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ABSTRACT

KEYWORDS: Queuing Theory; Traffic Intersections ; Tandem Queues ; Web-

ster’s formula ; Interrupted Queues.

A road network carrying vehicular traffic can be viewed as a packet network where

roads are communication links and signalized intersections are the servers. Many peo-

ple have adopted the models of congestion control theory to model and analyze the

mean delay experienced in a vehicular network.

In this report we study the previous models employed to analyze the mean delay in a sig-

nalized intersection. A traffic intersection can be viewed as a queue with an interrupted

server. This report discusses about three different queuing models used to model the

traffic intersection. We also study the model proposed by Anurag Kumar et al. which

accounts for the lane indiscipline seen on roads by allowing vehicles to form batches.

Webster’s delay formula is one of the most popular results in the traffic literature which

gives an approximation for waiting time in an interrupted M/D/1 queue. This report in-

terprets the terms in Webster’s formula and the quality of approximations is illustrated

by numerical examples.

This project aims to propose a model to analyze the mean queuing delay of signalized

intersections in tandem. We give a reasonable approximation to a tandem interrupted

M/D/1 queue. This report also provides a assembly queue model similar to that of the

one provided by Anurag Kumar et al. to analyze lane indisciplined queues in tandem.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

NOTATION vii

1 INTRODUCTION viii

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

2 Analysis of Delay with Indisciplined Traffic xi

2.1 Overview of the model . . . . . . . . . . . . . . . . . . . . . . . . xi

2.2 Analytical expressions for q0, q1 and µ . . . . . . . . . . . . . . . . xii

2.2.1 Expression for q0 . . . . . . . . . . . . . . . . . . . . . . . xii

2.2.2 Expressions for q1 and µ . . . . . . . . . . . . . . . . . . . xiv

2.3 Analysis of Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

2.3.1 Delay in Assembly queuing system . . . . . . . . . . . . . xvi

3 Interpreting Webster’s delay formula xviii

3.1 Interrupted queue with fluid arrival . . . . . . . . . . . . . . . . . . xviii

3.2 M/D/1 queue with no interruptions . . . . . . . . . . . . . . . . . . xix

4 Signalized intersections in tandem xx

4.1 Interrupted M/D/1 intersections . . . . . . . . . . . . . . . . . . . . xx

4.2 Assembly Queue modeling of tandem batched queue . . . . . . . . xxii

5 Future Work xxvii

iii



6 References xxviii



LIST OF TABLES

4.1 Transition Probabilities of assembly queue markov chain in chapter 2 xxiii

4.2 αi(x, y) for the markov chain in chapter 2 . . . . . . . . . . . . . . xxiii

4.3 ϕi(x) for markov chain in chapter 2 . . . . . . . . . . . . . . . . . xxiv

4.4 ai(x) for markov chain in chapter 2 . . . . . . . . . . . . . . . . . . xxiv

4.5 Probabilities of occurrence of batches from Q1 . . . . . . . . . . . xxiv

v



LIST OF FIGURES

2.1 Depicting the batch formation in Indisciplined traffic queues. . . . . xi

2.2 Assembly queue model. . . . . . . . . . . . . . . . . . . . . . . . . xi

2.3 Plots (a) and (b) show the simulated and approximated estimates foe q0
for different values of green time and cycle time . . . . . . . . . . . xiii

2.4 g=50s and c=60s . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

2.5 g=20s and c=60s . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

2.6 g=50s and c=60s . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

2.7 g=20s and c=60s . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

3.1 Queue occupancy when the arrival is fluid with low arrival rate . . . xviii

4.1 Queue occupancy plot for the second queue when g=20s and c=60s . xxi

4.2 Assembly queue markov chain for the second queue . . . . . . . . . xxvi

vi



NOTATION

λ Arrival rate into the queue
λc Arrival rate of cars
λm Arrival rate of motorcycle pairs
C0 Batch consisting of car alone
C2 A car and motorcycle batch
M2 Batch consisting of a single motorcycle pair
M4 A motorcycle-motorcycle batch
Ṽ Set of all possible batches formed
νx stationary probability that the markov chain is in state x
ai(x) Rate of departure of batch type i from state x
fij probability that a batch j follows a batch i
q0 probability that the interrupted queue is empty
q1 probability that the interrupted queue has exactly one batch
µ mean service rate of vehicles at the interrupted queue
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CHAPTER 1

