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ABSTRACT

The field of array signal processing has been widely studied and has numerous

applications in RADAR systems, SONAR, Radio astronomy, Seismology,

Medical diagnosis and communication systems. This thesis analyses various

algorithms from array processing literature which are used for direction of arrival

estimation. A brief introduction to signal model and sensor array structures is

provided at the beginning. Basic beamforming techniques like conventional

beamformer, MVDR beamformer and delay-sum beamformer are discussed with

the help of graphical measures. Next, high resolution algorithms like MUSIC

and ESPRIT are discussed and their performance is compared with beamforming

algorithms. Recent work on Nested arrays (Pal and Vaidyanathan, 2010) has

gained significant fame in the field of array signal processing. Nested array is an

array geometry through which it is possible to detect O(N2) sources with only N

sensors which is not possible with traditional Uniform Linear Arrays(ULA). An

algorithm based on spatial smoothing and MUSIC for nested arrays has been

mentioned in (Pal and Vaidyanathan, 2010). Here we develop a new algorithm

using spatial smoothing and ESPRIT and compare both the results. We will show

that ESPRIT is considerably faster than MUSIC while maintaining almost the

same RMSE.
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CHAPTER 1

INTRODUCTION

Array signal processing is a wide area of research that embodies techniques to

solve 1-D signal to multi-dimensional signal processing problems. Array sensor

structure can be interpreted as a set of sensors (eg. Antennas, microphones) that

are spatially separated. One of the basic problems that can be solved using array

processing is determining directions of incoming sources. This area is centered

on the ability of using and combining data from different sensors in order to deal

with a specific estimation task. Array processing techniques are used in RADAR,

SONAR, Radio astronomy, Medical diagnosis, Seismology, anti-jamming and

wireless communications.

Looking into the field of communications, antenna arrays have emerged as a

support technology to increase the spectral efficiency and enhance the accuracy

of wireless communication systems by utilizing spatial dimension in addition to

time and frequency dimensions. The multiuser - medium multiple access - and

multipath - signal propagation over multiple scattering paths in wireless

channels- communication model is one of the most widespread communication

models in wireless communication. In multiuser communication environment,

the existence of multiuser increases the inter-user interference possibility that can

affect quality and performance of the system adversely. In mobile

communication systems the multipath problem is one of the basic problems that

base stations have to deal with. Base stations use an antenna array of several

elements to achieve higher selectivity i.e better spatial diversity. Receiving array



can be directed in the direction of one user at a time, while avoiding the

interference from other users.

There are 4 assumptions made and are followed throughout the thesis. The first

assumption is that there is uniform propagation in all directions of isotropic and

non-dispersive medium. The second assumption is that for far field array

processing, the radius of propagation is much greater than size of the array and

that they seem like plane waves to the sensor array. The third assumption is that

there is AWGN, signal and noise are uncorrelated. Finally, the last assumption is

that there are no calibration issues.

(Johnson and Dudgeon, 1992) and (Van Trees, 2004) have been very useful for

reference throughout the thesis.

1.1 Background and Formulation

General Plane Wave equation in Space-Time domain:

s(−→x , t) = exp(j(ω0t−
−→
k0.−→x ))

−→
k0=direction of propagation

ω0=frequency of the wave

4D Transform:

Transformation from space-time domain to wavenumber-frequency domain.

S(
−→
k , ω) =

∫∞
−∞ s(

−→x , t)e−j(ωt−
−→
k .−→x )d−→x dt

−→
k = kx̂i+ ky ĵ + kzk̂
−→
k =⇒3-D wave vector

ω =⇒ Temporal frequency variable
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Sensor Arrays:

Sensor arrays receive signals at fixed points in space where they are located.

Sensor arrays are characterized by Aperture functions. These can be viewed as

spatial filters for which the plane waves are the input and the perceived signal by

the sensor system as the output.

w(−→x )←→ W (
−→
k )

W (
−→
k ) =

∫∞
−∞w(−→x )ej

−→
k .−→x

Uniform Linear Array (ULA):

Figure 1.1: 6 element ULA with spacing = d and 2 far-field sources s1, s2

M sensor linear array , M=odd

b(x) =
∑M−1

2

m=
−(M−1)

2

δ(x−md)

w(−→x ) = b(x)δ(y)δ(z)

Since the ULA is placed in the x-direction only kx component comes into the

final equation.

