
STUDY OF P4 LANGUAGE

A Project Report

submitted by

ASHISH GONDIMALLA

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

June 2016

THESIS CERTIFICATE

This is to certify that the thesis entitled STUDY OF P4 LANGUAGE, submitted by

Ashish Gondimalla, to the Indian Institute of Technology Madras, for the award

of the degree of Bachelor of Technology, is a bonafide record of the research work

carried out by him under my supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award

of any degree or diploma.

Dr. KAMAKOTI V
Research Guide
Professor
Dept. of Computer Science and Engineering
IIT Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

I would like to thank Dr. V. Kamakoti without whose motivation this work would

not have been possible. I would also like to give special thanks Dr. Vasan and

Dr. Shankar for suggesting and guiding through the tough times. The calm,

encouraging support by the personnel at Netlab was really helpful to complete my

tasks.

i

ABSTRACT

KEYWORDS: SDN, P4, Network Protocols, Docker, Quagga, FPGA plat-

forms

In networking, many complex functions and protocols are already imprinted

in the hardware switches. This makes the network operators lose the flexibility to

control the software and also simulate newer methods in the networks. Networks

are trying to get faster but not better. To tackle this problem software defined

networks started to get deployed which separates control plane from the data

flow plane. Openflow is one of the most widely used SDN control protocol. P4

Language tries to propose a different approach to configure switches.

This report aims to show how P4 programming language can be used to pro-

gram switches. A few examples have been implemented on software switches

along with a quagga supported P4 switch. Ongoing research to extend them onto

hardware platforms are discussed at the end.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 INTRODUCTION 1

2 P4 PROGRAMMING LANGUAGE 2

2.1 P4 Abstraction Model . 2

2.2 The P4 programming Language . 2

2.2.1 Headers . 4

2.2.2 Parser . 4

2.2.3 Tables . 6

2.2.4 Actions . 8

2.3 Comparison between P4 and Openflow 10

3 SAMPLE PROGRAMS 12

3.1 EasyRoute protocol . 12

3.2 Flowlet Switching . 14

4 Quagga application on a P4 based switch 18

4.0.1 switchapi . 19

4.0.2 switchsai . 19

4.0.3 switchlink . 19

iii

5 Current Hardware Implementations 23

5.1 FPGA . 23

5.1.1 P4FPGA . 23

5.1.2 Xilinx SDNet via PX . 24

5.2 Network Processor . 24

A P4 installation 26

B EasyRoute protocol code and results 28

C Flowlet switching 37

D Building docker image 51

LIST OF TABLES

A.1 Branch and commit id of the cloned modules (at time of download-
ing) . 26

v

LIST OF FIGURES

2.1 The abstraction model . 3

2.2 State machine diagram for the parser 7

2.3 P4 vs Openflow . 11

3.1 Topology used in mininet . 13

3.2 Topology used for testing . 15

3.3 Without Modification of P4 code 16

3.4 With Modification of P4 code . 17

4.1 Architecture of the libraries . 20

4.2 Topology with IP addresses . 21

4.3 Host h1 packets in wireshark . 21

4.4 Host h2 packets in wireshark . 22

B.1 Easy Protocol testing in mininet 36

vi

ABBREVIATIONS

API Application Programming interface

ECMP Equal-Cost Multi Path

FPGA Field Programmable Gate Arrays

JSON JavaScript Object Notation

NFP Network Flow Processor

NVGRE Network Virtualization using Generic Routing Encapsulation

P4 Programming Protocol independent Packet Processors

TCP Transmission Control Protocol

TDG Table Dependency Graph

SAI Switch Abstraction Interface

SDN Software Defined Networks

VXLAN Virtual Extensible Local Area Network

vii

CHAPTER 1

INTRODUCTION

Software Defined Networking is the key to achieve programmatic control over the

network switches. It tries to refactor the relationship between network devices and

the software that controls them. [Paraphrased from the HotSDN ‘12 Solicitaion].

Openflow is the main forwarding table management protocol currently used. The

background theory for SDN can be found in the tutorial by Heller (2012).

As newer packet encapsulation methods are getting applied (Ex: NVGRE,

VXLAN) more header fields are created. However, Openflow explicitly specifies

the headers on which it operates. This increases the complexity of programming

along with not providing the flexibility to add new headers. Also Openflow needs

to extend its specifications repeatedly to support the new protocols. For example,

the header set has grown from 12 to 41 headers in about 5 years. This brings the

need to develop a new approach to allow flexible mechanisms to parse packets,

introduce matching header fields. The approach should try to tell the switch how

to operate rather than getting constrained by a fixed switch design.

