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ABSTRACT

The cellular systems of 4th generation have been optimized to provide high data

rates and robust mobile coverage. The next generation cellular systems will face

even larger challenges like even higher data rates, ultra low power consumption.

A few promising control centric areas like machine to machine communication,

cognitive radio require extremely short response times which is infeasible with

4th generation techniques. This thesis describes a new technique called

Generalized frequency division multiplexing which is a block based multicarrier

modulation scheme. After a solid introduction to GFDM, two transmitter models

are described each with its own advantages and disadvantages. Based on these

transmitters, three standard ways of receiving a signal are derived, and their

performances are compared in terms of symbol error rate in AWGN and

Rayleigh multipath fading channels. OFDM, though a reliable multicarrier

modulation technique, is riddled with its own problems like high out of band

radiation and high Peak to average power ratio(PAPR). These parameters are also

measured for GFDM, and compared to those obtained with OFDM. Finally the

thesis concludes that GFDM is a novel method, that is a generalization of the

existing OFDM and SCFDM techniques, performs better than all of them in

terms of OOB and PAPR.
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CHAPTER 1

INTRODUCTION

Almost all of present day communication systems rely on multicarrier systems

for their obvious advantages over single carrier systems in frequency selective

fading channels. Several utilities like machine to machine communication

require very low power consumption, very low latency, and require the

architecture to support a large number of users. GFDM is block based digital

multicarrier modulation scheme, whose advantages lie in its flexiblilty. The data

is spread across time and frequency axis which enables flexibility to either

prioritize latency or bandwidth usage, depending on the application. The cyclic

prefix of OFDM is retained to perform simple equalization when data is

transmitted through multipath channels. Unlike OFDM where the transmitter just

employs an FFT block, GFDM uses circular convolution to perform pulse shape

filtering. This has the added advantage of tail biting, thereby preventing rate loss,

but it also causes the carriers to become non-orthogonal. This induces

self-interference within the GFDM block.

GFDM turns out to be a linear matrix model, as all the byprocesses like pulse

shaping and upsampling are linear. Hence, the transmitter complexity is

comparable to that of OFDM, the analysis of which is done in further sections.

Different impulse responses can be used for pulse shaping, which will affect the

symbol error rate and OOB emissions differently. GFDM also gives us better

spectral efficiency compared to OFDM owing to less frequent Cyclic prefixes.



1.1 Background and Formulation

Orthogonal Frequency division multiplexing

OFDM employs several orthogonal carriers instead of a single wide band carrier.

The data is in the form of complex numbers that represent the points on the

constellation. Each symbol is loaded onto a particular frequency.

x(u) =

N
2∑

i=−N
2

Xie
j2π i

N
u

This is the equation of the inverse discrete fourier transform. Hence OFDM uses

a single time-slot to modulate N symbols onto N carriers. OFDM employs many

low bitrate carriers compared to the conventional single high bitrate carrier. Such

kind of multicarrier modulation ensures performance under frequency selective

channels. A cyclic prefix with length greater than that of channel delay spread is

used to prevent inter-symbol inference. Hence, one only has to deal with

intrasymbol interference(between the symbols transmitted in one time slot),

which can be reduced by using appropriate pulse shaping filters.

Single carrier frequency division multiplexing

Another technique Single carrier frequency division multiplexing(SC-FDMA)

which differs from OFDM in the fact that a single carrier does not contain all of

any particular symbol. The symbols are pre-coded using a discrete fourier

transform and a only a portion of each symbol is sent into any particular carrier.

This is controlled using a sub-carrier mapping block.
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CHAPTER 2

GFDM Transmitters:

2.1 Time domain transmitter:

Consider the same complex data matrix D where dm,k is the symbol to be loaded

onto kth sub carrier in the mth time-slot.The time domain equation for

modulation is given by:

M−1∑
m=0

K−1∑
k=0

dm,kgtx[n−mK]ej2π
kn
K

To speed up the transmission process, a modulation matrix is pre-calculated for

the given sub carriers and time-slots. Incoming data is broken down according to

symbol size, allocated to a point on the constellation and segregated into blocks

of size MK. Each block is then modulated linearly according to y = Ad. First,

upsampling is done by a factor N to satisfy Nyquist criterion. The upsampling

matrix is given by

SMN = {sn,m}, where sn,m = 1 if n = (M − 1)N + 1, and 0 otherwise

upsampled matrix XD = SMN D

Next, pulse shaping filter is applied in time-domain. The filter used is a raised

cosine pulse. The continuous time expression of raised cosine pulse is given by:

h(t) = sinc

(
t

T

)
cos(πβt

T
)

1− 4β2t2

T 2



where β is the roll-off factor.

is sampled MN times to obtain the discrete form of the impulse response. This is

to be circularly convolved with the upsampled signal. This is achieved my

generating a matrix elements cyclically shifted according to impulse response. If

gtx = {gn}MNx1,

Gtx =



g1 gMN .... g2

g2 g1 .... g3

.

