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ABSTRACT 

 
 
This project is about implementing 5 stage pipelined processor using RISC V 

Instruction set architecture realized in bluespec. With increased use of 

embedded systems we require a set of processors that use less power and area 

but yet achieve the main purpose of speed                           .                          
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CHAPTER 1 

 
Introduction 

 

 

1.1 Overview 

 
The Processor design team of Reconfigurable and Intelligent Systems 

Engineering (RISE) Lab in the Computer Science Department of IIT Madras has 

been actively involved in research of The SHAKTI Processor project. My project 

targets E-Class processor which is 32 bit 5 stage in-order core aimed at 10 - 50 

Mhz uC variants. This processor got an optional memory protection and 

very low power static design. The processor strictly follows the RISC-V 

Instruction Set Architecture (ISA). Entire design of the processor is done using 

a Hardware Description Language (HDL) named Bluespec System Verilog 

(BSV). This project describes the design and implementation of “5 stage 

pipelined RISC V processor”. This work involves implementing this in Bluespec 

which is based on RISC-V ISA. 

1.2 Organisation of thesis 

Chapter 2 gives some insight about the Bluespec System Verilog, its key 

features, TLM module of BSV. 

Chapter 3 discusses about RISC-V Instruction Set Architecture and different 

base encodings. 

Chapter 4 gives us implementation of 5 stage processor with intermediate 

FIFOs and explains the flow of data in each cycle. 

Chapter    5 contains information about hazards and operand forwarding. 

Chapter    6 contains a conclusion and description on the future work. 
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CHAPTER 2 
 
 

2.1 Bluespec System Verilog 

 
The design of the blocks and their testing is written in Bluespec System 

Verilog (BSV). BSV is a high level Hardware Description Language. It 

expresses synthesizable behavior with rules, a rule can be viewed as a 

declarative assertion expressing a potential atomic state transition. The BSV 

compiler produces efficient RTL code that manages all the potential interactions 

between rules by inserting appropriate arbitration and scheduling logic, logic 

that would otherwise have to be designed and coded manually. BSV connects 

the modules by interfaces and methods. It also provides predefined library 

elements like FIFOs, BRAMs etc. which are modeled using BSV methods. 

It has powerful static type checking which removes potential human errors 

which can’t be detected at the stage of compilation normally but can be detected 

now during the compilation. BSV also has more general type parameterization 

(polymorphism) due to which modules and functions can be parameterized by 

other modules and functions, this enables the designer to reuse designs and glue 

them together in much more flexible ways. BSV’s static elaboration helps to arrive 

at the design much faster than the other HDLs. The BSV compiler also can generate 

the synthesizable Verilog code of the written bluespec code which can be used later 

for synthesis purposes. 

 BSV has an inbuilt package called TLM (Transaction Level Modeling) which is 

used in this thesis. 
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 3 

 

2.1.1 TLM 
 

The TLM package includes definitions of interfaces, data structures, and module 

constructors which allow users to create and modify bus-based designs in a manner 

that is independent of any one specific bus protocol.  Designs created using the 

TLM package are thus more portable.  In addition, since the specific signaling 

details of each bus protocol are encapsulated in pre-designed transactors, users 

are not required to learn, re-implement, and re-verify existing standard protocols. 

The two basic data structures defined in the TLM package are TLMRequest and 

TLMResponse. By using these types in a design, the underlying bus protocol can 

be changed without having to modify the interactions with the TLM objects. TLM 

request contains either control information and data, or data alone. A TLMRequest 

is tagged as either a RequestDescriptor or RequestData. A RequestDescriptor 

contains control information and data while a RequestData contains only data. The 

table 2.1 describes the components of a RequestDescriptor and the valid values for 

each of its members. 

The table 2.2 describes the components of a TLMResponse and the valid values 

for its members. 

The TLM interfaces define how TLM blocks interconnect and communicate. 

The TLM package includes two basic interfaces: The TLMSendIFC interface and 

the TLMRecvIFC interface. These interfaces use basic Get and Put subinterfaces as 

the requests and responses. The TLMSendIFC interface generates (Get) request
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and receives (Put) responses. The TLMRecvIFC interface receives (Put) 

requests and generates (Get) responses. These TLMSendIFC and 

TLMRecvIFC can be connected by mkConnection in the Connectable package 

of BSV. 