W (kx) =

sin(kxMd)

2
sin(kxd)

2

3



Polar form:
−→
k can be represented in polar form.

kx = krsin(φ)cos(θ)

ky = krsin(φ)sin(θ)

kz = krcos(φ)

For example: Consider the above aperture function

W (kx) =

sin(kxMd)

2
sin(kxd)

2

W (kr, φ, θ) =
sin(

krMdsin(φ)cos(θ)

2

sin(
krdsin(φ)cos(θ)

2
)

Example Plot: Fig. 1.2

Let θ = 0 and φ varies from 0− π

2

W (
2π

λ
, φ, 0) =

sin(
Mdπsin(φ)

λ

sin(
dπsin(φ)

λ
)

Spatial Aliasing:

distance between the sensors =d

d ≤ λ

2
for no spatial aliasing

Example plot where d = λ and spatial aliasing takes place: Fig. 1.3

4



Figure 1.2: Magnitude Response

Figure 1.3: Spatial Aliasing

5



CHAPTER 2

Beamforming

Beamforming or spatial filtering is a technique used in sensor arrays for

directional signal transmission or reception. This is achieved by combining

elements in a sensor array such that signals from particular angles experience

constructive interference while others experience destructive interference. Here

we use beamforming to find the doa of signals by measuring the power received

in every direction. Sensor arrays are capable of electronic steering i.e changing

the look-direction for signals can be done electronically. This could not be

achieved by conventional radars which mechanically rotate the antenna for

changing the look-direction. In this section we discuss a time domain approach

to beamforming and two spectrum based approaches.

Time domain - Delay-Sum beamfomer

Spectrum based - Conventional (Bartlett)Beamformer and MVDR

(Capon)beamformer.

2.1 Delay Sum Beamforming

Delay-Sum Beamforming Equation:

z(t) =
∑M−1

m=0 wmym(t−4m)

wm= shading done at mth sensor

ym= signal received by mth sensor

Shading is external sensor gain provided at every sensor input. This is viewed as

a spatial filter and is very similar to a time-domain filter. All kinds of filters used



in time-frequency domain like Chebyshev, kaiser, Blackmann etc. can be used

here. In Fig. 1.2 it has a unity gain at all sensors i.e similar to a "rect" function in

time-domain and "sinc" in frequency domain. This is the reason we see a "sinc"

response in the wavenumber domain.

Plane wave Equation:

f(−→x , t) = exp(j(ω0t−
−→
k0.−→x ))

f(−→x , t) = s(t−
−→
α0.−→x )

where
−→
α0 =

−→
k0/ω

Beamformer Equation:

z(t) =
∑M−1

m=0 wmym(t−4m −
−→
α0.−→xm)

Therefore by choosing4m =
−→
α0.−→xm we get an undisturbed signal.

In general: 4m = −→α .−→xm, sweep −→α to get the maximum power output from z(t).

Figure 2.1: Delay-sum beamformer

2.2 Conventional Narrow band beamforming

Narrow band beamformer works when the input is a narrow band signal, where
−→
k0 or

−→
α0is a function of single wavelength. In wideband beamforming the

steering vector is function of different wavelengths.

In narrowband case:

7



|
−→
k | = 2π

λ
Signal received by a single sensor:

ym(t) = e−j
−→
k0.−→xms(t)

Vector notation:

y(t) = e(
−→
k0)s(t)

y0(t)

y1(t)

.

.

.

yM−1(t)


=



exp(−j
−→
k0.−→x0)

exp(−j
−→
k0.−→x1)

.

.

.

exp(−j
−→
k0.−−−→xM−1)


s(t)

Narrow band beamformer equation:

z(t) =
∑M−1

m=0 wm exp j(
−→
k −
−→
k0).−→xms(t)

z(t) = eH(
−→
k )We(

−→
k0)s(t)

Here "W" is a diagonal matrix of the shading parameters vector.

Power of the output becomes useful when handling Sampled data or snapshots.

