
RECURRENT NEURAL NETWORK BASED

LANGUAGE MODELS

A Project Report

submitted by

SRIKANTH PRABALA

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2016

THESIS CERTIFICATE

This is to certify that the thesis titled RECURRENT NEURAL NETWORK BASED

LANGUAGE MODELS, submitted by Srikanth Prabala, to the Indian Institute of

Technology, Madras, for the award of the degree of Bachelor of Technology, is a bona

fide record of the research work done by him under our supervision. The contents of

this thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. S Umesh

Research Guide

Professor

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date: 10th May 2016

ACKNOWLEDGEMENTS

I would like to thank Prof Umesh for giving me an opportunity to work with him and

for assisting me with my project. I would also like to thank my lab-mates especially

Sandeep Kothinti for assisting me with Kaldi tool kit. I would like to thank Tomas

Mikolov for his RNNLM toolkit on which the experiments are done. Finally I would

like to thank my parents and friends for their support during this period.

i

ABSTRACT

KEYWORDS: Recurrent Neural Network; Language model; N-gram.

Statistical language models are crucial part of automatic speech recognition, machine

translation etc. Traditionally N-gram based models were used for language modeling.

With the advancement in computational capacity (Moore’s law) neural networks have

captured the machine learning market completely. Despite huge advances in machine

learning research N-gram based models have been the state of the art in language mod-

eling. Recent application of neural networks to language modeling have shown good

improvements compared to the N-gram models.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES iv

LIST OF FIGURES v

ABBREVIATIONS vi

1 INTRODUCTION 1

1.1 Overview . 1

1.2 Motivation . 1

1.3 Organisation . 2

2 LANGUAGE MODELS 3

2.1 N-gram models . 3

2.2 Recurrent neural networks . 5

3 EXPERIMENTS 8

3.1 Evaluation . 8

3.2 Results . 8

3.2.1 Size of train data vs WER 10

3.2.2 RNN weightage vs WER 11

4 FUTURE WORK 14

4.1 LSTM based language models . 14

4.2 Word2vec . 15

LIST OF TABLES

3.1 RNN+Trigram on Dev93 . 9

3.2 RNN+Trigram on Eval92 . 9

3.3 RNN+Fourgram on Dev93 . 9

3.4 RNN+Fourgram on Eval92 . 9

3.5 RNN WER for 1.5M words with different α 11

iv

LIST OF FIGURES

2.1 Simple recurrent neural network 5

3.1 No of training tokens vs WER for Dev93 10

3.2 No of training tokens vs WER for Eval92 11

3.3 RNN+Trigram, RNN+Fourgram Corresponding fits for Dev93 . . . 12

3.4 RNN+Trigram, RNN+Fourgram Corresponding fits for Eval92 . . . 12

4.1 A single cell in LSTM network . 14

v

ABBREVIATIONS

RNN Recurrent neural network

LSTM Long short-term memory

WER Word error rate

WSJ Wall street journal

NLP Natural language processing

BPTT Back propagation through time

vi

CHAPTER 1

INTRODUCTION

1.1 Overview

A statistical language model is a probability distribution over sequence of words. Given

a sequence of length m, a language model assigns the probability P (w1..wm) to the

whole sequence. Language modeling has various applications in various fields like

speech recognition, handwriting recognition, machine translation etc.

In speech recognition (matching sounds with words) the language model provides

context to distinguish between sounds that sound similar but have different meaning.

For e.g. ’recognize speech’ and ’wreck a nice beach’ are pronounced in almost similar

way and they beat the acoustic model during recognition. This can be corrected using

language model.

Artificial neural networks are family of models inspired by biological neural net-

works in the brain. These are used to approximate random functions with large number

of inputs. These are known to find complex pattern in the data with sufficient training

and can also be used to map data from higher dimensions to lower dimensions.

1.2 Motivation

Language modeling has become an interdisciplinary field when it comes to natural lan-

guage processing with many applications in most of NLP’s sub-fields.

1.3 Organisation

This thesis involves the application of recurrent neural networks a type of artificial

neural network for language modeling. First we will learn about two types of language

models: baseline N-gram and RNN based language model.

Then we would evaluate the performance of RNN based language model and then

compare it with the tri-gram and four-gram models. Finally we would combine both

the models to get the maximum accuracy.

2

CHAPTER 2

LANGUAGE MODELS

2.1 N-gram models

In this model the basic assumption we make is that the probability of a word only

depends on the previous n-words. Depending on the value n the model can be called as

uni-gram, bi-gram, trigram etc.

