11) is continuously differentiable in an open domain D. Suppose

that we can compute F and F ′ for f and f ′ defined on interval vectors X ⊆ D.
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Let Y be a non-singular real matrix approximating the inverse of the real Jacobian

matrix F ′(m(X)) with elements

F ′(m(X))ij =
∂fi(x)

∂xj
at x = m(X) (3.27)

Let y be a real vector contained in the interval vector X ⊆ D. Define g(y) = y−Y f(y).

Then, since Y is nonsingular, g(y) = y if and only if f(y) = 0. Thus, if there exists

an x ∈ X such that g(x) = x, i.e if there is a fixed point of g in x, then there is a

solution to f(x) = 0 in x. However, if by g′(y) we mean the Jacobian matrix of g at

y, then

g′(y) = I − Y f ′(y) (3.28)

Therefore, the mean value extension of g over X about the point y ∈ X is simply

y − Y f(y) + {I − Y F ′(X)}(X − y) = K(X) (3.29)

I being Identity Matrix with appropriate index.

Thus, K(X) must contain the range of g over X, i.e g(X) ⊆ K(X). Thus, if

K(X) ⊆ X, then g(X) ⊆ X, the hypotheses of the Schauder fixed-point theorem

hold, so g has a fixed point in X, so f(x) = 0 has a solution in X. Since K(X) ⊆ X ,

if f(x) has a solution in X then it also has in K(X).

In general for kth iteration

X(k+1) = X(k) ∩K(X(k)) (k = 1, 2, ......) (3.30)

where,

K(X(k)) = y(k) − Y (k)f(y(k)) + {I − Y (k)F ′(X(k))}Z(k) (3.31)

and

y(k) = m(X(k)), Z(k) = X(k) −m(y(k)) (3.32)
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where Y (k) is chosen as an approximation to [m(F ′(X(k)))]−1 i.e

Y (k) = [m(F ′(X(k)))]−1 (3.33)

Safe Starting Intervals

For any given trial box X(0), there are various things that can happen, including the

following:

1. K(X(0)) ⊂ int(X(0)) =⇒ convergence to the unique solution in X(0),

where int(X(0)) denotes the topological interior of the box X(0).

2. K(X(0)) ∩X(0) = Ø =⇒ no solution in X(0).

3. K(X(0)) ∩X(0) 6= Ø =⇒ no conclusion, but we can restart with

X
(0)
NEW = K(X(0)) ∩X(0).

4. K(X(0)) is not defined. In this case, we can bisect X(0) and process each half

separately.

K(X(0)) ⊂ int(X(0)) =⇒ there exists a unique solution to f(x)=0 in X only if f is

continuous over X.

Therefore a Safe Starting Interval is to be chosen similar to initial guess to be chosen

in Newton Raphson Method.

3.7 Load Flow Application

The Standard power flow equations can be expressed as

y = f(x)

z = g(x)
(3.34)

Where, f and g are functions and y, z and x are Intervals.

In general,

y = real and reactive power injections (inputs)

x = voltage magnitude and angles (state variables)
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z = line power flows (outputs)

The Krawczyk Method is applied to solve the set of equations y=f(x) to find the

states x and using these states line power flows are calculated.

Krawczyk Algorithm for solving Load Flow:

1. Create the admittance Y-Bus Matrix according to the line data given by the

IEEE standard bus test systems.

2. Find the load and generator data in the form of Intervals. Here the generation

and demands are taken as a variation of ±10% or ±20% depending upon the

system.

3. Write the power flow equations (Power Injections) in term of our unknown

variables.

4. Calculate the Jacobian F ′(X) of the power flow equations.

5. Take the initial starting intervals X(0) for the unknown variables. In general

voltages starting Interval can be taken as [0.9 , 1.1] pu and angle starting

interval can be taken as ±10◦ to ±15◦ depending upon the system.

6. After forming X(0) , find the y(0) = Mid(X(0)) and f(y(0)).

7. Calculate Y (0) as an approximate inverse of the matrix m(F ′(X(0))). Here we

are calculating inverse of an ordinary matrix but not an Interval matrix as

needed for Interval Newton method.

