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ABSTRACT

KEYWORDS: Computational imaging, generative models, deep learning,

LSTMs, MAP inference

Reconstruction of images from compressively sensed and coded measurements is an

ill-posed problem. In this paper, we leverage the recurrent generative model, RIDE, as

an image prior for reconstruction. Recurrent networks can model long-range depen-

dencies in images and hence are suitable to handle global multiplexing in reconstruc-

tion from compressive and coded imaging. We perform MAP inference with RIDE

using back-propagation to the inputs and projected gradient method. We propose an en-

tropy thresholding based approach for preserving texture in images well. We apply our

method for reconstruction from measurements obtained by three novel computational

imaging cameras: Single Pixel Camera LiSens and FlatCam. Our approach shows supe-

rior reconstructions compared to recent global reconstruction approaches like D-AMP

and TVAL3 on both simulated and real data.
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CHAPTER 1

Introduction

Imaging in the non-visible region of the spectrum has a plethora of applications owing

to its unique properties (Hansen and Malchow, 2008). For example, improved pen-

etration of infrared waves through fog and smog enables imaging through scattering

media. However, prohibitive sensing costs in the non-visible range have limited its

widespread use1. Many works have proposed Compressive Sensing (CS) (Baraniuk,

2007; Donoho, 2006) as a viable solution for high-resolution imaging beyond the visi-

ble range of spectrum (Duarte et al., 2008; Sankaranarayanan et al., 2012; Chen et al.,

2015). Compressive sensing theory states that signals exhibiting sparsity in some trans-

form domain can be reconstructed from much lower measurements than sampling at

Nyquist rate (Donoho, 2006). Lesser the number of measurements lesser is the cost of

sensing. The single-pixel camera (SPC) is a classical example of CS framework (Duarte

et al., 2008). In SPC, a single photo diode is used to capture compressive measurements

and then reconstruct back the whole scene.

A challenge faced by CS reconstruction algorithms is to recover a high dimensional

signal from a small number of measurements. This ill-posed nature of the reconstruction

makes data priors essential. Often, signals exhibit sparse structure in some transform

domain. For example, natural images in the domain of wavelets, DCT coefficients or

gradients. Initially, reconstruction methods exploited this prior knowledge about the

signal structure thereby restricting the solution set to desired signal (Li et al., 2013;

Sankaranarayanan et al., 2012; Chen et al., 2015; Wang et al., 2015). However, using

these simple sparsity based priors at very low measurement rates results in low-quality

reconstructions (see TVAL3 reconstruction in fig. 5.2). This is due to their inability

to capture the complexity of natural image statistics. On the other hand, data-driven

approaches have been proposed recently to handle the complexity (Aghagolzadeh and

Radha, 2012; Kulkarni et al., 2016; Mousavi et al., 2015). They led to successful results

in terms of reconstruction. But all of these approaches handle only local multiplexing i.e
1Megapixel sensors in short-wave infrared, typically constructed using InGaAs, cost more than USD

100k.



measurements are taken from image patches and recovery is also done patch wise. This

is not appealing for classical SPC framework as such since measurements are acquired

through global multiplexing.

To address these problems, in this work we propose to use a data-driven global

image prior, RIDE, proposed by Theis et al. (Theis and Bethge, 2015) for CS image

recovery. RIDE uses recurrent networks with Long Short Term Memory (LSTM) units

and is shown to model the long-term dependencies in images very well. Also, being

recurrent it is not limited to patch size, hence can handle the global multiplexing in

SPC, LiSens and FlatCam. Our contributions are as follows:

• We propose to use RIDE as an image prior to model long-term dependencies for
reconstructing compressively sensed images.

• We use backpropagation to inputs while doing gradient ascent for MAP inference.

• We hypothesize that the model’s uncertainty in prediction can be related to the
entropy of component posterior probabilities. By thresholding the entropy, we
enhance texture preserving the ability of the model.
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CHAPTER 2

Prior Work

2.1 Role of Signal Priors

Image data priors have played a significant role for signal reconstruction from ill posed

problems which are very common in image processing and computational photogra-

phy. Initially such image priors were constructed through empirical observation of data

statistics, for example TV norm minimization, sparse gradient prior (Levin et al., 2007)

and sparsity of coefficients in wavelet domain (Portilla et al., 2003). On the other hand,

many methods were proposed to learn the priors directly from data such as dictionary

learning (Aharon et al., 2006), mixture models like GMMs (Zoran and Weiss, 2011)

and their variants GSMs (Portilla et al., 2003), conditional models like Mixture of Con-

ditional GSMs (MCGSM) (Theis et al., 2012), undirected models like Field of Experts

(FoEs) (Roth and Black, 2005). In dictionary learning an overcomplete set of basis is

learnt by representing natural image patches as sparse linear combination of these basis.

