
TOWARDS A SECURE UNIKERNEL
(A Rust Based Kernel)

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Bachelor of Technology

by

Katta Vikas Reddy
EE12B033

to the
DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May, 2016

i

CERTIFICATE

It is certified that the work contained in the thesis titled TOWARDS A SECURE

UNIKERNEL

(A Rust Based Kernel), by Katta Vikas Reddy

EE12B033, has been carried out under my supervision and that this work has not

been submitted elsewhere for a degree.

Prof. Chester Rebeiro

Department of Computer Science & Engineering

IIT Madras

May, 2016

ii

ABSTRACT

Name of student: Katta Vikas Reddy

EE12B033 Roll no: EE12B033

Degree for which submitted: Bachelor of Technology

Department: Electrical Engineering

Thesis title: TOWARDS A SECURE UNIKERNEL

(A Rust Based Kernel)

Name of Thesis Supervisor: Prof. Chester Rebeiro

Name of Thesis Co-Guide: Prof. Devendra Jalihal

Month and year of thesis submission: May, 2016

In this project we developed a kernel in Rust programming language, which is directed

towards building a Unikernel. In this thesis we will look at some of the security

threats for Operating systems, followed by discussion of requirement of Unikernels

in the cloud architecture. We chose Rust as the choice of language, and there is a

chapter on why Rust is the most exciting language for building Operating system

like software. The kernel is built up to the stage of memory allocation algorithm,

and we present the kernel in more detail in a chapter.

Acknowledgements

I would like to thank all the people who helped me during my project and thesis.

Contents

List of Figures vii

List of Figures vii

1 Introduction 1

1.1 Operating systems security . 2

1.2 Impact of Languages on Security . 4

1.3 Organisation of the report . 5

2 Security threats in Operating systems 6

2.1 Buffer Overflow Attack . 6

2.1.1 Stack-buffer overflow . 7

2.1.2 Heap-buffer overflow . 8

2.2 Attacks based on the stack-buffer overflow 8

2.2.1 Return-Oriented programming 8

2.3 Attacks based on heap-buffer overflow 9

2.4 Mechanisms to address the buffer overflow attacks 9

2.4.1 Non-executable stack . 9

2.4.2 Stack-smashing protection . 9

2.4.3 ASLR . 10

2.4.4 Modern 64bit mechanisms . 10

3 Rust 11

3.1 Memory Safety . 11

v

3.1.1 Garbage collection . 13

3.2 Memory safe features of Rust . 13

3.3 Other exciting features of Rust . 16

3.4 Selection of Rust . 17

4 Unikernels 18

4.1 Cloud Architecture . 18

4.1.1 Virtual Machine . 19

4.1.2 Hypervisor . 19

4.2 Container . 20

4.3 Unikernels . 21

4.3.1 Unikernel Security . 22

5 Bootloading and Kernel Initialization 24

5.1 Overview of Booting . 24

5.1.1 Bootloader . 24

5.1.2 Linker . 25

5.1.3 Paging . 25

5.1.4 Assembly part of the kernel 26

5.1.5 Calling Rust code from Assembly 26

5.1.6 Interrupts . 27

5.1.7 Paging . 27

6 Doug Lea’s Memory Allocation Algorithm 30

6.1 Goals of a memory allocator . 30

6.2 Memory allocator algorithm . 31

6.2.1 Boundary tags . 31

6.2.2 Arrangement of memory chunks 32

6.2.3 Allocation algorithm of blocks 33

6.2.4 Freeing memory . 33

vi

7 Conclusions 35

7.1 Scope for further work . 35

A Setup 36

References 37

List of Figures

1.1 New Malware . 3

1.2 Total Malware . 4

2.1 Stack structure in a program . 7

4.1 Virtual Machines vs Containers vs Unikernels 23

5.1 x86-64 Memory access in long mode 25

5.2 Assembly code before kernel execution 27

5.3 Code Sequence in Rust . 28

6.1 Memory Layout and Heap Index . 32

6.2 Layouts of memory chunks, header and footer 32

Chapter 1

Introduction

Computer technology has made a phenomenal progress in the last six decades since

the first general purpose electronic computer was created. The role of operating

systems has been very vital in the journey of computers from being just a scientific

tool to being a necessity in every walk of life. Operating systems have evolved a lot

from simple batch processing systems to the present library operating systems. After

1970’s the development of operating systems has been guided mostly by the rapid

advent of faster processors and cheaper memory, and has been oriented towards the

development of desktop operating systems. Internet in the 1990’s opened up the new

area of cloud computing. Server operating system for the cloud, were developed over

model of already existing kernels as the differences in requirements were marginal

compared to the desktop operating systems. Over the last two decades internet has

really caught on and now a lot of computing is being done over the servers, paving

way for the cloud computing. Security and efficiency are the two important reasons,

for the search of alternatives for server operating system, though the virtualization

and advancement of host operating systems has made cloud computing quite effective.

Unikernel architecture will be discussed in a later chapter, and we will see how it can

be a better solution. Before that we present the security threats of operating systems,

and how the programming languages can help us overcome some of the threats. Rust,

which is quite new seems to be a better choice for the kernel development and more

information about Rust is presented in 4th chapter. In the next section, we will look

2

at some of the general security threats for operating systems.

1.1 Operating systems security

Security has been and still remains a major concern for operating system developers

and users alike. Security is, in general, keeping unauthorized systems from accessing

the system, and preventing them to exploit the resources. It is traditionally defined by

three attributes of confidentiality, integrity and availability. As in the OS literature,

confidentiality is the prevention of unauthorized disclosure of information. integrity

is the prevention of unauthorized modification of information, and availability is the

prevention of unauthorized withholding of information or resources.