INTRODUCTION

With Intelligent Transport Systems (ITS) becoming a possibility there is an increased

interest in modeling, analysis, inference and control of traffic in road networks. ITS

can help to make on-line decisions and adjust the traffic signal timings to minimize

the congestion in a road network. The analysis of signalized intersections has been an

area of interest to researchers of applied probability, operations research and control.

While this is a well-studied topic the models used by the researchers do not give an

accurate description of road traffic in Indian contexts where the traffic is indisciplined

and dominated by two-wheelers. Anurag et al. (2015) paper presents and analyses a

model in this context.

A signalized intersection is a junction where two or more roads cross, and is generally

controlled by traffic signals. The congestion phenomenon at an intersection is governed

by parameters such as the duration of the red and green signals, the arrival rates of the

vehicles, the way vehicles may form batches and the rate at which the batched vehicles

exit the intersection during the green time. An understanding of such congestion phe-

nomena, and the design of signal timing as to optimize the delay at an intersection, are

basic questions in any road network analysis and design.

If the departure process of a signalized intersection is fed as an input to an another

signalized intersection the two intersections are said to be in tandem. The congestion

in the second intersection depends on the duration of red and green signals at both the

intersections, the signal offset between the two intersections and the extent of batching

(in case of indisciplined traffic). We study such queues in Chapter 4.

1.1 Contributions

1. We will discuss the model presented by Anurag et al. (2015) which accounts
for the lane indiscipline in the Indian roads by allowing the motorcycles to form
batches. We will support the conclusions made with appropriate simulations.



2. We will interpret and analyze the classical webster’s delay formula for interrupted
M/D/1 queue term by term and support the conclusions with the help of simula-
tions.

3. In chapter 4 we analyze the mean delay of a tandem queue where both the first
and second queues are interrupted with deterministic service process.We also pro-
vided the simulations and analytical results for such a queue.

4. We further provide a discrete time assembly queue model for the case where the
tandem intersections allow batching using the following probabilities obtained in
chapter 2.

1.2 Literature Survey

The problem of analyzing the mean delay at a signalized intersection is well-studied in

traffic engineering literature. The poisson point process is one of the most widely used

approximation to model the arrival of traffic flow into the interrupted queue. The reason

for the wide use of this model in the literature can be attributed to its mathematical

tractability. Webster came up with the first analytical approximation for the mean delay

in an interrupted M/D/1 queue in 1958.

Samrat (2014) has proposed three successively simplistic models to analyze the mean

delay in interrupted queues.

• M/SM/1 model: The arrival process is poisson and the initial vehicle is sam-
pled from the stationary probability distribution and the subsequent vehicles are
sampled from the following probability distribution of the previous vehicle. The
service time of the current vehicle depends on the length of the vehicle if it is the
first vehicle in the queue else the service time depends on the tail to tail distance
between the current vehicle and the vehicle preceding it.

• M/G/1 model: It’s a simplification of the above model. The inter arrivals are ex-
ponentially distributed. All the vehicles are sampled from stationary probability
distribution. The service times can be calculated from the precedence probability
distribution given by the formula.

πipij = πjfji (1.1)

Now from the precedence probability distribution we will sample a vehicle type.
We will compute the service time for the current vehicle, depending on the cur-
rent vehicle type and the preceding vehicle type sampled from the precedence
probability distribution.

