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ABSTRACT

KEYWORDS: NEGF; mode-space; semi-classical; quantum; Fourier’s Law.

Conventional Silicon Metal Oxide Field Effect Transistors(MOSFETs) have reached

their scaling limits. For more than a decade now researchers in both industry and

academia have been working on alternative materials like high-K/metal gate combi-

nation, compound semiconductors, viz. GaAs, GaN as substrate. As an alternative

substrate research groups are also looking at 2D material like Graphene, XS2.

There has been a simultaneous effort to explore alternative architecture like the Fin-

FETs and other multiple gate transistors like Silicon Nanowire Transistor(SNWT). The-

oretically SNWT has been explored extensively in the last decade because of its better

control over the channel. The objective of this thesis is to present the physics that

governs the functioning of a SNWT, through numerical simulations. A three dimen-

sional self consistent SNWT simulator has been developed based on the effective mass

approximation to study different transport mechanisms.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since the invention of MOS transistors semiconductor industry has grown rapidly

and led to the Information Technology revolution which has changed our lives and the

whole world. The main reason behind this is the increase in the speed of the transistors

and hence the Integrated Circuits(ICs).

The above mentioned speed gain is basically achieved by scaling down the size of

the transistors proportionately [1]. When transistors are scaled down, the charge carri-

ers need lesser time to go from source to drain, resulting in an increase in the switch-

ing speed. They also encounter lower scattering as compared to long channel devices.

Present day SOI devices face even lower scattering because of volume inversion [2].

Gordon Moore had predicted that the number of transistors on an integrated circuit chip

would double after every two years and device engineers have explored alternative ma-

terials and alternative architecture to make sure that the scaling trend continues. This

has resulted in packaging more transistors per unit area of a die which leads to faster

communication between transistors. Figure 1.1 (courtesy[3]) shows various architec-

tures that are being considered to continue Moore’s law.

Scaling, however, comes at the cost of short channel effects like threshold voltage(VT )

roll-off and Drain Induced Barrier Lowering(DIBL)[4]. Basically, the reduced channel

length decreases the control of gate over the channel and the source-drain electric field

becomes significant when compared to the transverse electric field. SOI MOSFETs are

a good alternative to bulk transistors, however, in nanoscale regime the scaling capabil-

ity and hence the performance of both planar bulk or SOI MOSFETs are limited due to

increased leakage and SCEs. Low mobility of Silicon when compared to other materials

is another limiting factor.

In order to overcome the above mentioned limitations, researchers have used a high-

K dielectric/metal gate combination to reduce leakage current; different channel mate-



rials like Si on Ge to increase mobility and other 2D materials like graphene. Sev-

eral research groups have, however, shown confidence in the existing Silicon tech-

nology and developed alternative architecture like Double Gate Field Effect Transis-

tors(DGFETs), FinFETs(a triple gate non-planar FET), Gate All Around Field Effect

Transistors(GAAFETs).

Figure 1.1: Transistor Architectures for present and future generations

Progress in the nanofabrication technology has paved a way for the use of silicon

nanowire in present and future generation electronics [5]. Due to the various possibili-

ties in device architecture and their design, physics based modelling is very important.

Several groups have worked on modelling quantum transport in SNWTs using different

mathematical framework like NEGF [5] [6] [7] [8] [9], Pauli master equation method

or Wigner function method, etc.

The main objective of this thesis is to explore the device physics of silicon nanowire

transistors through computer-based numerical simulations in the NEGF framework.

The developed simulation tool is then used to study the effects of self-heating on the

device characteristics.

1.2 Device, its Physics and the simulation technique

1.2.1 The Device

Figure 1.2 shows the device (courtesy[10]) for which the simulation tool is built. A

SOI substrate is surrounded by insulator/gate from four sides i.e there are four gates,

which are expected to increase the control of gate over the channel and reduce leakage.
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The source and drain regions are doped heavily. The channel is undoped which makes

it fully depleted, which is supposed to increase the mobility of charge carriers and get

rid of any floating body effects [2].

Figure 1.2: Design of Silicon Nanowire Transistor

1.2.2 Physics involved

The semi-classical theory and simulations involve solving Boltzmann Transport

Equation with few or more approximations. However, in the nanoregime these approx-

imations are no longer valid and hence it’s essential to look at the problem quantum

mechanically [11] [12]. Quantum approach considers the structural confinement of the

charge carriers, interference faced by the wave associated with them, tunneling, etc

which are not considered in the semi-classical model [13]. Therefore, it becomes nec-

essary to solve 3D Poisson’s and 3D Schrodinger’s equation self-consistently for this

three dimensional device .

However, solving both Poisson’s and Schrodinger’s in real space is both time con-

suming and requires huge memory. Therefore, only Poisson’s equation is solved in

real space while Schrodinger’s equation is solved in mode-space [14] which changes

the three dimensional problem to a combination of two dimensional confinement and

one dimensional transport. The two dimensional confinement is considered in all cases,

however, the one dimensional transport can be dealt either semi-classically or quantum

mechanically.

3



1.2.3 Self-Consistent simulation scheme

Schrodinger’s equation describes the distribution of charge but it needs the potential

inside the device which is obtained from Poisson’s equation which itself depends on the

charge distribution. Therefore, we have a coupled problem and a self-consistent solution

in required. Figure 1.3 presents the simulation procedure followed for modelling the

SNWT.

 

 

|фi-фi+1| <𝜀 

Guess  charge 

Calculate potential for the 
charge 

Solve 2D Schrodinger’s 
equation to get subbands  

In each subband calculate 
the charge  

Solve 3D Poisson’s equation 
for the net charge 

distribution 

Calculate transmission, 
current in the device  

Yes 

No 

фi 

фi+1 

фi = фi+1 

Figure 1.3: Flow chart of the self-consistent simulation scheme followed in the simula-
tor

1.3 Overview of the thesis

1) Chapter 2 begins with a brief introduction of the Poisson’ and Schrodinger’s

equation in mode-space and their solution method. It is followed by a discussion on

Ballistic transport in both semi-classical and quantum domain. The chapter ends with a

4



discussion on the validity of the semi-classical approach.

2) Chapter 3 deals with dissipative transport. The drift-diffusion model is briefly

discussed. It is followed by a discussion on modelling scattering quantum mechanically

through a phenomenological method, namely, the Buttiker’s probe.

3) In Chapter 4, using the Buttiker’s probe scattering model an effort is made to un-

derstand device characteristics under thermal simulation. For this another phenomeno-

logical method, Fourier’s law, is employed.

4) The thesis is concluded in Chapter 5. This chapter ends with a discussion on

some of the possibilities for future work.
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CHAPTER 2

Quantum effects and ballistic transport

For transistors operating in the nanoregime, transport may be ballistic as source

to drain length becomes smaller than the mean free path. For any transistor, ballistic

current sets the upper limit because charge carriers injected from both the contacts once

inside the channel flow without any scattering.

The charge injected into the channel depends on the contact to channel barrier

height. If the barrier is significantly higher charge carriers are scattered back into the

contacts from top of the barrier. Higher gate voltage lowers the barrier height, thereby,

reducing the back-scattering, resulting in more charge injection in the channel from

both the contacts. But the current in the device also depends on the relative velocity

of charge carriers. For high gate bias and low drain bias, comparable charge carriers

are injected into the channel from both contacts resulting in lower current. For higher

drain bias charge carriers are injected mostly from the source contact as the carriers

from drain face a larger barrier irrespective of the gate voltage leading to a higher drain

current[15][16]. However, this description is semi-classical and the current obtained

from the above model for channel lengths below 10nm is lower than that observed,

since there are significant quantum phenomena like tunneling and interference involved

in the nano-scale which are not included in the mechanism defined above.

Irrespective of the transport mechanism, channel electrostatics is defined by the

Poisson’s equation. To estimate the charge in the channel three dimensional Poisson

equation must be solved numerically.

2.1 Poisson’s Equation

Poisson’s equation relates the electrostatic potential and charge distribution and is

defined as

∇(ε∇Φ) = −ρ (2.1)



where ρ = q(p + N+
d − n − N−a ) but the device under consideration has an undoped

channel while the source and drain are doped with donor type impurities, and the hole

concentration is negligible, hence, ρ = q(N+
d − n) in the source and drain regions and

ρ = −qn in the channel; Φ is the unknown potential, ε is the dielectric constant of the

medium which is equal to εsi in silicon and εins in the insulator. ε on the interface has

to be looked at separately.