One common view of operating system is that it is a virtual or extended machine,

i.e., it masks the details of the underlying hardware from the programmer and

provides the programmer with a convenient interface for using the system. It can

also be viewed as resource manager, which is responsible for fair resource sharing

between different processes in the system. So when multiple users are active within

a system, the operating system must ensure protection of one user from another. It

should also ensure the protection against unauthorized users. Permissions in the

systems are based on identity, which in turn are based on authentication. Passwords,

voice recognition, fingerprints, face scanning and eyeprints are some of the common

authentication measures. Cracking the authentication measures is usually difficult,

so the hackers resort to other ways for gaining the access of the system. We will

present some common attacks and their impact in the recent years.

As said previously, authentication attacks usually lie at the bottom of the priority

list of the hackers. The major problems are targeted attacks like, trojan Horses, login

spoofing and buggy software. Trojan horses are basically programs that are disguised

programs, meant to harm the system code and resources. Authenticated users are

usually enticed with attractive offers to run the disguised program that may affect

the system, more commonly for the data. There are a lot of malware attacks, where

the word malware stands for malicious software. Malware includes computer viruses,

3

Figure 1.1: New Malware

worms, spyware and other malicious and unwanted software. Computer viruses are

the programs that embed themselves in some other executable software, whereas a

worm is a stand-alone malware program that actively transmits itself over a network

to infect other computers. Some of the most common malware are rootkits and

autorun malware. Rootkits, or stealth malware, are designed to evade detection by

anti-virus softwares and reside on a system for prolonged periods. Autorun malware,

are the kind of malware that often hides on USB drives and can allow an attacker

to take control of a system. There are also attacks like backdoors attack, which

is a method of bypassing normal authentication measures, usually over a network

such as internet. The figures were from the data collected by the Mcafee anti-virus

software company. As we can see in the figure, total number of new malware attacks

in the recent years is very high, ranging in tens of millions, while the total number

of malware is in the range of half a billion.

As mentioned earlier, a lot of malware is created to take assistance from Buggy

software for the intended attacks. One of the most commonly exploited bug is the

buffer overflow. It is usually either the stack-buffer overflow or the heap-buffer

4

Figure 1.2: Total Malware

overflow. More information about buffer overflow attack is presented in the second

chapter.

1.2 Impact of Languages on Security

Most of the large and popular software like operating systems are written in C, which

doesn’t have the memory checks like bounds checking for built-in buffer type like

arrays or the garbage collection that is present in the modern high level languages.

This is the reason for a lot of buggy software. Many new modern languages like Java

came up with features like garbage collection for the memory checks, but they can’t

be used for the system level programming as they doesn’t offer the control that is

offered by C. The issue of security is also quite important for web browsers as a

lot of web-based malware attacks occur. Mozilla Organisation employees initiated

the creation of a new memory safe language, called Rust to use internally. But

5

the features they proposed, which we will discuss in a later chapter are relevant in

almost every other software development. The development was widely accepted by

the open-source community, and a lot of work has been put in developing Rust, a

memory safe language, which can be used for systems programming as well for other

high level purposes. In chapter three, memory safe features of Rust will be presented.

1.3 Organisation of the report

The second chapter presents memory overflow vulnerabilities and current state of the

art countermeasures. The third chapter discusses Rust programming language. A

brief introduction to Unikernels is in chapter 4. Chapter 5 and 6 presents our work

on the Rust kernel, which we call oxide while chapter 7 concludes the report.

Chapter 2

Security threats in Operating

systems

In the previous chapter we discussed briefly about the security of large software and

in particular, hat of the Operating systems. Though there are different kinds of

security threats, we won’t be looking at all classes of them. In this chapter we focus

on the security threats in an operating system that are related to the memory buffer

overflow. This is because, it can form a strong foundation, to realise the need for a

new memory safe language.

2.1 Buffer Overflow Attack

Buffer overflow occurs when a computer program overruns the buffer and writes in

the locations adjacent to the buffer. Usually checking bounds should be done to

know the limits of buffer size the program is permitted to access. These overflows

usually occurs when the data written exceeds the size of the destination buffer and

our program does not implement checking bounds of the buffer. Stack-buffer overflow

and heap-buffer overflow are the types that are encountered. This flaw has been used

by the hackers to exploit and gain access to the system. Languages like C and C++

do not implement bounds checking for built-in buffer(array) accesses, thus allowing

the buffer overflows. Following sections discuss the various cases of buffer overflow,

7

Figure 2.1: Stack structure in a program

namely stack-buffer and heap-buffer overflow.

2.1.1 Stack-buffer overflow

This occurs when the program being executed writes in the memory locations adjacent

to the object area into the stack. Stack is usually a fixed size buffer which contains

statically allocated program variables, saved frame pointer and return address of the

caller routine among other important things. The program most likely crashes when

stack is overwritten as it usually overwrites things like caller routine return address

on the stack.

An exploit that intentionally uses stack overflow is called stack smashing. In case

of a deliberate attempt of stack smashing the user can overwrite the buffer with

executable code, which can be used to gain access of the computer, if the program

was running with special privileges. More details about some stack-smashing exploits

is presented in further sections.

8

2.1.2 Heap-buffer overflow

Objects in the heap are dynamically allocated, generally using a function such as

malloc() during the runtime. Most heap implementations maintain the meta data

of the allocated chunks of memory just before and after the area. Heap exploits

generally target that meta data to make the memory shortage crashes or change the

funciton pointers overwriting them with the pointers to the functions.

