
Blur Invariant Feature Learning for Deep Blind

Deblurring

A Project Report

submitted by

AKASH KUMAR SINGH

in partial fulfilment of requirements

for the award of the dual degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2017

THESIS CERTIFICATE

This is to certify that the thesis titled Blur Invariant Feature Learning for Deep Blind

Deblurring, submitted by Akash Kumar Singh, to the Indian Institute of Technology,

Madras, for the award of the degree of Master of Technology, is a bona fide record of

the research work done by him under our supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

A N Rajagopalan

Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 10th April 2017

ACKNOWLEDGEMENTS

I take this opportunity to express my deepest gratitude to my project guide Dr. A.N.

Rajagopalan for his valuable guidance and motivation throughout the project. I am

very grateful to him for providing his valuable time to guide me during the project.

My sincere thanks to Nimisha , Green Rosh and all my lab mates who shared their

experience and helped me whenever faced with an obstacle.

It is a privilege to be a student in IIT Madras. I express special thanks to all my

teachers for all the academic insight obtained from them. I also acknowledge the ex-

cellent facilities provided by the institute to the students. I would continue to extend

my gratitude to all friends in the institute to make my stay in IIT Madras the most

memorable time of my life.

i

ABSTRACT

KEYWORDS: Blind Deblurring; Autoencoder; Dictionary Learning.

In this work, we investigate deep neural networks for blind motion deblurring. Instead

of regressing for the motion blur kernel and performing non-blind deblurring outside of

the network (as most methods do), we propose a compact and elegant end-to-end de-

blurring network. Inspired by the data-driven sparse-coding approaches that are capable

of capturing linear dependencies in data, we generalize this notion by embedding non-

linearities into the learning process. We propose a new architecture for blind motion

deblurring that consists of an autoencoder that learns the data prior, and an adversarial

network that attempts to generate and discriminate between clean and blurred features.

Once the network is trained, the generator learns a blur-invariant data representation

which when fed through the decoder results in the final deblurred output. We also

compare our work with recent similar deep network based deblurring techniques and

analyze effects of various network hyper-parameters. Furthermore, We analyze effects

of cost functions like mean square error, gradient loss, adversarial loss and perceptual

loss functions for our task of blind deblurring.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES viii

ABBREVIATIONS ix

NOTATION x

1 INTRODUCTION 1

2 Blur-invariant Feature Learning 5

2.1 Blur-invariant Feature Learning . 5

2.2 Summary of Contributions . 7

3 Network Architecture 8

3.1 Network Architecture . 8

3.1.1 Encoder-Decoder . 8

3.2 GANs and Objective Functions of Generative Networks 10

3.2.1 Maximum Mean Discrepancy (MMD) 10

3.2.2 Variational Autoencoders and Kullback-Leibler Divergence (KLD) 11

3.2.3 GANs and Jensen-Shannon Divergence (JSD) 12

3.2.4 Loss function . 16

3.2.5 Final Training . 18

4 Tried Network Architectures and Recent Related Works 21

4.1 Tried Network Architectures . 21

4.2 Recent Related Works . 22

iii

5 Experiments 24

5.1 Quantitative Analysis . 24

5.2 Qualitative Comparisons . 26

5.3 Comparision with Deep networks 27

5.3.1 Object Motion Deblurring 28

5.4 Conclusions . 29

LIST OF TABLES

3.1 Run-time for each method for average image size of 1024 × 700. . . 18

5.1 Quantitative comparisons on Köhler dataset Köhler et al. (2012). . . 29

v

LIST OF FIGURES

1.1 Effect of image prior. (a) Input blurred image. (b-d) Deblurred result
using Pan et al. (2016) with (λ = 0.04, µ = 0.007, λTV = 0.001),
(λ = 0.001, µ = 0.01, λTV = 0.01) and (λ = 0.004, µ = 0.005,
λTV = 0.01), respectively. 2

2.1 Illustration of our architecture. 6

3.1 Autoencoder architecture with residual networks. 9

3.2 Effect of ResNet on reconstruction. (a) The target image. (b) Result of
encoder module of Fig. 3.4. (c) Result obtained by removing ResNet
for the same number of iterations. (Enlarge for better viewing). . . . 10

3.3 The above figure shows the three different fits to the data drawn from
the mixture of Gaussians by either minimizing Kullback-Leibler Diver-
gence (KLD), Maximum Mean Discrepancy (MMD) or Jensen-Shannon
Divergence (JSD). It is clearly seen that using different distance mea-
sure between the distributions results in different fit on the data. . . 12

3.4 Above figure shows hows how the distributions of Generator (green
line) and Discriminator (dotted blue line) changes as the GAN training
proceeds to make Generator’s distribution equal to data distribution.
The lower horizontal line is the domain from which z is sampled, in
this case uniformly. The horizontal line above is part of the domain of
data x. The upward arrows shows how the mapping x = G(z) imposes
the non-uniform distribution on transformed samples. As the training
proceeds the gradients of D (significant in the transition region where
D is less confident) helps shift the distribution of G towards data distri-
bution. 14

3.5 Effect of direct regression using generative networks. (a) Input blurred
image. (b-c) Output of the network and the expected output. 15

3.6 First a DCGAN was trained for 1, 10 and 25 epochs. Then with the
generator fixed the discriminator was trained from scratch. (a) shows
discriminator’s norms quickly going to 0 when trained with log(1 −
D(G(z)) cost function. (b) shows discriminator’s norms quickly grow-
ing when trained with log(1 − D(G(z)) cost function. As gradients
grows their variance increases and the they gradient update becomes
noisy. 16

3.7 Quantitative evaluation on dataset of Sun et al. (2013). (a) and (b) cor-
respond to average PSNR and MSSIM values, respectively. 17

vi

3.8 Comparisons for space-invariant deblurring. (a) Input blurred image.
(b-c) Deblurred output using methods in Xu and Jia (2010) and Pan
et al. (2016), respectively. (d) Our result. 18

3.9 Examples for space-variant deblurring and comparisons with conven-
tional state-of-the-art methods. (a) Input blurred image. (b-e) Results
obtained by the methods in Xu et al. (2013); Whyte et al. (2012); Pan
et al. (2016) and our result, respectively. 19

4.1 (b) is the result of Network1 on a blurry image when trained with
Ladv = 0.0001. (a) and (c) are the corresponding input and target
image respectively. (e) shows the output of same network when trained
with Ladv = 0.01, (d) and (f) are the corresponding input and target
image respectively. 23

5.1 Comparison with Chakrabarti (2016). (a) Input blurred image. (b) Out-
put of our network. (c) Network output of Chakrabarti (2016) and (d)
final non-blind deblurred output of Chakrabarti (2016). 24

5.2 Comparison with Sun et al. (2015). (a) Space variantly blurred input
image. (b) Deblurred output of Sun et al. (2015). (c) Output of our
network. 25

5.3 Comparison with Sun et al. (2015). (a) Space variantly blurred input
image. (b) Deblurred output of Sun et al. (2015). (c) Output of our
network. 25

5.4 Comparison with Hyun Kim and Mu Lee (2015). (a) Input blurred
image of dynamic scene. (b) Output of our network. (c) Network output
and final non-blind deblurred output of Hyun Kim and Mu Lee (2015). 25

5.5 Synthetic example taken from dataset Lai et al. (2016). (a) Input blurry
image. (b-f) Deblurred result corresponding to methods in Levin et al.
(2011); Whyte et al. (2012); Xu et al. (2013); Pan et al. (2014); Sun
et al. (2013) in order respectively, and (g) is the result obtained by our
network. Zoomed-in patches are shown below each of the correspond-
ing result for better viewing. 29

5.6 Another synthetic example from Lai et al. (2016) dataset. (a) Input
blurry image. (b-f) Deblurred result corresponding to methods in Levin
et al. (2011); Whyte et al. (2012); Xu et al. (2013); Pan et al. (2014);
Sun et al. (2013) in order respectively, and (g) is the result obtained by
our network. The zoomed in patch of leaves is much clear in our result. 30

