

Implementation of 5 stage pipelined RISC V

processor

A Project Report

submitted by

M Ravi Chandra

EE12B036

in Partial Fulfillment of the Requirements

for the Degree of

Bachelor of Technology

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

April 2016

THESIS CERTIFICATE

This is to certify that the thesis entitled Implementation of 5 stage pipelined

RISC V processor, submitted by M Ravi Chandra, EE12B036 , to the Indian

Institute of Technology Madras, for the award of the degree of Bachelor of

Technology, is a bona fide record of the research work carried out by him

under my supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or

diploma.

Dr. V Kamakoti
Research Guide
Professor
Dept. of Computer Science and Engineering
IIT Madras, 600 036

Place: Chennai

Date: 23th May, 2016

i

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards several people who enabled

me to reach this far with their timely guidance, support and motivation.

First and foremost, I offer my earnest gratitude to my guide, Dr. V. Kamakoti

whose knowledge and dedication has inspired me to work efficiently on the project

and I thank him for motivating me, and allowing me freedom and flexibility while

working on the project.

My special thanks and deepest gratitude t o Abhinaya Agrawal who has

been very supportive with invaluable suggestions.

ii

ABSTRACT

This project is about implementing 5 stage pipelined processor using RISC V

Instruction set architecture realized in bluespec. With increased use of

embedded systems we require a set of processors that use less power and area

but yet achieve the main purpose of speed .

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES iv

LIST OF FIGURES v

ABBREVIATIONS vi

1 Introduction 1

1.1 Overview . 1

1.2 Organisation of thesis . 1

2 Background 2

2.1 Bluespec System Verilog . 2

2.1.1 TLM . 3

3 RISC-V Architecture 6

3.1 Overview . 7

3.2 Base Instruction Format . 8

4 5 Stage Pipeline 9

4.1 stages . 10

5 Overcoming hazards 13

5.1 Operand forwarding . 21

6 Conclusion and Future work 26

iv

LIST OF TABLES

2.1 Request Descriptor . 5

2.2 TLMResponse . 6

vi

LIST OF FIGURES

2.1 Connecting TLM Send and Receive Interfaces 6

3.1 RISC-V instruction length encoding … … … … … 10

3.2 Types of immediate produced by RISC-V instructions

11

4.1 5 stage pipeline with FIFOs . 19

4.2 Each stage of pipeline showed 20

5.1 Data Hazard EX/MEM . 15

5.2 Operand forwarding . 16

vi

ABBREVIATIONS

BSV Bluespec System Verilog

MCP Manager-Client pairing

TLM Transaction Level Modelling

FIFO First In First Out

RISC Reduced Instruction Set Computer

HDL Hardware Description Language

CPU Central Processing Unit

[Type here] [Type here] [Type here]

CHAPTER 1

Introduction

1.1 Overview

The Processor design team of Reconfigurable and Intelligent Systems

Engineering (RISE) Lab in the Computer Science Department of IIT Madras has

been actively involved in research of The SHAKTI Processor project. My project

targets E-Class processor which is 32 bit 5 stage in-order core aimed at 10 - 50

Mhz uC variants. This processor got an optional memory protection and

very low power static design. The processor strictly follows the RISC-V

Instruction Set Architecture (ISA). Entire design of the processor is done using

a Hardware Description Language (HDL) named Bluespec System Verilog

(BSV). This project describes the design and implementation of “5 stage

pipelined RISC V processor”. This work involves implementing this in Bluespec

which is based on RISC-V ISA.

1.2 Organisation of thesis

Chapter 2 gives some insight about the Bluespec System Verilog, its key

features, TLM module of BSV.

Chapter 3 discusses about RISC-V Instruction Set Architecture and different

base encodings.

Chapter 4 gives us implementation of 5 stage processor with intermediate

FIFOs and explains the flow of data in each cycle.

Chapter 5 contains information about hazards and operand forwarding.

Chapter 6 contains a conclusion and description on the future work.

[Type here] [Type here] [Type here]

CHAPTER 2

2.1 Bluespec System Verilog

The design of the blocks and their testing is written in Bluespec System

Verilog (BSV). BSV is a high level Hardware Description Language. It

expresses synthesizable behavior with rules, a rule can be viewed as a

declarative assertion expressing a potential atomic state transition. The BSV

compiler produces efficient RTL code that manages all the potential interactions

between rules by inserting appropriate arbitration and scheduling logic, logic

that would otherwise have to be designed and coded manually. BSV connects

the modules by interfaces and methods. It also provides predefined library

elements like FIFOs, BRAMs etc. which are modeled using BSV methods.