2.2 Attacks based on the stack-buffer overflow

If there is a privilege to run the code from the stack area, then the exploits can

be simple. The simple buffer overflow to overwrite the static program variables on

the stack, followed by overwriting the return address is mostly sufficient to gain the

access of the system. As the executing routine returns, the code placed by the earlier

program, by buffer overflow is run. This is generally shell code. If the program was

running with special privileges, then this code can be used to gain the access of the

system.

An approach to prevent the previous attack is to make the code non-executable

from the stack. So an attacker can’t run the shell code from the stack. The following

attacks shows how the hackers can get around to access the system if the stack is

made non-executable.

2.2.1 Return-Oriented programming

When there is non-executable stack, this method is used to exploit the system. In this

method the attacker gains the control of the stack and carefully executes a sequence

of machine instructions called generally as ’gadgets’. Each of these gadgets typically

ends in a return instruction, and are located either in the user program or the shared

library code. Return-to-libc is an example of Return-Oriented programming, where

libc is a standard library in C. Generally libc is targeted as it is almost always linked

with programs. The hackers in this kind of exploits either rely completely on the

9

system calls done by the standard library functions or use the program code.

2.3 Attacks based on heap-buffer overflow

The overflow generally targets the meta data of the heap, changes the function

pointers and uses the resulting pointer linkage to overwrite the function pointer the

attacker wants to run. Even if the programs might not have a lot of function pointers

explicitly, the runtimes in languages can induce them, making them potential attack

areas.

2.4 Mechanisms to address the buffer overflow at-

tacks

2.4.1 Non-executable stack

Some processors have a bit for marking the non-executable areas in the memory.

NX (No-execute bit) or XD(execute disable) bit are the examples. For example the

63rd bit of a page address is used as NX bit in the intel 64-bit processors. This is

generally done to avoid the buffer overflow attacks, where the executable code may

be written to the stack. But this method does not prevent the return-to-libc attack,

as the existing executable code is used in this case.

2.4.2 Stack-smashing protection

Placing an integer value before the return address is one of the few methods, that

is used to check the buffer overflow. That integer is chosen randomly and is called

a canary value. Corruption of canary value generally indicates the buffer overflow.

This mechanism can only be used with stack to check the canary value before giving

the control back to caller.

10

2.4.3 ASLR

In attacks like return-to-libc executable code from specific libraries is targeted.

Address space layout randomization, is randomly arranging the key data areas, such

as the base of the executable binaries, the positions of the stack, heap and libraries.

For example, if the attacker injected shell code into the stack, the attacker must find

the stack address first.

2.4.4 Modern 64bit mechanisms

In modern 64bit processors, the calling convention of a function is changed. So, it

prevents the return-to-libc attack because they have to write the first argument to

the register, which is generally not very easy. Also the system libraries are modified

to reduce the programs that typically support the attacks.

Though there are a lot of countermeasures, for the exploits, we can see that they

were developed only after the exploits came into light. If we could prove the safety

of the software, even before it can be a lot better. We don’t do that, but we will see

some exciting alternatives for both the current architectures as well as programming

languages. Next chapter discusses the features of the rust programming language

and how it offers security and control.

Chapter 3

Rust

Rust is a systems programming language developed by Mozilla and targeted at high

performance applications. It was started by Graydon Hoare, a Mozilla employee, in

2006 as an independent project. This was later taken up by the Mozilla as a full

sized project to use it in the development of their new browser, Servo.

Rust is a systems language for writing high performance applications that are

usually written in C or C++. It was developed to prevent some of the problems

related to invalid memory accesses that generate segmentation faults. Rust’s syntax

strongly resembles C, but there are remarkable differences between them. Some of

them are: 1) No buffer overflow 2) Immutable by default 3) A non-blocking garbage

collector like mechanism 4) Generics 5) OOP support through method implemented

structs 6) Higher order functions like closures 7) Pattern matching.

Rust 1.8.0 is the latest stable version and it is evolving rapidly with a lot of

support from the open source community. In this chapter we will look at the most

exciting features of Rust in relevance to memory safety. We will start that discussion

with memory safety of other popular languages.

3.1 Memory Safety

A program is said to be memory safe if all of its possible executions are memory safe,

and a language is said to be safe if all possible programs in the language are memory

12

safe.

Some of the most common problems that can occur when the programs are not

memory safe are: 1) Buffer overflow: This was discussed in the previous chapter. 2)

Null pointer dereference: This can cause an exception or the program corruption.

3) Dangling pointers: If an object has an incoming reference from a pointer, and

the object gets deallocated without changing that pointer value, then that pointer

points to a deallocated memory and is usually called as dangling pointer. 4) Use

of uninitialized memory: Use of variables that has not been assigned any value can

cause some unexpected behavior as it may contain some undesired value or in some

cases a corrupt value. 5) Illegal freeing of an already-freed pointer(called Double

freeing), or a non-dynamically allocated pointer. 6) Data races: This occurs when

two or more threads access a resource of whose value can be altered.

We use the term ’aliasing’ if more than one pointer references the same object.

In this context the word ’mutation’ is used whenever some changes are made to the

object.

Memory safety issues in programs occur because of the combination of two

things, aliasing and mutation, in a certain order. Aliasing creates a lot of hidden

dependencies which are not obvious. When a variable is changing the location of its

memory contents it could update its variable status, but it does not know about the

other pointers which are hanging in the system at large. Mutation is changing the

memory contents of a variable, either adding the memory or freeing up the memory

or changing the values of the variables. If memory allocation is static and we are

just reading it, then it is fine, but memory allocations dynamically change when we

are mutating the memory contents. It causes the memory to be freed and is a source

of dangling pointers.