P = |z(t)|2 = eH(
−→
k )Wy(t)yH(t)WHe(

−→
k )

Spatial Correlation Matrix:

R(t) = y(t)yH(t)

P = |z(t)|2 = eH(
−→
k )WR(y)WHe(

−→
k )

Here, the beamformer sweeps all
−→
k for the power spectrum. So,

−→
k is known as

a look vector and e(
−→
k )iscalledsteeringvector.

8



2.3 Minimum Variance Distortionless Response

(MVDR) Beamformer or Capon Beamformer:

Minimum Variance Cost function:

ŵ = arg min
w

wHRyw

Constraint:

eH(
−→
k )w = 1

This is the "Distortionless response" constraint. It makes sures that signal in

look direction is unaffected.

output: z = wHy

If
−→
k is the look direction and if there is any signal in that direction then it will be

of the form y = e(
−→
k )s.

So, output: z = wHy = s

since eH(
−→
k )w = wHe(

−→
k ) = 1

The solution for this constrained optimization is:

w(
−→
k ) =

R−1
y e(
−→
k )

eH(
−→
k )R−1

y e(
−→
k )

output:

z = eH(
−→
k )

R−1
y

eH(
−→
k )R−1

y e(
−→
k )

Output Power:

Pmv =
1

eH(
−→
k )R−1

y e(
−→
k )

9



whereas,

Pconv = eH(
−→
k )Rye(

−→
k )

2.4 Simulations

MVDR beamformer performs better than conventional beamformer. We can see

the difference in Fig. 2.2 and Fig. 2.3.

In Fig. 2.2,received snr=5dB and two signals are coming from angles 30o and

100o with powers in the ratio of 1:2 respectively.

Fig. 2.3 has signals from the angles 30o and 60o where we can observe that

conventional beamforming doesn’t perform well due to its low resolution (large

mainlobe width).

Figure 2.2: MVDR vs Conventional Beamformer, 9 sensors

10



Figure 2.3: MVDR vs Conventional Beamformer, Resolution plot
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CHAPTER 3

Subspace Methods

Here two high resolution methods based on eigenvalue decomposition techniques

(subspace methods) are discussed.

1) Multiple Signal Classification (MUSIC)

2) Estimation of Signal Parameters via Rotational Invariance Technique

(ESPRIT)

3.1 MUSIC

MUSIC stands for MUtiple SIgnal Classification, a subspace approach for

resolving mutiple signals. This concept in closely studied from this paper

(Schmidt, 1986).

Data Model:

M sensor array

D sources are considered where D<M.

x1

x2

.

.

.

xM


=
[
a(θ1) a(θ2) ... a(θD)

]


s1

s2

.

.

.

sD


+



n1

n2

.

.

.

nM





x[k] = As[k] + n[k]

where

x[k] is the received vector at kth snapshot,

s is the input signal at the source, D sources are considered.

A consists of columns that are steering vectors corresponding to each source.

n is the noise vector.

Here, the array manifold A which consists of steering vectors is represented in a

different manner compared to the beamforming cases. Both are exactly same and

the change in representation is done just for simplicity.

ai(θj) corresponds to the jth source and ith element

ai(θj) = ej(2π/λ)disinθj where di is position of the ith element

Covariance Matrix:

Rxx = xxH = AssHAH + nnH

Rxx = ARssAH + Rnn

Let the noise covariance matrix be σ2I

Rxx = ARssAH + σ2I

Since there are only D sources,the dimension of matrix Rss is D and the rank of

ARssAH is also D which is not full rank. From these facts, there are N=M-D

eigen values of Rxx which are equal to the noise variance σ2.

Let the noise eigenvectors matrix be EN . This is a M × N matrix. Music

algorithm scans all directions and calculates PMUSIC(θ).

Therefore in the MUSIC algorithm,

PMUSIC(θ) =
1

aH(θ)ENEH
Na(θ)

we find the peaks in this plot for the direction of arrival of sources.

13



3.1.1 Algorithm

1)Estimate Rxx from snapshots

2)Calculate eigenvalues of Rxx and decide number of signals D. Very low

eigenvalues belong to noise.

3)Calculate PMUSIC(θ)

4)pick D peaks in PMUSIC(θ). The angles corresponding to these are the

estimated doa of sources.