5.7 Synthetic example taken from dataset Lai et al. (2016). (a) Input blurry
image. (b-f) Deblurred result corresponding to methods in Levin et al.
(2011); Whyte et al. (2012); Xu et al. (2013); Pan et al. (2014); Sun
et al. (2013) in order respectively, and (g) is the result obtained by our
network. Here the kid’s eye and hand look more clear in our result. . 30

5.8 Visual comparison with conventional methods on real example. Our
method generates output that are at par or better than the state-of-the-
art methods. 31

vii

5.9 . 31

5.10 . 32

5.11 . 32

5.12 . 33

5.13 Additional qualitative results for images picked randomly from Lai et al.
(2016), and captured by ourself. Input in the left side and corresponding
output in the right. 33

viii

ABBREVIATIONS

PSNR Peak Signal to Noise Ratio

PSF Point Spread Function

CNN Convolutional Neural Network

FFT Fast Fourier Transform

GPU Graphics Processing Unit

TV Total Variation

GAN Generative Adversarial Network

KLD Kullback-Leibler Divergence

MMD Maximum Mean Discrepancy

JSD Jensen-Shannon Divergence

ReLU Rectified Linear Unit

MSSIM Mean Structural Similarity

MSE Mean Squared Error

ResNet Residual Network

ix

NOTATION

G Generator
D Discriminator
De Decoder
E Encoder
Pd Probability distribution of training data
Pg Probability distribution of Generated data
x Input vector
z Random noise vector
y Output or generated data
adv Adversarial

x

CHAPTER 1

INTRODUCTION

Motion blur is an inevitable phenomenon caused due to relative motion between camera

and scene/object while capturing, especially under long exposure times and fast mov-

ing object. In general, motion blur can be caused by camera shake, scene depth as well

as multiple object motion. Motion blur in these scenarios can be reduced by changing

camera settings like reducing exposure time but this comes in compromise with other

unwanted image degradation effects like noise, low light in the image. With the increas-

ing use of handheld imaging devices, there is an increasing need to invert the blurring

process to recover the underlying clean image. However, it is well-known that deblur-

ring is ill-posed as both the image and the blur are unknown. Due to this many methods

exist Zhang and Carin (2014) that rely on information from multiple frames captured

using video or burst mode and work by harnessing the information from these frames to

solve for the underlying original (latent) image. But most often we don’t have this extra

information from multiple frames and and deblurring has to be done with just a single

image which is considerably more challenging as the blur kernel as well as the latent

image must be estimated from just one observation. It is this problem that we attempt

to solve here.

Early works Cho and Lee (2009); Shan et al. (2008); Levin et al. (2011) assumed

space-invariant blur and iteratively solved for the latent image and blur kernel. Although

these convolutional models are simple and straight forward to analyze using FFTs, they

fail to account for space-variant blur caused by non-linear camera motion or dynamic

objects or depth-varying scenes. Nevertheless, even in such situations local patch-wise

convolutional model can be employed to achieve deblurring. Instead of using a patch-

wise model, works such as Whyte et al. (2012); Joshi et al. (2008) take the space-variant

blur formation model itself into consideration. But the deblurring process becomes

highly ill-posed as it must now estimate blur kernel at each pixel position along with

the underlying image intensities. For planar scenes or under pure camera rotations, the

methods in Whyte et al. (2012); Gupta et al. (2010) circumvent this issue by modeling

the global camera motion using homographies.

(a) (b) (c) (d)

Figure 1.1: Effect of image prior. (a) Input blurred image. (b-d) Deblurred result using
Pan et al. (2016) with (λ = 0.04, µ = 0.007, λTV = 0.001), (λ = 0.001,
µ = 0.01, λTV = 0.01) and (λ = 0.004, µ = 0.005, λTV = 0.01), respec-
tively.

Major efforts have also gone into designing priors that are apt for the underlying

clean image and the blur kernel to regularize the inversion process and ensure conver-

gence during optimization. The most widely used priors are total variational regularizer

Chan and Wong (1998); Perrone and Favaro (2014), sparsity prior on image gradients,

l1/l2 image regularization Krishnan et al. (2011), the unnatural l0 prior Xu et al. (2013)

and the very recent dark channel prior Pan et al. (2016) for images. Even though such

prior-based optimization schemes have shown promise, the extent to which a prior is

able to perform under general conditions is questionable Krishnan et al. (2011). Some

priors (such as the sparsity prior on image gradient) even tend to favor blurry results

Levin et al. (2011). In a majority of situations, the final result requires a judicious se-

lection of the prior, its weightage, as well as tuning of other parameters. Depending

on the amount of blur, these values need to be adjusted so as to strike the right balance

between over-smoothening and ringing in the final result. Such an effect is depicted

in Fig. 1.1. Note that the results fluctuate with the weightage selected for the prior.

These results correspond to the method of Pan et al. (2016) with varying weights for

dark channel prior (λ), l0 prior (µ) and the TV prior (λTV). Furthermore, these methods

are iterative and quite time-consuming.

Dictionary learning is a data-driven approach and has shown good success for im-

age restoration tasks such as denoising, superresolution and deblurring Aharon et al.

(2006); Yang et al. (2010). Research has shown that sparsity helps to capture higher-

order correlations in data, and sparse codes are well-suited for natural images Mairal

et al. (2009). Lou et al. sparsedeb have proposed a dictionary replacement technique for

deblurring of images blurred with a Gaussian kernel of specific variance. The authors of

Xiang et al. (2015) adopt this concept to learn a pair of dictionaries jointly from blurred

as well as clean image patches with the constraint that the sparse code be invariant to

2

blur. They were able to show results for space-invariant motion deblurring but were

again constrained to a single kernel. For multiple kernels, they learn different dictio-

naries and choose the one for which the reconstruction error is the least. Even though

sparse coding models perform well in practice, they share a shallow linear structure and

hence are limited in their ability to generalize to different types of blurs.

Recently, deep learning and generative networks have made forays into computer

vision and image processing, and their influence and impact are growing rapidly by the

day. Neural networks gained in popularity with the introduction of Alexnet Krizhevsky

et al. (2012) that showed a huge reduction in classification error compared to traditional

methods. Following this, many regression networks based on Convolutional Neural

Networks (CNNs) were proposed for image restoration tasks. With increasing compu-

tational speeds provided by GPUs, researchers are investigating deep networks for the

problem of blur inversion as well. Xu et al. Xu et al. (2014) proposed a deep decon-

volutional network for non-blind single image deblurring (i.e, the kernel is fixed and

known apriori). Schuler et al. Schuler et al. (2014) came up with a neural architecture

that mimics traditional iterative deblurring approaches. Chakrabarti Chakrabarti (2016)

trained a patch-based neural network to estimate the kernel at each patch and employed

a traditional non-blind deblurring method in the final step to arrive at the deblurred re-

sult. Since these methods estimate a single kernel for the entire image, they work for

the space-invariant case alone. The most relevant work to handle space-variant blur is a

method based on CNN for patch-level classification of the blur type Sun et al. (2015),

which focuses on estimating the blur kernel at all locations from a single observation.

They parametrize the kernels (using length and angle) and estimate these parameters at

each patch using a trained network. However, such a parametric model is too restrictive

to handle general camera motion blur.

The above-mentioned methods attempt to estimate the blur kernel using a deep net-

work but finally perform non-blind deblurring exterior to the network to get the de-

blurred result. Any error in the kernel estimate (due to poor edge content, saturation or

noise in the image) will impact deblurring quality. Moreover, the final non-blind de-

blurring step typically assumes a prior (such as sparsity on the gradient of latent image)

which again necessitates a judicious selection of prior weightage; else the deblurred

result will be imperfect as already discussed (Fig. 1.1). Hence, kernel-free approaches

are very much desirable.