Using the finite difference method, equation 2.1 becomes

2Φm,n,p − Φm−1,n,p − Φm+1,n,p

(∆x)2 +
2Φm,n,p − Φm,n−1,p − Φm,n+1,p

(∆y)2

+
2Φm,n,p − Φm,n,p−1 − Φm,n,p+1

(∆z)2 =
ρ

ε
(2.2)

The electron density term in ρ depends on the potential Φ and the Quasi-Fermi level

which is defined as

F = −qΦ + kBT=−1
1/2(n/Nc)

therefore

n = Nc=1/2(F + qΦ)

But the Quasi-Fermi level is obtained only after the potential is known, hence this

becomes a coupled problem in itself. Therefore, an iterative scheme is employed here.

For the potential of the previous iteration a Quasi-Fermi is defined leading to electron

density equation as

n = Nc=1/2

(
−qΦold + kBT=−1

1/2(nold/Nc) + qΦnew

kBT

)
(2.3)

This results in a non-linear equation in just one variable Φ. In order to solve this

non-linear equation Newton-Raphson’s method is used. But before that the boundary

conditions must be incorporated in the equation.

2.1.1 Boundary Conditions

Metallic Gate boundary: The potential is set equal to the gate voltage. Φ = Vg
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Oxide-vacuum interface: In order to make sure that electrons don’t leak outside

the device at the non-contacts Neumann’s boundary condition is imposed i.e

n.∇Φ = 0

Semiconductor/oxide metallic source/drain interface: The source and drain are

heavily doped but are not metal. Electrons in case of ballistic transport are under non-

equilibrium and are supplied by diffusion current so in order to ensure that no drift

current flows from contacts into the device Neumman’s boundary condition is imposed

at these contacts i.e.

n.∇Φ = 0

Semiconductor oxide interface: The value of dielectric constant ε is not defined at

the interface. This is dealt by considering a finite element method based on flux balance

on a finite volume which reduces to Gauss’ law for steady-state conditions[12].

Qenclosed = ε

∮
E.dS

Now assuming an imaginary cuboid of volume ∆x∆y∆z centered at every grid

point on the interface. The cuboid is divided into eight mini-cuboids each representing

a different material and hence a different ε. Finally using the flux balance method get

(∆x∆y∆z)nn,m,p =
1

4

[
−Φm,n,p

(
∆y∆z

∆x
+

∆x∆z

∆y
+

∆x∆y

∆z

)( 8∑
i=1

εi

)
+

Φm+1,n,p(ε1 + ε4 + ε5 + ε8)
∆y∆z

∆x
+ Φm−1,n,p(ε2 + ε3 + ε5 + ε7)

∆y∆z

∆x
+

Φm,n+1,p(ε1 + ε2 + ε5 + ε6)
∆x∆z

∆y
+ Φm,n−1,p(ε3 + ε4 + ε7 + ε8)

∆x∆z

∆y
+

Φm,n,p+1(ε1 + ε2 + ε3 + ε4)
∆x∆y

∆z
+ Φm,n,p−1(ε5 + ε6 + ε7 + ε8)

∆x∆y

∆z

]

This equation reduces to equation 2.2 εi is set to the appropriate value i.e. εSi or

εins
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2.1.2 Solving the equation

Once the boundary conditions are incorporated in the Poisson’s equation, the next

step is to solve this non-linear equation using the Newton-Raphson’s method. The

equation is given as:

fα =
1

4

[
−Φm,n,p

(
∆y∆z

∆x
+

∆x∆z

∆y
+

∆x∆y

∆z

)( 8∑
i=1

εi

)
+

Φm+1,n,p(ε1 + ε4 + ε5 + ε8)
∆y∆z

∆x
+ Φm−1,n,p(ε2 + ε3 + ε6 + ε7)

∆y∆z

∆x
+

Φm,n+1,p(ε1 + ε2 + ε5 + ε6)
∆x∆z

∆y
+ Φm,n−1,p(ε3 + ε4 + ε7 + ε8)

∆x∆z

∆y
+

Φm,n,p+1(ε1 + ε2 + ε3 + ε4)
∆x∆y

∆z
+ Φm,n,p−1(ε5 + ε6 + ε7 + ε8)

∆x∆y

∆z

]

−(∆x∆y∆z)nn,m,p (2.4)

Solving fα means putting fα = 0 to get a value of potential. This, however, is not

straight forward and is carried out iteratively by linearizing the equation about some x0

according to

f(x0 + h) ≈ f(x0) + f ′(x0) ∗ h

Now putting f(x0 + h) = 0 results in h = −f(x0)/f ′(x0). Therefore,

fα(Φnew) ≈ fα(Φold) + fα,β(Φold) ∗ (Φnew−Φold)

where

fα,β = ∂fα/∂Φβ

is the Jacobian matrix consisting of all the first order derivative of fα with respect to

every other grid voltage Φβ . Therefore,

∆Φ = − fα(Φold)/fα,β(Φold) (2.5)

9



2.2 Schrodinger’s Equation

Schrodinger’s equation must be solved in order to incorporate any quantum effect.

It dictates the charge distribution in the device. The time-dependent Schrodinger’s wave

equation is

ih̄
∂Ψ

∂t
= − h̄

2

2
∇
(

1

m
∇Ψ

)
+ UΨ (2.6)

where U is the potential energy term.

But as stationary solutions are desired here, equation 2.6 reduces to

− h̄
2

2
∇
(

1

m
∇Ψ

)
+ UΨ = EΨ (2.7)

It is, however, unrealistic to find an explicit solution for the stationary Schrodinger’s

equation. The solutions are instead expressed in terms of known basis functions. Every

simulator that solves a Schrodinger’s equation uses some basis function, hence it’s the

choice of the basis function that makes each simulator unique.

Since the system is composed of atoms the first choice would be the atomic orbital

wave functions but the coupling between the orbitals must be obtained from first prin-

ciple or empirically. Therefore, in this simulator a simple and memory efficient model,

viz. an effective mass model is employed, which basically takes into account the per-

turbation of the atomic potential in the rest mass of the electrons leading to an effective

mass value. The equation therefore becomes

− h̄
2

2
∇
(

1

m∗
∇Ψ

)
+ UΨ = EΨ (2.8)

m∗ takes different values in silicon and insulator regions. On the interface however,

it is the average of the mass of electrons in silicon and insulator.

For the three dimensional device as in figure 1.2, the equation that must be solved

is

H3DΨ(x, y, z) = EΨ(x, y, z) (2.9)
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where H3D = − h̄2

2m∗x

∂2

∂x2
− h̄2

2

∂

∂y

(
1

m∗y

∂

∂y

)
− h̄2

2

∂

∂z

(
1

m∗z

∂

∂z

)
+ U(x, y, z)

here U(x,y,z) is the potential energy term obtained from the Poisson’s equation.

It is basically the conduction band-edge profile. m∗x, m∗y, m
∗
z are the effective mass of

electron in the x,y and z direction respectively. Along the y and z directions the effective

mass is not the same but changes from silicon region to the insulator region.

Now, the solution to equation 2.9 should give the desired result but the size of the

Hamiltonian becomes (Nx ×Ny ×Nz)2 on a real-space grid of size (Nx ×Ny ×Nz).

Solving this is time consuming and highly memory inefficient. It is, therefore, desirable

to find a scheme that reduces computational burden.

2.2.1 Mode Space Approach

In thin devices like the one under consideration, due to the confinement effects along

the y,z directions electrons flow in discrete energy levels called subbands. Taking ad-

vantage of this situation, the device Hamiltonian is expanded in subband eigenfunction

space[5][12][13][14].