• M/D/1 model: The inter arrivals are exponentially distributed and this model
consists of a single vehicle type and the lagging headway for the vehicle type
would be the mean of all lagging headways.
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Federgruen and Green (1986) analyses queues with interruption, with Poisson ar-

rival process and general i.i.d. service time distributions.For the case that Federgruen

and Green analyses, where the arrival rate is same during both green times and red

times, and the service time distributions are same for vehicles arriving during green

times and red times. Sengupta (1990) analyses the general case of a queue with al-

ternating green times and red times with different arrival distributions and service dis-

tributions during green time and red time.Federgruen and Green use the concept of

completion time introduced by Gaver (1962) where as Sengupta uses the concept of

residual service times.
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CHAPTER 2

Analysis of Delay with Indisciplined Traffic

In this chapter, we will briefly explain the model presented by Anurag et al. (2015)

and also provide the numerical simulations to support the conclusions arrived at in the

paper.

2.1 Overview of the model

Figure 2.1: Depicting the batch formation in Indisciplined traffic queues.

In this model, there are two types of vehicles, cars and motorcycles. Cars arrive

according to a Poisson process with rate λc and motorcycles always arrive in pairs

with arrival rate λm. To account for the lane indiscipline vehicles are allowed to form

batches. The motorcycle pairs can always move up to the head of the line (HOL) posi-

tion to form a batch. It should be noted that the cars cannot do the same. The batching

process is depicted in Figure 2.1.

Figure 2.2: Assembly queue model.



The approximate analytical model in the paper contains two assembly queues one

for each vehicle type and an interrupted batching queue in which the batches exit the

queue. All the vehicles enter their corresponding assembly queues when the interrupted

batch queue is non empty and when the assembly queue has a car and motorcycle pair

they exit the assembly queue and join the batch queue. In case the interrupted queue

is empty the car directly joins the interrupted queue. The transitions of such an as-

sembly queue forms a birth death markov chain which is given below where each node

corresponds to the length of the assembly queue.

..1′. 0. 1. 2..

λc + λm + q1µ

.

λm + q1µ

.

λc(1− q0)

.

λm + q1µ

.

λc

.

λm + q1µ

.

λc

.

λm + q1µ

2.2 Analytical expressions for q0, q1 and µ

Finding q0 and q1 requires finding the stationary queue length distribution of an inter-

rupted queue where the arrival process is the batch departure process of the assembly

queues which is not poisson so the exact analysis is intractable and hence these quanti-

ties are obtained from an interrupted M/G/1 model.

2.2.1 Expression for q0

From the analysis of interrupted M/G/1 queues by Sengupta (1990) the approximate

expression for q0 can be shown as

q0 =
g

c
− λτ +

u0

λc
(1− e−rλ) (2.1)

Where u0 is (1− λτ)w0 which is also shown by Sengupta.

w0 = 1− r0 where r0 is the solution for the the equation and ρ = λτr
(1−λτ)

z = e
−g(1−z)

ρ (2.2)

The simulations below show the accuracy of the approximation.
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(a) g=50s and c=60s

(b) g=20s and c=60s

Figure 2.3: Plots (a) and (b) show the simulated and approximated estimates foe q0 for
different values of green time and cycle time
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2.2.2 Expressions for q1 and µ

From the analysis of uninterrupted M/G/1 queue we have the equation

Π(z) =
(1− ρ)(1− z)(C∗(λ(1− z)))

(C∗(λ(1− z)))− z
(2.3)

Since Π(z) =
∑

k πkz
k where πk is the stationary probability of queue length equal to

k.

q1 = Π′(0) (2.4)

C∗ is LS transform of completion time. From the above equations q1 can be obtained as

q1 = q0
1− C∗(λ)

C∗(λ)
(2.5)

Completion time is defined as the time for which a customer remains in the head-of-

the-line position. This can be rigorously obtained by the analysis of Federgruen and

Green (1986). But, we present a simple proof using Little’s theorem.

q0 = 1− λE(C) (2.6)

From Eq 2.6

E(C) =
r

c
+ τ − u0

λ2c
(1− e−rλ) (2.7)

The simulations below show the accuracy of approximations.

