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ABSTRACT

KEYWORDS: Pattern Recognition; Handwritten Character Recognition; OCR;

Telugu; Convolutional Neural Networks; Deep Learning; Dropout.

Handwriting recognition is a very active research area in the field of pattern recognition.

However lots of studies have been done on scripts like English, Japanese, etc. and very

little work has been done on Indian languages. But lately, there is a growing interest in

handwriting recognition of Indian languages.

This report uses convolutional neural networks to proposes a model that recognises

Telugu characters. Telugu is one of India’s twenty-one officially recognised languages

and is primarily spoken in two states. It is a Dravidian Language and is syllabic in

nature. The Telugu script consists of 16 vowels and 36 consonants. Each character may

be a single vowel, a consonant, a consonant and vowel modifier or a consonant with a

consonant modifier and a vowel modifier. The last case has been ignored in this report

to reduce complexity. The network uses deep learning and convolutional networks to

recognise the characters in each image of size 28x28. A dataset with approximately

20,000 images was used to train the model, and the model gives an accuracy of 90%

over all test images.

This project aims at making a better model for Telugu character recognition. This model

can next be integrated into software with a front end which recognises the user’s writing.

The structure of the model and its training and regularization have been presented. The

corresponding results and comparative performance have also been discussed to show

it’s effectiveness.
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CHAPTER 1

INTRODUCTION

1.1 The problem

The main goal of this project is to create a model which can efficiently recognise Telugu

characters from images using Deep Learning. Although a lot of work is being done in

the field of handwriting recognition, very little work can be found in the area of recog-

nition of Indian languages. Also, most of the work found regarding Telugu character

recognition is mostly about recognising printed characters (OCR). Thus, this model

tries to fill this gap and recognise handwritten Telugu characters.

Telugu is a Dravidian language with speakers mainly in southern India. The Tel-

ugu script is an abugida, i.e. it is a segmental writing system where consonant-vowel

sequences are written as a unit. Each segment can be one of these types:

• V type: contains a Vowel.

• C type: contains a unmodified consonant

• CV type: contains a consonant and a vowel modifier

• CCV type: contains a consonant, a consonant modifier and a vowel modifier

This makes recognizing Telugu characters a difficult task when compared to lan-

guages like English or Chinese. We have ignored the CCV type for our project for

simplicity. Telugu has a total of 16 vowels and 36 consonants. Each consonant can

have a vowel modifier, i.e. around 600 characters of CV type. The consonant is written

first with the modifiers around it.

Figure 1.1: Four examples of Telugu Characters. Plain Vowel (V type), unmodified
Consonant (C type), Consonant with a vowel modifier (CV type) and a Con-
sonant with a consonant and vowel modifier (CCV type).



Figure 1.2: Some examples from vowel classes.

Figure 1.3: Some C and CV type examples from the Telugu Handwritten dataset.

1.2 Training Data

The training data consists of 20,000 images. Each image is 28 pixels wide and 28 pixels

in length. Each image is associated with a single number if it is a V type and pair of

numbers about the consonant and vowel modifier if it is a C or CV type.

The number of examples of certain classes was found to be very little when com-

pared to others, so we use affine transformations (described in Section 3.1.1) to fill the

gap. Also, some specific characters were omitted from the training dataset since they

needed higher resolution images to make any sense of them.

1.3 Previous Attempts

The interest in recognising and identifying Indian scripts is increasing lately. Some

papers like Rajashekararadhya and Ranjan (2008) work on offline handwritten numeral
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recognition and have proposed a technique based on zone and image centroid. The

dataset was limited and the accuracy hence very high. Pal et al. (2007), used a quadratic

classifier based scheme. An offline Telugu handwritten character recognition using

multilayer perceptrons proposed by Vikram et al. reports accuracies of 85%.

An online character recognition system proposed by Rajkumar et al. (2012) gives

very high accuracy for a similar handwritten data. A project similar to the one being

presented was proposed by Achanta and Hastie (2015), where optical character recog-

nition system using convolutional neural networks and deep learning is used. But the

problem in our project has a higher variance as the data is handwritten and hence is

even harder to classify.