P4 (Programming Protocol independent Packet Processors) tries to balance this

the need for expressiveness with the ease of implementation across a wide range

of hardware and software switches. It targets three main goals:

1. Reconfigurability

2. Protocol Independence

3. Target Independence

The subsequent chapters explain how P4 achieves the above requirements.

CHAPTER 2

P4 PROGRAMMING LANGUAGE

2.1 P4 Abstraction Model

The P4 language assumes an abstraction model of the underlying switch. Accord-

ing to this abstraction, the switch consists of a programmable parser followed by

multiple stages of match + action tables which can be arranged in series, parallel,

or a combination of both. This looks very similar to that of openflow. But there are

differences like presence of programmable parser and actions that are composed

from protocol-independent primitives supported by the switch. This is shown in

the figure 2.1

2.2 The P4 programming Language

Based on the above abstraction model, a language should be used to express how

the switch is to be configured. The model requires flexible data processing on

the headers. This motivates the language to allow a programmer to declare new

headers and a control flow to describe header processing. Also the order of header

processing by match + action depends on the dependencies. This dependencies

are captured by a Table Dependency Graph (TDG). But programmers try to write

program keeping the algorithm in view rather than a graph. Thus the language

must be able to represent a control flow which can be converted into a TDG by

Figure 2.1: The abstraction model

3

the compiler. P4 achieves this by considering the following key components in it.

language.

2.2.1 Headers

A header definition describes the structure of various field. It includes specifica-

tions like field widths and constraints on the field width. We can declare only the

required headers or any new headers. This gives flexibility unlike openflow where

we are restricted to the fixed headers.

Example:

header ethernet {

fields {

dst_addr : 48; // width in bits

src_addr : 48;

ethertype : 16;

}

}

2.2.2 Parser

A parser definition specifies how to identify headers and valid header sequences.

Parsing in P4 has a start state and a stop state. Each parse declaration based upon

value of the header that is being parsed maps to another parser declaration or

a control program (defined in later subsection). Thus the parser acts like a state

machine with transitions based on header values.

4

Example:

parser start {

ethernet;

}

parser ethernet {

switch(ethertype) {

case 0x8100: vlan;

case 0x9100: vlan;

case 0x800: ipv4;

// Other cases

}

}

parser vlan {

switch(ethertype) {

case 0xaaaa: mTag;

case 0x800: ipv4;

// Other cases

}

}

parser mTag {

switch(ethertype) {

case 0x800: ipv4;

// Other cases

}

}

5

The state machine diagram for the above parser code is as shown in figure 2.2.

Based on the value ethertype the parser can expect a different fields during parsing

unlike fixed set of headers.

2.2.3 Tables

Match + action tables are the mechanism to perform packet processing. A pro-

grammer defines what fields in a header can be operated and what actions to be

used. For this there are attributes in a table like reads and actions. As the words

suggest reads is used to know what fields the table have access to and actions is

used to perform operation on those fields. There is also another attribute called

max_size to describe how many entries the table should support.

Example:

table mTag_table {

reads {

ethernet.dst_addr : exact;

vlan.vid : exact;

}

actions {

// At runtime, entries are programmed with params

// for the mTag action. See below.

add_mTag;

}

max_size : 20000;

}

6

Figure 2.2: State machine diagram for the parser

7

Here, reads attribute tells only ethernet.dst_addr and vlan.vid are accesible by

mTag_table. The action add_mTag works on the headers. Also the table can

support a maximu of 20000 entries.

2.2.4 Actions

Actions are like functions in a general programming language. There are few

primitive actions based on which complicated actions can be built. Some primitive

actions include set_field, copy_field, add_header, remove_header, increment, check_sum.

P4 assumes parallel execution of primitives within in an action function.

Example: A complex action add_mTag is made from primitive actions:

action add_mTag(up1, up2, down1, down2, egr_spec) {

add_header(mTag);

// Copy VLAN ethertype to mTag

copy_field(mTag.ethertype, vlan.ethertype);

// Set VLAN’s ethertype to signal mTag

set_field(vlan.ethertype, 0xaaaa);

set_field(mTag.up1, up1);

set_field(mTag.up2, up2);

set_field(mTag.down1, down1);

set_field(mTag.down2, down2);

// Set the destination egress port as well

set_field(metadata.egress_spec, egr_spec);

}

We also need to map the tables based on their dependencies. Thus a control

8

program is required to specify the flow from one table to another.

Example:

control ingress() {

// Verify mTag state and port are consistent

table(source_check);

// If no error from source_check, continue

if (!defined(metadata.ingress_error)) {

// Attempt to switch to end hosts

table(local_switching);

if (!defined(metadata.egress_spec)) {

// Not a known local host; try mtagging

table(mTag_table);

}

// Check for unknown egress state or

// bad retagging with mTag.

table(egress_check);

}

}

ingress is the control program which says source_check should be performed first.