Figure 2.4: g=50s and c=60s
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Figure 2.5: g=20s and c=60s

Figure 2.6: g=50s and c=60s
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Figure 2.7: g=20s and c=60s

2.3 Analysis of Delay

The model considered has two delay components the delay experienced in the assembly

queue and the delay experienced in the interrupted batch queue.

2.3.1 Delay in Assembly queuing system

The expected number of motorcycle pairs in the assembly queuing system

EMp = ν1′ (2.8)

The delay experienced by the motorcycle pairs is given by

EWMp =
EMp

λm

(2.9)

The expected number of cars in the assembly queuing system

ECp =
∑
k

kνk (2.10)
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The delay experienced by the motorcycle cars is given by

EWCp =
ECp

λc

(2.11)

The total delay is given by

dAssembly =
2λm

λc + 2λm

EWMp +
λc

λc + 2λm

EWCp (2.12)

The total delay experienced in the system is

d = dAssembly +
c(1− g

c
)2

2(1− g
c
x)

+
q

λ
− τ + 0.65

(
c

λ2

) 1
3

x2+5 g
c (2.13)
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CHAPTER 3

Interpreting Webster’s delay formula

In this chapter, we will provide an intuitive interpretation of every individual term

present in the interrupted M/D/1 delay formula.

3.1 Interrupted queue with fluid arrival

Consider an interrupted queue with fluid arrival with arrival rate λ and service rate µ.

In a situation where the arrival rate is low compared to the arrival rate at the degree of

saturation of such a queue we can assume that fluid arriving in the red time is cleared

during the green time. The queue occupancy in such a case can be calculated as the area

under the graph in Figure 3.1.

Figure 3.1: Queue occupancy when the arrival is fluid with low arrival rate



The total area under the graph is given by

= 1
2
(r + g)rλ

= 1
2
(r + rλ

µ−λ
)rλ

= 1
2
r2µλ
µ−λ

The average queue occupancy can be obtained by dividing the the above equation with

c.

= 1
2

r2µλ
c(µ−λ)

From Little’s theorem mean delay can be obtained by dividing it with arrival rate λ.

d =
c(1− g

c
)2

2(1− g
c
x)

(3.1)

So, the equation 3.1 gives the delay experienced in an interrupted fluid queue when the

traffic arriving in the red time is cleared in the green time. This equation is the first term

in Webster’s delay formula.

3.2 M/D/1 queue with no interruptions

In an M/D/1 queue with no service interruptions the delay experienced is given as a

function of utilization ρ = λ
µ

where λ is the arrival rate and µ is the service rate.

d =
ρ2

2λ(1− ρ)
(3.2)

The utilization in interrupted queue is measured as degree of saturation which is λτ c
g
.

Therefore second term in Webster’s delay formula can be viewed as the delay experi-

enced in an uninterrupted M/D/1 queue when the utilization is inflated by c
g
.

d =
x2

2λ(1− x)
(3.3)
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CHAPTER 4

Signalized intersections in tandem

In this chapter, we study signalized intersections in tandem and try to provide some

results which will help in analyzing their mean delay. The delay experienced in such a

system has four components the delay in first queue, service time in second queue, time

taken to reach from the first queue to second queue and the delay experienced in second

queue.

4.1 Interrupted M/D/1 intersections

In this section, we will consider a simple system where the first queue is a M/D/1

with service interruption and the second queue has a deterministic service process with

interruptions whose input is the output process of the first queue.

In the following analysis, we make the following assumptions. Vehicles will not

overtake the vehicles in front, all the vehicles take the same time to reach the second

queue in this case (30s), new vehicles will not join the vehicle stream going to the

second queue and the signal offset between the two queues is zero that is the signals

are synchronized.