Languages like C and C++ offer complete control to the programmer. They

support pointer arithmetic, allow casting of pointers, and allocation and deallocation

of memory by the programmer. Common problems like dangling pointers, iterator

invalidation, double free are the result of offering the complete control. Basically

13

raw pointers imply a lack of memory safety as they can be misused easily. Array is

the inbuilt-buffer type data structure in C, and there is no bounds checking for the

array type. So this can result in buffer overflows and segmentation faults. There

is also no automatic mechanism for deallocating the memory. In C we have to use

free() and in C++ it is delete() to free the object memory allocated from the heap.

So, there is also a chance of memory leaks, depending on the programmer.

In languages like C++ a lot of conventions about memory safe programming has

been developed to achieve the above objectives. In C++ the conventions like passing

a const reference when the purpose is to just read, and passing the l-value, r-value

references have been developed, but it is up to the programmer to follow them. In

other words they are not compiler enforced steps. Next we look at how high level

languages tackle the issue.

3.1.1 Garbage collection

Every object in Java is created using new() operator, which gets the memory inside

heap. The language runtime maintains the reference count for each object, and an

object gets destroyed automatically after its reference count drops to zero. The

object memory inside heap gets cleared. So there is no chance of dangling pointers.

Modern languages like Java, Ruby and Python ensure memory safety using

references and garbage collection. It frees the programmers from manually dealing

with memory deallocation, thus removing the problem of memory leaks. Garbage

collection needs the language runtime and it comes at the cost of performance.

The next few sections discuss how Rust can be better at addressing those memory

issues listed above.

3.2 Memory safe features of Rust

It is built with the objectives of safety, performance and concurrency. By default it

doesn’t use garbage collection, and so allows us to take control about the stack and

14

heap allocations.

Rust ensures the memory safety of the program at compile time. It has a very light

runtime like C, and so it can run in very constrained environments like embedded

systems or real-time systems. Thus the final rust code is as fast as C/C++, but a

lot more safer.

While the programming languages like Java use garbage collection at the runtime,

Rust simply does all the work at the compiler time. During the compile time, it uses

different pointers to prove the owner at any point of the program. It goes to the

extent of not compiling the code if it can’t prove that the code is guaranteed to be

memory safe.

Rust solves a lot of memory safety problems by codifying and enforcing the safety

patters, and use the type system to implement the safety patterns. The following

are the safety patterns adopted by the Rust:

Ownership: When we hand over the ownership of the data structure to a new

variable, we are giving all the rights to that variable, the variable that handed over

the data structure is no more relevant in the context of the data structure. When no

one has the ownership to that data structure, we can free up the memory. This is

how rust does memory management. There is no aliasing here, and so there is no

problem of mutation.

Shared borrow: In this case we give the references to the data structure but

shared borrow entitles them only to the read level rights. Rust allows many shared

borrows at a single time. In this case we have aliasing but there is no mutation,

because the references we are handing out are read-only.

Mutable borrow: In this case we are handing out the mutable reference of an

object. So there is aliasing and also mutation, but we are safe here because we are

handing out the mutable reference to just one object. Therefore the only object who

can mutate the object is the one who has the mutable reference with them. The

object which has mutable reference can lend it to someone, and they get freed after

they hand over the mutable reference, except the original owner who stays till the

15

end to take the mutable reference from some other object.

When we are allocating the dynamic memory in the rust, it is placed just exactly

as in the C language. It store the variable like data, length, capacity on the stack

and the data points to the memory on the heap.

When we create a vector of vectors and when we handle out the ownership to the

new variable, it create all the auxiliary data on the stack newly, points the data to

the old vector contents and frees the auxiliary variables on the stack. If we handle

that new variable to a function, the variable contents get destroyed by the time the

function is executed. This prevents things like ”using after free” and ”double moves”.

When we are handing out the shared immutable reference we don’t recreate the stack

contents but just give the pointer up into the stack. The pointer can be used to read

the contents of the memory and when the function exits we can have that borrowed

reference destroyed.

If we create a function which takes a shared reference of a vector, and a mutable

reference of a vector and then iterates across them, and if we pass the same vector’s

shared and mutable references to that function, the mutable reference may cause the

freeing of the vector and the shared references may now be the dangling pointers,

and this also causes iterator invalidation as call it in C++. This is one of those

problems that garbage collector does not properly handle, i.e., in languages like Java

it may cause undefined behavior, it is expected to throw an exception but it is not

guaranteed. This is not at all possible in rust because if we have to do that we have

to create a shared reference and a mutable reference to that data, but if we try to do

that then the compiler throws an error that we can not create a shared and mutable

reference at the same time.

Compiler uses the concept of lifetime to enforce these safety patterns. It throws

error like ”while something is borrowed it can’t be mutated”, or ”You can’t have a

shared and mutable reference at the same time”. Every reference has lifetime as part

of it’s type and we can’t use the reference outside it’s lifetime. If we are declaring a

borrowed reference to an element within a loop then the lifetime of the variable can

16

only be confined within the loop. Outside of that loop the borrowed pointer is not

valid.

Safe pointers into the stack: The concept of lifetime solves the problem of safe

pointers into the stack. If we have a vector in a function whose lifetime is confined

to that of the function and when the function is exited that vector is freed, because

it’s lifetime is confined to that of the function. So if we declare a borrowed reference

to that vector and try to return that reference to a variable outside of the function,

we get a compilation error. That return would only be valid if we handle out the

reference whose lifetime exceeds that of the function.

3.3 Other exciting features of Rust

The range function returns an iterator, and it is used in the for loops. Inherently

iterators are more safer than direct indexing and so they are extensively used in

Rust.