It has been successfully applied for many image processing tasks (Mairal et al., 2008b;

Aharon et al., 2006). On the contrary, rest of the approaches explicitly model the data

distribution by maximizing likelihood. GMMs are quite popular image patch priors and

have been used for restoration tasks like image denoising and deblurring (Zoran and

Weiss, 2011) where it gives competitive results compared to state-of-the-art methods

like BM3D (Dabov et al., 2009) and KSVD (Aharon et al., 2006). FoEs (Roth and

Black, 2005) is another popular model which is a Product of Experts (PoEs) with the

desirable property of translational invariance making it a whole image prior. It has been

used for image inpainting and denoising.

2.2 Deep Nets for Image Processing

Many recent approaches have been proposed to use feed forward deep networks for

image reconstruction problems. Burget et al. (Burger et al., 2012) used Multilayer per-



ceptrons (MLP) for image patch denoising performing on par with BM3D. Mao et al.

(Mao et al., 2016) used very deep convolutional encoder-decoder with skip connections

for image denoising even handling different levels of Gaussian noise. It has surpassed

BM3D’s performance. Xu et al. (Xu et al., 2014) have used convnets for image decon-

volution. Kulkarni et al. (Kulkarni et al., 2016) trained a convnet, termed as ReconNet,

to recover image from compressed measurements of image patches with measurements

being as low as 1%. Although these feed forward discriminative models are very fast

at run time, their application is limited to the task they are trained for. Burget et al.

(Burger et al., 2012) reported difficulty in generalizing a MLP network trained at a par-

ticular noise level for different levels of Gaussian noise. Mao et al. (Mao et al., 2016)

handle this but at the cost of a huge network. ReconNet proposed for CS signal recov-

ery requires the network to be trained again and again for each different sensing matrix

and at each different measurement rate.

2.3 Deep Generative Models

Owing to the inherent problems posed by discriminative models, recently much effort

has gone into building generative models such as, Generative Adversarial Nets (GAN)

(Goodfellow et al., 2014), Variational Auto Encoders (VAE) (Kingma and Welling,

2013), Pixel Recurrent Neural Networks (PixelRNN) (van den Oord et al., 2016) and

Recurrent Image Density Estimator (RIDE) (Theis and Bethge, 2015). GANs learn the

ability to generate a plausible sample from the distribution of natural images. VAE

provides a probabilistic framework for both encoding data to latent representation and

decoding from it. Auto regressive models like RIDE model the current pixel distribution

conditioned on the causal context where Spatial Long Short Term Memory (SLSTM)

(Graves, 2012) units are used to obtain the contextual summary. PixelRNN is also an

auto regressive model like RIDE but with much more complex architecture achieving

the state-of-the-art performance in terms of loglikelihood scores. Apart from being

expressive, RIDE and PixelRNN come with added advantages. Their directed nature

facilitates the computation of exact likelihood. Also, these priors being auto regressive

aren’t limited to patch size, as is the case with discriminative and even non deep gen-

erative models. This is very useful particularly in cases like single pixel camera where

the reconstruction has to take account of global multiplexing and patch based methods

4



can’t be used directly.

Among these deep generative models we find RIDE particularly suitable as low

level image prior for our tasks involving Bayesian inference. GANs don’t model the

data distribution and VAE doesn’t provide the exact likelihood. PixelRNN although

models the distribution, it discretizes the distribution of a pixel to 256 intensity values

resulting in optimization difficulties. In this work we extend RIDE as an image prior

for reconstruction problems in compressive sensing and image inpainting.

2.4 Inpainting

Image inpainting has been previously attempted with image priors. FoEs were applied

to remove scratches or unwanted effects like text from an image. Theis et al. (Theis

et al., 2012) used conditional model MCGSM for image inpainting. Dictionary learning

(Mairal et al., 2008a) has also been proposed for image inpainting although not ideal

since it is patch based. A multiscale adaptive version of dictionary learning (Mairal

et al., 2008b) is shown to perform well.