In chapter 3 we showed that the first term in the Webster’s formula comes from fluid

approximation of the process when the arrival rate is low. When the first queue is very

close to saturation the departure process of the first queue will have 1
τ

rate and since

the service process of the second queue is deterministic the mean service time of the

second queue will be τ . This is a model very similar to the one studied by

Clayton(1941) and he has approximated the mean delay of such a queue only with the

fluid approximation.



Assuming the fluid model to study the second queue. In one cycle the traffic gets

accumulated during red time and during green time the traffic gets serviced at rate 1
τ

for

a time say y and during the remaining time g−y traffic arrives at rate λ. The traffic gets

serviced at rate 1
τ

during the green time of second queue. The time y can be calculated

as follows

rλ+ yλ = y
τ

y = rλ
1
τ
−λ

Figure 4.1: Queue occupancy plot for the second queue when g=20s and c=60s

Let the area under the graph be A, then the mean delay van be obtained by applying

Little’s law.

d = A
cλ

Therefore the total delay in the system can be approximated as

dtotal = d1 + τ + 30 + d

xxi



4.2 Assembly Queue modeling of tandem batched queue

Analyzing a tandem queuing system where vehicular batching is allowed is extremely

complex. In this section we provide an assembly queue model similar to that provided

by Anurag et al. (2015) but with a DTMC. The reasons for adopting a DTMC approach

is

1. The departure process from the first queue is not poisson and hence cannot be
modeled as a CTMC.

2. The transition rates of the CTMC that represent the batching process in the as-
sembly queue is dependent on the queue length distribution of the intersection
queue and hence the batch departure process i.e. the batch arrival process into the
intersection queue is dependent upon queue length. Hence the batch departure
process is not renewal.

To get the transition probabilities of the DTMC we need the following probabilities of

the batch departure process from the first queue. Let Xk denote the kth batch departing

the queue then the following probability fij is

fij = P (Xk+1 = j|Xk = i)

From Anurag et al. (2015) this fij is

fij =

∑
x,y∈χ νxaxpxyαi(x, y)ϕj(y)∑

x∈χ νxai(x)
(4.1)

where

αi(x, y) : is probability that there is a departure of type i and goes from state x to state

y, χ is set of all states in markov chain in chapter 2 and pxy is probability of departure

from state x to state y.

νx can be obtained from the balance equations from the markov chain in Chapter 2 as

shown below.

(λc + λm + q1µ)ν1′ = λm(1− q0)ν0

λc(1− q0)ν0 = (λm + q1µ)ν1

λcνx = (λm + q1µ)νx+1, x ≥ 1

xxii



From the above equations,

ν1′ =
1

1 + (λc+λm+q1µ
λm−λc+q1µ

)(λm+q1µ−λcq0
λm(1−q0)

)
(4.2)

ν0 =
λc + λm + q1µ

λm(1− q0)
ν1′ (4.3)

ν1 =
λc(1− q0)

λm + q1µ
ν0 (4.4)

νx = (
λc

λm + q1µ
)x−1ν1, x ≥ 1 (4.5)

From the CTMC in Chapter 2 we get the other quantities

‘
x, y ∈ χ pxy

x = 1′, y = 0 1

x = 0, y = 1′ λm

λc+λm

x = 0, y = 1 λc

λc+λm

x = k, y = k + 1(k ≥ 1) λc

λc+λm+q1µ

x = k, y = k − 1(k ≥ 1) λm

λc+λm+q1µ

else 0

Table 4.1: Transition Probabilities of assembly queue markov chain in chapter 2

i ∈ V αi(x, y)
i = C0

q1µ
λm+q1µ

x = k, y = k − 1 (k ≥ 1)

else 0

i = C2
λc

λc+λm+q1µ
x = 1′, y = 0

λm

λm+q1mu
x = k, y = k − 1 (k ≥ 1)