In real space the Hamiltonian can be expanded in terms of δ(x−x′)δ(y−y′)δ(z−z′)

where x’,y’,z’ are the eigenvalues of the Hamiltonian. The modes(subbands) replace

δ(y − y′)δ(z − z′), and the 3D wave function

Ψ(x′, y, z) =
∑
n

ϕn(x′)ξn(y, z, x′) (2.10)

expanded in the subband eigen space at any x = x′ leads to final 2D Schrodinger’s

equation of the form

[
− h̄

2

2

∂

∂y

(
1

m∗y

∂

∂y

)
− h̄2

2

∂

∂z

(
1

m∗z

∂

∂z

)
+ U(x′, y, z)

]
ξn(y, z, x′) = En

subξ
n(y, z, x′)

(2.11)

where ξn(y, z, x′) is the nth eigen function and En
sub is the nth subband energy level at

slice x = x′ of the SNWT.
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Using equations (2.10), (2.11) in (2.9) results in

− h̄2

2m∗x

∂2

∂x2

(∑
n

ϕn(x)ξn(y, z, x)

)
+
∑
n

ϕn(x)En
subξ

n(y, z, x) = E
∑
n

ϕn(x)ξn(y, z, x)

(2.12)

Now multiplying by ξm(y, z, x) and integrating in the y-z plane leads to a 1D coupled

Schrodinger’s equation with open boundaries

−h̄2

2

(
∞∑
n=1

amn(x)

)
∂2

∂x2
ϕm(x)− h̄2

2

∑
n

cmn(x)ϕn(x)

−h̄2
∑
n

bmn(x)
∂

∂x
ϕn(x) + Em

subϕ
m(x) = Eϕm(x) (2.13)

where amn(x), bmn(x), cmn(x) are as defined in [5].

Now, equation (2.13) represents Coupled Mode Space(CMS) and yields the same

result as the real-space solution if all the modes are considered i.em,n = 1, 2, 3, ...NY Z .

However, for thin devices due to strong confinement only few lowest modes are occu-

pied i.e m,n = 1, 2, 3...M where M � NY Z and the higher modes are almost vacant.

This reduces the computation cost as the size of the 1D coupled Hamiltonian now be-

comes (M × Nx)
2 instead of (Nx × Ny × Nz)

2. It is shown in [13] [14], that the real

space solution and CMS solution match perfectly.

Assuming the device is uniform along the transport direction x, it is shown in [5] and

[13] that the conduction band profile varies very slowly along x and has the same shape

at all x. This assumption leads to approximately the same eigen function ξm(y, z;x) at

all x along the channel but with different eigenvalues Em
sub(x). This results in

∂

∂x
ξm(y, z, x) = 0 (2.14)

Hence equation 2.13 simplifies to

−h̄2

2

(
∞∑
n=1

amn(x)

)
∂2

∂x2
ϕm(x) + Em

subϕ
m(x) = Eϕm(x) (2.15)

This has simplified the problem even further by uncoupling the subbands at different

x, hence this is known as Uncoupled Mode Space(UMS). It is shown in [5] and [13]
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that CMS and UMS results match well for thin body devices, where due to confinement

bands are far apart and hence there is no inter subband interaction.

The simulation tool developed as part of this thesis employs UMS and therefore is

valid only for thickness less than 5nm because for greater thickness the confinement

effects are lower and bands are comparatively closer which violates the assumption of

no inter-subband interaction.

2.2.2 Implementation

Figure 2.1 shows the grid structure at every x where the 2D Schrodinger’s equation

2.11 is solved for eigen values and eigen functions. U in the equation is the potential

obtained from Poisson’s equation. The blue region represents silicon while the red

represents insulator. In the simulator, it’s possible to include electron penetration in

the oxide or neglect it. Considering electron penetration shows the finite nature of the

barrier while neglecting electron penetration assumes that the barrier between oxide and

the semiconductor is infinite. There is no leakage current, however, in either case.

Figure 2.1: Grid structure at every x. 2D Schrodinger’s equation is solved on this grid
using FDM

2.3 Transport

The modelling problem which was three dimensional reduces to one-dimensional

transport after solving the 2D Schrodinger’s equation at every x in the device. Transport

can now be modelled either as ballistic or diffusive. This chapter focuses on ballistic
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transport - both semi-classical and quantum mechanical.

2.3.1 Semi-classical Ballistic Transport

Semi-classical theory treats electrons as particles. In ballistic transport electrons

travel through the channel without losing any momentum or energy. Electrons, which

are in thermal equilibrium are injected into the channel by the contacts. However, in

case of ballistic transport electrons in the channel are out of equilibrium as there is no

scattering in the channel to keep them in thermal equilibrium with the contacts.

To treat such a transport mathematically, Boltzmann’s transport equation is solved

in the ballistic limit. As shown in figure 2.2, injected carriers from both source and

drain either transmit through to the other contact if they are above the barrier or get

reflected back from the barrier into the contacts, which are perfect absorbers. Now, the

electron distribution in the source(drain) contact are described by source(drain) Fermi

function. But to describe electrons in the channel, there isn’t one function instead all

electrons above the barriers moving from source(drain) to drain(source) are defined by

source(drain) Fermi function. While electrons injected from the source(drain) which

are below the barrier and get reflected are defined by only the source(drain) Fermi

function[11].

Transmitted

Reflected

Figure 2.2: Charge transport in the top of the barrier model

In the simulation tool, charge and current in the top of the barrier model are cal-

culated in each subband obtained after solving the 2D Schrodinger’s equation on the

grid as in figure 2.1 and then summed over to get the final charge distribution in the
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subbands.

Calculating the charge

The electron density n(E) at any energy level E, depends on the density of states

D(E) and the distribution function f(E) and is defined as their product

n(E) = D(E)f(E) (2.16)

Any point A(B) on the left(right) of the source(drain)- channel barrier has three kinds

of electron - right(left) moving electrons due to the source(drain), left(right) moving

electrons due to the drain(source) above the barrier, and both left and right moving

electrons due to the source(drain) below the barrier.

So for any subband i, 1D electron density at A is given by

ni(A) =

∫ ∞
0

D1D(E)fs(E)dE +

∫ Etop

0

D1D(E)fs(E)dE +

∫ ∞
Etop

D1D(E)fd(E)dE

(2.17)

where D1D(E) = 1
πh̄

√
m∗
x

2E
, fs(E) = 1

1+e
E+Ei−µs

kT

and fd(E) = 1

1+e
E+Ei−µd

kT

Therefore,

ni(A) =

∫ ∞
0

1

πh̄

√
m∗x
2E

1

1 + e
Ei+E−µs

kT

dE

+

∫ Etop

0

1

πh̄

√
m∗x
2E

1

1 + e
Ei+E−µs

kT

dE

+

∫ ∞
Etop

1

πh̄

√
m∗x
2E

1

1 + e
Ei+E−µd

kT

dE (2.18)

The infinity in the integral as in equation 2.18 is replaced by a large value of E where

fs, fd go to zero. To evaluate the above integral numerically, an approximate expression

is used as given below

∫ b

a

g(x)dx ≈

[
g(a+

n∑
k=0

k(
b− a
n

))− g(a) + g(b)

2

](
b− a
n

)

The above evaluation gives the charge in a subband. Now the charge in individual

subbands in every valleys must be added to get the final one dimensional charge distri-
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bution, which is finally distributed in the entire device using the eigen wave functions

obtained from the 2D Schrodinger’s equation. A factor of 2 to consider spin degeneracy

must be included as well separately.

n3D(x′, y, z) = 2
∑
i

ni(x
′)
|ξ(y, z, x′)|2

dy ∗ dz
(2.19)

where x′ may represent A or B.

Once the 3D charge density in the device is obtained, the quasi-fermi level corre-

sponding to it can be calculated which can then be used by Poisson’s equation to get the

potential profile in the device.

Calculating the current

Once the final value of potential is obtained for a given convergence criterion, cur-

rent is calculated individually in every subband in every valley and finally added up to

get the final result. A factor of 2 for spin degeneracy is included here as well.

Current is the rate of flow of charge. Only the electrons above the barrier contribute

to the current. Hence, current depends on the net electrons crossing any point and

the speed with which they flow. Group velocity of an electron at the bottom of the

conduction band can be calculated as v = 1
h̄
dE
dk

. For parabolic band approximation

E = h̄2k2

2m∗ . Hence,

v =
h̄k

m∗
=

√
2E

m∗
(2.20)

Since there is no scattering inside the device for ballistic case, current is same every-

where inside the channel[12], hence current is calculated in a subband i at some x = x′

as

Ii = qvni(x
′) =

∫ ∞
Etop

q

√
2E

m∗x

1

πh̄

√
m∗x
2E

(fs(E)− fd(E))dE (2.21)

Ii = q
1

πh̄

∫ ∞
Etop

[
1

1 + exp
(
Ei+E−µs

kT

) − 1

1 + exp
(
Ei+E−µd

kT

)] dE (2.22)

The above equation simplifies to

Ii =
q

πh̄
kBT

[
ln

[
1 + exp

(
−Etop + µs

kT

)]
− ln

[
1 + exp

(
−Etop + µd

kT

)]]
(2.23)
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The net current is therefore given as

I = 2
M∑
i=1

Ii (2.24)

Note: In the codes, valley degeneracy is assumed when calculating charge and current,

hence, a factor of 2 comes for valley degeneracy as well along with the factor for spin

degeneracy.