2.5 Coded and Compressive Imaging

2.5.1 Single pixel camera

SPC (Duarte et al., 2008) is a compressive sensing framework (Candès et al., 2006),

where the goal is to reconstruct the image back from a very less number of random

linear measurements. Typically this is an ill-posed problem and hence we need to use

signal priors. Initially algorithms were proposed to minimize the l1 norm assuming

sparsity in the domain of wavelet coefficients, DCT coefficients or gradients (Li et al.,

2013). Later class of algorithms known as approximate message passing (AMP) algo-

rithms (Donoho et al., 2009) (Metzler et al., 2014) use off-the-shelf denoiser to iter-

atively refine their solution. ReconNet is another recent method using CNNs. But it

can only handle local multiplexing since it is a patch based approach. Here we propose

to do compressive image reconstruction with recurrent generative model RIDE as the

image prior. Since it is not patch limited, we can handle global multiplexing.

5



2.5.2 LiSens

LiSens (Wang et al., 2015) is a novel compressive imaging camera which replaces the

single photo-diode in SPC with a 1-D line sensor. Here, all the rows in the scene array

are multiplexed in parallel with the same line code. As a result, instead of multiplexing

the entire scene into a single measurement, it captures a vector of measurements. For

this an entire row of the DMD array is optically mapped to a single pixel in the linear

sensor using a cylindrical lens. LiSens provides very high measurement rates than SPC,

which are comparable to that of a full frame sensor, while capturing small fraction of

measurements. Priors are essential for reconstruction from the compressed measure-

ment vector. (Wang et al., 2015) show reconstructions using Total Variational norm as

prior.

2.5.3 FlatCam

FlatCam (?) is a novel lensless camera consisting of a coded mask on top of the sensor

array. This architecture provides a thin, light and flexible form factor to the camera.

Unlike conventional lens based camera which captures the entire scene on the sensor,

FlatCam captures a coded representation of the scene. Due to the mask, each pixel on

the sensor sees a linear combination of light from multiple scene elements. As a result,

the image captured on the sensor looks nothing like the actual scene, necessitating the

need for a reconstruction algorithm.

6



CHAPTER 3

Background on RIDE

Let x be a gray scale-image and xij be the pixel intensity at location ij then x<ij de-

scribes the causal context around that pixel containing all xmn such that m ≤ i and

j < n. Now the joint distribution over the image can be factorized as follows:

p(x) =
∏
ij

p(xij|x<ij,θij) (3.1)

where θij are distribution parameters at that location. By making the Markov assump-

tion we can limit the extent of x<ij to a smaller neighbourhood. Another valid assump-

tion is stationarity of the data which results in sharing the same parameters θ across all

locations ij, thus achieving translational invariance.

Now each factor in the above equation can be modeled by a mixture of GSMs with

shared parameters θ which makes it Mixture of Conditional Gaussian Scale Mixtures

(MCGSM) as proposed by (Theis et al., 2012),

p(xij|x<ij,θ) =
∑
c,s

p(c, s|x<ij,θ)p(xij|x<ij, c, s,θ), (3.2)

Where the sum is over components and scales,

p(c, s|x<ij) ∝ exp(ηcs − 0.5 ∗ eαcsxT<ijKcx<ij),

p(xij|x<ij, c, s) = N (xij; a
T
c x<ij, e

−αcs) (3.3)

In MCGSM, Markov assumption was made and the past context x<ij was actually

limited to a small causal neighborhood. However natural images exhibit long range

correlations and any smaller neighbourhood fails to capture them. On the other hand

increasing the neighbourhood leads to dramatic increase in number of parameters. In

order to take into account such dependencies (Theis and Bethge, 2015) have proposed to

use two dimensional Spatial Long Short Term Memory (LSTMs) (Graves, 2012) units



for summarizing the causal context through their hidden representation hij at location

ij as,

hij = f(x<ij,hi−1,j,hi,j−1) (3.4)

where f is a complex non linear function with memory elements analogous to physical

read, write and erase elements thus giving it the ability to model the long term depen-

dencies in sequences. This formulation results in replacement of the finite context x<ij

in conditional modeling equation (3.2) with hij , thus bringing in the summary of entire

causal context. Thus, the complete model is specified as follows:

p(x) =
∏
ij

p(xij|hij,θ) (3.5)

p(xij|hij,θ) =
∑
c,s

p(c, s|hij,θ)p(xij|hij, c, s,θ), (3.6)

Using Recurrent Image Density Estimator (RIDE) (Theis and Bethge, 2015) have achieved

one of the state-of-the-art results in terms of log-likelihood scores. For more details we

recommend the reader to go through (Theis and Bethge, 2015).
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CHAPTER 4

Compressive Image Recovery Using RIDE

Here we consider the problem of image restoration from linearly compressed measure-

ments y = Ax + n, where the linear transformation A is a M ×N with M < N , n is

noise in the observation with known statistics.