Depending on the value of a particular field in the packet after getting processed,

the next table is decided. The indepth details can be found in Consortium, 2015a

9

2.3 Comparison between P4 and Openflow

A rather improper but a suitable analogy to compare them is the following. Open-

flow is like machine dependent assembly language where P4 is at a higher level

like C language. An assembly language is machine dependent and there is literally

no load on the compiler. However it is extremely inflexible and varies based on

the underlying architecture. This is exactly like Openflow protocol which sends

queries (or instructions) to the openflow controller in the switch.

Whereas P4 is like C program which is quite independent of the platform

on which it works. It becomes the compiler’s job to compile the C code into

required machines assembly code. Similarly for P4 the compiler takes the task

of configuring the program into the switch. P4 language tries to find the sweet

spot between expressiveness and implementation across different hardware and

software switches. The difference is demonstrated in the figure 2.3

P4 requires a different compiler for different target switches. For this reason, the

compilation of P4 is divided into frontend and backend. The frontend compilation

converts the program into a Table Dependency Graph (TDG) which can used by

various backend compilers.

10

Figure 2.3: P4 vs Openflow

11

CHAPTER 3

SAMPLE PROGRAMS

Two sample programs were written in P4 and tested. The installation of P4 and the

version used are mentioned in Appendix A. The programs are explained below:

3.1 EasyRoute protocol

A very simple source routing protocol is implemented using P4. The switch is

completely written in P4 and tested using a mininet network. The EasyRoute

protocol is a simple protocol in which packets are designed as follows:

preamble (8 bytes) | num_valid (4 bytes) | port_1 (1 byte) |

port_2 (1 byte) | ... | port_n (1 byte) | payload

The preamble is taken as zero in this example. The num_valid field indicates the

number of valid ports in the header. If your EasyRoute packet is to traverse 3

switches, num_valid will initially be set to 3, and the port list will be 3 byte long.

When a switch receives an EasyRoute packet, the first port of the list is used to

determine the outgoing port for the packet. num_valid is then decremented by 1

and the first port is removed from the list. Payload is the message that we will be

sent. The topology of mininet network on which we are testing is shown in figure

3.1

Figure 3.1: Topology used in mininet

It is also considered that non EasyRoute packets are dropped by the P4 switch.

Also packets for which num_valid is 0 get dropped by the switches. The P4 code

and implementation is shown in Appendix B. The P4 code has headers

• easyroute_head which has preamble and num_valid as the fields

• easyroute_port with port as field.

A parser to check if the packet is valid or not is written. Finally an action is

designed to reduce the num_valid by 1 and remove the current port which is used

by the table.

The target code is compiled using P4-hlir which generates a JSON output.

The JSON output is loaded by the bmv2 switch model (which is based on the P4

abstraction model.) This is the configuration operation. We then populate the

tables using CLI interface through a thrift server which runs in the bmv2 switch.

13

The hosts run a python program which sends the packets in the required format

and also does a dijkstra’s algorithm to find the shortest path. The results were as

expected. If we try tweaking with the preamble value or the try send different

packets they will not be received by the host at the end. Results can be found in

Appendix B.

3.2 Flowlet Switching

Flowlet switching leverages the burstiness of TCP flows to achieve better load

balancing of TCP traffic. The balance is done based on the layer 4 flows which

is the classic ECMP. Flowlet switching is the hybrid between packet switching

and flow based packet transmission. A TCP flow is considered as multiple small

flows called flowlets which are distributed among different paths. To do this, we

compute a hash over the 5-tuple and use this value to choose from a set of possible

next hops. This means that all packets belonging to the same flow (i.e. with the

same 5-tuple) will be routed to the same nexthop.

An addition of P4 code to a standard simple router (written in P4 language)

gets the job done. To test the objective the following topology is taken as shown

in figure 3.2 . Both nhop-0 and nhop-1 are assumed to be connected to the final

destination giving rise to two paths via switch.

For each flow, we need to store the timestamp for last observed packet belonging

to flow and a flowled_id. Flowlet switching is very simple: for each packet which

belongs to the flow, you need to update the timestamp. Then, if the time delta

between the last observed packet and the current packet exceeds a certain timeout

value then the flowlet_id will be incremented. With flowlet switching, packets

14

Figure 3.2: Topology used for testing

15

Figure 3.3: Without Modification of P4 code

belonging to the same TCP burst will have the same flowlet_id, but packets in

2 different bursts (i.e. separated by a timeout) will have a different flowlet_id.