The probability of word sequences is calculated using chain rule:

P (w) = ΣN
i=1P (wi|w1..wi−1)

N-grams are the most frequently used language models, these are basically word

co-occurrence frequencies. The maximum likelihood estimate of probability of word

W in context K is computed as

P (W |K) =
C(KW)

C(K)

where C(KW) is the number of times that the KW word sequence has occurred in

the training data.The value ’N’ in the n-gram model depends on the number of words

we consider in the context K. |K| = 2 is trigram, |K| = 3 is four-gram etc.

Smoothing is done to reduce some erroneous over-estimations specific to the train-

ing data. For example,if the sentence

Party is on Musk

occurs in the training data out of a million words, it’s frequency is still overesti-

mated. To reduce this effect smoothing is done on the data. In this case Katz smoothing

is done.

Pbo(wi/wi−n+1...wi−1) =











dwi−n+1..wi

C(wi−n+1..wi)
C(wi−n+1..wi−1)

, if C(wi−n+1..wi) > k

αwi−n+1..wi−1
Pbo(wi/wi−n+2...wi−1), otherwise

C(x) is the count or frequency of x and wi is the ith word in the context.

Essentially, this means that if the n-gram has been seen more than k times in training,

the conditional probability of a word given its history is proportional to the maximum

likelihood estimate of that n-gram. Otherwise, the conditional probability is equal to

the back-off conditional probability of the "(n-1)-gram".

To compute α, it is useful to first define a quantity β, which is the left-over proba-

bility mass for the (n-1)-gram:

βwi−n+1..wi−1
= 1−

∑

wi:C(wi−n+1..wi)>k

dwi−n+1..wi

C(wi−n+1..wi)

C(wi−n+1..wi−1)

Then back-off weight α, is calculated as:

αwi−n+1..wi−1
=

βwi−n+1..wi−1
∑

wi:C(wi−n+1..wi)≤k Pbo(wi/wi−n+2...wi−1)

The above formula applies if there is a valid n-1 gram else it uses Katz estimate for

n-2 gram and so-on.

d is discounting found from Good-Turing estimation.

The idea of Good-Turing estimation is reallocate probability mass of n-grams that

occur r+1 times in the training data the n-grams occurring r times, in particular to the

n-grams that are not seen.

For each count r we compute an adjusted count r∗:

r∗ = (r + 1)
nr+1

nr

where nr is the number of n-grams seen r times. Then:

4

PGT (x : c(x) = r) =
r∗

N

where N =
∑∞

r=0 r
∗nr =

∑∞

r=1 rnr

Despite the huge success of N-gram models, with basic analysis of the working of

N-gram models one could see that they fail to take the context of the words prior to the

’N’ words. For example

THE WATER IN THE OCEAN IS BLUE

THE WATER IN THE OCEAN TO THE EAST OF CHENNAI IS BLUE

The two sentences above almost convey the same meaning. In both the sentences

the color BLUE is implied by OCEAN, but for a tri-gram model the context of ocean

is captured only in the first case. In the second case the words TO THE EAST OF

CHENNAI hinder the context to pass through when the model reaches the word BLUE.

This is the primary drawback of N-gram models.

2.2 Recurrent neural networks

A recurrent neural network is a class of artificial neural network with a directed cycle

between the connections. It creates an internal state inside the network.

Figure 2.1: Simple recurrent neural network

5

The memory of the internal state stores the context based information. This helps

the network to estimate the word probabilities in a better way.

The network has an input layer x, hidden layer s (also called context layer or state)

and output layer y. Input to the network in time t is x(t), output is denoted as y(t), and

s(t) is state of the network (hidden layer). Input vector x(t) is formed by concatenating

vector w representing current word, and output from neurons in context layer s at time

t− 1. Input, hidden and output layers are then computed as follows:

x(t) = w(t) + s(t− 1)

sj(t) = f(
∑

i

xi(t)uji)

yk(t) = g(
∑

j

sj(t)vkj)

where f(z) is a sigmoid activation function

f(z) =
1

1 + e−z

and g(z) is softmax function

g(zm) =
ezm

∑

k e
zk

For initialization, s(0) can be set to vector of small values, like 0.1 - when processing

a large amount of data, initialization is not crucial. In the next time steps, s(t + 1) is a

copy of s(t). Input vector x(t) represents word in time t encoded using 1-of-N coding

and previous context layer - size of vector x is equal to size of vocabulary V plus size

of context layer.