4.1 MAP Inference via Backpropagation

Sequential sampling of the conditional factors has been used by RIDE to generate image

samples from the joint distribution (Theis and Bethge, 2015). On similar lines, one

method to do inference is to sample from the posterior distribution. But here sequential

sampling is not possible and we have to resort to Markov Chain Monte Carlo methods

such as Gibbs sampling which are computationally expensive even for smaller image

sizes. Hence, we use Maximum-A-Posteriori principle to find the desired image x̂,

x̂ = argmax
x

p (x|y) = argmax
x

p (x) p (y|x) (4.1)

The prior term p (x) is specified by the generative model (3.5),(3.6) and the like-

lihood is given by p(y|x) ∝ exp(−||y − Ax||2/σ2) for the isotropic Gaussian noise

case.

We apply gradient ascent to the net posterior distribution in order to obtain the

reconstructed image. After log transforming the product in (4.1), the gradient with

respect to the prior is given by:

∂ log p(x)

∂xij
=
∑

k≥i,l≥j

∂ log p(xkl|hkl,θ)

∂xij
(4.2)

Due to the recurrent nature of the model, each pixel through its hidden representa-

tion can contribute to the likelihood of all the pixels that come after it in forward pass.



Original Image w/o threshold, PSNR: 28.4 dB

w/ 3.5, PSNR: 29.90 dB w/ 3.0, PSNR: 26.97 dB

Figure 4.1: Compressive sensing image reconstructions from 30% measurements ob-
tained by varying entropy thresholds. The texture of the magnified patch is
recovered better with the threshold.

In a similar fashion during backward pass the gradient from each pixel propagates to all

the pixels prior to it in the sequence. Gradients with respect to log-likelihood are much

easier to evaluate is given by:

∇x log p(y|x) ∝ 2AT (y − Ax) (4.3)

Using these gradient formulations, we can do gradient ascent for maximizing the log

posterior with a momentum parameter for quick convergence.

x̂t+1 = x̂t + η∇x log(p(x)p(y|x)) (4.4)

Where η is the learning rate parameter.

10



4.2 Tricks used for inference

4.2.1 Four directions

Joint distribution (3.5) can be factorized in multiple ways, for example along each

of the four diagonal directions of an image, i.e., top-right, top-left, bottom-right and

bottom-left. Gradients from different factorizations are considered at each iteration of

the inference, by flipping the image in the corresponding direction. This leads to faster

convergence as compared to just considering one direction. While doing the inference

on crops from randomly sampled BSDS test images, we observe that the convergence

rate is roughly 2 times faster when considering four directions.

4.2.2 Entropy-based Thresholding

While solving the MAP optimization, we observed that we can recover the edges quite

well but texture regions are blurred. This happens because the RIDE model may not

have the right mixture component (see (3.6)) to explain the latent texture. In such cases,

all the mixture components can be chosen with almost uniform probability, resulting

in blurred texture. To detect such cases, in each iteration, we consider the posterior

probability of scales and components in RIDE at each point as a metric to understand

how confident the model is in modeling the distribution at that point. This is evaluated

through posterior entropy given as,

H(i, j) = −
∑
c,s

p(c, s|x<ij, xij) log(p(c, s|x<ij, xij)) (4.5)

If the point lies on an edge, the posterior entropy is low as there are only certain se-

lected components which can explain that edge. Whereas, if the point lies in a flat or

textured patch, the posterior entropy is high and the point is equi-probable to come from

different components and scales. Therefore, to reduce blurring we maintain a threshold

on posterior entropy above which we clip the gradients to zero. 4.1 shows the effect of

entropy constraint on the texture reconstruction.