The Data Structures Request Descriptor in TLMRequest, TLMResponse, 

and the interfaces provided TLMSendIFC and TLMRecvIFC are used 

extensively in this thesis. 

TLM Data Structure: 

typedef struct { 

 

TLMCommand command; 

TLMMode mode; 
TLMAddr#(`TLM_PRM) addr; 

TLMData#(`TLM_PRM) data; 

TLMUInt#(`TLM_PRM) burst_length; 

TLMByteEn#(`TLM_PRM) byte_enable; 

TLMBurstMode burst_mode; 
TLMBurstSize#(`TLM_PRM) burst_size; 

TLMUInt#(`TLM_PRM) prty; 

Bool lock; 

TLMId#(`TLM_PRM) thread_id; 

TLMId#(`TLM_PRM) transaction_id; 

TLMId#(`TLM_PRM) export_id; 
TLMCustom#(`TLM_PRM) custom; 

} RequestDescriptor#(`TLM_PRM_DCL) deriving (Eq, Bits, Bounded); 

Table 2.1: Request Descriptor 
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2.2: TLMResponse 

 

 

 

 

 

 

 

 

Figure 2.1: Connecting TLM Send And Receive Interface 
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CHAPTER 3 
 
 

RISC-V ARCHITECTURE 

 
RISC-V is a new instruction set architecture (ISA) that was originally designed to 

support computer architecture research and education, but which we now hope 

will become a standard open architecture for industry implementations. Main 

goals of RISC-V include: 

 A completely open ISA that is freely available to academia and industry. 

 A real ISA suitable for direct native hardware implementation, not just 

simulation or binary translation. 

 An ISA separated into a small base integer ISA, usable by itself as a base 

for customized accelerators or for educational purposes, and optional 

standard extensions, to support general purpose software development. 

 Support for the revised 2008 IEEE-754 floating-point standard. 

 Both 32-bit and 64-bit address space variants for applications, operating 

system kernels, and hardware implementations. 

 An ISA with support for highly-parallel multicore or many core 

implementations, including heterogeneous multiprocessors. 

 Optional variable-length instructions to both expand available instruction 

encoding space and to support an optional dense instruction encoding for 

improved performance, static code size, and energy efficiency. 

 A fully virtualizable ISA to ease hypervisor development. 

 

 

 

 

 

 
6



  

 

3.1 RISC-V ISA Overview 

 
The RISC-V ISA is defined as a base integer ISA, which must be present in any 

implementation, plus optional extensions to the base ISA. Each base integer 

instruction set is characterized by the width of the integer registers and the 

corresponding size of the user address space. The base RISC-V ISA has fixed-

length 32-bit instructions that must be naturally aligned on 32-bit boundaries. 

 

 

 

 

 

 

Figure 3.1: RISC-V instruction length encoding 
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3.2 Base Instruction Format 

 
In the base ISA, there are four core instruction formats (R/I/S/U), as shown in 

Figure 3.2.1. All are a fixed 32 bits in length and must be aligned on a four-byte 

boundary in memory. An instruction address misaligned exception is generated 

if the pc is not four-byte aligned on an instruction fetch. The RISC-V ISA keeps 

the source (rs1 and rs2) and destination (rd) registers at the same position in all 

formats to simplify decoding. Immediate are packed towards the leftmost 

available bits in the instruction and have been allocated to reduce hardware 

complexity. In particular, the sign bit for all immediate is always in bit 31 of the 

instruction to speed sign-extension circuitry. 

 

 

 

Figure 3.2.1: RISC-V instruction length encoding 

Figure 3.2.2: Types of immediate produced by RISC-V instructions. The fields are 
labeled with the instruction bits used to construct their value. Sign extension 
always uses inst[31]. 
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CHAPTER 4 
 
 

5 Stage pipeline 
 

 
Pipelining is an implementation technique in which multiple instructions are 

overlapped in execution. Multiple tasks operating simultaneously using 

different resources. Pipelining doesn’t help latency of single task, it helps 

throughput of entire workload Pipeline rate is limited by slowest pipeline stage. 