3.1.2 Simulations

In the following plots, all the three beamforming methods are compared. In

Fig. 3.1, received snr=5dB, and source signal angles of 30o and 100o. The high

resolution performance of the MUSIC algorithm is evident.

In Fig. 3.2, the source signals are from angles 30o and 50o. In this case, mvdr and

conventional beamforming methods fail because of their low resolution.

14



Figure 3.1: SNR = 5dB, Src angles = 30,100, 9 sensors

Figure 3.2: SNR = 5dB, Src angles = 30,50, 9 sensors

15



3.2 ESPRIT

ESPRIT- Estimation of Signal parameters via Rotational Invariance Technique.

This method is similar to MUSIC and relies on eigenspace techniques. ESPRIT

has less computational complexity when compared to MUSIC. But, this benefit

is obtained with a compromise on the number of sensors. ESPRIT method

requires double the number of sensors for achieving the same degrees of freedom

as MUSIC.This concept is closely studied from (Roy and Kailath, 1989).

Signal Model:

M sensor array

D sources are considered where D<M.

x1

x2

.

.

.

xM


=
[
a(θ1) a(θ2) ... a(θD)

]


s1

s2

.

.

.

sD


+



n1

n2

.

.

.

nM


x[k] = As[k] + n[k]

where

x is the received vector,

s is the input signal at the source, D sources are considered.

consists of columns that are mode vectors corresponding to each source.

n is the noise vector.

This is similar to MUSIC algorithm. But in ESPRIT there is another set of

sensors having the same structure as the latter but are shifted in position. This

gives rise to doublets. Every sensor in one set has its pair in the other set.

16



Figure 3.3: ESPRIT sensor array geometry

Core idea of ESPRIT - Rotational Invariance:

Let the position of ith sensor in set-1 be −→pi and position ith sensor in set-2 be −→qi .

−→qi = −→pi +
−→
∆

From the figure, the signal received at −→qi is a delayed version of the signal at −→pi .

This delay is dependent on the direction of arrival of the source signal. ESPRIT

algorithms estimates this delay to find the direction of arrival.

Let the signals received at the ith doublet be:

xi(t) =
d∑

k=1

sk(t)ai(θk) + nxi(t)

yi(t) =
d∑

k=1

sk(t)e
jω0∆sinθk/cai(θk) + nyi(t)

The exponential part in the second equation is the rotation vector. Hence the

name rotational invariance.

17



Vector representation:

x[k] = As[k] + n[k]

y[k] = Aφs[k] + n[k]

φ = diag(ejγ1 , ..., ejγd)

where γ = ω0∆sinθk/c

The objective is to estimate φ and thereby obtaining the source angles in one

shot. This is in contrast to MUSIC where the algorithm looks in every direction

for calculating doa. ESPRIT can estimate doa directly from φ and is therefore

considerably faster than MUSIC.

3.2.1 Algorithm

1) Define

z[k] =

x[k]

y[k]

 =

 A

Aφ

 s[k] +

nx[k]

ny[k]

 = As[k] + nz[k]

Compute the 2N × 2N correlation matrix Rzz

Rzz = ARssA
H

+ σ2
0I

2) Since there are D sources, the D largest eigenvectors of Rzz form the signal

subspace Us. The remaining 2N-D eigenvectors form the noise subspace Un.

Us is 2N × D and its span is same as A

Therefore there exists a tranformation matrix T such that

Us = AT

18



Now, partition Us into two N × D matrices.

Us =

Ux

Uy

 =

 AT

AφT


Observe that the columns of both Ux and Uy are linear combinations of A, so

both of them should have rank D.

3) Define an N × 2D matrix, which has rank D

Uxy =
[
Ux Uy

]

Therefore, Uxy has a null space with dimension D, so there exists a 2D × D

matrix F such that

UxyF = 0 =
[
Ux Uy

]Fx

Fy

 = UxFx + UyFy = 0

Solving the above equation we get,

φ = TFxF−1
y T−1

4) Let ψ = FxF−1
y .

ψ and φ share the same eigenvalues. Therefore, φ can be estimated by finding

the eigenvalues of ψ. This is a least-squares ESPRIT method. Total least squares

(TLS-ESPRIT) is applied for better performance.