It solves the problem of null value return checking a special enum called Option.

Some and None are the two possible values of Option. Options are considered to

be the safer alternative to the null pointer checks. Because of the generics, Option

enum can hold any type of object.

There is a C like ’if’ condition, but there is a more safer option called ’match’.

Like switch in C match also checks for multiple conditions, but it is better in terms

that it forces the programmer to account for all the code paths possible.

For the stack overflow, we can create a guard page and also use stack probes if

the amount of buffer write is more than one page so that it doesn’t skip the guard

page.

Rust has buffer overflow checking at runtime. It panics if we try to access a

memory location which is out of the bounds. This way it also panics when there are

segmentation faults with a clear message.

It has support for foreign function interfacing, so it is very easy to interface with

the existing C libraries. It doesn’t have classes, but it supports OOP with structs

17

which has method implementations.

3.4 Selection of Rust

This project was initiated because the features of Rust looked promising for large

software development, though a lot of features are still unstable. In the next chapter

we present the need for the Unikernels, and how their architecture can be useful for

the cloud computing.

Chapter 4

Unikernels

As mentioned earlier, this chapter presents a discussion about the cloud architecture

and Unikernels.

4.1 Cloud Architecture

Software today are essentially applications sitting on top of operating system. There

are a lot of layers of software between the application layer and the physical hardware.

The sizes are beefy resulting in long boot times and inefficient memory usage, though

most of the applications which are being shipped are single purpose applications.

In addition to the previously mentioned drawbacks, large size software are more

vulnerable to attacks owing to their larger attack surface.

The reason for this is that the software for cloud is built in the same way it used

to be done for the desktop applications. If we disentangle the applications from

the operating system, or divide the functionality of operating systems into modular

libraries where each modular library in its own right can be shipped with very less

dependencies on the other libraries, we can do a lot better. With modular software

development we can ship only the libraries we need, and in turn this also makes cross

platform targeting very easy. So there is scope of improvement in the architecture to

make the cloud computing more efficient.

In the next section we will look more about the current cloud architecture, starting

19

from the virtual machines and then we follow it up with, how it is evolving to suit

the application needs.

4.1.1 Virtual Machine

To use the hardware efficiently, a virtual layer is created between the hardware and

the operating system that a user uses. This layer has the tools to present each

operating system with all the virtual hardware they require. They are also called as

Guest OSes, but in general it can be used for anything that runs on a virtual layer.

In the next section we look at the hypervisor, which acts as the virtual layer.

4.1.2 Hypervisor

Hypervisor can be described in general as virtual machine manager. It is a program

that allows multiple operating systems to share a single hardware host. Each

operating systems appears to have the host’s processor, memory and other resources,

all to itself. However, the hypervisor is actually controlling the host processor and

resources, allocating what is needed to each operating system in turn and making

sure that the guest operating systems don’t disrupt each other. There are two types

of hypervisors. Type 1 hypervisors are those where they are the layer that lies directly

on top of physical hardware, whereas in case of Type 2 hypervisors, a host operating

system lies on top of hardware, followed by the hypervisor. Vmware vSphere, Citrix

XenServer and Microsoft Hyper-v are a few examples of Type 1 hypervisor, while

Vmware workstation which is generally used on desktops and for small scale purposes

is an example of Type 2 hypervisor.

Hypervisors are the base of virtualisation in cloud, and on each hypervisor, there

are paravirtualisation tools and drivers so that each virtual machine running on the

hypervisor, can feel as it is running on an independent host.

Though hypervisors provide virtualisation to a good extent, the guest and the

host OS are generally traditional OS’s like Linux. They are not designed to take

more payload, and so are limited to around tens of VMs typically.

20

The main drawback of this system is that in cloud we use a guest OS mostly

for a single application, but as there are no alternatives, we are doomed to run the

entire guest OS leading to larger footprints of memory, and also a high booting time

per application. Security is also a compelling issue, because there is a lot of attack

surface as it is with a normal desktop operating system.

Recently, the cloud computing industry has really scaled up, and the need for a

new architecture led the research and we see new things like containers. In the next

section we will look more about the containers.

4.2 Container

A container is a form of operating system virtualization that is more efficient than

the typical hardware virtualization. It provides the necessary computing resources

to run an application as if it is the only application running in the operating system.

They are specifically geared towards efficiently running a single application. An

application is completely wrapped into a piece of software and directly runs on the

hypervisor. Conceptually a container is like a VM. Unlike a virtual machine, in a

container we doesn’t run the complete instance or image of operating system, with

all the kernels, drivers, and shared libraries. Instead of that, an entire stack of

containers, which can be a very large number can run on a single instance of host

operating system, in a tiny fraction of a footprint, when compared to a VM running

the same application.

Though they are better compared to the previous Guest OS systems, it still is not

a complete solution because the containers usually carry the entire system libraries

with them leading to large memory footprints. Better alternatives like customized

operating system have created curiosity as they can reduce the costs and also improve

the efficiency and security very much. As we see in the next section Unikernels are a

step in that direction.

21

4.3 Unikernels

Unikernels are the new age software which are designed to be shipped with very

less amount of extra software. They can be described simply as library operating

systems. They are basically applications compiled into their own specialized OS

that can be readily deployed on the hypervisors. They are usually virtual machine

images, as they are designed to run on top of a virtual layer like Xen hypervisor

just to make them uniform across different hardware platforms, as Xen provides a

uniform interface for the modules to be written. They have application code specific

for the deployment. They are composed of a modular stack which consists of the

system libraries based on the configuration specified for the application.