3



CHAPTER 2

About Convolutional Neural Networks

In this section firstly, the construction of a Convolutional Neural Network is explained.

This followed by a brief introduction to the regularisation used in the networks and why

they work. Finally, a small CNN is taken as an example to demonstrate some ideas.

2.1 Convolutional Neural Networks Construction

Convolutional Neural Networks are biologically inspired feed-forward neural networks.

Its construction is based on the way animal visual cortex is built where each neuron is

receptive to a small part of the image. The information gained by a layer of such neu-

rons is passed onto another similar layer. This exploits any spatial correlation which is

used to identify the image. Each CNN starts off with a convolution layer. The image

is convolved with a randomly initialized filter. This is equivalent to a neuron gaining

some information about the input data. Then this new image is sent through an acti-

vation function. The transformed data is then sent to pooling layers, where this data is

pooled. This pooled data is again sent through convolution, activation and pooling lay-

ers repeatedly. Consecutive convolution and pooling layers are followed by a classifier

to classify the data. Each of these layers is explained below.

2.1.1 Convolution Layer

Convolution of two functions is defined for a function f(x) with g(x) as

s(x) = f ∗ g(x) =
∫
f(t) g(x− t) dt =

∫
g(t) f(x− t) dt (2.1)

As seen from Eq 2.1, the operation is commutative. The same can be defined for two

discrete series x[n] and y[n] as

s[n] = x ∗ y(x) =
∞∑

m=−∞

x[m] y[n−m] =
∞∑

m=−∞

y[m] x[n−m] (2.2)



Figure 2.1: Visualizing the convolution of a 8× 8 matrix with a kernel of size 3× 3 to
results in a 6× 6 image.

The operation can be explained as y[n] being flipped and repeatedly being multi-

plied to x[n]. These products are added to get s[n]. Convolution is done similarly in a

convolution layer. The input data, say an image I of size N × N , is convolved with a

two-dimensional kernel K of size M ×M . The resulting image J is

J [i, j] =
∑
m

∑
n

I[m,n] K[i−m, j − n] (2.3)

Some neural network libraries use cross-correlation instead, which is the same as con-

volution but without the flipping of the kernel

J [i, j] =
∑
m

∑
n

I[m,n] K[m+ i, n+ j] (2.4)

The convolution between the image and kernel can also be seen as the multiplication

of the image and the kernel as it moves in across the image. The step size of the kernel

can be set to any value appropriately. This has been visualized in Figure 2.1.

Convolution layer uses three important ideas that help the machine learn to recog-

nise a given image:

• Sparse Interactions:
Compared to conventional feed-forward networks, CNNs have fewer interactions
with the input data. Traditional Neural Networks have matrix multiplication be-
tween input data and the weights at each node. Compared to this, the interaction
between the image and the smaller size kernel is much less. This means lesser
memory requirements and fewer operations.

• Parameter Sharing:

5



Figure 2.2: The results when an example from the dataset is convolved with some stan-
dard 3 × 3 image processing kernels. The name of the kernel with which
the image has been convolved with is written beneath it.

In CNNs, the parameters are used more than once. In traditional feed-forward
networks, the weight between the input element and node is used once and never
revisited. While convolving however, the kernel’s elements are repeatedly used.
Thus convolution is more efficient than dense matrix multiplication in terms of
memory requirements and statistical efficiency.

• Equivariant Representations:
Due to convolution the layer has equivariance to translation, i.e. if the image is
translated the output will also translate accordingly. This can be seen clearly from
the equations above. But, convolution is not equivariant to scaling or rotation.
Other tricks are needed for this.

When a input image of size N ×N is taken and convolved with kernel of size k× k

with a step size of s , then the size of the output image is M ×M where,

M = ceil

(
N − k
s

+ 1

)
(2.5)

Some libraries also use floor(·) or round(·) instead.

2.1.2 Activation Function

The outputs of the Convolution Layer are sent through an activation function. Tradi-

tional activation functions like sigmoid(·) and tanh(·) are usually not used. Rectified

6



linear activation function or ReLU is the most widely used activation function while

training deep networks (Nair and Hinton (2010)). ReLU is defined as

ReLU(x) = max(0, x) (2.6)

Some papers also report using a “leaky” ReLU,

leaky ReLU(x) =

x x ≥ 0

ax x ≤ 0

(2.7)

where ‘a’ is a small constant. This creates a small slope when the node is not activated.