19



3.2.2 Simulations

Figure 3.4: SNR=10dB, 9 sensors, ESPRIT = 18 sensors, angles = 65,85

20



CHAPTER 4

Nested Arrays

Recent work on Nested arrays (Pal and Vaidyanathan, 2010) has gained

significant fame in the field of array signal processing. In their paper, a new array

geometry named Nested arrays is developed through which it is possible to detect

O(N2) sources with only N sensors. An algorithm based on spatial smoothing

and MUSIC for nested arrays has been mentioned in (Pal and Vaidyanathan,

2010). In this chapter a new algorithm using spatial smoothing and ESPRIT is

developed and compare both the results. We will show that ESPRIT is

considerably faster than MUSIC while maintaining almost the same RMSE.

Spatial smoothing techniques which include Forward smoothing and

Forward-Backward smoothing are referred from (Pillai and Kwon, 1989).

Data Model:

M sensor array

D sources are considered where D<M.
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where

x[k] is the received vector at kth snapshot,

s is the input signal at the source, D sources are considered.

A consists of columns that are steering vectors corresponding to each source.

n is the noise vector.

ai(θj) = ej(2π/λ)disinθj where di is position of the ith element

Covariance Matrix:

Rxx = xxH = AssHAH + nnH

Rxx = ARssAH + Rnn

Let the noise covariance matrix be σ2I

Rxx = ARssAH + σ2I

Now vectorize Rxx to get the following vector:

z = vec(Rxx) = vec

[ D∑
i=1

σ2
i a(θi)aH(θi)

]
+ σ2−→1 m

= (A∗ � A)p + σ2−→1 m (4.1)

where p = [σ2
1 σ

2
2 ... σ

2
D] and

−→
1 m = [eT1 e

T
2 ... e

T
N ] where ei being a column

vector of all zeros except a 1 at ith position. Comparing (4.1) with the standard

receiver signal model, z in (4.1) behaves like the received signal by an array

whose manifold is given by A∗ � A where � denoted KR-product. The

equivalent source signal vector is represented by p which does not change with

time. The noise becomes a deterministic vector given by σ2−→1 m. The distinct

rows in A∗ � A behave like the manifold of a longer uniform linear array whose

positions are at −→xi −−→xj , 1 ≤ i, j ≤ M where −→xi denotes the position of the ith

sensor in the original array. We call this long longer array as a difference coarray.

Hence, we can apply DOA estimation techniques like MUSIC and ESPRIT on
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this difference co-array.

4.1 Algorithm Formulation

Here we consider a 2-level nested array as proposed in (Pal and Vaidyanathan,

2010) which has M/2 sensors in each level. Here we assume M to be even. An

example of a 2-level nested array with 6 sensors is shown in Fig. 4.2. Consider

equation (4.3),

z = (A∗ � A)p + σ2−→1 m

where p = [σ2
1 σ

2
2 ... σ

2
D]. The source correlation matrix Rpp will have rank 1 i.e

the sources are completely correlated. Spatial smoothing is a well-known

technique used to de-correlate coherent sources. It is to be noted that spatial

smoothing technique is applicable only to ULAs.

Before applying spatial smoothing, a new matrix Ar of size

((M2 − 2)/2 +M)× D is constructed from A∗ � A where the repeated rows

are removed after their first occurrence. After that the rows are sorted such that

the i th row corresponds to the sensor location (−M2/4−M/2 + i)d in the

difference co-array of the 2-level nested array.

The new vector zr is given by

zr = Arp + σ2e′

where e′εR((M2−2)/2+M)×1 is a vector of all zeros except a 1 at (M2/4 +M/2)th

position.

In the above equation, the positions of the sensors are same as the difference

co-array which is a ULA. The sensors are located from

(−M2/4−M/2 + 1)d to (M2/4 +M/2− 1)d. We divide this co-array into

23



M2/4 +M/2 overlapping subarrays, each with (M2/4 +M/2) elements, where

the ith subarray has sensors located at

{(−i+ 1 +m)d, m = 0, 1, ... , (M2/4 +M/2− 1)}

Now, we apply spatial smoothing on these subarrays to get the spatially

smoothed covariance matrix.