.

.

gMN gMN−1 ... g1


Hence, XG = GtxXD

These MN samples have to be translated to their respective frequencies and

transmitted. This can be done in a way similar to the way OFDM achieves it.

From OFDM, we know that IFFT operation was used to translate symbols to

carrier frequencies. Similarly, an MN dimensional IFFT operation is done on XG

matrix. Since we require only N carriers, we down-sample IFFT output to N

samples.

XW = XGS
N
MW

H

where WH is the inverse fourier transformation matrix. The diagonal elements of

XW matrix is the transmitted signal.

x = diag(Gtx(S
M
N )D(SNM)WH)

x = diag((G′tx)D(W ′
tx))

4



An nth diagonal element depends only on nth row of G′tx and nth column of W ′
tx.

[XW ]n,n = K
(
[gtx]n, [Wtx]

T
n

)
vec(D)

where K(A,B) denotes the kronecker product of A and B; and vec(D) denotes

the MK symbols in D arranged in a single column.

Assembling these kronecker products into each row of an MKxMK matrix, gives

the modulation matrix A.

y =



K
(
[gtx]1, [Wtx]

T
1

)
K
(
[gtx]2, [Wtx]

T
2

)
.

.

.

K
(
[gtx]n, [Wtx]

T
n

)


vec(D)

where y is output time-domain transmitted signal.

This way of interpreting the transmit signal by linear transform allows us to

implement known receivers like Zero forcing receiver, MMSE receiver and

Matched filter receiver.

2.2 Frequency domain transmitters:

signal model

Given a set of complex data symbols dk[m] which correspond to points on

constellation, where k = 0, 1, ...K − 1 and m = 0, 1, ...M − 1.Each subcarrier

has its own pulse shaping filter which are time and frequency shifted

5



Figure 2.1: GFDM Transmitter Block
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appropriately. To avoid aliasing due to filtering operation, each time slot is

upsampled by N times, resulting in MN samples per subcarrier. All processing is

done is baseband for each subcarrier, then is shifted to the required frequency

and summed to obtain the transmitted vector.ie

M−1∑
m=0

K−1∑
k=0

dk[m]gtx[n−mN ]ej2π
kn
N

Further, the data symbols ought to be upsampled by a a factor of N to satisfy the

nyquist criterion before filtering. Using impulse train to perform upsampling the

trasmitter equation becomes

xk[n] = [[dk[m]δ(n−mN)] ? gtx[n]]e
j2π kn

N

and

xtx[n] =
K−1∑
k=0

xk[n]

This requires computations of the order NKM2. Hence all this process was

converted into the frequency domain where one could leverage the properties of

the fourier transform. Hence the expression is equivalent to

xk[n] = IDFTMN [DFTMN(dk[m]δ(n−mN)).DFTMN(gtx[n])?DFTMN(ej2π
kn
N )]

But, not all of the above MN point transforms are needed.

DFTMN(dk[m]δ(n−mN)) can be interpreted as repetition of DFTM(dk[m]) N

times in a sequence. Hence number of computations is reduced. Also the

DFTMN(e
j2π kn

N ) is the impulse δ(f − k
N
). These computations are simplified

when done with matrices.

7



Matrix model

Consider a M X K matrix D containing the complex data symbols, where dk[m]

corresponds to the kth column of D. First, an M point DFT is performed on each

column, given by XD = WMD. To perform upsampling in time domain, the

samples have to repeated periodically in the frequency domain. Hence,

upsampled signal is given by

XG = RWMD

where R is the matrix {IM , IM , ...., IM}T ie a concatenation of N identity

matrices of size M. The pulse shaping filter is to be applied on this signal. In

time domain, a circular convolution is done for filtering,but here, multiplication

with a diagonal matrices containing elements of WMNGtx on the principal

diagonal would suffice.