The RNN is trained using the standard back propagation algorithm or back propa-

gation through time algorithm(BPTT) with the objective function being minimising the

cross entropy function.

6

Pseudo Code for BPTT:

Back_Propagation_Through_Time(x, y):

Unfold the network to contain k instances of f

do until stopping criteria is met:

s = the zero-magnitude vector;

for t from 0 to n - 1

Set the network inputs to

s, x[t], x[t+1], ..., x[t+k-1];

p = forward-propagate the inputs over the

whole unfolded network;

calculate error between y[t+k] and p;

Back-propagate the error, e, back across

the whole unfolded network;

Update all the weights in the network;

Average the weights in each instance of f

together,so that each f is identical;

s = f(s);

To explain in simple terms BPTT is extending back-propagation to an RNN un-

folding it k time stamps and treating it as a feed forward neural network and finally

averaging over the k weights.

7

CHAPTER 3

EXPERIMENTS

The experiments in this section are done on Wall street journal data base and some ad-

ditional data from Google’s 1 billion words database. The additional words(sentences)

taken from Google’s database contain the same vocabulary as in the Wall street journal

database.

The vocabulary for this experiment is approximately 18000 words. The results are

reported after re-scoring 10 best paths. We have also used 50 nodes in the hidden layer

during training.

3.1 Evaluation

Evaluation in the experiments is done on the basic of word error rate. The word error

rate is defined as:

WER =
min(S +D + I)

N
∗ 100

It is the minimum number of S+D+I combined where S stands for substitutions, D

stands for deletions and I stands for insertions.

3.2 Results

For the columns in the following tables ’α-RNN’, α is the weight-age given to the RNN

model and 1 − α is the weight-age given to the N-gram model while calculating the

probability i.e. while estimating the probability of a word the probability of the word is

calculated as the weighted mean of RNN model and N-gram model. THe size column

indicates size of the training data.

Table 3.1: RNN+Trigram on Dev93

Dev93

Size Trigram 0.25-RNN 0.5-RNN 0.75-RNN RNN

600K 20.67 19.84 19.84 19.93 20.05

1.5M 17.63 16.73 16.58 16.74 16.91

5.3M 17.02 16.01 15.88 16.01 16.08

10M 16.92 15.93 15.86 15.93 16.07

Table 3.2: RNN+Trigram on Eval92

Eval92

Size Trigram 0.25-RNN 0.5-RNN 0.75-RNN RNN

600K 9.6 8.84 8.8 8.97 9.3

1.5M 7.79 6.99 6.76 6.97 7.19

5.3M 7.42 6.58 6.31 6.5 6.71

10M 7.29 6.41 6.31 6.46 6.71

Table 3.3: RNN+Fourgram on Dev93

Dev93

Size Fourgram 0.25-RNN 0.5-RNN 0.75-RNN RNN

600K 20.55 19.68 19.6 19.86 19.96

1.5M 17.68 16.77 16.54 16.72 16.95

5.3M 16.92 16.2 15.9 16.05 16.14

10M 16.84 15.8 15.7 15.82 15.95

Table 3.4: RNN+Fourgram on Eval92

Eval92

Size Fourgram 0.25-RNN 0.5-RNN 0.75-RNN RNN

600K 8.84 8.44 8.57 8.97 9.27

1.5M 7.96 7.14 6.89 6.91 7.08

5.3M 7.51 6.81 6.39 6.48 6.71

10M 7.38 6.8 6.54 6.52 6.84

9

From the tables we can see that the "pure" RNN model outperforms the base line

Trigram and Fourgram models in all the cases.

3.2.1 Size of train data vs WER

Additional data of around 10 million words is added to the existing 600k data ob-

tained from wsj database. The additional data is segregated from google 1 billion word

database which contains the existing words. RNN and N-gram language models are

being built by adding the additional data stepwise and WER is computed.

Plotting the data from the above tables:

0 2 4 6 8 10

x 10
6

15

16

17

18

19

20

21

No of training tokens

W
E

R

0.5*RNN+0.5*TG
0.5*RNN+0.5*FG
TG
FG
RNN

Figure 3.1: No of training tokens vs WER for Dev93

From the above plots we can see that as the number of training tokens increase

WER decreases exponentially and after certain number of training tokens error remains

constant.

This shows that RNN based language models work best when the amount of train

data is huge.