8. Calculate K(X(0)) = y(0) − Y (0)f(y(0)) + {I − Y (0)F ′(X(0))}Z(0).

9. Now find the next iteration value as X(1) = X(0) ∩K(X(0)). If the Intersection

is a null interval, then the starting Interval should be changed.

10. Repeat the iterations until the results no longer vary.

11. Use the obtained results find the required power flows and system details.

The algorithm will be demonstrated through an example as given below.
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3.7.1 Example to Demonstrate Krawczyk Method of Load

Flow

Consider a 2 Bus system with a generator and a load taken above in MC example.

Refer Fig 2.1 for the single line diagram. With 100 MVA base,

Taking the demand as ±20% variation, we get

PD = [0.8, 1.2] pu

QD = [0.4, 0.6] pu

The Power injection equations obtained for the given system are:

15.8V2 cos(108.43◦ − θ2) + 5V 2
2 + [0.8, 1.2] = 0 (3.35)

15V 2
2 − 15.8V2 sin(108.43◦ − θ2) + [0.4, 0.6] = 0 (3.36)

Taking the starting interval for V2 and θ2 as

V
(0)
2 = [0.9,1.1] pu and θ

(0)
2 = [-10◦ , 10◦] = [-0.1745 , 0.1745] rad

X(0) =

 [0.9, 1.1]

[−0.1745, 0.1745]

 , y = m(X(0)) =

1

0



F ′(X) =

15.8 cos(108.43◦ − θ2) + 10V2 15.8V2 sin(108.43◦ − θ2)
30V215.8 sin(108.43◦ − θ2) 15.8V2 cos(108.43◦ − θ2)

 (3.37)

F ′(X(0)) =

 [1.47786, 8.6837] [12.5051, 17.1922]

[11.3707, 19.1055] [−8.27435,−2.08467]

 (3.38)

m(F ′(X(0))) =

5.08078 14.8486

15.2381 −5.17951

 (3.39)
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Y (0) = [m(F ′(X(0)))]−1 =

0.0205063 0.0587876

0.0603295 −0.0201155

 (3.40)

f(y) =

[0.8, 1.2]

[0.4, 0.6]

 (3.41)

Substituting we get,

K(X(0)) =

 [0.869862, 1.03034]

[−0.1294, 0.0288568]

 (3.42)

The next iteration value

X(1) = X(0) ∩K(X(0)) =

 [0.9, 1.03034]

[−0.1294, 0.0288568]

 (3.43)

Repeating the process after updating the new voltage and angle for 7 iterations the

results obtained are

X(7) =

 [0.932196, 0.957736]

[−0.0685856,−0.0375379]

 (3.44)

Therefore, V2 = [0.932196 , 0.957736] pu

and θ2 = [-0.0685856 , -0.0375379] rad

Which mean that for a deviation of ±20% in the demands, the voltage V2 lies between

the values 0.932196 pu and 0.957736 pu and θ2 lies between the values -0.0685856 pu

and -0.0375379 pu.
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Summary

In this chapter, the basics of Interval Mathematics are discussed and the different

methods to solve Interval equations are stated. Krawczyk Method is explained

detailedly. The Krawczyk algorithm for solving load flow is stated and is demonstrated

with an example. The results for LF and OPF obtained on applying Krawczyk Method

for different test systems are shown in the next chapter.



Chapter 4

Simulation Results

The Krawczyk Method is used for solving the Load Flow for 2, 4 and 14 Bus systems.

The system is assumed to operate at normal conditions but all power demands may

vary within certain ranges rather than have precise values. The problem is to find

the voltages, angles and power flows in Intervals. The obtained results are compared

with that of Monte Carlo simulations. To perform a meaningful comparison against

interval methods, the solution results are characterized as an interval of ±3σ around

the mean.

Similarly the Krawczyk Method is used for solving the Optimal Power Flow for 3, 6

and 14 Bus systems. The problem is to find the voltages, angles and active/reactive

locational marginal costs in Intervals. The obtained results are compared with that

of Monte Carlo simulations.

4.1 Load Flow Results

4.1.1 2-Bus System

The single line diagram is shown in Fig. 3.1. The loads and generation are varied by

±20%. The results obtained are tabulated in Table 4.1.