11



4.3 Compressive Image Recovery

To demonstrate the effectiveness of our method, we consider the problems of image in-

painting and compressive and coded imaging. In image inpainting our goal is to recover

the missing pixels from a randomly masked image. We estimate the missing pixels by

maximizing the prior over missing pixels, keeping the observed pixels constant. This is

done by updating the gradients for only missing pixels. We have used the above men-

tioned entropy based gradient thresholding to avoid blurring the texture region.

For SPC, we formulated the MAP inference as,

x̂ = argmax
x

p (x) s.t. y = Φx (4.6)

Formulation for LiSens will also be similar , except for the fact that y will be a two

dimensional matrix as each measurement is a one dimensional vector. For FlatCam, the

measurements are obtained as y = ΦLxΦT
R

For SPC, we use projected gradients method, where after each gradient update solution

is projected back on to the affine solution space for y = Φx. Every k-th iteration

consists of the following two steps.

x̂k = xk−1 + η∇xk−1
p (x) (4.7)

xk = x̂k − ΦT
(
ΦΦT

)−1
(Φx̂k − y) (4.8)

In our experiments we consider row orthonormalized Φ and the term
(
ΦΦT

)−1 reduces

to identity matrix.

For the noisy measurements y will not exactly satisfy the constraint y = Φx. So,

we cannot enforce hard constraints using the projected gradient method. Hence, we

instead apply soft constraints by adding the term λ‖y − Φx‖ to the cost function for

gradient ascent.

For LiSens and FlatCam, we use the soft constraints method. Since y is a matrix here

we consider Frobenius norm ‖y − Φx‖F instead of the L2 norm.

Inpainting can be considered a compressive sensing problem where each column of A

matrix is 1-sparse. Projecting the gradients to Nullspace of A implies fixing the data

gradients of the given points to be zero. We have proved this in Appendix A

12



CHAPTER 5

Experiments

For training the RIDE model we have used publicly available Berkeley Segmentation

dataset (BSDS300). Following the instincts from (Theis and Bethge, 2015), we trained

the model with increasing patch size in each epoch. Starting with 8x8 patch we go till

22x22 in steps of 2 for 8 epochs. We used the code provided by authors of RIDE in

caffe, available here1. We start with a very low learning rate (0.0001) and decrease it to

half the previous value after every epoch. We used Adam optimization (Kingma and Ba,

2014) for training the model. We observe that models with more than one spatial LSTM

layer don’t result in much of improvement for our tasks of interest. Hence, we proceed

with a single layer RIDE model for all the inference tasks in this paper. Also, we have

used entropy based gradient thresholding 4.2.2 with threshold 3.5, to avoid blurring the

texture regions in all the experiments. In order to accommodate for boundary issues we

remove a two pixel neighbourhood around the image for PSNR and SSIM calculation in

all the experiments. For a fair comparison, we also do the same for the reconstructions

of TVAL3 (Li et al., 2013) and D-AMP (Metzler et al., 2014).

5.1 Image Inpainting

For image inpainting, we randomly removed 70% of pixels and estimated them us-

ing aforementioned inference method. We compared our approach with the multiscale

adaptive dictionary learning approach (Mairal et al., 2008b), which is an improvement

over the KSVD algorithm, see Figure 4.2. It is clear from the figure that our approach

is able to recover the sharp edges better than the multiscale KSVD approach. This is

because our method is based on global image prior as compared to the patch-based

multiscale KSVD approach.

1https://github.com/lucastheis/ride/



Original image Masked image Multiscale KSVD

21.21, 0.811

Ours

22.07, 0.813

Figure 5.1: Inpainting comparisons: We compare our approach with the multiscale dic-
tionary learning approach (Mairal et al., 2008b). Our method is able to
recover the sharp edges better than the multiscale KSVD approach, as is ev-
ident in the zoomed region around zebra’s eye. This is because our method
is a global prior as compared to the patch-based multiscale KSVD approach.
The numbers mentioned below the figures are PSNR(left) and SSIM(right)