These activation functions have been compared in the Figure 2.2.

Using ReLU has the following advantages:

• Training with it is faster. Unlike the sigmoid or the tanh function, exponential
computation is not needed which makes it computationally faster. For a ReLU, a
comparison (and a multiplication if it is a Leaky ReLU) is sufficient.

• No gradient vanishing problem. The gradient of the sigmoid functions tends to
zero after a certain value. This means the learning of the neurons below is directly
affected, causing slower learning. The ReLU, if activated, always has a constant
positive gradient. Hence, the learning is never affected.

• Nodes are sparsely activated. On random activation, in a given set of nodes,
only half of them are activated. Thus, the models can be trained with lesser
regularisation.

2.1.3 Pooling

The next step is to “pool” the information and pass it on. In this layer, some information

or statistic of a group of inputs is taken and passed on as the outputs. For example, the

pooling used in the project - max pooling, reports the maximum value in a given neigh-

bourhood. Other popular pooling techniques include average or a weighted average of

the neighbourhood.

Pooling is done either in fixed neighbourhoods, by moving around in steps or can

also be done so that the number of statistics received is independent of the input image

size. For example, we can take four statistics by dividing the image into four quadrants

no matter its size.
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Figure 2.3: The activation function values and the gradient of three popular activation
functions
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Figure 2.4: Visualizing a 6× 6 image being max pooled over a neighbourhood of 2× 2
by moving in steps of 2 in either directions which results in a 3× 3 image.

Pooling the data makes its output invariant to small disturbances in the input. This

is a vital property of the Convolutional Neural Networks. The output of pooling layer

is again a 2-D matrix, an image for our discussion. This has been visualised in Figure

2.4.

When an input image of sizeN×N is taken and pooling is done in a neighbourhood

of size k × k with a step size of s , then the size of the output image is M ×M where,

M = floor

(
N − k
s

+ 1

)
(2.8)

Some libraries also use ceil(·) or round(·) instead.

After pooling the image is sent to the next layer, either a convolution layer or is

“reshaped” into a single array and connected to ordinary fully connected linear layers

and ending with a softmax layer.

2.2 Regularisation

In this project, regularisation has played a major role in increasing the accuracy of the

model. Instead of small CNNs, large CNNs with regularisation have been used which

gave better results. Two ways of introducing regularisation is Dropout (Hinton et al.

(2012)) and Batch Normalization (Ioffe and Szegedy (2015)). Both of which were used

9



in the project.

2.2.1 Dropout

During training, dropout “drops” the inputs following a Bernoulli distribution with

probability ‘p’, i.e. its value is made zero, else the outputs are scaled by a factor of

1/(1 − p). This multiplicative noise results in a penalty that is data dependent thus

incorporating the distribution of input data into the regularisation process.

When large neural networks are trained without any regularisation, multiple neurons

learn the same or similar characteristics. This overfitting greatly decreases the model’s

test accuracy. This can be reduced with dropout. When some of the outputs are dropped,

the neuron learns to detect very specific features which make the input unique. By

dropping features with a probability of p, we are preventing co-adaptation of features.

In CNNs, we add dropout to the convolved images, which is then sent to an activa-

tion function. Random dropout has been proven to be very useful and the improvements

have been well documented.

2.2.2 Batch Normalization

While training deep neural networks, the distribution of each layers’ inputs changes the

as the parameters change. When the models are deep, even small changes can amplify

and cause large changes. One example of this could be that the training data and the test

data follow different distributions. This causes disturbances in the distributions of the

internal nodes. This is called internal covariate shift. This causes learning to be slower.

Batch Normalization offers to eliminate this and hence accelerate the training. It

normalizes the input with parameters which are learnt over the course of training. This

has been presented by S.Ioffe and C. Szegedy in their paper “Batch Normalization:

Accelerating Deep Network Training by Reducing Internal Covariate Shift” [bibliog-

raphy]. It is shown to make training faster. The batch normalisation is done before

sending data from the convolution layer into the activation function.