For the semi-classical model described, figure 2.3 shows the current vs. voltage

curve for a 10 nm channel length, 3nm× 3nm silicon cross-section; figure 2.4 shows

the first subband variation along the transport direction with drain voltage and figure

2.5 shows the variation of 1D electron charge density along x with drain voltage for the

above mentioned device features.

Figure 2.3: ID vs. VD for a 10 nm channel length

2.3.2 Quantum Ballistic Transport

In the nanoregime, canonical equation like the BTE are no longer valid because

the wave nature of electrons become significant. There are several quantum phenom-

ena like tunneling, interference, discrete energy levels due to confinement that can’t be

explained by the semi-classical theory.

In the developed simulator, there is no pure semi-classical approach because along

with a 3D Poisson’s equation that governs the electrostatics of the device, a 2D Schrodinger’s
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Figure 2.4: First subband variation vs. VD for a 10nm channel length

Figure 2.5: Electron charge concentration variation vs. VD for a 10nm channel length

equation is solved along the transport direction at every x. It’s only the transport that

is treated semi-classically or quantum mechanically. In the semi-classical approach as

discussed in the previous section, BTE is used to describe 1D transport while quantum

mechanically 1D Schrodinger equation describes the transport.

Contrary to the semi-classical theory now consider electron waves incident from

source and drain contacts into the channel. Some portion of both the incident waves

gets reflected back to the parent contact while the remaining gets transmitted to the

other contact [11]. Let the wave function in device due to source and drain be Ψs
D and

Ψd
D respectively. In addition to them, because of electron-phonon, electron-electron

18



interaction (scattering), localized and quasi-localized states are filled and these states

are represented by Ψloc
D . In ballistic and quasi-ballistic transport, Ψloc

D is absent i.e there

is no scattering. Due to the mentioned wave functions the electron density and current

density along the transport direction are given as

n(x) =
∑
k,s

[
|Ψs

D(x)|2fs(E) + |Ψd
D(x)|2fd(E)

]
(2.25)

and

J(x) =
∑
k,s

[
Ψs
D(x)†

dΨs
D(x)

dx
fs(E) + Ψd

D(x)†
dΨd

D(x)

dx
fd(E)− c.c

]
(2.26)

where k, s represent sum on the momentum and spin states; fs(E) and fd(E) are Fermi

distribution of the source and the drain contacts; c.c represents the complex conjugate

of the first two terms. Since there are no spin dependent phenomena considered the sum

on ‘s’ simplifies as a factor of 2.

Now, obtaining an explicit expression of wave functions in the device is difficult

hence Non Equilibrium Green’s Function (NEGF) technique is employed to address

the problem[17]. 3D Schrodinger equation is solved as 2D Schrodinger’s equation in

a cross-section and 1D transport in the subbands obtained from 2D equation. This 1D

transport is solved using the NEGF framework.

Start with equation(2.13)

−h̄2

2
(
∞∑
n=1

amn(x))
∂2

∂x2
ϕm(x)− h̄2

2

∑
n

cmn(x)ϕn(x)

−h̄2
∑
n

bmn(x)
∂

∂x
ϕn(x) + Em

subϕ
m(x) = Eϕm(x) (2.27)

where

amn(x) =

∮
y,z

1

m∗x(y, z)
ξm(y, z, x)ξn(y, z, x)dydz (2.28)

bmn(x) =

∮
y,z

1

m∗x(y, z)

∂ξm(y, z, x)

∂x

∂ξn(y, z, x)

∂x
dydz (2.29)
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cmn(x) =

∮
y,z

1

m∗x(y, z)

∂2ξm(y, z, x)

∂x2
ξn(y, z, x)dydz (2.30)

Equation 2.27 corresponds to coupled mode space (CMS) and is equivalent to real-

space solution if all the modes (m = 1, 2, 3...NY Z) are taken into account. However,

in case of thin devices because of strong confinement only few lower modes (m =

1, 2, 3, ...M where M � NY Z) are occupied. In addition to this, since most of the wave

function is located in the silicon region for m 6= n, amn can be neglected (amm �

amn)[5].

Equation 2.27 represents a group of M equations for each of the M subbands and

can be written as HΦ = EΦ, where any element hmn of H can be represented as

hmn = −−h̄2

2
amm

∂2

∂x2
+ Em

sub(x)− h̄2

2
cmn(x)− h̄2bmn(x)

∂

∂x
(2.31)

However, for a thin, uniform device like the one presented in this work, further

approximation(equation2.14) results in Uncoupled mode space(UMS) (equation 2.15)

−h̄2

2

(
∞∑
n=1

amn(x)

)
∂2

∂x2
ϕm(x) + Em

subϕ
m(x) = Eϕm(x)

Again if m 6= n, amn can be neglected (amm � amn). This therefore, gives

hmn = −−h̄2

2
amm

∂2

∂x2
+ Em

sub(x) (2.32)

where

amm(x) =

∮
y,z

1

m∗x(y, z)
|ξm(y, z, x)|2dydz (2.33)

Therefore, hmn = 0 if m 6= n and H becomes a diagonal matrix. Now this equation

is discretized as per finite difference method but there is an issue at the contact boundary

as there is no knowledge of the connection between the device and the contacts.

The NEGF method as described in [5] [13][17][18] uses the ‘Self Energy’ concept

to terminate the otherwise infinite H matrix. The self energy term connects the device

to the semi-infinite contacts and describes its interaction with the outside world. It is

also used to describe the ‘localized’ processes(scattering) going on in the device. In
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ballistic case however, these localized processes are absent.

Finally, the Green’s function is defined as

G[EI −H − Σs(E)− Σc(E)] = I (2.34)

where G is the retarded Greens’ function, H is the device Hamiltonian as described

by equation 2.32, Σs is the scattering self-energy(zero in ballistic case), and Σc is the

contact self energy. So G = [EI −H − Σs(E)− Σc(E)]−1

Now using FDM, self-energy for source contact is defined as

Σ1[p, q] = −tm,1 exp(jkm,1a)δp,(m−1)Nx+1δq,(m−1)Nx+1 (2.35)

and for drain contact it is defined as

Σ2[p, q] = −tm,Nx exp(jkm,Nxa)δp,(m−1)Nxδq,(m−1)Nx (2.36)

where m = 1, 2, 3....M and p, q = 1, 2, 3....MNx

tm,1 = h̄2

2a2
amm|x=0; tm,Nx = h̄2

2a2
amm|x=Nx−1; km,1, km,Nx−1 are defined by E =

Em
sub(0) + 2tm,1(1− cos(km,1a)) at source end and E = Em

sub((Nx − 1)a) + 2tm,1(1−

cos(km,Nxa)) at drain end.

After evaluating the above quantities, the spectral density function due to source

and drain contact is then defined as

Am1 (E) = G(E)Γm1 (E)G†(E) and Am2 (E) = G(E)Γm2 (E)G†(E) (2.37)

where Γmi (E) = j(Σm
i (E) − Σm†

i (E)) = −2Im(Σm
i (E)), i = 1,2. Γi represents the

electron exchange rate between the device and source/drain contacts. Now, define the

Local Density of states for mode m for the source Dm
1 , for the drain Dm

2 as

Dm
1 [p] =

1

2πa
Am1 [p, p] (2.38)

Dm
2 [p] =

1

2πa
Am2 [p, p] (2.39)
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Hence, the diagonal element of the spectral density function represents the LDOS.

Now, in order to find the electron density, define 1D electron density in mode m as

nm1D = 2

∫ ∞
0

[Dm
1 (E)f(µ1, E) +Dm

2 (E)f(µ2, E)] dE (2.40)

where f(µ1, E) and f(µ2, E) are the Fermi functions at source and drain respectively

and a factor of 2 is included for spin degeneracy.