5.2 Single Pixel Camera

5.2.1 Results on simulated data

In general, the SPC framework involves global multiplexing of the scene. But the re-

cently proposed state-of-the-art methods for signal reconstruction, like ReconNet, are

designed for local spatial multiplexing and can’t handle the global multiplexing case

directly. Our model, using Spatial LSTMs, can reason for long term dependencies in

image sequences and is preferable for such kind of tasks. We show SPC reconstruc-

tion results on some randomly chosen images from the BSDS300 test set which were

cropped to 160 × 160 size for computational feasibility, see Figure 5.1. We gener-

ate compressive measurements from them using random Gaussian measurement matrix

with orthonormalized rows. We take measurements at four different rates 0.4, 0.3, 0.25

and 0.15. Using the projected gradient method, we perform gradient ascent for 300

iterations for 0.4, 0.3 and 0.25 measurement rates. For lower measurement rates, we

run gradient ascent for 400 iterations. Also, we follow the entropy thresholding pro-

cedure mentioned in section 4.2.2 with a threshold value of 3.5 which we empirically

found to be good for preserving textures. In all the cases, we start with a random im-

age uniformly sampled from (0, 1). Reconstruction results for five images are shown in

Table 5.1 and Figure 5.2. We were able to show improvements both in terms of PSNR

and SSIM values for different measurement rates. Even at low measurement rates, our

method preserves the sharp and prominent structure in the image. D-AMP has the ten-

14



car monument building statue bird

Figure 5.2: Randomly selected image crops of size 160x160 from BSDS300 test dataset
used for CS reconstruction.

dency to over-smooth the image, whereas TVAL3 adds blotches to even the smooth

parts of the image.

5.2.2 SPC with noise

To analyze the robustness of our framework with noise, we add different levels of Gaus-

sian noise to the measurements obtained in the simulated case and obtain the reconstruc-

tions. The optimal value of λ is empirically found out at different noise levels. Here

we report our results in terms of average PSNR values over the same set of five im-

ages shown in Figure 5.1 at different measurement rates. We can see that we are better

than other methods at lower noise levels whereas at higher noise levels our performance

drops slightly.

5.2.3 Real Image Reconstruction

Here we consider the real measurements acquired from a single pixel camera using Fast

Walsh Hadamard transform (FWHT) as φmatrix. Figure 5.2 depicts the reconstructions

obtained in this case for the measurement rates of 15% and 30%. It can be observed

that our method provides superior reconstructions similar to the simulated case. Since

we don’t have original image here, we take reconstruction from D-AMP at 100% mea-

surements as the ground truth. Using this we evaluate the PSNR and SSIM metrics.
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Figure Name Method
M.R. = 40% M.R. = 30% M.R. = 25% M.R. = 15%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Car
TVAL3 31.72 0.897 30.37 0.846 29.09 0.814 26.15 0.736
D-AMP 34.00 0.908 32.31 0.877 30.05 0.839 24.70 0.716

Ours 36.05 0.932 34.24 0.901 32.91 0.868 29.58 0.776

Monument
TVAL3 28.10 0.796 28.43 0.750 27.69 0.710 26.13 0.611
D-AMP 27.33 0.740 27.90 0.707 27.19 0.665 23.05 0.460

Ours 32.02 0.881 29.73 0.809 28.78 0.766 24.93 0.543

Building
TVAL3 28.40 0.842 26.16 0.784 25.13 0.747 22.75 0.644
D-AMP 36.04 0.961 32.21 0.929 29.26 0.886 24.5 0.757

Ours 34.80 0.948 33.82 0.935 32.21 0.913 27.6 0.816

Statue
TVAL3 28.01 0.777 26.67 0.712 26.08 0.675 24.59 0.583
D-AMP 26.90 0.661 25.80 0.613 25.20 0.586 22.86 0.455

Ours 27.97 0.805 26.59 0.742 26.12 0.711 24.14 0.599

Bird
TVAL3 32.57 0.901 31.75 0.874 30.68 0.847 28.30 0.771
D-AMP 38.45 0.970 31.54 0.874 29.59 0.822 24.98 0.688

Ours 37.70 0.948 35.19 0.922 33.52 0.892 29.3 0.786

Mean
TVAL3 29.70 0.833 28.68 0.793 27.73 0.759 25.58 0.670
D-AMP 32.54 0.848 29.95 0.800 28.26 0.760 24.02 0.615

Ours 33.71 0.903 31.91 0.862 30.71 0.830 27.11 0.704

Table 5.1: Comparisons of compressive imaging reconstructions at different measure-
ment rates for the images shown in Figure 5.1. Our method outperforms the
existing global prior based methods in most of the cases.
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28.30 dB, 0.771 24.98 dB, 0.688 29.30 dB, 0.786