This also implies that we must maintain some state for each TCP flow. To maintain

state in P4, ’register’ objects have been used. Two separate registers for each packet

(one for the timestamp and one for the flowlet_id) were used. The software switch

will generate a timestamp for each new packet and store it in the metadata field

“intrinsic_metadata.ingress_global_timestamp”. The flowlet_id was used to compute

a new hash which will include the 5-tuple AND the flowlet_id.

The required code in P4 can be found in Appendix C. A test script is made to

burst identical TCP packets of one TCP flow at random times through switch port

no 3. If we use regular switching all packets are sent through one of the ports

(as they belong to the same flow.) If the modified switch is used the flow gets

distributed randomly between the ports 1 and 2. The result when before changing

is shown in Figure 3.3 and after changing is shown in Figure 3.4

As seen above depending upon the interval between packet arrival the switch

16

Figure 3.4: With Modification of P4 code

distributed the flow among the different paths.

17

CHAPTER 4

Quagga application on a P4 based switch

Through this experiment we try to extend the capabilities of P4 switches and be

able to run applications like quagga on them. Also we try to get closer to get an

idea of how a hardware implementation can be done for this type of switches.

Quagga is a software for making hosts or switches capable of doing routing

operations by performing protocols like BGP, OSPF etc.() To extend it to switches

we need more resources to run applications. To test it on PC, a docker image

containing P4, linux and essential libraries is created. Based on this image docker

containers which act as P4 switches are connected in Mininet and the application

is tested. The modules used in linking P4 with quagga and the method used to

test is described in this chapter.

The P4 org has already provided a complete switch written in P4 with many

supported features. This switch can be built with libraries like switchapi , switchsai

or switchlink. These libraries are essential to form the bridge between APIs and

the P4 switch. The soft switch is directly compiled from the P4 program. The lower

level resource management API is autogenerated from the P4 code. On these the

above libraries sit and communicate with external APIs. They are explained in

detail below.

4.0.1 switchapi

switchapi lies on top of resource management api and supports features like Basic

L2 switching, L2 multicast etc.

4.0.2 switchsai

SAI is an officially accepted API by OCP (Open Compute project). SAI allows

software to program multiple switch chips without any changes, thus making the

base router platform simple, consistent, and stable. It is analogous to a wrapper

in a programming language but in strict sense it is a standardized API. switchsai

exposes SAI on the switchapi.

4.0.3 switchlink

The switchlink library provides a netlink listener that listens to kernel notifications

for network events (link, address, neighbor, route, etc.) and uses the switchsai

library to program the data plane.

The stack arranged in order is as shown in Figure 4.1

This forms a complete switch which can support external applications.

But to test applications like quagga in a PC, we need multiple instances of the

above switch which can be connected by mininet topology. We can’t use containers

used for mininet switches as they won’t have sufficient resources to support the

libraries. We take help of docker containers which help us in creating isolated

package of software which can be easily used. The libraries used and how docker

image was built can be found in Appendix D.

19

Figure 4.1: Architecture of the libraries

The topology used in same as figure 3.1. The topology along with IP addresses

and subnets is in figure 4.2

The P4 switches can be configured using CLI. OSPF was the protocol that was

implemented using quagga for routing. OSPF tries to update the routing tables

with least cost paths. It took about 60 seconds for the Routing tables to get updated

in the switches and then they begin to act as routers. Packets from a host ha were

as in figure 4.3 and form host h2 were as in figure 4.4

The figures show the movement of OSPF packets among the hosts (routers)

and working of the quagga application. The final updation of the routing tables

enabled the ICMP ping packets to reach from one host to another. This shows that

quagga is working on the P4 switches.

A key point to be observed is that the P4 switch has its own resources. These

resources if provided by suitable hardware (like NetFPGA or network processor)

can support P4 switches along with applications.

20

Figure 4.2: Topology with IP addresses

Figure 4.3: Host h1 packets in wireshark

21

Figure 4.4: Host h2 packets in wireshark

22

CHAPTER 5

Current Hardware Implementations

There is no standard hardware platform for P4 switches yet. Efforts are being

made to provide supporting hardware platform for P4.

5.1 FPGA

FPGA provides a robust platform. Now FPGAs can implement complex packet

processing on single chip. Open platform used by researchers nowadays is NetF-

PGA. Third generation FPGAs with 100+ Gb/s line rates are being developed

recently.

5.1.1 P4FPGA

Back end compiler which work on intermediate representation generated by p4-

hlir is being developed. p4fpga.org is releasing a backend compiler which tries

to map P4 programs to different FPGA platforms. The details can be found in.

This compiler compiles the intermediate representation generated by p4-hlir to

Bluespec systemverilog. Bluespec systemverilog is then to verilog which can used

in FPGA firmware. Details can be found in Han Wang

5.1.2 Xilinx SDNet via PX

XilinxSDNet is coming up compilers which can convert a network program written

in PX in to an effective FPGA implementation. PX is a network programming

language but emphasis towards easy hardware very similar to P4 in many aspects

(the language got its motivation from P4). They are also working on mappers to

convert a P4 program into PX. This way FPGA implementation is being achieved.