42
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Variable Interval Arithmetic Monte Carlo

V2 (pu) [0.932196 , 0.957736] [0.935791 , 0.953406]

θ2 (rad) [-0.0685856 , -0.0375379] [-0.066204 , -0.039961]

Table 4.1: Comparison of Results of LF Obtained by IA and MC for 2-Bus
System

Clearly we can see that the results obtained by Interval Arithmetic method are

almost equal to that obtained from Monte Carlo simulations. The Power Flows in

the lines are computed using Interval Arithmetic method and are tabulated in Table

4.2.

Line P(pu) Q(pu)

1-2 [0.739460 , 1.334510] [0.315903 , 0.875014]

2-1 [-1.334641 , -0.698753] [-0.811572 , -0.206201]

Table 4.2: Power Flows for the 2-Bus System

4.1.2 4-Bus System

Krawczyk method is implemented on 4-Bus system. The single line diagram of the

4-bus system is shown in Fig.4.1, line data is given in Table 4.3 and bus data is given

in Table 4.4. The Q values of load are calculated from the corresponding P values

assuming a power factor of 0.85. The results obtained by implementing Krawczyk are

tabulated in Table 4.5. Table 4.5 also contains the results obtained by Monte Carlo

method for sake of comparison. It can be seen from Table 4.5 that Krawczyk method

give voltages and angles with slightly wider range than MC. However, the bounds

of voltages and angles obtained by Krawczyk encapsulated the bounds obtained

from MC. Hence, it is understood that Krawczyk will be overestimating the range.

However, the computation time is very less with Krawczyk. The power flows in the

lines are computed using Interval Arithmetic method and are tabulated in Table 4.6.
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Figure 4.1: Single Line Diagram of Four Bus System

From Bus To Bus R(pu) X(pu) Y/2(pu)

1 2 0.01008 0.05040 0.05125

1 3 0.00744 0.03720 0.03875

2 4 0.00744 0.03720 0.03875

3 4 0.01272 0.06360 0.06375

Table 4.3: Line Data of the 4-Bus System

Bus PG MW QG Mvar PD MW QD Mvar V pu Remarks

1 - - 50 30.9 1.00∠0 Slack Bus

2 0 0 170 105.35 - Load Bus

3 0 0 200 123.94 - Load Bus

4 318 - 80 49.58 1.02∠0 PV Bus

Table 4.4: Bus Data of the 4-Bus System
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Variable Interval Arithmetic Monte Carlo

V2 (pu) [0.979095 , 0.985748] [0.979810 , 0.984958]

V3 (pu) [0.964567 , 0.973441] [0.965663 , 0.972337]

θ2 (rad) [-0.032858 , -0.001224] [-0.026579 , -0.007441]

θ3 (rad) [-0.045563 , -0.019790] [-0.040504 , -0.024794]

θ4 (rad) [0.006301 , 0.046847] [0.013589 , 0.039643]

Table 4.5: Comparison of Results of LF Obtained by IA and MC for 4-Bus
System

Line P(pu) Q(pu)

1-2 [0.077269 , 0.699591] [0.097109 , 0.353055]

2-1 [-0.704288 , -0.074227] [-0.448251 , -0.171603]

1-3 [0.631681 , 1.334366] [0.423499 , 0.804274]

3-1 [-1.337, -0.616548] [-0.845152 , -0.422257]

2-4 [-2.287821 , -0.359864] [-1.053494 , -0.395703]

4-2 [0.326120 , 2.328652] [0.412521 , 1.120482]

3-4 [-1.558144 , -0.511202] [-0.805956 , -0.386738]

4-3 [0.496793 , 1.592599] [0.356715 , 0.800234]

Table 4.6: Power Flows for the 4-Bus System

4.1.3 14-Bus System

Krawczyk method is implemented on 14-Bus system. The single line diagram, bus

data and line data are given in Appendix A. The results obtained by implementing

Krawczyk are tabulated in Table 4.7. Table 4.7 also contains the results obtained by

Monte Carlo method for the sake of comparison.
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Variable Interval Arithmetic Monte Carlo

V4 (pu) [1.023734 , 1.030410] [1.025837 , 1.028223]

V5 (pu) [1.030334 , 1.036422] [1.032197 , 1.034223]

V7 (pu) [1.041958 , 1.048523] [1.043888 ,1.046512]

V9 (pu) [1.022803 , 1.033271] [1.025614 , 1.030352]