The 3D electron density in mode m can then be obtained as

nm3D = nm1D|ξ(y, z, x)|2/(dy × dz) (2.41)

In order to get the electron density in the device, sum over all the subbands and val-

leys(degeneracy factor of 2) to get the final three dimensional charge distribution. This

3D charge distribution is then fed to the Poisson’s equation to get the final potential

in the device. After a consistency is achieved in potential and charge, current in each

subband is calculated as

Im =
2q

2πh̄

∫ ∞
−∞

Tm(E)[f1(µ1, E)− f2(µ2, E)]dE (2.42)

where Tm(E) is the transmission probability in mode m and is calculated as

Tm(E) = Trace
[
Γm1 (E)Gm(E)Γm2 (E)Gm†(E)

]
(2.43)

To get the final current, contribution from all valleys (factor of 2 for valley degener-

acy) and subbands must be taken into account

I = 2
m=M∑
m=1

Im (2.44)

For the quantum ballistic model discussed, figure 2.6 shows the current vs. gate

voltage curve for a 10nm channel and 3nm × 3nm silicon cross-section, figure 2.8

shows the variation of charge in the first subband with gate voltage and figure 2.7 shows

the first subband variation along the transport direction with gate voltage

22



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

VG [V]

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

I D
 [
A

]

10nm QBTE

Figure 2.6: qbte:Current vs. Gate voltage for a 10nm device for quantum ballistic model

Figure 2.7: qbte:First subband variation vs. VG for a 10nm channel length

2.4 Bench marking, Comparisons and Validation

Now that both the semi-classical and the quantum mechanical approaches are dis-

cussed, it is necessary to compare them and state their validity, however, before doing

so the quantum ballistic model is compared to the simulator available on nanohub.org

[19] for bench marking purpose.

2.4.1 Bench marking

Figures 2.9, 2.10, 2.11, and 2.12 show the comparison between the results ob-

tained from the developed simulator and the simulator from nanohub. It can be easily
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Figure 2.8: qbte:Electron charge concentration variation vs. VG for a 10nm channel
length

verified that the results are in close agreement and the variation might be because of the

difference in the values of conduction band offset, grid spacing, differences in boundary

conditions as these quantities were not clearly mentioned in the cited source.
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Figure 2.9: Current voltage curve for a 3nm x 3nm Silicon body cross-section and 15
nm channel length

2.4.2 Semi-classical and Quantum ballistic transport

Now that the quantum ballistic model has been benchmarked against a credible

source, the next step is to compare the results of the semi-classical and quantum ballistic

transport.
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Figure 2.10: Current voltage curve for a 3nm x 3nm Silicon body cross-section and 10
nm channel length
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Figure 2.11: Current voltage curve for a 3nm x 3nm Silicon body cross-section and 15
nm channel length

Figures 2.13, 2.14 and 2.15 show the current-drain voltage for the quantum ballitic

and the semi-classical ballistic case for different channel length. For 15nm and 10

nm the results of both the semi-classical and quantum models are close to each other

but 5nm channel length shows a big variation in the results of the two models raising

questions about the validity of the semi-classical approach.

Figure 2.16 shows that the result of the semi-classical and quantum model are in

good agreement while figure 2.17 shows slight variation indicating presence of quan-

tum mechanical phenomena which the semi-classical model fails to capture. Finally,

figure 2.18 shows clearly the presence of tunneling current. All the results stated here

are for a Silicon cross-section of 3nm× 3nm
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Figure 2.12: Current voltage curve for a 3nm x 3nm Silicon body cross-section and 10
nm channel length
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Figure 2.13: Current vs drain voltage curve of a 10 nm channel length for clbte and qbte
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Figure 2.14: Current vs drain voltage curve of a 15 nm channel length for clbte and qbte
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Figure 2.15: Current vs drain voltage curve of a 5 nm channel length for clbte and qbte
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Figure 2.16: Current vs gate voltage curve of a 15 nm channel length for clbte and qbte
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Figure 2.17: Current vs gate voltage curve of a 10 nm channel length for clbte and qbte
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Figure 2.18: Current vs gate voltage curve of a 5 nm channel length for clbte and qbte
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CHAPTER 3

Diffusive Transport

Diffusive transport is a scattering dominant and long channel phenomena. Scatter-

ing leads to loss in momentum and energy of the electrons. The performance of the

device in this case is lower than the ballistic case because current is lower due to scat-

tering. It implies an increase in channel resistance, increase in drain saturation voltage

and an increase in output conductance. In a semiconductor, scattering can be due to

various factors like electron interaction with impurities, electrons scattered by surface

roughness, electron-phonon interaction, Coloumbic interaction, etc

In the simulation tool, diffusive transport is modelled semi-classically through drift-

diffusion transport and quantum mechanically through Buttiker’s probe method.

3.1 Drift-Diffusion Transport

Drift-Diffusion transport is a semi-classical transport mechanism, therefore, elec-

trons are treated as particles. It is the solution to the Boltzmann Transport equation in

the diffusive limit. Unlike the ballistic transport, even the electrons below the source-

channel barrier can also go from the source end to the drain end.

Now, the current in a scattering dominant phenomena is lower than that in the bal-

listic case because the number of electrons reaching the drain is lesser as some of them

get back-scattered into the source contact. In addition, electrons that reach the drain

end have lower speed due to scattering in the channel. Most of the back-scattering takes

place in the low field region near the source channel barrier-’the bottle neck’. Once an

electron crosses the ’bottle neck’ and reaches near the high field drain region the prob-

ability of back-scattering is minimal. In ballistic case, right moving electrons above the

barrier were injected by the source while the left moving were injected by the drain,

however, in case of scattering both the streams are mixed. Carrier density at the top

of the channel is governed by MOS electrostatics which is solved using 3D Poisson’s



equation. Since, the simulation tool is built for a thin SOI device, 1D drift-diffusion

transport is solved in subbands obtained from the solution of 2D Schrodinger’s equa-

tion. Scattering is basically included by modifying the value of electron mobility in the

device.

Calculating the charge

Start with the drift-diffusion current equation

Jn = −qnµn
dΦ

dx
+ qDn

dn

dx
(3.1)

where Jn is the electron current and n is the electron density but they are both

unknowns so this equation can’t be solved directly. Therefore, continuity equation is

used to address this issue. The continuity equation is

∂n

∂t
= ∇(Jn/q) +Gn −

δy

τ
(3.2)

which for one dimensional transport along x direction without any generation or recom-

bination reduces to
∂n

∂t
=

∂

∂x
(Jn/q) (3.3)

for steady-state solutions ∂n
∂t

= 0 which leads to

∂

∂x
(Jn/q) = 0 or

∂

∂x
(Jn) = 0 (3.4)

Now along the transport direction there areNx grid points but using continuity equa-

tion results in only Nx − 1 equations. In order to solve this problem mid-point nodes

are used.

Using Einstein’s relation

Dn

µn
=
kBT

q

n
∂n
∂η

for degenerate semiconductors

and
Dn

µn
=
kBT

q
for non degenerate semiconductors (3.5)
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where η = (E − µ)/(kBT
q

)

Equation 3.1 for one dimensional transport can be written as

Jn = kBTµn

(
−n

d(Φ/kBT
q

)

dx
+
dn

dx

)
(3.6)

or

Jn = kBTµn

(
−ndφ

dx
+
dn

dx

)
where φ = Φ/

kBT

q
(3.7)

Finally, applying FDM on equation 3.4 for midpoint nodes i+1/2 and i−1/2 gives

Ji+1/2 = Ji−1/2 (3.8)

kBTµi+1/2

(
−ni+1/2

φi+1 − φi
a

+
ni+1 − ni

a

)

= kBTµi−1/2

(
−ni−1/2

φi − φi−1

a
+
ni − ni−1

a

)
(3.9)

where a is the grid spacing along the transport direction

Now, in order to obtain the mobility and electron density at mid point nodes the first

guess would be linear interpolation, resulting in

µi−1 + µi
2

(
−ni−1 + ni

2

φi − φi−1

a
+
ni − ni− 1

a

)

µi + µi+1

2

(
−ni + ni+ 1

2

φi+1 − φi
a

+
ni+1 − ni

a

)
(3.10)

Rearranging the terms gives

(φi+1 − φi − 2)ni+1 +

(
µi + µi−1

µi + µi+1

(φi − φi−1 − 2) + (φi+1 − φi + 2)

)
ni

+

(
µi + µi−1

µi + µi+1

ni−1

)
(φi − φi−1 + 2) = 0 (3.11)

But if the above equation is satisfied and both
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φi+1 − φi − 2 > 0 and φi − φi−1 − 2 > 0

or

Φi+1 − Φi−1 > 4
kBT

q

then it implies that one or more of the electron density term in the equation becomes

negative, but electron density being a physical quantity can’t be negative. Therefore,

if potential of two alternate nodes differ by 4kBT/q an instability occurs. This usually

happens at source(drain)-channel interface under high Vg and low Vd[12]. One way to

avoid the instability is the use of finer grid near source or drain-channel interface but

it results in more memory usage, therefore, Scharfetter and Gummel scheme[20][12] is

employed in the simulator to bypass the issue.