10



2.3 An example

A typical Convolutional Neural Network with two layers of convolution-ReLU-pooling

layers followed by a fully connected layer and ending with a softmax layer has been

shown in Table 2.1.

Sl.No. Layer Type and Parameters
1 Convolution Layer with 4 kernels, of size 4× 4, with a step size 1× 1
2 ReLU (Activation Layer)
3 Max Pooling over 2× 2 neighbourhood with a step size of 2× 2
4 Convolution Layer with 8 kernels, of size 4× 4, with a step size 1× 1
5 ReLU (Activation Layer)
6 Max Pooling over 2× 2 neighbourhood with a step size of 1× 1
7 Reshape the 8 node with 8× 8 images into a single 512× 1 matrix
8 Linear Fully connected layer from 512 nodes to 100 nodes
9 ReLU (Activation Layer)
10 Linear Fully connected layer from 100 nodes to 3 nodes
11 SoftMax layer

Table 2.1: A small Convolutional Neural Network.

If the input image is of size 28× 28, then using equations discussed previously, we

can calculate the size of the image after convolution (layer 1) is 25 × 25. This image

after max pooling (layer 3) gives an image of size 12× 12. This image is sent through

convolution (layer 4) again giving an image of size 9 This is then sent through a max

pooling layer (layer 6) which gives an image of size 8 × 8. There are 8 kernels, each

with a 8× 8 image, i.e. 8× 8× 8 dimensional information. This is made into a single

array of size 512 nodes. This is followed by an ordinary fully connected network, which

finally ends in a SoftMax layer with three outputs.

11



CHAPTER 3

Training the CNNs

This chapter describes the data and how it was increased using affine transformations.

This is followed by the overview of the model, the structure of the networks and various

methods to train faster.

3.1 Character Data

The dataset contains a total of 17744 images each of size 28 × 28. It contains 1039

vowels and 16705 consonants (C and CV type).

There are 16 classes of vowels. And there are 36 classes of consonant and 15 classes of

vowel modifiers.

As shown in the histograms in Figures 3.2,3.3 and 3.4 ,some of the classes are empty,

and some have too few examples to train with. Thus, affine transformations were used

on examples to increase the numbers.

3.1.1 Affine Transformations

Given a image ‘I’, (a 2-D matrix), it can be translated and rotated slightly to get similar

images for training. This can be achieved easily with Affine translations. Given some

points in XY axis whose each point (x, y) is moved to a a point (x′y′) of the new axis

X ′Y ′ by the matrix M .

M =


ax ay

bx by

cx cy

 (3.1)



Transformation M (x′, y′)

Translation

 1 0
0 1
tx ty

 x′ = x+ tx, y′ = y + ty

Rotation

 cos θ sin θ
− cos θ sin θ

0 0

 x′ = x cos θ + y sin θ, y′ = −x cos θ + y sin θ

Scaling

sx 0
0 sy
0 0

 x′ = sxx, y′ = syy

Table 3.1: Affine Transformations along with the transformation matrices.

(x′, y′) and (x, y) are related as,

[
x′ y′

]
=
[
x y 1

]
ax ay

bx by

cx cy

 =
[
axx+ bxy + cx ayx+ byy + cy

]
(3.2)

Each point in the new axis is uniquely related to a point in the old axis. Some of the

transformations used are given in Table 3.1.

For randomly chosen images from each class, slight translation and a small rotation

is done. The values of translation and rotation are chosen randomly. A sample image

and it’s Affine transformations are shown in Figure 3.1.

Figure 3.1: An image of the original dataset on the left and on the right six of its trans-
formed images.

After the transformed images are added, especially to classes with very low num-

13



bers, the number of examples in each class become comparable. In the next section, the

training of networks is described.

Figure 3.2: The number of examples in each vowel class in the complete untransformed
dataset, the training dataset after adding transformations and the test dataset
after adding the transformations are shown in these histograms.

Figure 3.3: The number of examples in each base consonant class in the complete un-
transformed dataset, the training dataset after adding transformations and
the test dataset after adding the transformations are shown in these his-
tograms.