V10 (pu) [1.022587 , 1.033173] [1.025695 , 1.029925]

V11 (pu) [1.041932 , 1.048299] [1.043935 , 1.046205]

V12 (pu) [1.051237 , 1.054859 [1.052231 , 1.053849]

V13 (pu) [1.043676 , 1.048911] [1.045072 , 1.047488]

V14 (pu) [1.011664 , 1.023722] [1.013854 , 1.021446]

θ2 (rad) [-0.138105 , -0.074855] [-0.110582 , -0.099734]

θ3 (rad) [-0.256852 , -0.193871] [-0.252996 , -0.221153]

θ4 (rad) [-0.207151 , -0.160099] [-0.205124 , -0.186692]

θ5 (rad) [-0.179311 , -0.138308] [-0.177358 , -0.162210]

θ6 (rad) [-0.288904 , -0.230535] [-0.283995 , -0.263257]

θ7 (rad) [-0.261926 , -0.207883] [-0.260072 , -0.238830]

θ8 (rad) [-0.261926 , -0.207883] [-0.260072 , -0.238830]

θ9 (rad) [-0.293250 , -0.233069] [-0.289207 , -0.265961]

θ10 (rad) [-0.298043 , -0.236902] [-0.293267 , -0.270338]

θ11 (rad) [-0.295699 , -0.235504] [-0.290595 , -0.268843]

θ12 (rad) [-0.305476 , -0.243300] [-0.299182 , -0.277488]

θ13 (rad) [-0.306062 , -0.243391] [-0.299780 , -0.277638]

θ14 (rad) [-0.319235 , -0.253200] [-0.312578 , -0.288316]

Table 4.7: Comparison of Results of LF Obtained by IA and MC for 14-Bus
System

The Power Flows in the lines are computed using Interval Arithmetic method and

are tabulated in Table 4.8.
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Line P(pu) Q(pu)

1-2 [1.35941 , 2.45973] [-0.501965 , -0.040139]

2-1 [-2.41851 , -1.26332] [0.081562 , 0.769372]

1-5 [0.674082 , 0.880017] [-0.0783791 , 0.025209]

5-1 [-0.862523 , -0.635865] [-0.012586 , 0.176351]

2-3 [0.302324 , 1.00282] [-0.149546 , 0.218321]

3-2 [-0.985515 , -0.285886] [-0.217662 , 0.208336]

2-4 [0.112877 , 0.808763] [-0.268947 , 0.150098]

4-2 [-0.802773 , -0.100738] [-0.175107 , 0.276407]

2-5 [-0.015633 , 0.649148] [-0.248445 , 0.137313]

5-2 [-0.646655 , 0.020192] [-0.17145 7, 0.234044]

3-4 [-0.610927 , 0.099544] [-0.2721 , 0.254076]

4-3 [-0.096235 , 0.613722] [-0.269076 , 0.239022]

4-5 [-1.85004 , 0.615864] [-0.803126 , 0.909793]

5-4 [-0.605742 ,1.84689] [-0.883226 , 0.782431]

4-7 [-0.00945391 , 0.537785] [-0.226983 , 0.050145]

7-4 [-0.545379 , 0.016251] [-0.049821 , 0.258843]

4-9 [0.042458 , 0.262303] [-0.057995 , 0.062533]

9-4 [-0.265346 , -0.040922] [-0.058526 , 0.079053]

5-6 [0.219503 , 0.663725] [-0.232947 , -0.030082]

6-5 [-0.673936 , -0.209032] [0.054276 , 0.312137]

6-11 [-0.278925 , 0.444631] [-0.20029 , 0.390829]

11-6 [-0.437286 , 0.273616] [-0.384176 , 0.198418]

6-12 [-0.19976 , 0.364748] [-0.198105 , 0.260524]

12-6 [-0.36206 , 0.198181] [-0.258887 , 0.199829]

6-13 [-0.367588 , 0.741915] [-0.359313 , 0.559809]

13-6 [-0.733182 , 0.362398] [-0.552545 , 0.36167]

7-8 [-0.363711 , 0.358552] [-0.45367 , -0.081820]

8-7 [-0.372521 , 0.378099] [0.086062 , 0.471616]