It is known that potential can take both positive and negative values, therefore, for

electron density to be positive always express it as n = ueφ where u is a positive

unknown function and φ is the potential.

Equation 3.10 was obtained from equation 3.9 by linear interpolation of mobil-

ity and electron density. Now, however, only mobility is linearly interpolated since it

doesn’t change abruptly while electron density and potential are no longer interpolated.

Therefore,

Ji+1/2 = kBT
µi + µi+1

2

(
−ni+1/2

dφi+1/2

dx
+
dni+1/2

dx

)
(3.12)

Ji−1/2 = kBT
µi + µi−1

2

(
−ni−1/2

dφi−1/2

dx
+
dni−1/2

dx

)
(3.13)

Substituting n(x) = u(x)eφ in the equation(3.12) results in

Ji+1/2 = kBT
µi + µi+1

2
eφ
du

dx
(3.14)

Now multiplying both sides by e−φ and integrating between i and i+ 1 gives

∫ i+1

i

e−φJi+1/2dx =

∫ i+1

i

kBT
µi + µi+1

2

du

dx
dx (3.15)

The continuity equation states that current is same everywhere in a subband along
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the transport direction, therefore, it can be taken out of the integral and the LHS of

equation 3.15 after considering a linear variation of φ(x) between i and i+1, integrating

and substituting the limits becomes

∫ i+1

i

e−φJi+1/2dx = Ji+1/2

∫ i+1

i

exp(−φi(xi)−
φi+1(xi+1)− φi(x1)

a
(x− xi))dx

= −Ji+1/2
a

φi+1 − φi
(e−φi+1 − e−φi) (3.16)

The RHS of equation 3.15 on integration and substitution of limit becomes

∫ i+1

i

kBT
µi + µi+1

2

du

dx
dx = kBT

µi + µi+1

2
(ui+1 − ui)

= kBT
µi + µi+1

2
(ni+1e

−φi+1 − nie−φi) (3.17)

Finally, equating equation 3.16 and 3.17 results in

Ji+1/2 =
kBT

2a
(µi + µi+1)

φi+1 − φi
eφi+1−φi − 1

(ni+1 − nieφi+1−φi) (3.18)

Let B(φi+1 − φi) = φi+1−φi
eφi+1−φi−1

Similar to equation 3.18 an equation can be written for Ji−1/2 and then equated for

continuity to get

(µi + µi−1)B(φi − φi−1)eφi−φi−1ni−1

−((µi + µi−1)B(φi − φi−1) + (µi + µi+1)B(φi+1 − φi)eφi+1−φi)ni

+(µi + µi+1)B(φi+1 − φi)eφi+1−φini+1 = 0

The above equation is implemented directly in the simulator. The Scharfetter and

Gummel scheme is deployed only in the case of high field, otherwise, the conventional

method of linear interpolation of electron density and mobility is continued. Everything

discussed so for was done for non-degenerate semiconductors, for degenerate semicon-

ductors, Einstein relation must be carefully used.

In addition to this, the electron density in subband m at source and drain ends de-
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pend on the respective Fermi distribution and are defined as

nms = 2

∫ ∞
0

1

πh̄

√
m∗x
2E

1

1 + e
Ei+E−µs

kT

dE (3.19)

=
1

h̄

√
2m∗x
π
=−1/2

(
−Us + Vs

kT/q

)
(3.20)

nmd = 2

∫ ∞
0

1

πh̄

√
m∗x
2E

1

1 + e
Ei+E−µd

kT

dE

=
1

h̄

√
2m∗x
π
=−1/2

(
−Ud + Vd

kT/q

)
(3.21)

A factor of 2 is included for spin degeneracy. In order to get the final charge, sum over

all the subbands and valleys(in this case valley degeneracy of 2).

Calculating the current

Once the charge and Poisson’s equation converge to a final potential profile and

result in a subband, current can then be conveniently calculated using equation 3.12

and because of continuity current anywhere in the device is same.

3.2 Quantum Dissipative Transport

To accurately model nanoscale devices, a quantum mechanical treatment is neces-

sary because it considers the effects of tunneling, interference and scattering. The quan-

tum ballistic model is valid only in ‘phase coherent limit’ i.e. when the Schrodinger’s

equation gives a deterministic evolution of amplitude and phase of the wave function

Ψn(~r). In general, quantum mechanical wave functions evolve phase coherently only

in presence of rigid potentials like the electrostatic potential[11]. When electron waves

encounter scatterers that have internal degree of freedom like phonons, they lose phase

coherence information that can’t be retrieved. This phenomenon becomes significant

for device dimensions comparable to the scattering length of phonons and other such

mechanisms, hence it should be carefully incorporated.

Scattering in quantum mechanical domain results in the loss in momentum and/(or)
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energy as well the quantum mechanical phase. Change in momentum only corresponds

to elastic scattering while change in both momentum and energy corresponds to inelas-

tic scattering. As discussed in section 2.3.2 on Quantum ballistic transport, the wave

function in the active device region has contributions from source Ψs
D, drain Ψd

D as well

as from localized states Ψloc
D because of scattering.

In order to get the charge distribution in the device, the three dimensional Schrodinger’s

equation is solved as a combination of 2D Schrodinger’s equation in a cross-section to

incorporate confinement effects and 1D transport in the subbands obtained from the 2D

equation. To incorporate all the effects efficiently and accurately, the 1D transport is

treated through the NEGF approach . In the simulator developed as part of this work,

uncoupled mode space approach is preferred for computational simplicity. Starting with

equation(2.15) and then considering the wave function to be predominantly present in

the silicon region leads to

− h̄
2

2
amm(x)

∂2

∂x2
ϕm(x) + Em

subϕ
m(x) = Eϕm(x) (3.22)

which describes each element of the device Hamiltonian H but doesn’t include it’s inter-

action with contacts. To consider the effect of contacts (discussed in ballistic transport

in the previous chapter) and scattering, ‘self energy’ concept is used. The Green’s func-

tion employed to address the modelling problem is

Gm(E) = [EI −H − Σm
s (E)− Σm

1 (E)− Σm
2 (E)]−1 (3.23)

where H is Nx × Nx diagonal matrix whose each element are given by equation 3.23.

The contact self-energy terms are same as in equation 2.35 and 2.36. The next step is

to describe the scattering self-energy function, which varies depending on the kind of

scattering phenomena considered.

In this work a simple phenomenological approach namely, “Buttiker’s Probe" method

[5] [13] [21] is followed to incorporate scattering. It is similar to the drift-diffusion

method as it is an approximate approach as well. In order to consider scattering in

detail, electron-phonon interaction, scattering due to surface roughness, etc must be

addressed rigorously.

Buttiker probes are virtual probes assumed to be attached to the lattice in the trans-
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port direction. They are supposed to absorb electrons, change their momenta and/or

energies and then release them back into the channel without any change in the number

of electrons(number of electrons change only at the source and drain contacts). Since

these probes act as virtual reservoirs they are each represented by an electro-chemical

potential µi, which is obtained after imposing current continuity at the probes.

Figure 3.1 shows probes attached to a mode(subband) in the transport direction.

The coupling between the probes and any subband m is gives by ∆i
m, the coupling

energy, where i the position of the probe along the transport direction. ∆i
m = 0 implies

no coupling between probes and the subbands, hence no scattering into the probe i.e

ballistic transport. Higher the value of ∆i
m, higher is the scattering in the device.