3

In this work, we propose a deep network that can perform single image blind-

deblurring without the cumbersome need for prior modeling and regularization. The

core idea is to arrive at a blur-invariant representation learned using deep networks that

facilitates end-to-end deblurring. Performance-wise, our method is at par with con-

ventional methods which use regularized optimization, and outperforms deep network-

based methods. While conventional methods can only handle specific types of space-

variant blur such as blur due to camera motion or object motion or scene with depth

variations, our network does not suffer from these limitations. Most importantly, the

run-time for our method is very small compared to conventional methods. The key

strength of our network is that it does end-to-end deblurring with performance quality

at par or better than competing methods while being computationally efficient.

4

CHAPTER 2

Blur-invariant Feature Learning

2.1 Blur-invariant Feature Learning

It is well-known that most sensory data, including natural images, can be described as a

superposition of small number of atoms such as edges and surfaces Mairal et al. (2009).

Dictionary-based methods exploit this information and learn the atoms that can rep-

resent data in sparse forms for various image restoration tasks (including deblurring).

With an added condition that these representations should be invariant to the blur con-

tent in the image, dictionary methods have performed deblurring by learning coupled

dictionaries Xiang et al. (2015). However, constrained by the fact that dictionaries can

capture only linearities in the data and blurring process involves non-linearities (high

frequencies are suppressed more), their deblurring performance does not generalize

across blurs.

In this work, we extend the notion of blur-invariant representation to deep networks

that can capture non-linearities in the data. We are not the first one to approach deep

learning as a generalization of dictionary learning for sparse coding. The work in Xie

et al. (2012) combines sparse coding and denoising encoders for the task of denoising

and inpainiting. Deep neural networks, in general, have yielded good improvements

over conventional methods for various low-level image restoration problems includ-

ing super-resolution Dong et al. (2016), inpainting and denoising Xie et al. (2012);

Pathak et al. (2016). These networks are learned end-to-end by exposing them to lots

of example-data from which the network learns the mapping to undo distortions. We

investigate the possibility of such a deep network for the task of single image motion

deblurring.

For blind-deblurring, we first require a good feature representation that can capture

image-domain information. Autoencoders have shown great success in unsupervised

learning by encoding data to a compact form Hinton and Salakhutdinov (2006) which

can be used for classification tasks. This motivated us to train an autoencoder on clean

Decoder

Generator

Discriminator

Encoder

Figure 2.1: Illustration of our architecture.

image patches for learning the feature representation. Once a good representation is

learned for clean patches, the next step is to produce a blur-invariant representation (as

in Xiang et al. (2015)) from blurred data. We propose to use a generative adversarial

network (GAN) for this purpose which involves training of a generator and discrimina-

tor that attempt to compete with each other. The purpose of the generator is to confuse

the discriminator by producing clean features from blurred data that are similar to the

ones produced by the autoencoder so as to achieve blur-invariance. The discrimina-

tor, on the other hand, tries to beat the generator by identifying the clean and blurred

features.

A schematic of our proposed architecture is shown in Fig. 2.1. Akin to dictionary

learning that represents any data X as a sparse linear combination of dictionary atoms

D i.e, X = Dα, our encoder-decoder module performs this in non-linear space. Hence,

the encoder can be thought of as an inverse dictionary D−1 that projects the incoming

data into a sparse representation. The decoder acts as the dictionary D that reconstructs

the input from the sparse representation. Generator training can be treated as learning

the blur dictionary that can project the blurred data Y into the same sparse representa-

tion of X i.e, α = D−1X = D−1b Y . Once training is done, the input blurry image (Y)

is passed through the generator to get a blur-invariant feature which when projected to

the decoder yields the deblurred result as X̂ = Dα = DD−1b Y .

6

Thus, by associating the feature representation learned by the autoencoder with

GAN training, our model is able to perform single image blind deblurring in an end-

to-end manner. Ours is a kernel-free approach and does away with the tedious task

of selecting priors, a serious bottleneck of conventional methods. Unlike other deep

learning methods, our network directly regresses for the clean image.

2.2 Summary of Contributions

This is a collaborative work done by me and one of my lab mate. For completeness

entire work is mentioned in this report. My contributions to this work as follows :

• Included residual blocks in the autoencoder (Section 3.1) and generator archi-
tecture (Section 3.2) which helped in implementing deeper networks. Including
residual blocks increased the PSNR of reconstructed output of autoencoder by
15dB − 20dB.

• Implemented codes of various networks including the ones described in section
4.1 with different loss functions in torch and analyzed effects of hyper-parameters
like weights given to loss functions, batch size etc before arriving at the final
architecture and parameter setting.

7

CHAPTER 3

Network Architecture

3.1 Network Architecture

Our network consists of an autoencoder that learns the clean image domain and a gen-

erative adversarial network that generates blur-invariant features. We train our network

in two stages. We first train an autoencoder to learn the clean image manifold. This is

followed by the training of a generator that can produce clean features from a blurred

image. This is then fed to the decoder to get the deblurred output. Note that instead

of combining the task of data-representation and deblurring into a single network, we

relegate the task of data-learning to the autoencoder and use this information to guide

image deblurring. Details of the architecture and the training procedure are explained

next.

3.1.1 Encoder-Decoder

Autoencoders were originally proposed for the purpose of unsupervised learning Hinton

and Salakhutdinov (2006) and have since been extended to a variety of applications. An

autoencoder projects the input data into a low-dimensional space and recovers the input

from this representation. When not modeled properly, it is likely that the autoencoder

learns to just compress the data without learning any useful representation. Denoising

encoders Vincent et al. (2008) were proposed to overcome this issue by corrupting the

data with noise and letting the network undo this effect and get back a clean output.

This ensures that the autoencoder learns to correctly represent clean data. Deepak et

al. Pathak et al. (2016) extended this idea from mere data representation to context

representation for the task of inpainiting. In effect, it learns a meaningful representation

that can capture domain information of data.

We investigated different architectures for the autoencoder and observed that includ-

ing residual blocks (ResNet) He et al. (2016) helped in achieving faster convergence and

Figure 3.1: Autoencoder architecture with residual networks.

in improving the reconstructed output. Residual blocks help by by-passing the higher-

level features to the output while avoiding the gradient vanishing problem. This way

ResNets help in building deeper architecture for extracting finer features. The train-

ing data was corrupted with noise (30% of the time) to ensure encoder reliability and

to avoid learning an identity map. The architecture used in our work along with the

ResNet block is shown in Fig. 3.4. A detailed description of the filter and feature map

sizes along with the stride values used are as given below.

Encoder: C5
3→8 ↓ 2→ R

5(2)
8 → C5

8→16 ↓ 2→ R
5(2)
16 → C3

16→32 ↓ 2→ R3
32

Decoder: R3
32 → C2

32→16 ↑ 2→ R
5(2)
16 → C4

16→8 ↑ 2→ R
5(2)
8 → C4

8→3 ↑ 2

where Cc
a→b ↓ d represents convolution mapping from a feature dimension of a to b

with a stride of d and filter size of c, ↓ represents down-convolution, ↑ stands for up-

convolution, andRb(c)
a represents the residual block which consists of a convolution and

a ReLU block with output feature size a. Filter sizes b and c represent the number of

repetitions of residual blocks.

Fig. 3.2 shows the advantage of the ResNet block. Fig. 3.2(a) is the target image

and Figs. 3.2(b) and (c) are the output of autoencoders with and without ResNet block

for the same number of iterations. Note that the one with ResNet converges faster

and preserves the edges due to skip connections that pass on the information to deeper

layers.

9

(a) (b) PSNR= 29.5 (c) PSNR= 23.1

Figure 3.2: Effect of ResNet on reconstruction. (a) The target image. (b) Result of
encoder module of Fig. 3.4. (c) Result obtained by removing ResNet for
the same number of iterations. (Enlarge for better viewing).