Figure 3.4: The number of examples in each vowel modifier class in the complete un-
transformed dataset, the training dataset after adding transformations and
the test dataset after adding the transformations are shown in these his-
tograms.

3.2 Overview of the Model

In the model being described in this project, four CNNs have been trained. They are:

14



• NV C : classifies a image into a vowel (V type) or a consonant (C or CV type).

• NV ow : ifNV C classifies the image as a vowel, it identifies the vowel in the image.

• Ncon1 : ifNV C classifies the image as a consonant, it identifies the base consonant
in the image.

• Ncon2 : ifNV C classifies the image as a consonant, it identifies the vowel modifier
in the image.

When an image is given to the model, it follows the flowchart shown in Figure 3.5,

to identify the character.

Figure 3.5: In this image, the basic flowchart of the model is described. Given some
images it passes them through the first Network NV C , which classifies them
into vowels and consonants. The vowels are then passes through the second
network NV ow which identifies the vowel in the image. Similarly the con-
sonants are sent through the networks Ncon1 and Ncon2 which identify the
base consonant and the vowel modifier.

Thus four CNNs need to be trained. The way they were trained has been reported

in the next section.
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3.3 Training the CNNs

In each of the subsection below, the network’s structure, the values of it’s parameters,

etc have been given. Before that, below are some of the common features of these

networks

• All the networks are trained using stochastic gradient descent (SGD). Although
faster methods like L-BFGS (Broyden-Fletcher-Goldfarb-Shanno algorithm us-
ing a limited) are available, SGD has been shown to be a very stable method
of training. Various papers even recommend SGD over L-BFGS (Simard et al.
(2003) ). With the same inspiration, momentum was not used. Gradient descent
was kept as simple as possible.

• Negative Log Likelihood criterion was used as the error criterion. It is a widely
used error criterion for classification problems. This is particularly useful when
the data has unbalanced training set. Thus, the last layer of each network needs
to be a SoftMax layer. If inputs to the softmax layer are z, then the output of the
softmax layer is x

xi =
e−βzi∑
n e
−βzn

(3.3)

Thus each xi is essentially the probability of the output being class ‘i’. As xi
increases, the example’s probability of being in class ‘i’ increases. The negative
log likelihood error if the input from the Softmax layer is x and the target class is
c,

loss(x, c) = − ln(xc) (3.4)

The error tends to zero as xc → 1. Thus error tends to zero as the confidence of
its being in the right class increases.

• Batch size used is 30 to 40. Instead of training with examples one after the other
modern computers use parallel processing and train faster if the data is given in
batches. This has been exploited by using massive graphic cards with thousands
of threads. We have used graphic cards to accelerate training our model. In the
Figures 3.6 and Figure 3.7 we compare the average time an example takes when
trained in batches.

• Regularization, both batch normalization and dropout have been been used.

The structure of each of the networks has been presented in Tables 3.2, 3.3, 3.4 and

3.5.

The way to train CNNs is heavily inspired from the paper Simard et al. (2003).
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Figure 3.6: The graph on left shows the time it takes for 100 batches to run as the batch
size is changed from 1 to 50 on a ordinary processor (Intel i5, 4 core, 4GiB
Ram). The graph on the right shows the effective time individual examples
take to run.

Figure 3.7: The graph on left shows the time it takes for 100 batches to run as the batch
size is changed from 1 to 50 on a ordinary processor (NVIDIA GeForce
GT 630M, 1GiB Ram). The graph on the right shows the effective time
individual examples take to run.
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Sl.No. Layer Type and Parameters
1 Convolution Layer with 64 kernels, of size 4× 4, with a step size 1× 1
2 Batch Normalization (Regularisation Layer)
3 ReLU (Activation Layer)
4 Max Pooling over 2× 2 neighbourhood with a step size of 2× 2
5 Convolution Layer with 128 kernels, of size 4× 4, with a step size 1× 1
6 Batch Normalization (Regularisation Layer)
7 ReLU (Activation Layer)
8 Max Pooling over 2× 2 neighbourhood with a step size of 1× 1
8 Reshape the 128 node with 8× 8 images into a single 8192× 1 matrix
10 Linear Fully connected layer from 8192 nodes to 200 nodes
11 ReLU (Activation Layer)
12 Linear Fully connected layer from 200 nodes to 2 nodes
13 SoftMax layer

Table 3.2: The structure of the first CNN NV C , which identifies whether the image con-
tains a vowel or a consonant.