The details can be found in P4 to Fpga Brebner, 2015

5.2 Network Processor

Few companies are developing their own compilers to convert P4 to their respective

App.firmware. They are building SDKs which can directly accept P4 Language

input. One such example is seen in the white paper by netronome. It tries to

take TDG generated by P4 compiler and generate C program for data path of NFP.

White paper can be found in NETRONOME references.

24

Conclusions

1. P4 programming language tries to step towards more flexible switches whose
functionality is specified and may be changed. It allows a programmers to
work on how the forwarding plane processes packets without worrying
about implementation details.

2. EasyRoute Protocol and Flowlet switching programs written in P4 has shown
acceptable results on a software switch model.

3. To extend the capabilities of switches, libraries like switchsai, switchapi and
switchlink are useful. They interact with external applications like quagga
and improve the functionality of switches.

4. Using the above libraries a docker image was written in which OSPF was
deployed using quagga on a P4 switch. The application ran successfully and
P4 switches acted as routers.

5. Hardware Implementations on FPGA for P4 is still in development. Backend
compilers and intermediate languages like PX are being created to support
FPGA platform and network processors.

6. This above statement shows that P4’s target independent programming abil-
ity is being recognised by organisations and it has a high scope of develop-
ment in near future.

25

APPENDIX A

P4 installation

You can either download the p4 files from https://github.com/p4lang/ or make git

clone of the required repositories. (Consortium)

The steps followed during the installation are

• Clone the repositories p4factory for quagga related libraries and bmv2, p4c-
bmv2 for easy protocol and flowlet switching

• Go to submodules folder and clone the submodules. This has to be checked
for submodules of submodules too

Table A.1 shows the git branches (also commits which are not really important

but for information) of the P4 I worked with

The procedure for installing and to test the installation is available in READ.md

files. For information, the three main commands build are Using sudo is advised.

./autogen.sh

Repository or submodule Branch Commit ID
p4factory Master d91cee5ceb5cce77678c7dee29ec96e00fab3d94

p4factory/bm Master 7decabc7cd8cb46d89bbe999883ffe11215db518
p4factory/oftest Master 386180fea993f2be71fdef409a1b2131ec88a543

p4factory/p4c-behavioral Master ebe338d32593419437ae3e6c7cf43dff2ba1544c
p4factory/p4c-bm Master ebe338d32593419437ae3e6c7cf43dff2ba1544c

p4factory/p4ofagent Master 63d7dafd211c9e405238492ed0ed499216871251
p4factory/ptf Master 094882ee862e7f676f95ef031c9eeb27220e528c

p4factory/switch Master e3cadf2f56be38061a8cddf53357fe1a62917100
Bmv2 (behavioral-model) Master 400b44865cf1ec2f30cb420d4ad699ff2751602b

p4c-bmv2 Master e8e65c31df9de12cf54f2b1272df5e079aab91ce

Table A.1: Branch and commit id of the cloned modules (at time of downloading)

./configure

sudo make

27

APPENDIX B

EasyRoute protocol code and results

As explained in the section the EasyRoute P4 code is as below:

header_type easyroute_head_t {

fields {

preamble: 64;

num_valid: 32;

}

}

header easyroute_head_t easyroute_head;

header_type easyroute_port_t {

fields {

port: 8;

}

}

header easyroute_port_t easyroute_port;

parser start {

return select(current(0, 64)) {

0: parse_head;

default: ingress;

}

}

parser parse_head {

extract(easyroute_head);

return select(latest.num_valid) {

0: ingress;

default: parse_port;

}

}

parser parse_port {

extract(easyroute_port);

return ingress;

}

action _drop() {

drop();

}

action route() {

modify_field(standard_metadata.egress_spec, easyroute_port.port);

add_to_field(easyroute_head.num_valid, -1);

remove_header(easyroute_port);

}

table route_pkt {

reads {

easyroute_port: valid;

}

actions {

_drop;

route;

29

}

size: 1;

}

control ingress {

apply(route_pkt);

}

The topology is created by the following python code from p4.org

#!/usr/bin/python

Copyright 2013-present Barefoot Networks, Inc.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

from mininet.net import Mininet

from mininet.topo import Topo

from mininet.log import setLogLevel, info

from mininet.cli import CLI

30

from mininet.link import TCLink

from p4_mininet import P4Switch, P4Host

import argparse

from time import sleep

import os

import subprocess

_THIS_DIR = os.path.dirname(os.path.realpath(__file__))