3.2 GANs and Objective Functions of Generative Net-

works

Generative models can be used for wide range of vision applications like denoising, de-

blurring, inpainting, compression and various other supervised/unsupervised learning

tasks. Given this huge range of application there exists a lot of heterogeneity in model-

ing and training of such models. Although different generative models are trained with

different objective function, all of these are more or less related to log-likelihood, such

as Kullback-Leibler Divergence (KLD) Shlens (2014), Maximum Mean Discrepancy

(MMD)
(
(Gretton et al., 2007), (Li et al., 2015)

)
, Jensen-Shannon Divergence (JSD)

(Goodfellow et al., 2014), contrastive divergence Hinton (2002). Brief discussion about

these objective functions:

3.2.1 Maximum Mean Discrepancy (MMD)

Given, generated and data samples MMD answers the question weather Pg = Pd . MMD

is a statistical hypothesis testing technique which leads to a simple objective that can

be interpreted as matching all orders of statistics between the generated samples and

data samples. MMD simply compares all the statistics of given generated samples

Y = {yj}Mj=1 and data samples X = {xj}Nj=1. If the statistics are similar then the

samples are likely to come from the same distribution. The following formula computes

the mean squared difference between the statistics of both set of samples:

10

LMMD2 =

∣∣∣∣∣
∣∣∣∣∣ 1N

N∑
i=1

φ(xi)−
1

M

M∑
j=1

φ(yj)

∣∣∣∣∣
∣∣∣∣∣
2

(3.1)

=
1

N2

N∑
i=1

N∑
i′=1

φ(xi)
>φ(x′i)−

2

MN

N∑
i=1

M∑
j=1

φ(xi)
>φ(yi) +

1

M2

M∑
j=1

M∑
j′=1

φ(yi)
>φ(y′i)

(3.2)

Different choice of function φ leads to match different moments of statistics. It is

shown that MMD is 0 if and only if Pg = Pd. As equation (3.4) only involves inner

products between the functions φ and hence kernel trick can be applied which is com-

putationally cheaper. The kernels like Gaussian kernel which is defined as k(x, x′) =

exp(− 1
2σ
‖x − x′‖2), implicitly lifts the data into infinite dimensional space. Minimiz-

ing MMD using these function is then equivalent to minimizing distance between all

the moments of the two distributions. Generative convolutional neural networks trained

via simple MMD cost function shows promising results. Some works combine MMD

loss with other losses to boost up their performance.

3.2.2 Variational Autoencoders and Kullback-Leibler Divergence

(KLD)

Traditional methods of generative modeling rely on maximizing likelihood or equiv-

alently minimizing KLD between our unknown data distribution Pd and generator’s

distribution Pg. One such method is Variational autoencoder, which consists of two

networks an encoder and a decoder. Encoder encodes the data sample x to a latent rep-

resentation z. Decoder decodes z to map it back into the data space.

z ∼ Enc(x) = q(z|x) , x̂ ∼ Dec(z) = p(x|z) (3.3)

Variational autoencoder (VAE) try to minimize KLD between the generator distribution

and the data distribution. The KLD quantifies the closeness between two probability

distributions. The KLD between continuous distribution Pd and Pg is given by:

KL(Pd‖Pg) =
∫
x

Pd(x)log

(
Pd(x)

Pg(x)

)
dx (3.4)

11

Figure 3.3: The above figure shows the three different fits to the data drawn from the
mixture of Gaussians by either minimizing Kullback-Leibler Divergence
(KLD), Maximum Mean Discrepancy (MMD) or Jensen-Shannon Diver-
gence (JSD). It is clearly seen that using different distance measure between
the distributions results in different fit on the data.

This cost function is non-negative
(
KL(Pd‖Pg) ≥ 0

)
, non-symmetric in Pd and Pg and

has a unique minimum at zero when Pg matches Pd exactly. For a training example x if

Pd(x) > Pg(x) then x has higher probability coming from data samples than a gener-

ated sample. It is important to note that when Pd(x) > 0 and Pg(x) → 0 the integrand

quickly grows to infinity, meaning this cost function assigns an extremely high cost to

a generator’s distribution for not covering parts of the data. But if Pd(x) < Pg(x) then

this cost pays extremely low cost to the samples when Pd(x)→ 0 and Pg(x) > 0. This

means that this cost function will pay extremely low cost for generating fake samples.

Clearly, if we would minimize KL(Pg‖Pd) instead, the weighing of these errors would

get reversed. The cost function would pay high cost for generating fake looking sam-

ples but it will pay extremely low cost for the generating not covering parts of data

distribution.

3.2.3 GANs and Jensen-Shannon Divergence (JSD)

Jensen-Shannon Divergence (JSD) overcomes the difficulties of KLD as it minimizes

the symmetric middle ground of the two cost functions KL(Pg‖Pd) and KL(Pd‖Pg).

Hence, JSD is symmetrized and smoothed version of KLD. Formally, JSD can be writ-

ten as:

JSD(Pd‖Pg) =
1

2
KL(Pd‖PA) +

1

2
KL(Pg‖PA) (3.5)

12

Where PA is the average distribution with density Pd+Pg

2
.

Generative adversarial networks (GANs) have been shown to optimize an approxima-

tion to the JSD. It is indeed conjectured that the reason for success of GANs is due

to the switch from traditional likelihood approaches. GANs were first introduced by

Goodfellow Goodfellow et al. (2014) in 2014. Since then, they have been widely used

for various image related tasks. GANs consists of two models: a Generator (G) and

a Discriminator (D) which play a two-player mini-max game. D tries to discriminate

between the samples generated by G and training data samples, while G tries to fool

the discriminator by generating samples close to the actual data distribution for input

random vector z. Goodfellow proved that there exists a unique solution to this, with

G modeling the training data distribution and D equal to 1
2

everywhere. The mini-max

cost function Goodfellow et al. (2014) for training GANs is given by

min
G

max
D
C(G,D) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z))] (3.6)

where D(x) is the probability assigned by the discriminator to the input x for discrim-

inating x as a real sample. Pdata and Pz are the respective probability distributions of

data x and the input random vector z.

Minimizing equation 3.6 would result in minimizing the JSD between the generator’s

distribution and data distribution if the discriminator is optimal. So, In theory one

would expect to first train the discriminator near to the optimum then optimize equa-

tion 3.6 so the cost function better approximates JSD. But this doesn’t work, In prac-

tice the gradients from D required for updating parameters of G becomes close to

zero for near to optimum discriminator. Hence, In practice the mini-max game be-

tween G and D is implemented iteratively. First k steps of D is optimized to minimize

logD(x) + log(1−D(G(z)) keeping G constant, which is followed by one step of G to

minimizing log(1−D(G(z)) while keeping D constant.

The above technique also doesn’t solve the problem completely, As in early learning

G is poor and D can rejects samples produced by G with high confidence as they are

clearly not from training data. Due to this G doesn’t get sufficient gradients for updates

as the term log(1−D(G(z)) of the cost function saturates. Hence, to avoid this gradient

vanishing problem especially in the early learning Goodfellow suggested to train G to

maximize log(D(G(z)) rather than minimizing log(1 − D(G(z)). Figure 3.4 shows a

more pedagogical explanation of the training procedure.

13

Figure 3.4: Above figure shows hows how the distributions of Generator (green line)
and Discriminator (dotted blue line) changes as the GAN training proceeds
to make Generator’s distribution equal to data distribution. The lower hor-
izontal line is the domain from which z is sampled, in this case uniformly.
The horizontal line above is part of the domain of data x. The upward
arrows shows how the mapping x = G(z) imposes the non-uniform distri-
bution on transformed samples. As the training proceeds the gradients of D
(significant in the transition region whereD is less confident) helps shift the
distribution of G towards data distribution.

GANs that just accept random noise and attempt to model the probability distribu-

tion of data over noise are difficult to train. Sometimes their instability leads to artifacts

in the generated image. Hence, instead of a vanila network for GAN, we used condi-

tional GAN which was introduced by Mirza et al. Mirza and Osindero (2014) and which

enables GANs to accomodate extra information in the form of a conditional input. The

inclusion of adversarial cost in the loss function has shown great promise Pathak et al.