It has powerful static type checking which removes potential human errors

which can’t be detected at the stage of compilation normally but can be detected

now during the compilation. BSV also has more general type parameterization

(polymorphism) due to which modules and functions can be parameterized by

other modules and functions, this enables the designer to reuse designs and glue

them together in much more flexible ways. BSV’s static elaboration helps to arrive

at the design much faster than the other HDLs. The BSV compiler also can generate

the synthesizable Verilog code of the written bluespec code which can be used later

for synthesis purposes.

 BSV has an inbuilt package called TLM (Transaction Level Modeling) which is

used in this thesis.

2

 3

2.1.1 TLM

The TLM package includes definitions of interfaces, data structures, and module

constructors which allow users to create and modify bus-based designs in a manner

that is independent of any one specific bus protocol. Designs created using the

TLM package are thus more portable. In addition, since the specific signaling

details of each bus protocol are encapsulated in pre-designed transactors, users

are not required to learn, re-implement, and re-verify existing standard protocols.

The two basic data structures defined in the TLM package are TLMRequest and

TLMResponse. By using these types in a design, the underlying bus protocol can

be changed without having to modify the interactions with the TLM objects. TLM

request contains either control information and data, or data alone. A TLMRequest

is tagged as either a RequestDescriptor or RequestData. A RequestDescriptor

contains control information and data while a RequestData contains only data. The

table 2.1 describes the components of a RequestDescriptor and the valid values for

each of its members.

The table 2.2 describes the components of a TLMResponse and the valid values

for its members.

The TLM interfaces define how TLM blocks interconnect and communicate.

The TLM package includes two basic interfaces: The TLMSendIFC interface and

the TLMRecvIFC interface. These interfaces use basic Get and Put subinterfaces as

the requests and responses. The TLMSendIFC interface generates (Get) request

 3

and receives (Put) responses. The TLMRecvIFC interface receives (Put)

requests and generates (Get) responses. These TLMSendIFC and

TLMRecvIFC can be connected by mkConnection in the Connectable package

of BSV.

The Data Structures Request Descriptor in TLMRequest, TLMResponse,

and the interfaces provided TLMSendIFC and TLMRecvIFC are used

extensively in this thesis.

TLM Data Structure:

typedef struct {

TLMCommand command;

TLMMode mode;
TLMAddr#(`TLM_PRM) addr;

TLMData#(`TLM_PRM) data;

TLMUInt#(`TLM_PRM) burst_length;

TLMByteEn#(`TLM_PRM) byte_enable;

TLMBurstMode burst_mode;
TLMBurstSize#(`TLM_PRM) burst_size;

TLMUInt#(`TLM_PRM) prty;

Bool lock;

TLMId#(`TLM_PRM) thread_id;

TLMId#(`TLM_PRM) transaction_id;

TLMId#(`TLM_PRM) export_id;
TLMCustom#(`TLM_PRM) custom;

} RequestDescriptor#(`TLM_PRM_DCL) deriving (Eq, Bits, Bounded);

Table 2.1: Request Descriptor

4

 3

2.2: TLMResponse

Figure 2.1: Connecting TLM Send And Receive Interface

5

CHAPTER 3

RISC-V ARCHITECTURE

RISC-V is a new instruction set architecture (ISA) that was originally designed to

support computer architecture research and education, but which we now hope

will become a standard open architecture for industry implementations. Main

goals of RISC-V include:

 A completely open ISA that is freely available to academia and industry.

 A real ISA suitable for direct native hardware implementation, not just

simulation or binary translation.

 An ISA separated into a small base integer ISA, usable by itself as a base

for customized accelerators or for educational purposes, and optional

standard extensions, to support general purpose software development.

 Support for the revised 2008 IEEE-754 floating-point standard.

 Both 32-bit and 64-bit address space variants for applications, operating

system kernels, and hardware implementations.

 An ISA with support for highly-parallel multicore or many core

implementations, including heterogeneous multiprocessors.

 Optional variable-length instructions to both expand available instruction

encoding space and to support an optional dense instruction encoding for

improved performance, static code size, and energy efficiency.

 A fully virtualizable ISA to ease hypervisor development.

6

3.1 RISC-V ISA Overview

The RISC-V ISA is defined as a base integer ISA, which must be present in any

implementation, plus optional extensions to the base ISA. Each base integer

instruction set is characterized by the width of the integer registers and the

corresponding size of the user address space. The base RISC-V ISA has fixed-

length 32-bit instructions that must be naturally aligned on 32-bit boundaries.

Figure 3.1: RISC-V instruction length encoding

7

3.2 Base Instruction Format

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in

Figure 3.2.1. All are a fixed 32 bits in length and must be aligned on a four-byte

boundary in memory. An instruction address misaligned exception is generated

if the pc is not four-byte aligned on an instruction fetch. The RISC-V ISA keeps

the source (rs1 and rs2) and destination (rd) registers at the same position in all

formats to simplify decoding. Immediate are packed towards the leftmost

available bits in the instruction and have been allocated to reduce hardware

complexity. In particular, the sign bit for all immediate is always in bit 31 of the

instruction to speed sign-extension circuitry.