Sl.No. Layer Type and Parameters
1 Convolution Layer with 32 kernels, of size 3× 3, with a step size 1× 1
2 Batch Normalization (Regularisation Layer)
3 ReLU (Activation Layer)
4 Dropout with probability 0.3 (Regularisation Layer)
5 Max Pooling over 2× 2 neighbourhood with a step size of 2× 2
6 Convolution Layer with 64 kernels, of size 3× 3, with a step size 1× 1
7 Batch Normalization (Regularisation Layer)
8 ReLU (Activation Layer)
9 Dropout with probability 0.3 (Regularisation Layer)
10 Max Pooling over 2× 2 neighbourhood with a step size of 1× 1
11 Reshape the 64 nodes with 10× 10 images into a single 6400× 1 matrix
12 Linear Fully connected layer from 6400 nodes to 200 nodes
13 ReLU (Activation Layer)
14 Linear Fully connected layer from 200 nodes to 16 nodes
15 SoftMax layer

Table 3.3: The structure of the second CNN NV ow, which identifies the vowel .
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Sl.No. Layer Type and Parameters
1 Convolution Layer with 60 kernels, of size 4× 4, with a step size 1× 1
2 Batch Normalization (Regularisation Layer)
3 ReLU (Activation Layer)
4 Dropout with probability 0.25 (Regularisation Layer)
5 Max Pooling over 2× 2 neighbourhood with a step size of 2× 2
6 Convolution Layer with 120 kernels, of size 4× 4, with a step size 1× 1
7 Batch Normalization (Regularisation Layer)
8 ReLU (Activation Layer)
9 Dropout with probability 0.25 (Regularisation Layer)
10 Max Pooling over 2× 2 neighbourhood with a step size of 1× 1
11 Reshape the 120 nodes with 8× 8 images into a single 7680× 1 matrix
12 Linear Fully connected layer from 7680 nodes to 400 nodes
13 tanh() (Activation Layer)
14 Linear Fully connected layer from 400 nodes to 36 nodes
15 SoftMax layer

Table 3.4: The structure of the Third CNN Ncon1, which identifies the base consonant.

Sl.No. Layer Type and Parameters
1 Convolution Layer with 60 kernels, of size 4× 4, with a step size 1× 1
2 Batch Normalization (Regularisation Layer)
3 ReLU (Activation Layer)
4 Dropout with probability 0.25 (Regularisation Layer)
5 Max Pooling over 2× 2 neighbourhood with a step size of 2× 2
6 Convolution Layer with 120 kernels, of size 4× 4, with a step size 1× 1
7 Batch Normalization (Regularisation Layer)
8 ReLU (Activation Layer)
9 Dropout with probability 0.25 (Regularisation Layer)
10 Max Pooling over 2× 2 neighbourhood with a step size of 1× 1
11 Reshape the 120 nodes with 8× 8 images into a single 7680× 1 matrix
12 Linear Fully connected layer from 7680 nodes to 400 nodes
13 ReLU (Activation Layer)
14 Linear Fully connected layer from 400 nodes to 15 nodes
15 SoftMax layer

Table 3.5: The structure of the fourth CNN Ncon2, which identifies the vowel modifier.
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CHAPTER 4

Results

As discussed previously, four CNNs are trained for the overall model to work. The

performance of these networks individually and the performance of the model after

they are made to work together has been discussed in the following sections.

4.1 Individual Network Performance

The individual performance of each of the CNNs has been reported.

4.1.1 NV C : Vowel or Consonant

Trained on a data set with 30000 images (20000 consonant images and 2000 vowel im-

ages shown five times in each epoch). The testing data has 1000 images, 808 consonant

images and 182 vowel images. It classifies the data into 2 classes, vowel and consonant.