(2016), Isola et al. (2016). Training conditional GANs is a lot more stable than uncon-

ditional GANs due to the additional guiding input. The modified cost function Isola

et al. (2016) is given by

min
G

max
D

Ccond(G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]

+ Ex∼Pdata(x),z∼Pz(z)[log(1−D(x,G(x, z))] (3.7)

In our case y is the clean target feature, x is the conditional image (the blurred input),

and z is the input random vector. In conditional GANs, the generator tries to model

the distribution of data over the joint probability distribution of x and z. When trained

without z for our task, the network learns a mapping for x to a deterministic output y

which is the corresponding clean feature.

Isola et al. (2016) proposes an end-to-end network using a generative model to

14

(a) (b) (c)

Figure 3.5: Effect of direct regression using generative networks. (a) Input blurred im-
age. (b-c) Output of the network and the expected output.

perform image-to-image translation that can be used in multiple tasks. Following this

recent trend, we initially attempted regressing directly to the clear pixels using off-the-

shelf generative networks. However, we observed that this can lead to erroneous results

as shown in Fig. 3.6. The main reason for this could be that the network becomes

unstable when trained on higher-dimensional data. Also GANs are quite challenging to

train and have mainly shown results for specific class of images. When trained for large

diverse datasets, training does not converge Warde-Farley and Bengio (2017). Hence,

we used the apriori-learned features of the autoencoder for training GAN.

Training a perfect discriminator requires it’s weights to be updated simultaneously

along with the generator such that it is able to discriminate between the generated sam-

ples and data samples. This task becomes easy and viable for the discriminator in the

feature space for two reasons:

i) In this space, the distance between blurred features and clean features is higher as

compared to the image space. This helps in faster training in the initial stage.

ii) The dimensionality of the feature-space is much lower as compared to that of image-

space. GANs are known to be quite effective in matching distributions in lower-dimensional

spaces Donahue et al. (2017).

Wasserstein GANs

Recently (Arjovsky and Bottou, 2017) showed that training GANs optimizing G by

maximizing log(D(G(z)) rather than minimizing log(1−D(G(z)) is also not desirable.

It was proved that as the G gets better, either we see vanishing gradients log(1−D(G(z))

when we optimize by minimizing log(1−D(G(z)) or the massively unstable behaviour

15

(a) (b)

Figure 3.6: First a DCGAN was trained for 1, 10 and 25 epochs. Then with the gen-
erator fixed the discriminator was trained from scratch. (a) shows discrim-
inator’s norms quickly going to 0 when trained with log(1 − D(G(z)) cost
function. (b) shows discriminator’s norms quickly growing when trained
with log(1 − D(G(z)) cost function. As gradients grows their variance in-
creases and the they gradient update becomes noisy.

(noisy updates with log(D(G(z))) when we maximize log(D(G(z)). Figure 3.6 shows

the discriminators error rates on logarithmic scale trained with these the two different

criteria. (Arjovsky and Bottou, 2017) showed that this noisy and vanishing gradient

behavior is due to the supports of Pd and Pg lying in different manifolds.

To overcome these issues (Arjovsky and Bottou, 2017) suggests to train GANs with

a softer metric known as Wasserstein metric, Which he calls them Wasserstein GANs.

In Wasserstein GANs, first we train the discriminator by assigning continuous labels to

the generated samples and data samples. The labels can be random noise with different

mean (for generated and data samples) and small variance. After training the D till

close to optimum, the generator is trained with log(1−D(G(z)) cost function. But this

time the gradients will not be zero due to use of continuous labels in training of D.

3.2.4 Loss function

We trained our network using the following loss functions. For autoencoder training,

we used Lmse + λLgrad. Adding the gradient-loss helps in preserving edges and re-

16

(a) (b)

Figure 3.7: Quantitative evaluation on dataset of Sun et al. (2013). (a) and (b) corre-
spond to average PSNR and MSSIM values, respectively.

covering sharp images as compared to Lmse alone. We use normalized l2 distance on

the expected and observed image as our loss function i.e.

Lmse = ‖De(E(I +N))− I‖22 (3.8)

where De is the decoder, E the encoder, N is noise and I is the target (clean) image.

The MSE error captures overall image content but tends to prefer a blurry solution.

Hence, training only with MSE loss results in loss of edge details. To overcome this,

we used gradient loss as it favours edges as discussed in Mathieu et al. (2015) for video-

prediction.

Lgrad = ‖∇De(E(I +N))−∇I‖22 (3.9)

where∇ is the gradient operator.

GAN is trained with the combined cost given by λadvLadv +λ1Labs +λ2Lmse in

the image and feature space. Even though l2 loss is simple and easy to back-propagate,

it under performs on sparse data. Hence, we used l1 loss for feature back-propagation

i.e.

Labs = ‖G(B)− E(I)‖1 (3.10)

where B is the blurred image. The adversarial loss function Ladv (given in Eq. (3.7))

requires that the samples output by the generator should be indistinguishable to the dis-

criminator. This is a strong condition and forces the generator to produce samples that

are close to the underlying data distribution. As a result, the generator outputs features

17

Method Run time
Ours (Torch, GPU) 3.4 sec

Xu & Jia Xu and Jia (2010) (Executable) 3 min (800 × 600 pixels)
Xu & Jia Xu et al. (2013) (Matlab, CPU) 34 sec

Pan Pan et al. (2016) (Matlab, CPU) 40 min
Whyte Whyte et al. (2012) (Matlab, CPU) 4 min

Table 3.1: Run-time for each method for average image size of 1024 × 700.

(a) (b) (c) (d)

Figure 3.8: Comparisons for space-invariant deblurring. (a) Input blurred image. (b-c)
Deblurred output using methods in Xu and Jia (2010) and Pan et al. (2016),
respectively. (d) Our result.

that are close to the clean feature samples. Another advantage of this loss is that it

helps in faster training (especially during the initial stages) as it provides strong gradi-

ents. Apart from adversarial and l1 cost on the feature space, we also used MSE cost

on the recovered clean image after passing the generated features through the decoder.

This helps in fine-tuning the generator to match with the decoder. Fig. 2.1 shows the

direction of error back-propagation along with the network modules.

3.2.5 Final Training

We train GAN using normal procedure but instead of asking the discriminator to dis-

cern between generated images and clean images, we ask it to discriminate between

their corresponding features. The generator and the discriminator architectures are as

given below.

Generator: C5
3→8 ↓ 2 → R

5(2)
8 → C5

8→16 ↓ 2 → R
5(2)
16 → C3

16→32 ↓ 2 → R
5(2)
32 →

C3
32→128 ↓ 2→ R

3(2)
128 → C3

128→32 ↑ 2

Discriminator: C5
32→32 → C5

32→32 ↓ 2→ C5
32→16 → C5

16→16 ↓ 2→ C5
16→8 → C3

8→8 ↓

2→ C3
8→1

Each convolution is followed by a Leaky ReLU and batch-normalization in the discrim-

18

(a) (b) (c) (d) (e) Ours

Figure 3.9: Examples for space-variant deblurring and comparisons with conventional
state-of-the-art methods. (a) Input blurred image. (b-e) Results obtained by
the methods in Xu et al. (2013); Whyte et al. (2012); Pan et al. (2016) and
our result, respectively.

inator, and ReLU and batch-normalization in the generator.

Once the second stage is trained, we have a generator module to which we pass

the blurred input during the test phase. The generator produces features which corre-

spond to clean image features which when passed through the decoder deliver the final

deblurred result. It may be noted that our network is compact with 34 convolutional

layers (generator and decoder put together) despite performing end-to-end deblurring.

The details of choice of parameters for both stages is given below:

We trained our autoencoder using clean patches of size 128 × 128 from the Pascal

VOC 2012 dataset Everingham et al. (2012). The inputs were randomly corrupted with

Gaussian noise (standard deviation = 0.2) 30% of the time to ensure learning of useful

data representation. For learning, we used Adam Kingma and Adam (2015) with an

initial learning rate of 0.0002 and momentum 0.9 with batch-size of 8. The training

took around 105 iterations to converge. The gradient cost was scaled by λ = 0.1 to

ensure that the final results are not over-sharpened.