XF = LRWMD

This signal currently is in baseband and is to be translated to corresponding

carrier frequency to be transmitted. Hence,

Xk = P (k)LRWMD

where P (k)is{0LM , 0LM , ..(k − 1 times) ILM , 0LM , 0LM ... (K − k times)}

and 0LM is an all zero matrix of size LM and ILM is an identity matrix of size

LM. Final transmitted signal is given by the IDFTMN of this signal

x[n] = WH
MN

K−1∑
k=0

P (k)LRWMD

8



2.3 Which is better?

The transmitter computation is easier in frequency domain and hence is done this

way. Assuming Mlog2(M) computations for an M point DFT, we require:

1. K times Mlog2(M) multiplications to convert given data symbols into
frequency domain.

2. Pulse shaping requires MN complex multiplications per sub carrier, and
hence KMN computations.

3. MN point inverse DFT requires MNlog2(MN) computations.

In total, GFDM complexity = KMlog2(M) + KMN + MNlog2(MN)

whereas, OFDM required only MKlog2(K). In most practical cases, N need not

be of the order of K because the pulse shaping filter can be chosen such that it

spans only a few symbols. For example, for raised cosine pulses, the pulse

shaping filter even with worst case roll-off factor can only span 2 symbols in the

frequency domain and hence N=2 would be sufficient.

9



CHAPTER 3

Receiver designs:

The GFDM signal is a linear transformation of the MK data symbols. Hence the

usual methods of linear estimation can be employed here. The channel model is

described below: Let y be the vector which contains the time samples y[n], that

are obtained at the receiver after low-noise amplification downmixing to

baseband and analog-to-digital conversion. Further let n N(0, σ2
n) denote a noise

vector containing AWGN samples with variance σ2
n . Assuming the analog

processing is ideal, the received signal can be expressed as

y = Hx+ n

, where H denotes the channel matrix whose dimensions are N +Ncp +Nch − 1

cross N +Ncp, where N is signal length, Ncp is the length of cyclic prefix and

Nch is the length of channel delay spread. H has a toeplitz structure based on

channel impulse response length Ncp. In this case, the length of the cyclic prefix

is ensured to be longer than channel delay spread so that there is no interference

among the GFDM frames. After removal of cyclic prefix at the receiver, the

effective output signal is given by y = Hx+ n, where H is an NXN matrix.

After channel equalization, the received symbols are given by

z = H−1HAd+H−1w. The transmitted symbols can be estimated by a linear

estimator of the form d̂ = Bz. Different receiver designs estimate B in different

ways.



3.0.1 Zero Forcing receiver:

This type of equaliser applies the inverse of channel response. Hence the zero

forcing receiver is given by multiplying with Pseudo inverse of the transmission

matrix.

3.0.2 Matched filter receiver:

Matched filter receiver can be seen as a combination of MK parallel correlators

processing the received signal r(n). Hence it can be implemented as a correlator

receiver as shown in the figure below.
The symbol received in any subcarrier and at any time-slot is given by:

ˆsk′,m′ =
MN−1∑
n=0

r(n)[g′m(n) ∗ p′k(n)]

After multipath channel estimation and equalization, we can analytically find the

decoded symbol.

ˆsk′,m′ = sk′,m′+
M−1∑

m=0,m 6=m′

(
sk′,m

NM−1∑
n=0

gm(n)g
∗
m′(n)

)
+

K−1∑
k=0,m 6=k′

(
sk,m′

NM−1∑
n=0

|gm′(n)|2pk−k′(n)

)

+
M−1∑

m=0,m 6=m′

(
K−1∑

k=0,m 6=k′

(
sk,m

NM−1∑
n=0

gm(n)g
∗
m′(n)pk−k′(n)

))

wherepk−k′(n) = pk(n)p
∗
k′(n) = exp−j2πn

k−k′
N

It has been assumed that the transmit pulse had unit energy. The first term is the

actual symbol transmitted. The second term is the Inter Symbol interference. The

third term corresponds to ICI caused by symbols from the same time slot. The

fourth term corresponds to ICI caused by symbols from other time slots.

11



Figure 3.1: Block diagram of Matched filter receiver. There are MK correlator
blocks.
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Representing this in matrix form, it is same as multiplying the received samples

by AH , the hermitian of the transmission matrix.

ˆdMF = AHr(n)

The interference patterns can also be analysed by examining the matrix AHA.

3.0.3 MMSE Receiver:

The MMSE receiver balances the noise enhancement and self interference

properties of ZF and MFR receivers and churns out an optimal receiver. We

know that received symbols can be written as z = Ad+ n, where A is a

combination of both channel matrix and the transmission matrix. Hence, both

channel estimation and symbol estimation can be done in one shot. The linear

MMSE estimator of the transmitted symbols is given by d̂ = Bz, and we know

that the best linear estimator is given by d̂ = R−1z RdzZ. Therefore,

d̂ = E
[
(Ad+ n)(Ad+ n)H

]−
1E
[
d(Ad+ n)H

]
d̂ =

(
AAH +Rn

)−
1AH

where Rn denotes the covariance matrix of noise.