Figure 3.1: Representation of Buttiker’s probes attached to a mode. The arrows show
current flowing in and out of the probe

The Buttiker probe coupling strength ∆i
m for single subband occupancy is defined

as
∆i
m

tm
=

2a

λ
(3.24)

where tm = − h̄2

2
amm is the coupling between adjacent lattice nodes as defined in

section 2.3.2, amm is defined in equation 2.33. λ is the electron mean-free path and

is related to the diffusivity as D = vT
λ
2

[13], hence to the low-field mobility µ as

λ = 2kBT
qvT

µ
(
=−1/2(ηi)

=−3/2(ηi)

)
for a 1D conductor, vT is the thermal velocity of degenerate car-
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riers and is defined as vT =
√

2kBT
πm∗

(
=0(ηi)
=−1/2(ηi)

)
. This finally leads to the relation used

in the simulator

λ =

 2µ√
2kBT
πm∗

x

kBT

q

 (=−1/2(ηi))2

=−3/2(ηi)=0(ηi)
(3.25)

where ηi = µi−Eim
kBT/q

is a position and energy dependent term. This makes λ position

dependent and hence ∆i
m position and energy dependent.

When multiple subbands are considered, an average value of λ is used which is

obtained by estimating an average value of the thermal velocity considering all the sub-

bands. In the device under consideration, the channel region is undoped hence carrier

mobility should be higher, however, since it is a thin device the mobilty is reduced due

to surface roughness. It is therefore assumed that both the effects compensate each

other. It is reported that electrons have a mobility ∼ 200 cm−2/V s for a charge density

of∼ 1013 cm2. The source and drain are doped highly to 1020 cm−3 and using a doping

dependent model results in mobility of ∼ 55 cm2/V.s [21]. These are the values used

in the simulator for this model.

Now, the scattering self-energy depends on the interaction of the device with the

probes and the effect these probes have on the coupling between two adjacent nodes of

the device(the device Hamiltonian). For a mode m, at any node i, it is defined as

Σm
s (E) = −∆i

m(exp(jkm,ia)− 1) (3.26)

where a is the spacing between successive nodes and j =
√

(−1) .

Therefore, self-energy in the device is Σm = Σm
s + Σm

1 + Σm
2 has contribution from

the scattering term, and both the contacts.

Σm =



−tmejkm,1a 0 · · · · · · 0

0 −∆2
m(ejkm,2a − 1) 0

. . . ...
... . . . . . . . . . ...
... . . . 0 −∆Nx−1

m (ejkm,Nx−1a − 1) 0

0 . . . . . . 0 −tmejkm,Nxa


Now that Σm(E) and H are known, the Green’s function can be evaluated using equation

37



3.23 which can then be used to evaluate the charge density and the current in the device.

The spectral density function due to source, drain and all the probes at any node i

can be evaluated as

Ami (E) = Gm(E)Γmi (E)Gm†(E) (3.27)

where Γi represents the electron exchange rate between the device and the reservoirs, is

a Nx ×Nx matrix and is given by

Γmi [p, q] = j
[
Σm
i [p, q]− Σm†

i [p, q]
]
δp,iδq,i, (p, q = 1, 2, 3....Nx) (3.28)

The local density of states injected by reservoir i is given as

Dm
i [p] =

1

2πa
Ami [p, p] (3.29)

and the 1D electron density for modem has contribution from all reservoirs i and a spin

degeneracy factor of 2, therefore, can be calculated as

nm1D = 2
Nx∑
i=1

∫ ∞
−∞

Dm
i f(µi, E)dE (3.30)

In order to calculate the net 1D electron density, a sum over all subbands and val-

leys(valley degeneracy of 2) must be performed. Finally, the 3D electron density is

evaluated as

n3D = 2
M∑
m=1

nm1D|ξ(y, z, x)|2/(dy ∗ dz) (3.31)

The transmission coefficient between any two reservoirs i and r is evaluated as

Tmi↔r(E) = trace
[
Γmi (E)Gm(E)Γmr (E)Gm†(E)

]
(3.32)

The net current density at any reservoir considering all subbands and valleys i is

Ii =
4q

2πh̄

M∑
m=1

Nx∑
r=1

∫ ∞
−∞

Tmi↔r(E)(f(µi, E)− f(µr, E))dE (3.33)

Now, the Fermi level of the source and drain contact depend on the bias applied to

them but that of the virtual reservoirs must be found using current continuity at these
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nodes. So Ii = 0 for i = 2, 3, 4, ...Nx − 1.

2q

πh̄

M∑
m=1

Nx∑
r=1

∫ ∞
−∞

Tmi↔r(E)(f(µi, E)− f(µr, E))dE = 0 (3.34)

The above is a set of non-linear equations which is solved iteratively using Newton-

Raphson’s method. The diagonal elements of the Jacobian involved are given as

J ii =
∂Ii
∂µi

=
2q

πh̄

∑
m

[
∂f

∂µi

∑
r,r 6=i

Tmi↔r

]
dE (3.35)

while the off-diagonal elements are given as

J ir =
∂Ii
∂µr

= − 2q

πh̄

∑
m

[∑
r,r 6=i

∂f

∂µr
Tmi↔r

]
dE (3.36)

The solution to the Fermi-level at the reservoirs i = 2, 3, ....Nx − 1 is then obtained

using

∆µ = −J−1I (3.37)

µnew = µold + ∆µ (3.38)

3.3 Results and Discussions

In this chapter two types of dissipative transport are described- the semi-classical

drift-diffusion and the quantum dissipative Buttiker’s probe model. In this section, the

mentioned dissipative transports are compared with their ballistic analogues to illustrate

the degradation in current due to scattering.

For all the simulations involving drift-diffusion transport, the mobility value is taken

as µ = 500cm2/V · s

Figures 3.2 and 3.3 show a comparison between the semi-classical ballistic and

drift-diffusion transport. The 15nm channel shows comparitively a larger degradation

in current from the ballistic case due to more scattering. The device considered here

has a silicon cross-section of 3nm× 3nm.
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Figure 3.2: Current vs drain voltage curve of a 15 nm channel length for clbte and dd
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Figure 3.3: Current vs drain voltage curve of a 10 nm channel length for clbte and dd

The value of mobility used in the simulation of the quantum dissipative model is

200cm2/V s in the channel and 55cm2/V s in the source and drain extension regions.

Figure 3.4, 3.5 and 3.6 show a comparison between the ballistic and dissipative

transport in the quantum domain. It can be easily seen that scattering is maximum in

the long channel 15nm device and is less prominent in 5nm device indicating a trend

towards the ballistic nature of transport. Figure 3.7 shows a comparison between the

drain current vs. the gate voltage for a 15nm long channel and indicates an obvious

decrease in the value of current from ballistic to dissipative for all bias. Even for 5nm

channel length as in figure 3.8, the current involving scattering is much lower than the

ballistic case
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Figure 3.4: Current vs drain voltage curve of a 15 nm channel length for qbte and qdte
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Figure 3.5: Current vs drain voltage curve of a 10 nm channel length for qbte and qdte
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Figure 3.6: Current vs drain voltage curve of a 5 nm channel length for qbte and qdte
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Figure 3.7: Current vs gate voltage curve of a 15 nm channel length for qbte and qdte
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Figure 3.8: Current vs gate voltage curve of a 5 nm channel length for qbte and qdte
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CHAPTER 4

Self Heating Effects in a Silicon Nanowire

In bulk transistors, heat generated in the channel could be easily removed through

the silicon body which has a high thermal conductivity, so self heating effects were

not so prominent. However, when the technology moved to SOI substrates, the buried

silicon dioxide which has about 100 times lower thermal conductivity than bulk silicon

posed problems in heat removal. The thermal conductivity of nanowires and the sur-

rounding oxide layers is even lower when compared to the bulk or SOI transistors. This

leads to prominent self-heating effects and localized hot spots which strongly affect the

electrical characteristics. Because of the small dimension of nanowires, it is difficult

to experimentally determine the temperature inside the device; numerical simulations

come to aid at this juncture.

In order to model the thermal effects effectively there are two important issues - the

heat generation mechanism and the heat transfer. Heat generation in any device is due to

the scattering of the charge carriers(electrons in this case) by various mechanisms like

electron-impurity scattering, electron-phonon interaction,etc. But the important part of

the problem is the heat transfer from the region of generation to the other parts of the de-

vice. Just like the electrical transport, heat transport can be modelled semi-classically or

quantum mechanically in the atomistic domain. The Arizona state university group has

developed a particle based Monte-Carlo simulator using the energy balance equations

derived from the Boltzmann transport equation for electrons and acoustic and optical

phonons [22] [23] [24] [25] [26]. However, in the nanoscale limit this semi-classical

treatment does not consider quantum effects, therefore the group in ETH has modelled

a coupled electron-phonon thermal transport in the atomistic domain using the NEGF

framework and have conducted various studies[27][28][29][30][31].