The second stage of training involved learning a blur-invariant representation from

blurred data. For creating the blurred data, we used around 105 kernels generated using

the code provided by Chakrabarthi et al. Chakrabarti (2016). The input images from

PASCAL dataset were blurred using these kernels and patches of size 128 × 128 were

19

extracted. Around 35 × 105 training data was used to train the generator-discriminator

pair. The Adam optimizer with initial setting as before was used with a batch-size of 16.

To improve GAN stability, we also used smooth labeling of blur and clean features as

discussed in Arjovsky and Bottou (2017). For around 2×105 iterations, the training was

done with feature costs alone with λadv = 0.01 and λ1 = 1. Fine tuning of the generator

was subsequently done by adding the MSE cost and weighing down the adversarial cost

(λ2 = 1, λ1 = 1 and λadv = 0.001).

20

CHAPTER 4

Tried Network Architectures and Recent Related Works

4.1 Tried Network Architectures

Initially our first architecture for autoencoder had only convolutional layers with ReLU

and max-pooling layers in between. We trained this network with both MSE as well

as gradient loss criteria.The PSNR of the recovered image with this network was less

even after using only one max-pooling layer in the architecture. Also, this architecture

has gradient vanishing problem, so going deep for extraction features for encoding is

difficult. Using strided convolution along with ResNet solved these problems. Max-

pooling layers provide invariance to small translations of the input due to which these

features are lost in the image due to max-pooling. But in case of autoencoders ideally

we want the complete image to be recovered as it is. Hence, we trained the autoencoder

whose architecture is shown in figure 3.1 that sidesteps above problems.

After autoencoder training the encoded features of the blurry image should be matched

with corresponding clean image features, which when passed through the decoder should

produce deblurred image. The first obvious idea came to our mind was to match features

by using fully connected layers and propagate MSE and gradient loss during training.

But by introducing fully connected layers in the network, the training becomes ex-

tremely slow making this technique computationally infeasible. Next we tried CNN

for feature correction which takes features of a clean image as input and outputs corre-

sponding clean image features. But training this network with MSE (on features) and

gradient loss itself only works for very less blur and encourages some blur in the output.

Using adversarial loss along with MSE proved to be very effective for feature match-

ing task. With adversarial loss network started to give sharp from the first epoch itself.

This is due to strong gradients propagated back to generator using adversarial loss func-

tion. Recent works has have shown that high-quality images can be generated by opti-

mizing perceptual loss functions based on high-level features extracted from pretrained

networks. They define perceptual loss as MSE loss on the features encoded by standard

networks like VGG, AlexNet. Although MSE loss on features encoded by our autoen-

coder is similar to this but we also tried explicitly including perceptual loss (feature loss

from trained VGG network) in our loss function. But it didn’t show any significant im-

provement. Below are some of the tried networks and results. Architecture wise these

networks are not much different from the our final network.

I Network1: Autoencoder of figure 3.1 with adversarial and MSE loss on features
We trained this network on space invariant synthetically blurred images from
celebrity face dataset with image size of 256 x 256. The network was trained for
200 epochs on 17000 images. The training was done with two different values of
Ladv, 0.01 (very high.) and 0.0001. Due to high weightage to adversarial cost
(0.01) the network was trying to output extra sharp output resulted in artifacts
especially for heavily blurred images but for less weightage the network was not
able to handle heavily blurred images. Figure 4.1 shows result of this network
with two different settings.

I Network2: Autoencoder of figure 3.1 trained with adversarial , MSE loss on
features and explicitly adding feature loss on features encoded by pretrained VGG
network. We trained this network by giving different weightage to adversarial loss
and compared with Network1. Addition of features from VGG network didn’t
show any significant improvement.

I Network3: Autoencoder of figure 3.1 trained with adversarial , MSE loss on fea-
tures and on final reconstructed image when passed through decoder. Here we
tried two variants, In first we only update weights of Generator while keeping
decoder unchanged. In second we decoder also with only the MSE loss between
reconstructed and ground truth image. These two networks were tried by giving
different weightage to all the three losses. The second one shows slight improve-
ment over the first but it slows down the training process.

4.2 Recent Related Works

Recently two more end-to-end single image deep blind deblurring came in parallel to

our work [kyoung,parmanand]. Their network architecture being similar to each other

significantly differs from ours. Both of them use three stage multiscale approach for

deblurring, as blur is less visible at smaller scales. Both of the papers proposed datasets

that provides pairs of realistic blurry image and the corresponding ground truth sharp

image. To obtain such data they use high frame rate video camera (Gopro camera) and

keep one frame as the sharp image and average of frames as the corresponding blurred

image.

22

(a) (b) (c)

(d) (e) (f)

Figure 4.1: (b) is the result of Network1 on a blurry image when trained with Ladv =
0.0001. (a) and (c) are the corresponding input and target image respec-
tively. (e) shows the output of same network when trained with Ladv =
0.01, (d) and (f) are the corresponding input and target image respectively.

First stage of [kyoung]’s network takes blurred image scaled to 1
4

as input and pro-

duces deblurred image at 1
4

scale. Second stage takes blurred image scaled to 1
2

and

output of first image upconvolved to 1
2

as input and produces deblurred image at 1
2

scale. Similarly, output of second stage upconvolved to 1
2

and blurred image is fed to

third stage to get the final deblurred output. For optimizing the network parameters,

they use combination of two losses MSE and adversarial loss at each stage. [kyoung]

in his paper shows that using multiscale approach doesn’t show much improvement.

[parmanand]’s first stage of network takes original blurred image as input and pro-

duces sharp image at 1
4

scale of the original. Second stage takes output of first stage

and blurred image scaled to 1
4

as input and produces clean output at 1
2

of original scale.

Third stage takes out from second network and blurred image scaled to 1
2

as input and

produces clean final deblurred output. Unlike [kyoung]’s this network doesn’t have

separate losses for each stage and has only one discriminator for discriminating at fi-

nal output. One major difference is that [kyoung]’s network is very large (120 layers)

where as [parmanand] uses only 17 layers.

23

CHAPTER 5

Experiments

We evaluated the efficacy of our network for deblurring, both quantitatively and qual-

itatively. We also compared performance with conventional as well as deep networks.

For conventional methods, we selected the very recent dark channel prior of Pan et al.

(2016), l0 unnatural prior by Xu et al. Xu et al. (2013), deblurring method of Whyte

et al. Whyte et al. (2012) and the two-phase kernel method of Xu Xu and Jia (2010).

Codes were downloaded from the authors’ websites. We also did comparisons with

deep learning-based approaches Chakrabarti (2016) and Sun et al. (2015). In addition

to the above, we also tested on images affected by object motion and compared our

results with the generalized video deblurring method of Hyun Kim and Mu Lee (2015).

5.1 Quantitative Analysis

We performed quantitative comparisons of our method with state-of-the-art methods

Pan et al. (2016); Xu et al. (2013); Whyte et al. (2012); Xu and Jia (2010) on the

dataset of Sun et al. (2013). The dataset consists of 80 images and 8 kernels. We did

a comparative study by picking 5 kernels from the set and using them to blur 6 ran-

domly chosen images (i.e. 30 blurred image in all). The average PSNR and MSSIM

(Mean SSIM) measures obtained on each of these images is provided in Figs. 3.7(a) and

(a) (b) (c) (d)

Figure 5.1: Comparison with Chakrabarti (2016). (a) Input blurred image. (b) Output
of our network. (c) Network output of Chakrabarti (2016) and (d) final
non-blind deblurred output of Chakrabarti (2016).

(a) (b) (c)

Figure 5.2: Comparison with Sun et al. (2015). (a) Space variantly blurred input image.
(b) Deblurred output of Sun et al. (2015). (c) Output of our network.

(a) (b) (c)

Figure 5.3: Comparison with Sun et al. (2015). (a) Space variantly blurred input image.
(b) Deblurred output of Sun et al. (2015). (c) Output of our network.