Let zi be the received vector by the ith subarray.

zi = Aip + σ2ei

where Ai is the manifold matrix corresponding to the ith subarray and ei is an all

zero vector with a 1 in the ith position. It is easy to observe that the array

manifold of the ith subarray can be represented using the manifold of the first

subarray.

Ai = A1φ
i−1

where

φ = diag(e−j(2π/λ)d sin(θ1) , e−j(2π/λ)d sin(θ2). . . . .e−j(2π/λ)d sin(θD))

Therefore,

zi = A1φ
i−1p + σ2ei

The subarray covariance matrix Ri is
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Ri = zizHi = A1φ
i−1ppH(φi−1)HAH

1 + σ4
meieHi + σ2A1φ

i−1peHi + σ2eipH(φi−1)HAH
1

Averaging over all subarray covariance matrices we get the spatially smoothed

covariance matrix Rs.

Rs =
1(

M2

4
+
M

2

) M2/4+M/2∑
i=1

Ri

It is proved in (Pal and Vaidyanathan, 2010) that Rs = R̂2 where

R̂ =
1√

M2

4
+
M

2

(A11ΛAH11 + σ2I)

has the same form as the covariance matrix of the signal received by a ULA

consisting of M2/4 +M/2 sensors.

R̂ and Rs share the same set of eigenvectors and the eigenvalues of R̂ are the

square roots of those of Rs.

We apply ESPRIT algorithm on this covariance matrix to detect upto

M2/4 +M/2− 2 sources.

The rank of the new covariance matrix is equal to the dimension of the source

covariance matrix. Spatial smoothing de-correlates the sources and hence the

source correlation matrix has full rank. Now, for the purpose of using ESPRIT

we need two shifted arrays. Two shifted subarrays each of length

(M2/4 +M/2− 1) are considered for this purpose. Let

M+ = (M2/4 +M/2− 1)

Let x[k] and y[k] denote the received vectors at the first and second subarrays
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respectively at the kth snapshot. Also, let A be the array manifold of the first

sub-array

x[k] = As[k] + nx[k]

y[k] = Aφs[k] + ny[k]

where

φ = diag(e−j(2π/λ)d sin(θ1) , e−j(2π/λ)d sin(θ2). . . . .e−j(2π/λ)d sin(θD))

After vertical concatenation of both the vectors we get,

z =

x[k]

y[k]

 =

 A

Aφ

 s[k] +

nx[k]

ny[k]



= As[k] + nz[k]

The covariance matrix Rzz of size M+ ×M+ can be easily constructed as

covariance between any two sensors is known from Rs.

Rzz = ARsA
H

+ σ2
0I

We apply TLS-ESPRIT on this M+×M+ matrix to detect upto M+− 1 sources.
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4.2 Simulation System Model

4.2.1 Sensor Array Structure

A 6 sensor 2-level nested array (M = 6) is considered with 8 narrowband sources

(D = 8) impinging on it from angles [ -60, -40, -20, 0, 10, 35, 50, 65] with respect

to the normal of the sensor array. The sources are modeled as random Gaussian

processes with equal power. This 2-level nested array has 3 sensors in each level.

The method based on spatial smoothing and MUSIC proposed in (Pal and

Vaidyanathan, 2010) can resolve upto M2/4 +M/2− 1 = 11 sources and the

method proposed using ESPRIT in this paper can resolve upto

M2/4 +M/2− 2 = 10. In the following simulations instead of MUSIC and

LS-ESPRIT we implement rootMUSIC and TLS-ESPRIT because the latter give

better performances.

Sensors are placed at distances 1,2,3,4,8,12 on y-axis from the origin as shown in

Fig. 4.1.

4.2.2 Co-Array structure

From Fig. 4.2, we can see that the difference co-array gives rise to an ULA with

23 unique sensors.
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Figure 4.1: Nested Array

Figure 4.2: Co-Array
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4.3 Simulations

Angle plots

Fig. 4.3 shows the angle plots with both rootMUSIC and ESPRIT applied on

nested arrays. Both use T = 9600 snapshots and SNR = 0 dB. Since rootMUSIC

and ESPRIT directly spit out the angles, we take a histogram of the angles after

running it for 500 times for the purpose of plotting. The bin size of the histogram

is taken to be 1/1000. From the figure, it can be seen that both the algorithms

resolve the sources reasonably well. Note that SS-rootMUSIC means spatial

smoothing and rootMUSIC are used in the algorithm and similarly SS-ESPRIT

means spatial smoothing and ESPRIT are used.