We report an accuracy of 99.80% on the train dataset and 98% on the test dataset

Dataset Size of Number of Correct Percentage Precision Recall F1 score
Dataset Classifications Accuracy

Train Dataset 30000 29941 99.803 0.9973 0.9883 0.9978
Test Dataset 1000 980 98 0.94 0.9879 0.9664

Table 4.1: The accuracy, precision, recall and F1 score of the first CNN which classifies
into vowel or consonant.

4.1.2 NV ow: Identify Vowel

Trained on a data set with 2000 vowel images. The testing data has 300 vowel images.

It classifies the data into 16 classes. We report an accuracy of 99.8% on the train dataset

and 96.3% on the test dataset. Given below are table of individual class accuracies of

the test and training datasets.



Figure 4.1: The confusion matrices of the the train and test datasets for the first CNN,
which identifies whether the image contains a vowel or a consonant.

Dataset Size of Number of Correct Percentage Precision Recall F1 score
Dataset Classifications Accuracy

Train Dataset 2000 1996 99.8 0.9982 0.9882 0.9982
Test Dataset 300 289 96.33 0.965 0.966 0.965

Table 4.2: The accuracy, precision, recall and F1 score of the second CNN which iden-
tifies the vowel.

4.1.3 Ncon1: Identify Base Consonant

Trained on a data set with 20000 consonant images. The testing data has 1000 conso-

nant images. It classifies the data into 36 classes shown in the table NUMBER. We

report an accuracy of 99.7% on the train dataset and 96.2% on the test dataset.

Dataset Size of Number of Correct Percentage Precision Recall F1 score
Dataset Classifications Accuracy

Train Dataset 20000 19948 99.74 0.9978 0.9888 0.9926
Test Dataset 1000 962 96.2 0.9608 0.9618 0.9608

Table 4.3: The accuracy, precision, recall and F1 score of the third CNN which identi-
fies the base Consonant.

4.1.4 Ncon2: Identify Vowel Modifier

Trained on a data set with 20000 consonant images. The testing data has 1000 con-

sonant images. It classifies the data into 15 classes shown in the table. We report

an accuracy of 98.95% accuracy on the train dataset and 92.5 % accuracy on the test
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dataset.

Dataset Size of Number of Correct Percentage Precision Recall F1 score
Dataset Classifications Accuracy

Train Dataset 20000 19791 98.95 0.9881 0.9877 0.9877
Test Dataset 1000 925 92.5 0.9231 0.9292 0.9237

Table 4.4: The accuracy, precision, recall and F1 score of the fourth CNN which iden-
tifies the vowel modifier

4.2 Overall Model Performance

By testing the network run over a dataset of 1400 images the accuracy of the model

was determined. The model made a total of 135 mistakes in all. Therefore the overall

accuracy of the model is reported as 90.3% accuracy.
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CHAPTER 5

Conclusions

We present a model which recognises Telugu handwritten characters using convolu-

tional neural networks. We train four networks which exhibit accuracies of 98%, 96.3%,

96.2% and 92.5% on unseen test images. This overall model performs with a 90% ac-

curacy which is comparable to other works in the same area. However, this is still very

low when compared to human level performance. The reason for this that the language

model itself is far too complex and the variation in writing the characters far too large.

5.1 Future Work

The work that has been done on this project can be extended to cover CCV and CCCV

type characters using a similar model. These were not considered in this project for

simplicity of the project. Also the same training with higher resolution images might

increase the training time and load on the system, but might have a positive impact by

increasing the identification accuracy.

The model can also be trained so that it continuously takes images from a line and

recognizes it. This will be similar to how human read Telugu.

Although this project is done for the Telugu language model, a similar system can

be extended to similar languages like Kannada and also other languages like Tamil and

Malayalam. Other deep learning techniques like Recurrent Neural Networks should be

tried for a more continuous mode of recognition.



APPENDIX A

Torch

The platform used to create and train convolutional neural networks is Torch7 (Collobert

et al. (2011)). It is a computing framework with a huge number of libraries to create

various type of neural networks like convolutional neural networks, recurrent neural

networks, LSTMs, etc. It is different from other similar platforms by putting support

for GPUs first. It is based on lua (Ierusalimschy et al. (1996)), a fast and easy scripting

language, and C/CUDA . Torch is being widely used within several companies like

Facebook, Google and Twitter.
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