(a) (b) (c)

Figure 5.4: Comparison with Hyun Kim and Mu Lee (2015). (a) Input blurred image
of dynamic scene. (b) Output of our network. (c) Network output and final
non-blind deblurred output of Hyun Kim and Mu Lee (2015).

25

(b), respectively. Although we do not always outperform the above listed conventional

methods, our performance is at par with them and sometimes even better (img34). Im-

portantly, our method offers a significant advantage in terms of run-time. The images

tested here had an average size of 1024 × 700 and we have reported the run-time for

each method (run on Intel I-7 3.4GHz CPU with 8 cores) in Table 3.1. Note that our

method implemented in Torch and run using a Titan-X GPU is at least an order faster

than the fastest competitive method Xu et al. (2013).

We also provide quantitative evaluation of our network on the Köhler dataset Köh-

ler et al. (2012) which is commonly used for evaluating non-uniform deblurring tech-

niques. We have compared against conventional methods Whyte et al. (2012); Xu et al.

(2013) and the deep network approach of Sun et al. (2015). The dataset consists of 4

images and 12 non-uniform camera motions totaling to 48 blurred images. The aver-

age MSSIM values are provided in Table 5.1. These numerical values are calculated

by using the evaluation code provided in the webpage of Köhler et al. (2012) and the

results for competing methods are obtained by running the code provided by the authors

(on their webpage) with default parameter settings for the respective works. Note that

the performance of our network is quite comparable with competing methods on this

dataset as well. The highlight of our method is that it is quite fast and does not involve

any parameter tuning.

5.2 Qualitative Comparisons

Figs. 3.8 and 3.9 provide qualitative performance of our network compared to conven-

tional methods on space-invariant and space-variant blur, respectively. The results in

Fig. 3.8 clearly reveal that our method (Fig. 3.8(d)) produces results devoid of any

ringing artifacts when compared to Xu and Jia (2010) and Pan et al. (2016). The but-

terfly’s wing and the lady’s collar look sharp and clear. Though the result in Fig. 3.8(c)

also appears to be sharp, there is ringing at the boundaries. The same issue is present in

Fig. 3.8(b) as well.

The efficacy of our method to deal with space-variant blur due to non-uniform cam-

era motion is given in Fig. 3.9. Here, the input images (first column) are affected by

26

different blurs at different locations. We compared our method with that of Xu et al.

(2013); Whyte et al. (2012); Pan et al. (2016). It can be clearly observed that our

method outperforms all others. The zoomed-in patch of the bag in the second row as

well as the bottle in the fourth row are quite clear and sharp in our result (Fig. 3.9(e)), in

comparison with other outputs. It has to be noted here that we ran all the comparisons

using the default settings provided by the authors in their codes. The result of these

methods could perhaps improve with parameter tuning (although the ’subway’ compar-

ison results are taken directly from Pan et al. (2016)); but as already explained earlier

section, this is very cumbersome exercise; more so, given the fact that the run-time for

the competing methods is quite high. In stark contrast, our method elegantly avoids

these pitfalls.

We provide additional qualitative comparisons on publicly available Lai et al. Lai

et al. (2016) real dataset. Figs. 5.5 - 5.12 show results of our network along with the

outputs obtained from prior-based state-of-the-art conventional methods Levin et al.

(2011); Whyte et al. (2012); Xu et al. (2013); Sun et al. (2013); Pan et al. (2014)

on randomly chosen images from Lai et al. Lai et al. (2016) dataset. The dataset

consists of both synthetic and real images collected from various conventional prior

works on deblurring. Comparative results are directly taken from Lai et al. (2016) and

hence it is reasonable to assume that the results for competing methods correspond to

their fine-tuned parameters and priors. Figs. 5.5 - 5.7 are synthetic examples from this

dataset generated using non-uniform camera motions and affected with several common

degradations. Rest of the examples are real and are taken from Lai et al. (2016). Fig.

5.13 contains additional visual results on images captured by us as well as real images

taken from Lai et al. (2016). From the exhaustive evaluation given in the main paper and

in this supplementary material, it is amply evident that our method yields output that

is visually comparable or even better than methods that painstakingly employ different

priors on the underlying clean image and kernel for deblurring.

5.3 Comparision with Deep networks

We also compared our deblurring results with that of Chakrabarti (2016) and Sun et al.

(2015). These are deep network-based approaches but perform the task of kernel es-

27

timation. The deblurred results for these methods are obtained by using a non-blind

deblurring scheme in the final step. For comparisons with Chakrabarti (2016) (shown

in Fig. 5.1), we ran our network on the images provided in their paper. The results

are compared here with the network output of Chakrabarti (2016) (Fig. 5.1 (c)) and the

final output (Fig. 5.1 (d)) obtained post non-blind deblurring. It must be noted here that

our network output (Fig. 5.1 (b)) is significantly better than the network output of Fig.

5.1 (c). Moreover, the method Chakrabarti (2016) can only handle space-invariant blur.

We also compared our network with Sun et al. (2015) that performs parametrized es-

timation of space-variant blur using deep networks and then uses a conventional method

for deblurring. We again ran our network on the images provided by the authors in their

paper (Fig. 5.2 & Fig.5.3). Note that our model produces results that are comparable

to that produced by final deblurring in Sun et al. (2015). The zoomed-in patches of

the man and the woman’s face in the second row as well as the masked man’s face and

reporter’s hands in the forth row are much sharper in our result.

5.3.1 Object Motion Deblurring

We also tested on images with blur due to object motion and observed that our net-

work is able to handle even such cases to a resonable extent although it was not trained

with such examples. In contrast, conventional deblurring methods Pan et al. (2016);

Xu et al. (2013); Whyte et al. (2012); Xu and Jia (2010) that model blur due to camera

motion (alone) cannot handle blur due to object motion. Fig. 5.4 depicts examples of

object motion deblurring where the inputs in Fig. 5.4(a) have blur in the background

due to camera motion while the foreground (which is at a differnt depth from the back-

ground) incurs blur due to object as well as camera motion. We compared our results

(Fig. 5.4(c)) with the video-based dynamic scene deblurring method of Hyun Kim and

Mu Lee (2015) (Fig. 5.4(b)). The results reveal that our method (Fig. 5.4(c)) (although

single image based) is able to perform at par with the video-based method that uses

information from multiple frames.

28

Whyte et al. (2012) Xu et al. (2013) Sun et al. (2015) Ours
MSSIM 0.8405 0.8340 0.7932 0.8102

Table 5.1: Quantitative comparisons on Köhler dataset Köhler et al. (2012).

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.5: Synthetic example taken from dataset Lai et al. (2016). (a) Input blurry im-
age. (b-f) Deblurred result corresponding to methods in Levin et al. (2011);
Whyte et al. (2012); Xu et al. (2013); Pan et al. (2014); Sun et al. (2013) in
order respectively, and (g) is the result obtained by our network. Zoomed-in
patches are shown below each of the corresponding result for better view-
ing.

5.4 Conclusions

In this work, we analyze various deep network architectures for blind deblurring and

proposed an end-to-end deep network for single image blind-deblurring using autoen-

coder and GAN. Instead of directly regressing for clean pixels, we perform regression

over encoder-features to arrive at a blur-invariant representation which when passed

through the decoder produces the desired clean output. Our network is kernel-free,

does not require any prior modeling, and can handle both space-invariant and space-

variant blur. When evaluated on standard datasets as well as on our own examples, our

network performs at par or even better than competing methods while being faster by at

least an order. Inspired from traditional dictionary technique we believe that this kind of

architecture can be extended for other tasks like super-resolution and image inpainting.

Where traditional dictionary learning techniques has already shown good results.

29

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.6: Another synthetic example from Lai et al. (2016) dataset. (a) Input blurry
image. (b-f) Deblurred result corresponding to methods in Levin et al.
(2011); Whyte et al. (2012); Xu et al. (2013); Pan et al. (2014); Sun et al.
(2013) in order respectively, and (g) is the result obtained by our network.
The zoomed in patch of leaves is much clear in our result.