_THRIFT_BASE_PORT = 22222

parser = argparse.ArgumentParser(description=’Mininet demo’)

parser.add_argument(’--behavioral-exe’, help=’Path to behavioral executable’,

type=str, action="store", required=True)

parser.add_argument(’--json’, help=’Path to JSON config file’,

type=str, action="store", required=True)

parser.add_argument(’--cli’, help=’Path to BM CLI’,

type=str, action="store", required=True)

args = parser.parse_args()

class MyTopo(Topo):

def __init__(self, sw_path, json_path, nb_hosts, nb_switches, links, **opts):

Initialize topology and default options

Topo.__init__(self, **opts)

for i in xrange(nb_switches):

switch = self.addSwitch(’s%d’ % (i + 1),

sw_path = sw_path,

json_path = json_path,

thrift_port = _THRIFT_BASE_PORT + i,

pcap_dump = True,

31

device_id = i)

for h in xrange(nb_hosts):

host = self.addHost(’h%d’ % (h + 1))

for a, b in links:

self.addLink(a, b)

def read_topo():

nb_hosts = 0

nb_switches = 0

links = []

with open("topo.txt", "r") as f:

line = f.readline()[:-1]

w, nb_switches = line.split()

assert(w == "switches")

line = f.readline()[:-1]

w, nb_hosts = line.split()

assert(w == "hosts")

for line in f:

if not f: break

a, b = line.split()

links.append((a, b))

return int(nb_hosts), int(nb_switches), links

def main():

nb_hosts, nb_switches, links = read_topo()

topo = MyTopo(args.behavioral_exe,

32

args.json,

nb_hosts, nb_switches, links)

net = Mininet(topo = topo,

host = P4Host,

switch = P4Switch,

controller = None)

net.start()

for n in xrange(nb_hosts):

h = net.get(’h%d’ % (n + 1))

for off in ["rx", "tx", "sg"]:

cmd = "/sbin/ethtool --offload eth0 %s off" % off

print cmd

h.cmd(cmd)

print "disable ipv6"

h.cmd("sysctl -w net.ipv6.conf.all.disable_ipv6=1")

h.cmd("sysctl -w net.ipv6.conf.default.disable_ipv6=1")

h.cmd("sysctl -w net.ipv6.conf.lo.disable_ipv6=1")

h.cmd("sysctl -w net.ipv4.tcp_congestion_control=reno")

h.cmd("iptables -I OUTPUT -p icmp --icmp-type destination-unreachable -j DROP")

sleep(1)

for i in xrange(nb_switches):

cmd = [args.cli, "--json", args.json,

"--thrift-port", str(_THRIFT_BASE_PORT + i)]

with open("commands.txt", "r") as f:

print " ".join(cmd)

try:

33

output = subprocess.check_output(cmd, stdin = f)

print output

except subprocess.CalledProcessError as e:

print e

print e.output

sleep(1)

print "Ready !"

CLI(net)

net.stop()

if __name__ == ’__main__’:

setLogLevel(’info’)

main()

The supporting text file “topo.txt”

switches 3

hosts 3

h1 s1

h2 s2

h3 s3

s1 s2

s1 s3

s2 s3

The script for running the topology

THIS_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)

34

source $THIS_DIR/env.sh

P4C_BM_SCRIPT=$P4C_BM_PATH/p4c_bm/__main__.py

SWITCH_PATH=$BMV2_PATH/targets/simple_switch/simple_switch

CLI_PATH=$BMV2_PATH/tools/runtime_CLI.py

sudo PYTHONPATH=$PYTHONPATH:home/ash/p4lang/

$P4C_BM_SCRIPT p4src/source_routing.p4 --json source_routing.json

sudo PYTHONPATH=$PYTHONPATH:$BMV2_PATH/mininet/ python topo.py \

--behavioral-exe $BMV2_PATH/targets/simple_switch/simple_switch \

--json source_routing.json \

--cli $CLI_PATH

CLI commands used for populating the tables in switches. Stored in file “com-

mands.txt”

table_set_default route_pkt route

table_add route_pkt _drop 0 =>

The environmental variables should be updated properly in rundemo.py for the

code to work. Also pythonpath should include all the necessary python modules.

The results are shown in the following figure B.1

Messages sent from h1 are able to reach h2.