There are five stages in RISC pipeline. So we use 4 FIFOs to control the flow of 

data from each stage to next till the present task is executed in that cycle. 

 

 

Figure 5: RISC-V pipeline stages with FIFOs. 
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4.1 Stages of pipeline 
 

1. Instruction Fetch (IF): 

Current Program counter (PC) is index to instruction memory. Increment 

the PC at the end of cycle. Fetch the data from input and write the values 

of interest to Pipeline FIFO (IF/ID) between IF and Instruction decode 

stage. 

2. Instruction Decode (ID): 

Read from IF/ID FIFO to get instruction bits. Decode instruction, generate 

control signals and then read from register file. Write values of interest to 

next pipeline FIFO (ID/EX). Control information, Rd index, immediates, 

offsets, contents of Ra, Rb are sent to next stage. 

 

 

 

 

 

 



  

 

3. Execute (EX): 

Read ID/EX pipeline FIFO to get value and control bits and then perform 

ALU operations. Compute targets (PC+4+offset) n case this a branch 

statement. Then write values of interest to next pipeline FIFO EX/MEM. 

Send Rd index, result of ALU operation, value in case this is memory 

store instruction. 

 

 

 

4. Memory Access (MEM): 

Read EX/MEM pipeline FIFO to get values and control bits and then 

perform memory load/store if needed and the address is ALU result. 

Then write values of interest to next pipeline FIFO MEM/WB. Send 

control information, Rd index, result of memory operation, and pass 

result of ALU operation. 

 

 

 

 

 

 



  

 

5. Write Back (WB): 

On every cycle read from last pipeline 

FIFO MEM/WB to get values and 

control bits. Select the value and write 

it back to register file. 

 

 

 



  

 

CHAPTER 5 
 

 
Overcoming hazards 

 

 
This chapter discusses about hazards and how to overcome it. Hazards are 

problems with the instruction pipeline in processor architectures when the next 

instruction cannot execute in the following clock cycle and can potentially lead 

to incorrect computation results. One of the solution to it is operand forwarding 

and we discuss about it in here.  

 

5.1 Operand Forwarding 

 
Operand forwarding (or data forwarding) is an optimization in pipelined processors to 

limit performance deficits which occur due to pipeline stalls. A data hazard can lead to a 

pipeline stall when the current operation has to wait for the results of an earlier operation 

which has not yet finished. So how can the hardware determine if a hazard exists? 

An EX/MEM hazard occurs between the instruction currently in its Execute stage and the 

previous instruction if the previous instruction will write to the register file, and the 

destination is one of the ALU source registers in the Execute stage. There is an EX/MEM 

hazard between the two instructions below 

 

 

 

 

 

 



  

Forwarding eliminates data hazards involving arithmetic instructions. The 

forwarding unit detects hazards by comparing the destination registers of 

previous instructions to the source registers of the current instruction. Hazards 

are avoided by grabbing results from the pipeline registers before they are written 

back to the register file 

 

Hence the first ALU source comes from the pipeline register when necessary.  

if (EX/MEM.RegWrite = 1 and EX/MEM.RegisterRd = ID/EX.RegisterRs)  

      then ForwardA = 2  

The second ALU source is similar.  

if (EX/MEM.RegWrite = 1 and EX/MEM.RegisterRd = ID/EX.RegisterRt) 

      then  ForwardB = 2 

 

 

. 

 
Figure 5.1: Operand forwarding  
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CHAPTER 6 
 
 

Conclusion and Future work 
 

 
Implemented 5 stage pipelined processor using RISC V Instruction set 

architecture realized in bluespec. This design is realized in Bluespec System 

Verilog (BSV) which provides module and configuration flexibility.  

This thesis shows the implementing 5 stage pipelined processor using RISC V 

Instruction set architecture with Operand forwarding. We can also go further 

and implement branch predictors to improve the flow in the instruction pipeline. 

Branch predictors play a critical role in achieving high effective performance.  
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