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.7: Synthetic example taken from dataset Lai et al. (2016). (a) Input blurry im-
age. (b-f) Deblurred result corresponding to methods in Levin et al. (2011);
Whyte et al. (2012); Xu et al. (2013); Pan et al. (2014); Sun et al. (2013) in
order respectively, and (g) is the result obtained by our network. Here the
kid’s eye and hand look more clear in our result.

30

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.8: Visual comparison with conventional methods on real example. Our method
generates output that are at par or better than the state-of-the-art methods.

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.9

31

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.10

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.11

32

(a) Input (b) Levin et al. (2011) (c) Whyte et al. (2012) (d) Xu et al. (2013)

(e) Pan et al. (2014) (f) Sun et al. (2013) (g) Ours

Figure 5.12

Figure 5.13: Additional qualitative results for images picked randomly from Lai et al.
(2016), and captured by ourself. Input in the left side and corresponding
output in the right.

33

REFERENCES

1. Aharon, M., M. Elad, and A. Bruckstein (2006). rmk-svd: An algorithm for designing

overcomplete dictionaries for sparse representation. Transactions on signal processing, 54(11),

4311–4322.

2. Arjovsky, M. and L. Bottou, Towards principled methods for training generative adversarial

networks. In NIPS 2016 Workshop on Adversarial Training, volume 2016. 2017.

3. Chakrabarti, A., A neural approach to blind motion deblurring. In ECCV . Springer, 2016.

4. Chan, T. F. and C.-K. Wong (1998). Total variation blind deconvolution. TIP, 7(3), 370–375.

5. Cho, S. and S. Lee, Fast motion deblurring. In TOG, volume 28. ACM, 2009.

6. Donahue, J., P. Krähenbühl, and T. Darrell, Adversarial feature learning. In ICLR. 2017.

7. Dong, C., C. C. Loy, K. He, and X. Tang (2016). Image super-resolution using deep convolu-

tional networks. TPAMI, 38(2), 295–307.

8. Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman (2012).

The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

9. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, Generative adversarial nets. In NIPS. 2014.

10. Gretton, A., K. M. Borgwardt, M. Rasch, B. Schölkopf, A. J. Smola, et al. (2007). A kernel

method for the two-sample-problem. Advances in neural information processing systems, 19,

513.

11. Gupta, A., N. Joshi, L. Zitnick, M. Cohen, and B. Curless, Single image deblurring using

motion density functions. In ECCV . 2010.

12. He, K., X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. In CVPR.

2016.

13. Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8), 1771–1800.

34

14. Hinton, G. E. and R. R. Salakhutdinov (2006). Reducing the dimensionality of data with

neural networks. science, 313(5786), 504–507.

15. Hyun Kim, T. and K. Mu Lee, Generalized video deblurring for dynamic scenes. In CVPR.

2015.

16. Isola, P., J.-Y. Zhu, T. Zhou, and A. A. Efros (2016). Image-to-image translation with condi-

tional adversarial networks. arXiv preprint arXiv:1611.07004.

17. Joshi, N., R. Szeliski, and D. J. Kriegman, Psf estimation using sharp edge prediction. In

CVPR. IEEE, 2008.

18. Kingma, D. and J. B. Adam, A method for stochastic optimisation. In ICLR. ICLR, 2015.

19. Köhler, R., M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling, Recording and playback

of camera shake: Benchmarking blind deconvolution with a real-world database. In European

Conference on Computer Vision. Springer, 2012.

20. Krishnan, D., T. Tay, and R. Fergus, Blind deconvolution using a normalized sparsity measure.

In CVPR. IEEE, 2011.

21. Krizhevsky, A., I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolu-

tional neural networks. In NIPS. 2012.

22. Lai, W.-S., J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang, A comparative study for single

image blind deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2016.

23. Levin, A., Y. Weiss, F. Durand, and W. T. Freeman (2011). Understanding blind deconvolu-

tion algorithms. TPAMI, 33(12), 2354–2367.

24. Li, Y., K. Swersky, and R. Zemel (2015). Generative moment matching networks, 1718–1727.

25. Mairal, J., J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, Supervised dictionary learning.

In Advances in NIPS. 2009.

26. Mathieu, M., C. Couprie, and Y. LeCun (2015). Deep multi-scale video prediction beyond

mean square error. arXiv preprint arXiv:1511.05440.

27. Mirza, M. and S. Osindero (2014). Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784.

35

28. Pan, J., Z. Hu, Z. Su, and M.-H. Yang, Deblurring text images via l0-regularized intensity

and gradient prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2014.

29. Pan, J., D. Sun, H. Pfister, and M.-H. Yang, Blind image deblurring using dark channel prior.

In CVPR. 2016.

30. Pathak, D., P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, Context encoders: Fea-

ture learning by inpainting. In CVPR. 2016.

31. Perrone, D. and P. Favaro, Total variation blind deconvolution: The devil is in the details. In

CVPR. 2014.

32. Schuler, C. J., M. Hirsch, S. Harmeling, and B. Schölkopf, Learning to deblur. In NIPS. 2014.

URL http://arxiv.org/abs/1406.7444.

33. Shan, Q., J. Jia, and A. Agarwala, High-quality motion deblurring from a single image. In

TOG, volume 27. ACM, 2008.

34. Shlens, J., Notes on kullback-leibler divergence and likelihood. 2014.

35. Sun, J., W. Cao, Z. Xu, and J. Ponce, Learning a convolutional neural network for non-uniform

motion blur removal. In CVPR. IEEE, 2015.

36. Sun, L., S. Cho, J. Wang, and J. Hays, Edge-based blur kernel estimation using patch priors.

In ICCP. IEEE, 2013.

37. Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol, Extracting and composing robust

features with denoising autoencoders. In Proceedings of the 25th iICML. ACM, 2008.

38. Warde-Farley, D. and Y. Bengio, Improving generative adversarial networks with denoising

feature matching. In ICLR. ICLR, 2017.

39. Whyte, O., J. Sivic, A. Zisserman, and J. Ponce (2012). Non-uniform deblurring for shaken

images. IJCV , 98(2), 168–186.

40. Xiang, S., G. Meng, Y. Wang, C. Pan, and C. Zhang (2015). Image deblurring with coupled

dictionary learning. IJCV , 114(2-3), 248–271.

41. Xie, J., L. Xu, and E. Chen, Image denoising and inpainting with deep neural networks. In

NIPS. 2012.

36

http://arxiv.org/abs/1406.7444

42. Xu, L. and J. Jia, Two-phase kernel estimation for robust motion deblurring. In ECCV .

Springer, 2010.

43. Xu, L., J. S. Ren, C. Liu, and J. Jia, Deep convolutional neural network for image deconvolu-

tion. In NIPS. 2014.

44. Xu, L., S. Zheng, and J. Jia, Unnatural l0 sparse representation for natural image deblurring.

In CVPR. 2013.

45. Yang, J., J. Wright, T. S. Huang, and Y. Ma (2010). Image super-resolution via sparse repre-

sentation. TIP, 19(11), 2861–2873.

46. Zhang, H. and L. Carin, Multi-shot imaging: joint alignment, deblurring and resolution-

enhancement. In CVPR. 2014.

37

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	Blur-invariant Feature Learning
	Blur-invariant Feature Learning
	Summary of Contributions

	Network Architecture
	Network Architecture
	Encoder-Decoder

	GANs and Objective Functions of Generative Networks
	Maximum Mean Discrepancy (MMD)
	Variational Autoencoders and Kullback-Leibler Divergence (KLD)
	GANs and Jensen-Shannon Divergence (JSD)
	Loss function
	Final Training

	Tried Network Architectures and Recent Related Works
	Tried Network Architectures
	Recent Related Works

	Experiments
	Quantitative Analysis
	Qualitative Comparisons
	Comparision with Deep networks
	Object Motion Deblurring

	Conclusions