For a unikernel to be compiled with its own modular libraries, there has to be

modular libraries with very less dependencies between them. It has to have atleast

the following modules, the network stack, the file system stack, modules for the

support of user proceses and kernel threads, the language runtime depending on the

language the modules and the application are built in, and on the top of it, we need

to have the configuration files necessary to compile them together. Any application

code, compiled together with its necessary modules as stated in the configuration

file, can be called as an Unikernel.

They provide all the advantages of virtual machines and containers. They

have considerably lower overhead, which leads to more agile and lower-cost cloud

computing. The size of the Unikernels can be very small with the above architecture,

and this helps in that the apps can be moved around faster and more cost effectively

giving a huge profits with network bandwidth.

There are few places where the unikernels are desired, and we see some of the

examples here. If an application needs much disk and processor, unikernels are

not of any great importance in those situations. It is a new system, and for large

applications, we can’t use the already existing libraries for other operating systems

and this can be discouraging.

22

There are a few Unikernels that are already created. ClickOS, HalVM, MirageOS

and LING are some of the examples. They differ in things like the choice of

programming language, or their focus on certain things. Some are designed only for

network processing, while some are for the specific features like safety, security or

speed.

Using unikernels the binaries of simple applications like static websites becomes

very small. Its basically a virtual machine for every URL. The size of these unikernels

also helps in the stream of internet of things, as a lot of devices that have constrained

environments can now run the unikernels with only the stack they need and nothing

more.

In the next section we will look more about the Unikernel security.

4.3.1 Unikernel Security

Linux operating system or the existing Linux containers and Docker images rely

on a fairly heavyweight core OS to provide critical services. This implies that a

vulnerability in the Linux kernel affects every Linux container. In case of Unikernels,

they include only the minimal functionality and systems needed to run an application

or service, all of which writing an exploit to attack them much more difficult, but def-

initely not impossible. The virtual machines are strongly isolated and this guarantees

hardware virtualisation and a trusted computing base that is orders of magnitude

smaller than that of container technologies. There is no shell in the Unikernels, and

because of the absence of exec() we can’t even execute a new process for exploiting

the system. They allow for careful management of particularly critical portions of

an organization’s data and processing needs.

The figure below clearly summarises the aforementioned points.

So we see that the Unikernels can be the real game changers in the cloud

computing. We plan to build a Unikernel system in the Rust language as mentioned

earlier. It is a long process and as a part of this project we only build a minimal

kernel in Rust. In the next chapter we will see the current work done and the future

23

Figure 4.1: Virtual Machines vs Containers vs Unikernels

directions.

Chapter 5

Bootloading and Kernel

Initialization

The kernel we created in this project is a 64 bit kernel which can be booted either on

bare metal or in Qemu virtual manager. This chapter presents the initial stages of

this minimal kernel creation followed by discussion of booting and also the capabilities

of the kernel.

5.1 Overview of Booting

When the computer is powered on, it loads the BIOS from a fixed flash memory. It

runs self test and initialization of the hardware, then it looks for bootable devices. If

it finds a bootable device, it transfers the control to its bootloader. Bootloader is a

small portion of executable code stored at the device’s beginning. The bootloader

determines the location of kernel image on the device and loads into memory. It also

switches the CPU to the protected mode because x86 CPUs start in real mode by

default.

5.1.1 Bootloader

This kernel uses a Multiboot-compliant bootloader called GRUB 2. Multiboot

specification is a bootloader standard, and we have to indicate that our kernel

25

Figure 5.1: x86-64 Memory access in long mode

supports Multiboot, so that any Multiboot-compliant bootloader can boot it. The

support for Multiboot specification is given by the multiboot_header section in the

mutliboot.asm file. It is placed at the beginning of the kernel, by specifying so in

the linker.ld file. More about linker file can be found in the section.

5.1.2 Linker

We build an ELF executable, to boot later through GRUB, and need to link the

object files together. The executable first section is loaded at 1 MB, as we don’t

want to load the kernel below 1 MB mark because there are many special memory

areas like VGA buffer at 0xb8000. It begins with the read-only data, starting with

the mutliboot header. Read-only data section is followed by the text section, which

is the executable part of the kernel. This is then followed by placing the data and

bss sections. All the sections are planned to be page-aligned, with the page size of

4K. This might create more spaces between the sections but the reason for making

them page-aligned is that when we setup identity paging, we create 4KB size pages,

which we require to be page aligned.

5.1.3 Paging

Paging is a memory management scheme that separates virtual and physical memory.

The address space is split into equal sized pages, which is 4096 bytes in x86 in long

mode. A page table specifies which virtual page points to which physical page. Page

table in 64 bit, x86 consists of 4 levels of intermediate tables. They are 1) Page-Map

Level-4 Table(PML4) 2) Page-Directory Pointer Table(PDP) 3) Page-Directory Table

26

(PD) 4) Page Table (PT). This is a general extension of Page directory in 32 bit x86

system as we can see from the naming conventions. Each page table contains 512

entries and one entry is 8 bytes, so they fit exactly in one page. The conversion of

the virtual address to physical address is almost similar to that of the 32 bit systems.

5.1.4 Assembly part of the kernel

The executable starts in boot.asm and we specify that the instructions followed until

switching on the protection mode are the 32 bit instructions. A stack is initialized

with the size of 8KB, which grows downwards, and then update the stack pointer

with the stack top. Since we have a valid stack pointer, we can call the functions.

Initially, we begin with the error check functions as they can be of great help for

debugging. Then a check can be done for all the compatibilities with the processor

it is supposed to run on like multiboot specification, cpuid and long mode support.

This is followed by the paging setup.