Fig. 4.4 shows similar plots but with T = 800 snapshots and with SNR = 0 dB.

We can clearly observe that the variance of the estimates increased as number of

snapshots reduced.

RMSE vs SNR

Here we compare the root mean squared error (RMSE) of both the algorithms.

We average over 1000 Monte Carlo simulations and T = 9600 snapshots are used

for Fig. 4.5. We have T = 800 snapshots for Fig. 4.6. Also, we compare both

algorithms with a 12-element ULA response which uses rootMUSIC for doa

estimation. From both the figures we can observe that both the algorithms give

almost same performance w.r.t RMSE.
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Figure 4.3: Histogram of source angles observed by 6 element nested array with
SS-rootMUSIC and SS-ESPRIT algorithms, T = 9600

Figure 4.4: Histogram of source angles observed by 6 element nested array with
SS-rootMUSIC and SS-ESPRIT algorithms, T = 800
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Figure 4.5: RMSE of source angles w.r.t SNR as observed by a 6 element nested
array with SS-rootMUSIC and SS-ESPRIT algorithms and as ob-
served by a 12-element ULA with rootMUSIC algorithm, T = 9600

Figure 4.6: RMSE of source angles w.r.t SNR as observed by a 6 element nested
array with SS-rootMUSIC and SS-ESPRIT algorithms and as ob-
served by a 12-element ULA with rootMUSIC algorithm, T = 800
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Time taken by algorithm vs snapshots

Here we calculate the time taken by each algorithm for some specific values of

snapshots and compare both the algorithms. SNR = 0 dB and the elapsed time is

averaged over 1000 Monte Carlo simulations. We can observe the benefit of

using ESPRIT algorithm over rootMUSIC from Fig. 4.7 because ESPRIT is

considerably faster than rootMUSIC. Note that we may not observe the increase

in elapsed time w.r.t to snapshots because the elapsed time is calculated after

estimating the covariance matrices.

Fig. 4.8 includes the time taken to calculate of covariance matrices and hence we

can see the increase in time taken.

Figure 4.7: Time taken by both the algorithms after feeding in the covariance ma-
trices. ESPRIT is faster than rootMUSIC.

32



Figure 4.8: Time taken by both the algorithms which includes the estimation of
covariance matrices also. ESPRIT is faster than rootMUSIC.

Nested Arrays vs ULA

Although nested arrays are used for finding direction of arrivals of O(N2)

sources which is not possible with ULA’s, here we consider an example of

finding doa of less than N sources. We show that using nested array with 6

sensors results in considerably less RMSE than using a ULA with 6 sensors.

Nested array has sensors at positions [1 2 3 4 8 12] on the y-axis whereas ULA

has sensors at [1 2 3 4 5 6] on the y-axis. The number of snapshots T = 9600.

rootMUSIC and ESPRIT algorithms are applied on the ULA and SS-rootMUSIC

and SS-ESPRIT are applied on the nested array as mentioned in the previous

sections. The RMSE is averaged over 1000 Monte Carlo simulations.

From Fig. 4.9, we can observe that RMSE for nested arrays is significantly lower

than that of ULA at lower SNR’s.

33



Figure 4.9: RMSE perfomance comparison between ULA and Nested array with
6 sensors each.
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4.3.1 Conclusions

From Fig. 4.5 and Fig. 4.6 we can observe that RMSE is almost same for both

the algorithms. Infact, an experiment in (Roy and Kailath, 1989) showed that

even though doa from MUSIC has less variance compared to ESPRIT, it suffers

from high bias whereas ESPRIT results in very low bias. We can observe the

algorithmic time benefits of using ESPRIT over MUSIC from Fig. 4.7. Also,

from Fig. 4.9 we observe the benefits of using a nested array over ULA in

general.
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