10

0 2 4 6 8 10

x 10
6

6

6.5

7

7.5

8

8.5

9

9.5

10

No of training tokens

W
E

R

0.5*RNN+0.5*TG
0.5*RNN+0.5*FG
TG
FG
RNN

Figure 3.2: No of training tokens vs WER for Eval92

3.2.2 RNN weightage vs WER

In this experiment RNN and N-gram language models are combined with different

weight rations and try to find if the accuracy can be improved with a weighted com-

bination of both the models.

Table 3.5: RNN WER for 1.5M words with different α

RNN weight Dev93 FG Dev93 TG Eval92 FG Eval92 TG

0.1 16.27 16.34 7.02 6.91

0.2 16.08 16.20 6.89 6.56

0.3 16.1 16.13 6.65 6.48

0.4 16.23 16.17 6.61 6.50

0.5 16.26 16.32 6.58 6.48

0.6 16.28 16.42 6.65 6.46

0.7 16.38 16.56 6.69 6.54

0.8 16.55 16.64 6.84 6.61

0.9 16.78 16.74 6.95 6.73

1 16.84 16.84 7.06 6.87

In the above graphs the WER’s are fitted with quadratic polynomials to visualize

the "performance" of α over the datasets.

For Dev93 the maximum accuracy occurs for α ≈ 0.5 whereas in eval92 it occours

11

0 0.2 0.4 0.6 0.8 1
16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

17.8

18

RNN weight alpha

W
E

R

RNN+Fourgram
RNN+Trigram
Fourgram−fit
Trigram−fit

Figure 3.3: RNN+Trigram, RNN+Fourgram Corresponding fits for Dev93

0 0.2 0.4 0.6 0.8 1
6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

RNN weight alpha

W
E

R

RNN+Fourgram
RNN+Trigram
Fourgram−fit
Trigram−fit

Figure 3.4: RNN+Trigram, RNN+Fourgram Corresponding fits for Eval92

12

for α ≈ 0.58. Though the curves are different for tri-gram and four-gram the maximum

accuracy point occured for the same α.

This shows that for dev93 data set N-grams perform equally better compared to

RNN whereas RNN outperforms N-grams for eval92.

13

CHAPTER 4

FUTURE WORK

4.1 LSTM based language models

LSTM (Long short term memory) is a type of recurrent neural network. These are best

suited to classify, process and predict information even with very long time lags. In a

sense these can learn and store the context for a very long time.

Figure 4.1: A single cell in LSTM network

Unlike RNN’s, LSTM’s contain an input gate an output gate a forget gate through

which the information passes. This complex architecture helps them to train and learn

the patterns faster and retain them longer.

The main difficulty in training the RNN’s has been the vanishing gradient problem

which means that the gradient that is propagated back through the network either decays

or grows exponentially. LSTM’s architecture is is modified to eliminate the vanishing

gradient problem.

4.2 Word2vec

Word2vec is an efficient estimation of the continuous bag-of-words and skip-gram ar-

chitectures for computing vector representation of words.

Instead of using neural network language models to calculate actual probabilities,

one can use the distributed representation encoded in the networks’ hidden layers as the

representation of words; each word can be mapped onto an n-dimensional real vector

called the word embedding, where n is the size of the layer just before the output layer.

The representations in skip-gram models have the distinct characteristic that they model

semantic relations between words as linear combinations, capturing a form of compo-

sitionality. For example, in some such models, if v is the function that maps a word w

to its n-d vector representation, then

v(king)− v(male) + v(female) ≈ v(queen)

where ≈ is made precise by stipulating that its right-hand side must be the nearest

neighbor of the value of the left-hand side.

15

REFERENCES

[1] Tomas Mikolov.Statistical language models based on neural networks.

[2] Tomas Mikolov, Martin Karafiat, Lucas Burget, Jan "Hanza" Cernocky, Sanjeev

Khudanpur. Recurrent neural network based language model (2010).

[3] Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan "Honza" Cernocky, San-

jeev Khudanpur. Extentions of recurrent neural network language model.

[4] Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukas Burget, Jan "Honza"

Cernocky. RNNLM - Recurrent Neural Network Language Modeling Toolkit.

[5] Stefan Kombrink, Tomas Mikolov, Martin Karafiat, Lukas Burget. Recurrent

Neural Network based Language Modeling in Meeting Recognition

[6] Slava M Katz. Estimation of Probabilities from Sparse Data for the Language

Model Component of a Speech Recognizer.

[7] I.J.Good. The population frequencies of species and the estimation of popular

parameters.

[8] Martin Sundermeyer, Ralf Schluter, and Hermann Ney. LSTM Neural Networks

for Language Modeling.

16