Figure 5.3: Images obtained by reconstruction from compressive measurements using
D-AMP, TVAL3 and our method. Even at low measurement rates, our
method preserves the sharp and prominent structures in the image. D-AMP
has the tendency to over-smooth the image, whereas TVAL3 adds blotches
to even the smooth parts of the image.
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Figure 5.4: Performance of reconstructions from noisy measurements with different
levels of Gaussian noise. (MR: Measurement Rate)

GT TVAL3 28.34 dB

0.760

DAMP 24.68 dB

0.687

Ours 31.12 dB

0.813

Figure 5.5: Real SPC reconstructions at 15% compression, our approach recovers the
details better than others in real case also. Ground Truth (GT) is obtained
from 100% reconstruction.

5.3 LiSens

For LiSens reconstructions, we simulate measurements from 160x160 test patches from

BSDS dataset. φmatrix is constructed by selecting rows of a column permuted Hadamard
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Original TV norm RIDE

21.21, 0.811

Figure 5.6: LiSens reconstructions on simulated measurements from 160x160 image
with 15% measurement rate.

matrix. Soft constraints method is used for the MAP inference. The value of λ is found

empirically. Figure 5.5 shows the reconstructions for 30% measurement rate. It can

be observed that image obtained from TV norm minimization suffers from the same

problems as with SPC. RIDE reconstruction is sharper and preserves the details well.

5.4 FlatCam

Here we show reconstructions from FlatCam on simulated and real data. For simulation

we use the calibrated φL and φR matrices on 256x256 house image. Reconstructions

are shown in Figure 5.6. The SVD and BM3D/SVD reconstructions have two charac-

teristics:

• The reconstructions are bright at the centre and dark around the corners. This is
because the pixels at the corner see less intensity of light.

• There are horizontal and vertical artifacts in the reconstructions. This is because
the matrices φL and φR are calibrated using Hadamard patterns.

RIDE reconstructions do not face these issues and provide much sharper edges.

However, it is unable to recover the fine texture present in the original image. Better

texture recovery has been proposed as a future work by improving the model. Fig-

ure 5.7 shows the reconstructions from real world FlatCam measurements and similar

inferences can be drawn from it.

19



Original Image SVD
11.82 dB,0.199

BM3D/SVD
11.79 dB,0.226

Ours
28.61 dB,0.325

Figure 5.7: FlatCam reconstructions on simulated measurements from 256x256 image.

SVD BM3D/SVD RIDE

21.21, 0.811

Figure 5.8: FlatCam reconstructions on real measurements
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CHAPTER 6

Conclusions and Future Work

We demonstrate that deep recurrent generative image models such as RIDE can be used

effectively for solving compressive image recovery problems. The main advantages of

using such models is that they are global priors and hence can model long term image

dependencies. Also using the proposed MAP formulation we can solve many other

image restoration tasks such as image deblurring, superresolution, demosaicing and

computational photography problems such as coded aperture and exposure.



APPENDIX A

Random inpainting as compressive sensing formulation

For the case of compressive sensing recovery, we have mentioned the following equa-

tions for gradient ascent using projected gradient method :

x̂k = xk−1 + η∇xk−1
log p (x) , (A.1)

xk = x̂k − ΦT
(
ΦΦT

)−1
(Φx̂k − y) . (A.2)

Here we prove that for inpainting an image containing random missing pixels, the

iterative updates (A.1) and (A.2) simplify to gradient ascent of the prior over missing

pixels while keeping the observed pixels constant. Consider x∗ as the actual image and

Φ as a binary row orthogonal CS matrix. In this case, the measurements y = Φx are

such that ΦTy = ΦTΦx∗ corresponds to the masked image M � x∗, where M is the

random mask (0 for the missing pixels and 1 everywhere else) and � denotes element-

wise product.

Since ΦΦT is an identity matrix, A.2 simplifies to :

xk = x̂k − ΦTΦx̂k + ΦTy. (A.3)

xk = (I−M)� x̂k + M� x∗ (A.4)

Equation A.4 states that the missing pixels are updated according to gradient ascent

over prior (A.1), while the known pixels are kept fixed.



APPENDIX B

Color Reconstructions

Original Image 30%

15% 10%

Figure B.1: Figure shows the color image reconstruction from measurements obtained
through individual color channels (R, G and B) at different measurement
levels.
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