else 0
i = M2

q1µ
λc+λm+q1µ

x = 1′, y = 0

else 0

i = M4
λm

λc+λm+q1µ
x = 1′, y = 0

else 0

Table 4.2: αi(x, y) for the markov chain in chapter 2
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x ∈ χ ϕi(x)

x = 0 ( λc

λc+λm
)( q1µ

λm+q1µ
), i = C0

( λcλm

λc+λm
)( 1

λm+q1µ
+ 1

λc+λm+q1µ
), i = C2

( λm

λc+λm
)( q1µ

λc+λm+q1µ
) i = M2

( λm

λc+λm
)( λm

λc+λm+q1µ
) i = M4

x = 1′ 0, ß = C0
λc

λc+λm+q1µ
, ß = C2

q1µ
λc+λm+q1µ

, ß = M2
λm

λc+λm+q1µ
, ß = M4

x = 1, 2, ... q1µ
λm+q1µ

, ß = C0
λm

λm+q1µ
mß = C2

0, i = M2,M4

Table 4.3: ϕi(x) for markov chain in chapter 2

x ∈ χ ai(x)
x = 0 0, ∀i ∈ ν
x = 1′ 0, i = C0

λc, i = C2

q1µ, i = M2

λm, i = M4

x = 1, 2, .. q1µ, i = C0

λm, i = C2

0, i = M2,M4

Table 4.4: ai(x) for markov chain in chapter 2

From the above tables following probabilities can be obtained by plugging them

into equation 4.1. From the following probabilities probability of occurrence of each

batch can be obtained and given by table 4.5.

x ∈ V Px

C0 PC0 =
∑

i∈V fiC0

C2 PC2 =
∑

i∈V fiC2

M2 PM2 =
∑

i∈V fiM2

M4 PM4 =
∑

i∈V fiM4

Table 4.5: Probabilities of occurrence of batches from Q1

xxiv



From table 4.5 and using q0 which is the probability of second queue being empty

and P1 the probability that the second queue contains zero batches once the current

batch leaves the queue, we can construct a DTMC for the assembling process where the

states in the markov chain correspond to the number of vehicles in the assembly system

as below.

The state 1′ represents the instance where there is exactly one motorcycle pair in

the system. In this state, when either a single car or a motorcycle pair arrives they form

batch and leave the queue and the assembly queue goes to state 0, if M4 batch arrives

it remains in the same state and if C2 batch arrives we assume either C2 or M4 can be

formed with equal probability and correspondingly remain in the same state or go to

state 1.

In the state 0, if either a C2 or a M4 batch comes they directly join the second queue,

if a motorcycle pair comes it goes to state 1′ and if a car arrives it goes to state 1 if the

batch queue is non empty.

In the state 1, on the arrival of C0 goes to state 2, remains in the same state on the

arrival of C2 or goes to state 1′ on the arrival of M4.

For the states i (∀i ≥ 2) on the arrival of C0 goes to state i+1, remains in the same

state on the arrival of a C2 or goes to state i− 2 on the arrival of M4.

xxv



1' 0 1 2

PC0+PM2

PM4+0.5PC2

P1+PM2

PC0(1-q0)

0.5PC2

PM4

P1+PM2 PC2

PC0

PM4

P1+PM2 PC2

PC0

PM4

P1+PM2

Figure 4.2: Assembly queue markov chain for the second queue
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CHAPTER 5

Future Work

The assembly queuing model presented in this report can be extended to obtain the de-

lay in the tandem queuing system when batching is present. Alternatively, customer

metamorphosis models can be employed to model the batching process and to obtain

the mean delay. Optimization methods can be used to adjust the signal timings and the

signal offsets between the tandem queues to minimize the mean queuing delay experi-

enced in the system. The models presented in the report analyze the delay in case of

single lane traffic this can be extended to study a traffic system having multiple lanes.

The batching model presented can be extended to include multiple vehicle types.
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