13



CHAPTER 4

Comparison of Parameters:

GFDM uses both of these techniques in 2 different axes. A single data frame

consists of data modulated in M different time slots and K different carrier

frequencies. Each subcarrier is individually shaped with a filter typically RC or

RRC. Another advantage of GFDM is its spectral efficiency. GFDM employs a

cyclic prefix after every frame as the interference between the time slots is

minimized using the pulse shaping filter, whereas OFDM uses a cyclic prefix for

every time slot. The bit-rates obtained through GFDM and OFDM can therefore

be compared as

Bit− rateOFDM = log2(J)
K

T+TCP

Bit− rateGFDM = log2(J)
MK

MT+TCP

4.1 Out of band emissions:

GFDM allows for flexible design of transmit pulse. This section derives an

expression for the power spectral density of a gfdm signal. Some techniques

which are commonly used to reduce oob emissions is also mentioned. The power

spectral density of the baseband signal is

P (f) = lim
T→inf

(
1

T
E(|FT (xT (t))|2)

)



where xT (t) is the transmit signal truncated to (−T/2, T/2).According to

GFDM, xT (t) is the concatenation of multiple GFDM blocks.

xT (t) =
∑
v,m,k

dv,m,kg0m(t− vMTs) exp
−j2π k

Ts
t

whose fourier transform is given by

XT (f) =
∑
v,m,k

dv,m,kGm

(
f − k

Ts

)
e−j2sf

where Ts is duration of one subsymbol, v ranges from (−T/2MTs,+T/2MTs)

and k, m are subcarrier and time slot indices respectively. Therefore, the PSD of

GFDM signal is given by

P (f) =
1

MTs

∑
k,m

∣∣∣∣Gm

(
f − k

Ts

)∣∣∣∣2

This value was integrated with f ∈ OOB and f ∈ B, and the OOB emissions of

OFDM and GFDM were compared and plotted below.
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Figure 4.1: Out of band emissions for roll-off factor=0.5, M=5, K=128
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4.2 Peak to average power ratio comparison:

High PAPR is one of the major drawbacks of OFDM systems. It drives the

transmitter’s power amplifier into its nonlinear region, thus causing nonlinear

distortions. Only statistical properties of PAPR can be calculated. The plot below

plots the probability that the PAPR is greater than a certain dB. The presence of

GFDM curve below OFDM one shows that the probability of PAPR being

greater than certain value is more for OFDM.

Figure 4.2: Peak to average power ratio plot for GFDM and OFDM

17



4.3 Spectral Efficiency:

Another advantage of GFDM is its spectral efficiency. GFDM employs a cyclic

prefix after every frame as the interference between the time slots is minimized

using the pulse shaping filter, whereas OFDM uses a cyclic prefix for every time

slot. The bit-rates obtained through GFDM and OFDM can therefore be

compared as

Bit− rateOFDM = log2(J)
K

T+TCP

Bit− rateGFDM = log2(J)
MK

MT+TCP

One can use OFDM with MK subcarriers to ensure the same spectral efficiency,

but that would limit the bandwidth available to each of the individual subcarriers.

Hence, for the same spectral efficiency, GFDM offers a better bitrate compared

to OFDM.

4.4 Symbol Error Rate:

GFDM is a very flexible scheme, which is heavily dependent on the parameters

of the model used ie the pulse shape, the roll-off factor, the type of receiver used.

The following plots summarize the results observed. The following table

summarises the values of the parameters used:

18



Description parameter value

Total Bandwidth B 20MHz

subcarrier bandwidth BSC 156.25KHz

Number of sub-carriers K 128

Number of time-slots M 5

Pulse shaping filter g raised cosine

roll-off factor β {0.5 , 0.9}

modulation order µ QPSK

Figure 4.3: Symbol Error Rate of GFDM for rolloff factor=0.5
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Figure 4.4: Symbol Error Rate of GFDM for rolloff factor=0.9
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4.5 Conclusions

GFDM presents a more novel modulation method. It ensures a more stringent

usage of bandwidth, and corrects issues like PAPR, OOB emissions. It is more

spectrally efficient compared to existing OFDM systems, but all of it at the cost

of a slight increase of Symbol error rate. It is a more flexible modulation scheme,

as one can set M and K at will to prioritize latency or bandwidth.
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