7-9 [-0.326813 , 0.895459] [-0.196438 , 0.523567]

9-7 [-0.89135 , 0.319993] [-0.523509 , 0.217368]

9-10 [-0.866513 , 0.963529] [-0.766126 , 0.731221]

10-9 [-0.965147 , 0.868258] [-0.734021 , 0.769383]
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Line P(pu) Q(pu)

9-14 [-0.20188 , 0.38287] [-0.254114 , 0.247175]

14-9 [-0.382812 , 0.203239] [-0.247806 , 0.259137]

10-11 [-0.438871 , 0.348499] [-0.400614 , 0.251878]

11-10 [-0.353361 , 0.444692] [-0.254808 , 0.405873]

12-13 [-0.251434 , 0.290026] [-0.263023 , 0.292585]

13-12 [-0.288519 , 0.250124] [-0.291039 , 0.261661]

13-14 [-0.164895 , 0.295419] [-0.142782 , 0.252186]

14-13 [-0.290385 , 0.161485] [-0.247427 , 0.142089]

Table 4.8: Power Flows for the 14-Bus System

For better comparison, a plot is made for the voltages of 14-Bus System, obtained

by Interval Arithmetic and Monte Carlo and is shown in Fig.4.2. The Simulation

times are tabulated in Table 4.9. Calculations are performed in Mathematica using

Intel(R) Core(TM) i5-3337U CPU @ 1.80 GHz.

Clearly by Fig.4.2 and Table 4.9 we can observe that the results of Interval method

encloses the results of Monte Carlo method and the time required for Interval

Arithmetic is much lesser than Monte Carlo. This demonstrates the validity of the

krawczyk method. The Intervals obtained by both the methods are almost similar.

This makes Interval Arithmetic methods superior than Probabilistic methods which

require much computational time for real time calculations.

Interval Arithmetic
Monte Carlo(10,000)

samples

2 Bus 0.15 s 4.84 s

4 Bus 2.08 s 13.09 s

14 Bus 3.6 s 99.78 s

Table 4.9: Computational Time for LF taken by Different Methods for Different
Systems
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Figure 4.2: Comparison of Bus Voltages of LF using IA and MC Method for
14-Bus

4.2 OPF Results

4.2.1 3-Bus System

Consider a 3-Bus system given in Fig. 4.3. The series impedance of each line is given

in Table 4.10. The cost functions of the generators are given by

F (Pg1) = 50P 2
g1

+ 351Pg1 + 44.4 Rs/h

F (Pg2) = 50P 2
g1

+ 389Pg1 + 40.6 Rs/h
(4.1)

Line No From Bus To Bus Z(pu) YSH(pu)

1 1 2 0.02+j 0.08 j 0.02

2 1 3 0.02+j 0.08 j 0.02

3 2 3 0.02+j 0.08 j 0.02

Table 4.10: Line Data for 3-Bus System

Bus data for the system is given in Table 4.11.
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Figure 4.3: Single Line Diagram of 3-Bus System

Bus PG QG PD QD V θ Type

1 - - 0.2 0.1 1.04 0◦ Slack

2 - - 0 0 1.04 - PV

3 0 0 1.5 0.6 - - PQ

Table 4.11: Bus Data for 3-Bus System in per unit

For the system given above, IA and MC methods are applied with the demand

varying by ±10% from the nominal values given in Table 4.11. Obtained results are

tabulated in Table 4.12. Clearly we can see that the results obtained by Interval

Arithmetic method are almost equal to that obtained from Monte Carlo simulations.
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Variable Interval Arithmetic Monte Carlo

Pg1 [0.95951 , 1.13582] [0.969955 , 1.12561]

Pg2 [0.59078 , 0.76521] [0.600268 , 0.755974]

V3 [0.99686 , 1.00559] [0.99811 , 1.00434]

θ2 [-0.00499 , -0.00398] [-0.0049883 , -0.00398246]

θ3 [-0.06107 , 0.04795] [-0.0604123 , -0.0486355]

λP1 [446.95139 , 464.58173] [447.996 , 463.561]

λP2 [448.07845 , 465.52137] [449.027 , 464.597]

λP3 [459.64233 , 480.83314] [460.769 , 479.744]

λQ3 [5.14893 , 7.00213] [5.39327 , 6.76161]

Table 4.12: Comparison of Results of OPF Obtained by IA and MC for 3-Bus
System

4.2.2 6-Bus System

Krawczyk method is implemented for solving OPF on 6-Bus system. The single line

diagram of the 6-bus system is shown in Fig.4.4, bus data and line data are given in

Table 4.13 and Table 4.14. The generator cost function coefficients are given in Table

4.15. The results obtained by implementing Krawczyk method OPF are tabulated in

Table 4.16. Table 4.16 also contains the results obtained by Monte Carlo method for

sake of comparison.