35

Figure B.1: Easy Protocol testing in mininet

36

APPENDIX C

Flowlet switching

The modified P4 code for flowlet switching (modified from simple router code)

/*

Copyright 2013-present Barefoot Networks, Inc.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

*/

#include "includes/headers.p4"

#include "includes/parser.p4"

#include "includes/intrinsic.p4"

#define FLOWLET_MAP_SIZE 13 // ADDED: 8K

#define FLOWLET_INACTIVE_TOUT 50000 // ADDED: usec -> 50ms

header_type ingress_metadata_t {

fields {

flow_ipg : 32; // ADDED: inter-packet gap

flowlet_map_index : FLOWLET_MAP_SIZE; // ADDED: flowlet map index

flowlet_id : 16; // ADDED: flowlet id

flowlet_lasttime : 32; // ADDED: flowlet’s last reference time

ecmp_offset : 14; //offset into the ecmp table

nhop_ipv4 : 32;

}

}

metadata ingress_metadata_t ingress_metadata;

action _drop() {

drop();

}

//ADDED FIELDS (S)

field_list l3_hash_fields {

ipv4.srcAddr;

ipv4.dstAddr;

ipv4.protocol;

tcp.srcPort;

tcp.dstPort;

}

field_list_calculation flowlet_map_hash {

input {

l3_hash_fields;

}

algorithm : crc16;

output_width : FLOWLET_MAP_SIZE;

38

}

register flowlet_lasttime {

width : 32;

instance_count : 8192;

}

register flowlet_id {

width : 16;

instance_count : 8192;

}

// ADDED FIELDS (E)

action set_nhop(nhop_ipv4, port) {

modify_field(ingress_metadata.nhop_ipv4, nhop_ipv4);

modify_field(standard_metadata.egress_spec, port);

add_to_field(ipv4.ttl, -1);

}

// ADDED ACTIONS and TABLES (S)

action lookup_flowlet_map() {

modify_field_with_hash_based_offset(ingress_metadata.flowlet_map_index, 0,

flowlet_map_hash, FLOWLET_MAP_SIZE);

register_read(ingress_metadata.flowlet_id,

flowlet_id, ingress_metadata.flowlet_map_index);

modify_field(ingress_metadata.flow_ipg,

intrinsic_metadata.ingress_global_timestamp);

register_read(ingress_metadata.flowlet_lasttime,

flowlet_lasttime, ingress_metadata.flowlet_map_index);

subtract_from_field(ingress_metadata.flow_ipg,

39

ingress_metadata.flowlet_lasttime);

register_write(flowlet_lasttime, ingress_metadata.flowlet_map_index,

intrinsic_metadata.ingress_global_timestamp);

}

table flowlet {

actions { lookup_flowlet_map; }

}

action update_flowlet_id() {

add_to_field(ingress_metadata.flowlet_id, 1);

register_write(flowlet_id, ingress_metadata.flowlet_map_index,

ingress_metadata.flowlet_id);

}

table new_flowlet {

actions { update_flowlet_id; }

}

// ADDED ACTIONS and TABLES (E)

field_list flowlet_l3_hash_fields {

ipv4.srcAddr;

ipv4.dstAddr;

ipv4.protocol;

tcp.srcPort;

tcp.dstPort;

ingress_metadata.flowlet_id;

}

#define ECMP_BIT_WIDTH 10

#define ECMP_GROUP_TABLE_SIZE 1024

40

#define ECMP_NHOP_TABLE_SIZE 16384

field_list_calculation flowlet_ecmp_hash {

input {

flowlet_l3_hash_fields;

}

algorithm : crc16;

output_width : ECMP_BIT_WIDTH;

}

action set_ecmp_select(ecmp_base, ecmp_count) {

modify_field_with_hash_based_offset(ingress_metadata.ecmp_offset, ecmp_base,

flowlet_ecmp_hash, ecmp_count);

}

table ecmp_group {

reads {

ipv4.dstAddr : lpm;

}

actions {

_drop;

set_ecmp_select;

}

size : ECMP_GROUP_TABLE_SIZE;

}

table ecmp_nhop {

reads {

ingress_metadata.ecmp_offset : exact;

}

41

actions {

_drop;

set_nhop;

}

size : ECMP_NHOP_TABLE_SIZE;

}

action set_dmac(dmac) {

modify_field(ethernet.dstAddr, dmac);

}

table forward {

reads {

ingress_metadata.nhop_ipv4 : exact;

}

actions {

set_dmac;

_drop;

}

size: 512;

}

action rewrite_mac(smac) {

modify_field(ethernet.srcAddr, smac);

}

table send_frame {

reads {

standard_metadata.egress_port: exact;

}

42

actions {

rewrite_mac;

_drop;

}

size: 256;

}

control ingress {

//ADDED FLOWLET TABLE

apply(flowlet);

if (ingress_metadata.flow_ipg > FLOWLET_INACTIVE_TOUT) {

apply(new_flowlet);

}

apply(ecmp_group);

apply(ecmp_nhop);

apply(forward);

}

control egress {

apply(send_frame);

}

Python code for creating the switch setup

#!/usr/bin/env python

Copyright 2013-present Barefoot Networks, Inc.