We discuss more about paging in the next section. Initially the identity paging is

setup with 2MB huge pages, and create the respective pages just above the stack

area. Paging is now enabled and the processor is switched to long mode. Paging is

enabled by writing the address of P4 table to the CR3 register. Then the long mode

is enabled after first enabling the PAE and setting up long mode bit in the EFER

register. Though the segmentation is no more used, we still have to write the 64 bit

GDT tables, because the GRUB sets up a valid 32 bit GDT initially.

5.1.5 Calling Rust code from Assembly

If we have a funtion main_rust to be called, we declare the function with as pub

extern. In the file that we want to call, we specify that function as extern main_rust

to help the linker. In the rust code we don’t use the standard std library. So, for

some elementary functions like memcpy, memmove, memcmp and memset from the

libraries like libc we get linker errors. We use the rlibc crate which has a partial

implementation of the libc library.

27

Figure 5.2: Assembly code before kernel execution

Initially the VGA buffer memory was edited through assembly routines to print

on the screen. Then the interrupts module was written to take keyboard inputs.

5.1.6 Interrupts

The interrupt code starts with creation of space for the interrupt descriptor table.

Then the interrupt descriptor table is loaded, using the lidt instruction. Then PIC

was remapped to change the BIOS defaults. Interrupt service routines were written

for keyboard and timer, and placed the addresses of ISR handlers in the descriptors.

Then the interrupts supported were enabled in IRQ mask.

5.1.7 Paging

Initially paging is setup after identity mapping the first one GB memory, using 1

each of the four page tables that are needed for paging setup in 64 bit kernels. This

method can only be used for identity mapping and so we can’t use for the separate

28

Figure 5.3: Code Sequence in Rust

29

virtual address access for each process. So, we have to setup paging separately and

write a frame allocator. This part of the kernel was done. First the frame allocator

was written which uses the bitset mechanism to know about the frames that are

allocated.

This was followed by the dynamic memory allocation algorithms which we will

see in the next chapter. There we will look at the Doug Lea’s dynamic memory

allocation algorithm that was used in this kernel.

Chapter 6

Doug Lea’s Memory Allocation

Algorithm

This algorithm was started by Doug Lea in 1987, and this has evolved with the help of

open source contribution ever since. This memory allocator provides implementation

algorithm for standard routines like malloc(), free(), and realloc(), as well as a few

auxillary routines. This is popularly called as Doug Lea’s malloc, or dlmalloc for

short. It’s implementation in C serves as the default native version of malloc in some

versions of Linux. This chapter presents a description of some of the main design

goals, algorithm, and implementation considerations for this allocator.

6.1 Goals of a memory allocator

A good memory allocator needs to balance a number of goals: It should not rely

on few system-dependent features, such as system calls, but still provide optional

support for features found only on some devices. It should be in conformance to all

known system constraints on alignment and addressing rules. It should not waste

space, so it should obtain as little memory from the system as possible. It should

minimize the fragmentation. As it can considerably slow a program, if there are many

calls to the allocator, it should run as fast as possible. It is always better to allocate

chunks of memory that are used together, as close as possible, so as to minimize

31

the page and cache misses during the execution. Summarizing the above, we can

say that minimizing space by minimizing wastage, due to things like fragmentation,

must be the primary goal in any memory allocator.

To see an example, the fastest possible versions of malloc() can be the one that

always allocates the next sequential memory location available on the system, while

the corresponding fastest version for free() can be the one where it doesn’t free at

all. As exciting as it might look, this doesn’t work in practice, it is pretty easy to

run out of memory this way. So, there should always be a space-time trade-off to

make an optimal allocator. In the next section we look at the Doug Lea’s allocator

algorithm in detail.

6.2 Memory allocator algorithm

The two core elements of the malloc algorithm are the blocks and the holes. They are

the names for the chunks of memory, where a hole is used to indicate a free memory

chunk, while a block is memory area that is allocated for the program. These chunks

of memory carry around with them size information fields both before and after the

chunk, which are called as boundary tags. In general, we include the size of these

boundary tags while reporting the size of either holes or blocks. In the next part we

will look more about the boundary tags.

6.2.1 Boundary tags

There are two kinds of boundary tags, one which is placed before the memory chunk,

called header, and another which is placed after the chunk, called footer.

A header is a data structure that consists of the three fields, size which holds the

size of the chunk, a magic number which holds a randomly chosen number which is

consistently maintained across all the holes and blocks, and a field that holds the

bit to say if that chunk is either a hole or a block. Similarly, the footer is placed at

the end of the chunk, which contains two fields, one is the magic number, which is

32

Figure 6.1: Memory Layout and Heap Index

Figure 6.2: Layouts of memory chunks, header and footer

the same as in header and is also consistently maintained across all the chunks, and

the other is the pointer to the header of the chunk, whose use we will see later. The

footer is generally is used for unifying chunks as we see in the later part, but it is

sometimes omitted in blocks of chunk that are allocated, to reduce the wastage of

space. Though it seems like a good trade-off, it can mislead in the error detection.

6.2.2 Arrangement of memory chunks

They are placed such that two bordering holes can be merged into a one larger

hole, as it minimizes the number of unusable small holes. Both holes and blocks

are bordered together such that, all the memory chunks can be traversed from any

known chunk in either forward or backward direction.

33

6.2.3 Allocation algorithm of blocks

There are many versions of allocation algorithm which are based on some small

trade-offs. The type of alloc() used in this kernel does not round up block size to

powers of two, neither for large nor for small holes. This is because, we can later

coalesce the neighbouring chunks, on a free() irrespective of their size. This reduces

fragmentation, remarkably as there is never a memory chunk that can’t either be a

block or a hole.