Figure 3.2.1: RISC-V instruction length encoding

Figure 3.2.2: Types of immediate produced by RISC-V instructions. The fields are
labeled with the instruction bits used to construct their value. Sign extension
always uses inst[31].

8

CHAPTER 4

5 Stage pipeline

Pipelining is an implementation technique in which multiple instructions are

overlapped in execution. Multiple tasks operating simultaneously using

different resources. Pipelining doesn’t help latency of single task, it helps

throughput of entire workload Pipeline rate is limited by slowest pipeline stage.

There are five stages in RISC pipeline. So we use 4 FIFOs to control the flow of

data from each stage to next till the present task is executed in that cycle.

Figure 5: RISC-V pipeline stages with FIFOs.

9

4.1 Stages of pipeline

1. Instruction Fetch (IF):

Current Program counter (PC) is index to instruction memory. Increment

the PC at the end of cycle. Fetch the data from input and write the values

of interest to Pipeline FIFO (IF/ID) between IF and Instruction decode

stage.

2. Instruction Decode (ID):

Read from IF/ID FIFO to get instruction bits. Decode instruction, generate

control signals and then read from register file. Write values of interest to

next pipeline FIFO (ID/EX). Control information, Rd index, immediates,

offsets, contents of Ra, Rb are sent to next stage.

3. Execute (EX):

Read ID/EX pipeline FIFO to get value and control bits and then perform

ALU operations. Compute targets (PC+4+offset) n case this a branch

statement. Then write values of interest to next pipeline FIFO EX/MEM.

Send Rd index, result of ALU operation, value in case this is memory

store instruction.

4. Memory Access (MEM):

Read EX/MEM pipeline FIFO to get values and control bits and then

perform memory load/store if needed and the address is ALU result.

Then write values of interest to next pipeline FIFO MEM/WB. Send

control information, Rd index, result of memory operation, and pass

result of ALU operation.

5. Write Back (WB):

On every cycle read from last pipeline

FIFO MEM/WB to get values and

control bits. Select the value and write

it back to register file.

CHAPTER 5

Overcoming hazards

This chapter discusses about hazards and how to overcome it. Hazards are

problems with the instruction pipeline in processor architectures when the next

instruction cannot execute in the following clock cycle and can potentially lead

to incorrect computation results. One of the solution to it is operand forwarding

and we discuss about it in here.

5.1 Operand Forwarding

Operand forwarding (or data forwarding) is an optimization in pipelined processors to

limit performance deficits which occur due to pipeline stalls. A data hazard can lead to a

pipeline stall when the current operation has to wait for the results of an earlier operation

which has not yet finished. So how can the hardware determine if a hazard exists?

An EX/MEM hazard occurs between the instruction currently in its Execute stage and the

previous instruction if the previous instruction will write to the register file, and the

destination is one of the ALU source registers in the Execute stage. There is an EX/MEM

hazard between the two instructions below

Forwarding eliminates data hazards involving arithmetic instructions. The

forwarding unit detects hazards by comparing the destination registers of

previous instructions to the source registers of the current instruction. Hazards

are avoided by grabbing results from the pipeline registers before they are written

back to the register file

Hence the first ALU source comes from the pipeline register when necessary.

if (EX/MEM.RegWrite = 1 and EX/MEM.RegisterRd = ID/EX.RegisterRs)

 then ForwardA = 2

The second ALU source is similar.

if (EX/MEM.RegWrite = 1 and EX/MEM.RegisterRd = ID/EX.RegisterRt)

 then ForwardB = 2

.

Figure 5.1: Operand forwarding

14

CHAPTER 6

Conclusion and Future work

Implemented 5 stage pipelined processor using RISC V Instruction set

architecture realized in bluespec. This design is realized in Bluespec System

Verilog (BSV) which provides module and configuration flexibility.

This thesis shows the implementing 5 stage pipelined processor using RISC V

Instruction set architecture with Operand forwarding. We can also go further

and implement branch predictors to improve the flow in the instruction pipeline.

Branch predictors play a critical role in achieving high effective performance.

15

REFERENCES

[1] http://www.cs.cornell.edu/courses/cs3410/2010sp/lecture/topic10-pipelined-

cpu-w-g.pdf.

[2] https://courses.cs.washington.edu/courses/cse378/07au/lectures/L12-

Forwarding.pdf

[3] Bluespec,Inc.Bluespec System Verilog Reference Guide, Revision 30 July 2014.

16