Both the mentioned approaches to treatment of thermal effects in transistors are

well established and valid in certain limits but they are both computationally expensive.

Therefore, as part of this thesis a numerically simple approach viz. the Fourier’s law

is used to model heat transport in the device. Fourier’s law is a phenomenological



approach and valid mostly in the macroscopic domain. Several research groups have

published questioning its validity in the nanoregime, like [32]. But a recent study[33]

states that Fourier’s law can be used in nanodomain if appropriate corrections are made

to the temperature at the contacts.

4.1 Fourier’s Law

For any temperature gradient within a solid, thermal energy flows from high temper-

ature to low temperature. This phenomenon of heat conduction is described by Fourier’s

law

q = −κ∆T (4.1)

where q is the heat flux vector, κ is the thermal conductivity and T is the local tempera-

ture.

Now for steady-state problems, the divergence of the heat flux vector can be written

as

∇q = −∇ (κ∇T ) (4.2)

where the divergence of the heat flux vector is related to the local heat generation in

the device. In this case, heat is generated when electrons lose energy due to scatter-

ing which is most commonly modelled as the Joule heating. However, Joule heating

considers only the electrons flowing at the conduction band minima and any effect of

"hot-electrons" is not taken into account [34]. Therefore, the heat generation term which

is basically the local power density in the device is given by

P = −∇ (JE) (4.3)

where JE is the energy current density and is given by

JE(y, z;x) =

[∫
1

q
EIi(E)dE

]
|ξ(y, z;x)|2 (4.4)

where Ii(E) is the energy dependent current at any node i along the transport direction.
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The final expression incorporated in the simulations is

P = −∇ · JEk + ~E · J̃ (4.5)

where ∇ · JEk is the change in the kinetic energy part of the current density of the

electron ensemble, ~E is the local electric field in the device, and J̃ is the current density.

The solution of the equation can’t be obtained unless proper boundary conditions

are incorporated. The device interacts with the ambient through

Metallic Gate boundary: In the thermal simulation considered in this work, these

gates are considered both floating or as heat sinks and hence lead to different results.

Floating boundary conditions(Neumann) imply no heat transfer to the ambient. For

heat to flow through the gates to some heat sinks they are usually connected through a

thermal resistance to a lower temperature node. In the simulations however, they are

connected directly to a 300K heat sink.

Semiconductor/oxide metallic source/drain interface: Source and drain are con-

sidered as heat sinks always and are at 300K for all simulations.

Oxide/ambient interface: No heat is supposed to flow through these interfaces as

radiation is not considered.

Similar to the method of solving the Poisson’s equation, apply the control volume

method to equation(4.2) to get

fα =
1

4

[
−Tm,n,p

(
∆y∆z

∆x
+

∆x∆z

∆y
+

∆x∆y

∆z

)( 8∑
i=1

κi

)
+

Tm+1,n,p(κ1 + κ4 + κ5 + κ8)
∆y∆z

∆x
+ Tm−1,n,p(κ2 + κ3 + κ6 + κ7)

∆y∆z

∆x
+

Tm,n+1,p(κ1 + κ2 + κ5 + κ6)
∆x∆z

∆y
+ Tm,n−1,p(κ3 + κ4 + κ7 + κ8)

∆x∆z

∆y
+

Tm,n,p+1(κ1 + κ2 + κ3 + κ4)
∆x∆y

∆z
+ Tm,n,p−1(κ5 + κ6 + κ7 + κ8)

∆x∆y

∆z

]

−(∆x∆y∆z)Pn,m,p (4.6)

This non-linear equation is solved iteratively using Newton’s method to get a new
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temperature profile till a convergence is achieved.

4.2 Thermal Conductivity

Before proceeding to the results obtained from the thermal simulations, it is essen-

tial to look at the thermal conductivity of Silicon nanowires. When compared to the bulk

counterpart the thermal conductivity of thin films decreases due to the phonon boundary

scattering, change in phonon dispersion relation due to confinement and the quantiza-

tion of phonon transport[35]. For thinner wires the boundary scattering is even more,

hence the thermal conductivity decreases further leading to lower thermal conduction.

For the sake of simplicity all the simulations were done for silicon thermal conductiv-

ity of 5 W/(mK) and oxide thermal conductivity of 0.05 W/(mK). The main objective

here is to point the sanity of the method used. The value of thermal condutivity can be

appropriately used.

4.3 Results and discussion

So far all the simulations were done for a fixed temperature of 300K i.e isothermal

simulations. Now, because of carrier scattering temperature of the device increases and

therefore affects the mobility and concentration of the charge carriers. The characteris-

tics of the device are expected to degrade.

Figure 4.1, 4.2, 4.3 show the current vs. drain voltage characteristics under isother-

mal and thermal cases with different boundary conditions. It is observed that the degra-

dation is not much for the Vg = 0.4V for different Vd but at higher voltages the electrical

characteristics are expected to degrade more. When source, drain and gates are all con-

sidered heat sinks, heat removal is more effective as compared to when only source and

drain are considered heat sinks. The degradation is more in the latter case as can be

seen in figure 4.4

When gate is considered a heat sink along with source and drain the temperature

along the transport direction for different Vd is shown in figure 4.5, while if only source

and drain are considered as sinks then the temperature variation with x for different VD
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Figure 4.1: Current vs drain voltage curve of a 15 nm channel length for qbte and qdte
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Figure 4.2: Current vs drain voltage curve of a 10 nm channel length for qbte and qdte
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Figure 4.3: Current vs drain voltage curve of a 5 nm channel length for qbte and qdte
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Figure 4.4: Current vs gate voltage curve of a 5 nm channel length for qbte and qdte

is shown in 4.6. If the gate is considered as heat sink along with source and drain, the

net area for heat removal increases, therefore, the temperature rise is lower as compared

to when only source and drain are considered as heat sinks.
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Temperature variation in the device for 10nm SNWT for 4GSD sink

Figure 4.5: Temperature variation along the transport direction for different VD when
source, drain and gate are all heat sinks

With increase in the temperature in the device, the charge concentration increases

but because of the increased scattering the mobility decreases which leads to a lower

drain current.

Mobility model used in the simulator developed is Caughey-Thomas model and is

given as

µn = µlow +
µmin(T/300)−2.3 − µlow

1 + (N/Nref )−3.8
(4.7)
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Figure 4.6: Temperature variation along the transport direction for different VD when
only source and drain are heat sinks

The final device characteristics are not as degraded as one would expect because

the charge carriers are in the velocity overshoot region thereby compensating for the

decrease in mobility.
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CHAPTER 5

CONCLUSION

5.1 Summary

The thesis describes device physics and modelling of a SNWT both at the semi-

classical and the quantum level based on effective mass approximation. The Poisson’s

equation describes the electrostatics in the device, and the Schrodinger’s equation deals

with the charge carrier transport and its distribution.

Schrodinger’s equation was solved in mode-space, which transformed the 3D prob-

lem to a 2D confinement + 1D transport problem. This results in lower memory re-

quirement, also the time required for simulation reduces drastically when compared to

a real space approach.

Finite Difference Method(FDM) was used to discretize the equations involved. For

the validity of the usage of bulk effective mass the lower limit of the thickness and width

of the SNWT was fixed to 3nm while for the validity of the mode-space the upper limit

was fixed to 5nm [11] [13]. The length of the channel was varied from 5nm to 15nm

for various comparisons.

1D transport was addressed in chapters 2 and 3 both quantum mechanically using

NEGF and semi-classically using BTE and a comparative study of both ballistic and

dissipative transport was presented.

Finally, in chapter 4 using Fourier’s law, self-heating in SNWT was analyzed and it

was observed that the number of heat sinks determined the final device temperature and

hence the device characteristics. More the number of heat sinks lower is the degradation

in the final current.



5.2 Scope for future work

1) Scattering can be incorporated more rigorously through electron-phonon interac-

tion model.

2) Instead of Finite Difference Method (FDM) a Finite Element Method (FEM) can

be used in the development of the simulator. This will allow one to explore SNWT of

different cross-section [12].

3) In this work, for the purpose of simplicity Fourier’s law is employed for consider-

ing heat transport in the SNWT. However, for a more rigorous analysis electron-phonon

interaction could be considered specifically either in the atomistic domain or the con-

tinuum domain.

4) The device is made with a Silicon substrate. A different material could be used

as a substrate too and then the results could be analyzed.
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