Figure 4.4: Single Line Diagram of 6-Bus System
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Bus PG MW QG Mvar PD MW QD Mvar V pu Remarks

1 - - 0 0 1.05∠0 Slack Bus

2 50 - 0 0 1.05 PV Bus

3 60 - 0 0 1.07 PV Bus

4 0 0 70 70 - Load Bus

5 0 0 70 70 - Load Bus

6 0 0 70 70 - Load Bus

Table 4.13: Bus Data of the 6-Bus System

From Bus To Bus R(pu) X(pu) Y/2(pu)

1 2 0.1 0.2 0.02

1 4 0.05 0.2 0.02

1 5 0.08 0.3 0.03

2 3 0.05 0.25 0.03

2 4 0.05 0.1 0.01

2 5 0.10 0.3 0.02

2 6 0.07 0.2 0.025

3 5 0.12 0.26 0.025

3 6 0.02 0.1 0.01

4 5 0.2 0.4 0.04

5 6 0.1 0.3 0.03

Table 4.14: Line Data of the 6-Bus System

Bus No.
ai

($/MW 2-h)
bi

($/MW-h)
ci ($/h)

1 0.0107 11.669 213.1

2 0.0178 10.333 200

3 0.0148 10.833 240

Table 4.15: Generator cost functions of the 6-Bus System

A plot for λP is plotted for both IA and MC.
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Variable Interval Arithmetic Monte Carlo

Pg1 [0.53615 , 0.71146] [0.57340 , 0.67428]

Pg2 [0.70932 , 0.83436] [0.73712 , 0.80664]

Pg3 [0.69606 , 0.84684] [0.72904 , 0.81392]

V4 [0.98002 , 0.99507] [0.98255 , 0.99249]

V5 [0.97557 , 0.99399] [0.97903 , 0.99013]

V6 [0.99784 , 1.01162] [1.00022 , 1.00902]

θ2 [-0.02507 , -0.01595] [-0.02291 , -0.01812]

θ3 [-0.02589 , -0.01478] [-0.02369 , -0.01699]

θ4 [-0.05277 , -0.03531] [-0.04928 , -0.03878]

θ5 [-0.06674 , -0.04614] [-0.06244 , -0.05039]

θ6 [-0.06501 , -0.04602] [-0.06212 , -0.04885]

λP1 [1281.63668 , 1319.15183] [1289.61 , 1311.2]

λP2 [1285.81943 , 1330.33266] [1295.71 , 1320.46]

λP3 [1289.33319 , 1333.96565] [1299.09 , 1324.22]

λP4 [1329.41620 , 1385.26449] [1341.27 , 1373.44]

λP5 [1336.28161 , 1395.32266] [1349.52 , 1382.24]

λP6 [1318.32629 , 1372.17489] [1330.18 , 1360.34]

λQ4 [44.23977 , 61.01161] [46.7915 , 58.5364]

λQ5 [44.86809 , 63.77498] [48.4752 , 60.622]

λQ6 [27.35041 , 38.16358] [29.348 , 36.3171]

Table 4.16: Comparison of Results of OPF Obtained by IA and MC for 6-Bus
System

Figure 4.5: Comparison of λP of OPF using IA and Monte Carlo for 6-Bus
System
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4.2.3 14-Bus System

Similarly the method is applied to IEEE 14 Bus system with the demand as ±10%

variation. The results obtained by implementing Krawczyk method OPF are tabulated

in Table 4.17. Table 4.17 also contains the results obtained by Monte Carlo method

for sake of comparison.The single line diagram, bus data and line data are given in

Appendix A.