Very large chunks of memory can be allocated by this implementation, and it has

a great advantage that these chunks are returned to the system immediately when

they are freed. In our implementation, we create an ordered array of pointers, which

is usually very large. It holds the address of the holes in the memory in that ordered

array, and all the elements are sorted by the address of the holes. The area where

the ordered array is maintained is generally called as heap index, as it indexes all

the holes in the heap.

Whenever a memory of a certain size is requested through the alloc algorithm,

we go through the heap index. Each element in the index, is the starting address of

a hole. As mentioned earlier, we place the header struct at the start of the hole. So

from a field of that struct we can know the size of that hole. If the size of that hole

is found to be more than the requested size, we can check other required parameters

like if we can return the requested size memory, making the block to be page-aligned.

If we find that the hole size is far larger than the requested size, then we will split

the allocated area into two holes, and the first hole of the required size is returned

to the user.

6.2.4 Freeing memory

Whenever a block of memory is freed, it is made as a hole by writing the appropriate

fields in its header as well as the footer.

An index pointing to the new hole is also added to the heap index. Fragmentation

34

occurs if we just free only a certain block and make it as a hole. So, whenever we

free a block we check with the previous memory chunk and the next one, to see if

we can make a larger hole. We check if the previous memory chunk is a hole or not,

by using the footer of the previous chunk, which lies just before the header of the

present block. If we know that it is a hole, then we unify both of them. We call this

iteratively to unify all the left side free memory. Similarly, the header of the next

memory chunk is placed right after the footer of the present memory chunk. So, we

traverse to the header of the next memory chunk and then see if that area is a hole.

If is a hole, then we unify right side. We do this for each free, so in general a single

left or right unify is sufficient to create a larger hole, if there is a possibility.

This allocator was written for the kernel, completely in Rust. In this chapter we

conclude the thesis and present the future directions.

Chapter 7

Conclusions

Our implementation is maintained at

git@bitbucket.org:casl/oxide.git

7.1 Scope for further work

As mentioned earlier Mirage OS is one of the unikernel systems currently available

which is completely built in OCaml language. It uses garbage collection for memory

management, which can’t be used for low-level system development. Mirage OS

therefore uses a small kernel called Mini-os written in C, which has the system level

code. The kernels written in Rust provide a great hope for replacing Mini-os. If we

can also develop modular drivers like network stack and file system stack, we can

complete a full Unikernel stack to be used in the cloud.

In the long term, we hope the community will find this system useful and will

contribute to the project to solve large practical problems.

git@bitbucket.org:casl/oxide.git

Appendix A

Setup

We need the following things to run this kernel: Qemu, the virtual environment

setup, ld, the linker, nasm, the assembler for x86 assembly, and a nightly compiler

for Rust. To compile, we can simply run the command ’make’ and to run the kernel,

we have ’make run’ command.

Unfortunately we have to use a lot of features that are not quite stable as yet, so

we use a nightly compiler as it allows the usage of a lot of unstable features which

are expected to be standardized soon. So, installing the stable compiler doesn’t work,

and we need a nightly compiler. There is also a beta compiler, but we won’t be

using that either. If we install individual compilers, we can’t switch between the

compilers and so we need an additional tool called multirust. Using multirust we can

switch between the type and version of compilers seamlessly. If you have an already

installed version of Rust, then you need to un-install that version completely before

installing multirust. With multirust we can use different type of compiler in each

directory we work. It is enough if we run the command ’multirust override nightly’,

once in the current directory to use nightly compiler in that directory.

References

[1] Anil Madhavapeddy, David J. Scott. “Unikernels: Rise of the Virtual Library
Operating System. (English) [On Distributed Computing]”. In: ACM Digital
library 11.11 (2014).

[2] Nergal. The advanced return-into-lib(c) exploits. url: http://phrack.org/
issues/58/4.html.

[3] Doug Lea. A Memory Allocator. url: http://g.oswego.edu/dl/html/malloc.
html.

[4] OSDev Wiki Community. OS Dev Wiki. url: http://wiki.osdev.org/Main_
Page.

[5] Phil Opperman. A minimal kernel. url: http://os.phil-opp.com/multiboot-
kernel.html.

http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://wiki.osdev.org/Main_Page
http://wiki.osdev.org/Main_Page
http://os.phil-opp.com/multiboot-kernel.html
http://os.phil-opp.com/multiboot-kernel.html

	List of Figures
	List of Figures
	Introduction
	Operating systems security
	Impact of Languages on Security
	Organisation of the report

	Security threats in Operating systems
	Buffer Overflow Attack
	Stack-buffer overflow
	Heap-buffer overflow

	Attacks based on the stack-buffer overflow
	Return-Oriented programming

	Attacks based on heap-buffer overflow
	Mechanisms to address the buffer overflow attacks
	Non-executable stack
	Stack-smashing protection
	ASLR
	Modern 64bit mechanisms

	Rust
	Memory Safety
	Garbage collection

	Memory safe features of Rust
	Other exciting features of Rust
	Selection of Rust

	Unikernels
	Cloud Architecture
	Virtual Machine
	Hypervisor

	Container
	Unikernels
	Unikernel Security

	Bootloading and Kernel Initialization
	Overview of Booting
	Bootloader
	Linker
	Paging
	Assembly part of the kernel
	Calling Rust code from Assembly
	Interrupts
	Paging

	Doug Lea's Memory Allocation Algorithm
	Goals of a memory allocator
	Memory allocator algorithm
	Boundary tags
	Arrangement of memory chunks
	Allocation algorithm of blocks
	Freeing memory

	Conclusions
	Scope for further work

	Setup
	References