Variable Interval Arithmetic Monte Carlo

Pg1 [2.04875 , 2.52592] [2.18265 , 2.39393]

Pg2 [0.38782 , 0.48422] [0.41478 , 0.45764]

V4 [1.02382 , 1.03033] [1.02586 , 1.02823]

V5 [1.03043 , 1.03635] [1.03239 , 1.03434]

V7 [1.04216 , 1.04833] [1.04397 , 1.0465]

V9 [1.02318 , 1.03291] [1.02579 , 1.03029]

V10 [1.02303 , 1.03275] [1.02586 , 1.02993]

V11 [1.04223 , 1.04801] [1.04402 , 1.04623]

V12 [1.05126 , 1.05483] [1.05223 , 1.05387]

V13 [1.04374 , 1.04886] [1.04507 , 1.04752]

V14 [1.01190 , 1.02349] [1.01384 , 1.0215]

θ2 [-0.09393 , -0.07537] [-0.08897 , -0.08038]

θ3 [-0.24307 , -0.19439] [-0.23377 , -0.20371]

θ4 [-0.19878 , -0.16058] [-0.18805 , -0.17155]

θ5 [-0.17123 , -0.13875] [-0.16177 , -0.14841]

θ6 [-0.28554 , -0.23118] [-0.26785 , -0.24923]

θ7 [-0.25849 , -0.20846] [-0.24329 , -0.22404]

θ8 [-0.25849 , -0.20846] [-0.24329 , -0.22404]

θ9 [-0.28978 , -0.23371] [-0.27260 , -0.25132]

θ10 [-0.29465 , -0.23748] [-0.27673 , -0.25582]

θ11 [-0.29229 , -0.23614] [-0.27425 , -0.25458]

θ12 [-0.30209 , -0.24396] [-0.28301 , -0.26343]

θ13 [-0.30267 , -0.24404] [-0.28359 , -0.26354]

θ14 [-0.31579 , -0.25385] [-0.29618 , -0.27399]
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Variable Interval Arithmetic Monte Carlo

λP1 [3763.12317 , 4173.77052] [3878.36 , 4060.18]

λP2 [3939.08749 , 4421.11070] [4073.93 , 4288.19]

λP3 [4201.38478 , 4800.13347] [4359.68 , 4643.95]

λP4 [4123.41636 , 4684.90918] [4283.39 , 4527.57]

λP5 [4068.20498 , 4605.39246] [4221.90 , 4454.14]

λP6 [4074.25319 , 4617.37581] [4230.55 , 4463.48]

λP7 [4118.34825 , 4682.19340] [4279.35 , 4523.87]

λP8 [4118.34825 , 4682.19340] [4279.35 , 4523.87]

λP9 [4117.01964 , 4682.10932] [4278.53 , 4523.30]

λP10 [4130.07349 , 4701.24421] [4294.71 , 4539.24]

λP11 [4113.54080 , 4675.93529] [4276.13 , 4515.88]

λP12 [4131.93743 , 4699.81268] [4297.93 , 4536.38]

λP13 [4150.06837 , 4726.30709] [4318.71 , 4560.31]

λP14 [4209.05156 , 4814.76095] [4387.56 , 4639.47]

λQ4 [-8.69574 , 3.29258] [-4.9014 , -0.476941]

λQ5 [-6.89507 , 4.64372] [-3.22041 , 1.01942]

λQ7 [13.12509 , 26.22387] [17.4024 , 21.9643]

λQ9 [33.34188 , 55.82834] [40.6085 , 48.5857]

λQ10 [42.30293 , 68.06842] [50.9364 , 59.432]

λQ11 [28.92796 , 45.85289] [34.8104 , 39.9701]

λQ12 [17.30552 , 27.26385] [20.571 , 23.9863]

λQ13 [34.22336 , 51.82809] [38.919 , 47.066]

λQ14 [62.03185 , 95.77303] [65.9238 , 91.9541]

Table 4.17: Comparision of Results of OPF Obtained by IA and MC for 14-Bus
System
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Figure 4.6: Comparison of λP of OPF using IA and Monte Carlo for 14-Bus
System

Interval Arithmetic
Monte Carlo (1000)

samples

3 Bus 3.12 s 7.63 s

6 Bus 3.35 s 34.33 s

14 Bus 7.95 s 70.86 s

Table 4.18: Computational Time for OPF taken by Different Methods for
Different Systems

For better comparison, a plot is made for the λP of 6-Bus System and 14-Bus System,

obtained by Interval Arithmetic and Monte Carlo and is shown in Fig.4.5 and Fig.4.6

respectively. The Simulation times are tabulated in Table 4.18. Calculations are

performed in Mathematica using Intel(R) Core(TM) i5-3337U CPU @ 1.80 GHz.

Clearly by Fig.4.6 we can observe that the results of Interval method encloses the

results of Monte Carlo method.

Summary

In this chapter, the results obtained on applying Interval Arithmetic and MC methods

for different systems are shown. The results are compared using plots. The results

obtained by IA are almost close to that obtained by the MC, which makes Interval

Arithmetic method superior to MC method.
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Conclusions

Load Flow plays a major role in any power system study. The results obtained by

load flow are used for power system analysis and planning. Load flow is used to solve

only for fixed values of inputs. But in practical cases, the demands, generations and

voltages are not certain. Many Probabilistic Methods like Monte Carlo Simulation

methods are used to solve power flow problem with uncertainty. But the main

drawback is the time required for the solution to converge. Interval methods can

deal with uncertain input data in power flow problems. If input data vary within

relatively small ranges, good results that contain all possible solutions are obtained.

The results obtained by Interval methods are almost close to that obtained by the

Monte Carlo and the time required is much less compared to that of Monte Carlo

method’s simulation time. This makes Interval Methods a powerful tool to solve

power flow problems with uncertainty in practical situations. The Krawczyk Method

(Interval Method) is tested successfully for solving Load Flow for 2, 4 and 14 Bus

systems and the results are shown.

Similarly the topic is extended to Optimal Power Flow.The Krawczyk Method (In-

terval Method) is tested successfully for solving OPF for 3, 6 and 14 Bus systems

comparing the results with those obtained by Monte Carlo simulations. One impor-

tant conclusion of this work was that Interval analysis can substitute the repeated

simulations required by Monte Carlo method.
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14 Bus System data

Figure A.1: Single Line Diagram of 14-Bus System
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From Bus To Bus R(pu) X(pu) Y/2(pu)

1 2 0.01938 0.05917 0.0528

1 5 0.05403 0.22304 0.0492

2 3 0.04699 0.19797 0.0438

2 4 0.05811 0.17632 0.0374

2 5 0.05695 0.17388 0.034

3 4 0.06701 0.17103 0.0346

4 5 0.01335 0.04211 0.0128

4 7 0.00 0.20912 0.00

4 9 0.00 0.55618 0.00

5 6 0.00 0.25202 0.00

6 11 0.09498 0.1989 0.00

6 12 0.12291 0.25581 0.00

6 13 0.06615 0.13027 0.00

7 8 0.00 0.17615 0.00

7 9 0.00 0.11001 0.00

9 10 0.03181 0.08450 0.00

9 14 0.12711 0.27038 0.00

10 11 0.08205 0.19207 0.00

12 13 0.22092 0.19988 0.00

13 14 0.17093 0.34802 0.00

Table A.1: Line Data of 14-Bus System

Bus No.
ai

($/MW 2-h)
bi

($/MW-h)
ci ($/h)

1 0.0430293 20 0

2 0.2500 20 0

Table A.2: Generator cost functions of the 14-Bus System
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Bus PG pu QG pu PD pu QD pu V pu Remarks

1 2.324 -0.169 0 0 1.06∠0 Slack Bus

2 0.4 - 0.217 0.127 1.045 PV Bus

3 0 - 0.942 0.19 1.01 PV Bus

4 0 0 0.478 -0.039 - PQ Bus

5 0 0 0.076 0.016 - PQ Bus

6 0 - 0.112 0.075 1.07 PV Bus

7 0 0 0 0 - PQ Bus

8 0 - 0 0 1.09 PV Bus

9 0 0 0.295 0.166 - PQ Bus

10 0 0 0.09 0.058 - PQ Bus

11 0 0 0.035 0.018 - PQ Bus

12 0 0 0.061 0.016 - PQ Bus

13 0 0 0.135 0.058 - PQ Bus

14 0 0 0.149 0.05 - PQ Bus

Table A.3: Bus Data of the 14-Bus System
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