#

Licensed under the Apache License, Version 2.0 (the "License");

43

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

import time

NUM_PACKETS = 500

import random

import threading

from scapy.all import sniff

from scapy.all import Ether, IP, IPv6

from scapy.all import sendp

class PacketQueue:

def __init__(self):

self.pkts = []

self.lock = threading.Lock()

self.ifaces = set()

def add_iface(self, iface):

self.ifaces.add(iface)

def get(self):

self.lock.acquire()

44

if not self.pkts:

self.lock.release()

return None, None

pkt = self.pkts.pop(0)

self.lock.release()

return pkt

def add(self, iface, pkt):

if iface not in self.ifaces:

return

self.lock.acquire()

self.pkts.append((iface, pkt))

self.lock.release()

queue = PacketQueue()

def pkt_handler(pkt, iface):

if IPv6 in pkt:

return

queue.add(iface, pkt)

class SnifferThread(threading.Thread):

def __init__(self, iface, handler = pkt_handler):

threading.Thread.__init__(self)

self.iface = iface

self.handler = handler

def run(self):

sniff(

iface = self.iface,

prn = lambda x: self.handler(x, self.iface)

45

)

class PacketDelay:

def __init__(self, bsize, bdelay, imin, imax, num_pkts = 100):

self.bsize = bsize

self.bdelay = bdelay

self.imin = imin

self.imax = imax

self.num_pkts = num_pkts

self.current = 1

def __iter__(self):

return self

def next(self):

if self.num_pkts <= 0:

raise StopIteration

self.num_pkts -= 1

if self.current == self.bsize:

self.current = 1

return random.randint(self.imin, self.imax)

else:

self.current += 1

return self.bdelay

pkt = Ether()/IP(dst=’10.0.0.1’, ttl=64)

port_map = {

1: "veth3",

2: "veth5",

3: "veth7"

46

}

iface_map = {}

for p, i in port_map.items():

iface_map[i] = p

queue.add_iface("veth3")

queue.add_iface("veth5")

for p, iface in port_map.items():

t = SnifferThread(iface)

t.daemon = True

t.start()

import socket

send_socket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW,

socket.htons(0x03))

send_socket.bind((port_map[3], 0))

delays = PacketDelay(10, 5, 25, 100, NUM_PACKETS)

ports = []

print "Sending", NUM_PACKETS, "packets ..."

for d in delays:

sendp is too slow...

sendp(pkt, iface=port_map[3], verbose=0)

send_socket.send(str(pkt))

time.sleep(d / 1000.)

time.sleep(1)

iface, pkt = queue.get()

while pkt:

ports.append(iface_map[iface])

47

iface, pkt = queue.get()

print ports

The script to initiate the topology is as follows

THIS_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)

source $THIS_DIR/env.sh

P4C_BM_SCRIPT=$P4C_BM_PATH/p4c_bm/__main__.py

SWITCH_PATH=$BMV2_PATH/targets/flowlet_switching/simple_switch

CLI_PATH=$BMV2_PATH/tools/runtime_CLI.py

set -m

sudo PYTHONPATH=$PYTHONPATH:home/ash/p4lang/ $P4C_BM_SCRIPT p4src/simple_router.p4 --json simple_router.json

sudo echo "sudo" > /dev/null

sudo $BMV2_PATH/targets/flowlet_switching/simple_switch simple_router.json \

-i 0@veth0 -i 1@veth2 -i 2@veth4 -i 3@veth6 -i 4@veth8 \

--nanolog ipc:///tmp/bm-0-log.ipc \

--pcap &

sleep 2

$CLI_PATH --json simple_router.json < commands.txt

echo "READY!!!"

fg

Veth_setup script for creating interfaces

#!/bin/bash

noOfVeths=18

if [$# -eq 1]; then

48

noOfVeths=$1

fi

echo "No of Veths is $noOfVeths"

idx=0

let "vethpairs=$noOfVeths/2"

while [$idx -lt $vethpairs]

do

intf0="veth$(($idx*2))"

intf1="veth$(($idx*2+1))"

idx=$((idx + 1))

if ! ip link show $intf0 &> /dev/null; then

ip link add name $intf0 type veth peer name $intf1

ip link set dev $intf0 up

ip link set dev $intf1 up

TOE_OPTIONS="rx tx sg tso ufo gso gro lro rxvlan txvlan rxhash"

for TOE_OPTION in $TOE_OPTIONS; do

/sbin/ethtool --offload $intf0 "$TOE_OPTION" off

/sbin/ethtool --offload $intf1 "$TOE_OPTION" off

done

fi

sysctl net.ipv6.conf.$intf0.disable_ipv6=1

sysctl net.ipv6.conf.$intf1.disable_ipv6=1

done

CLI commands used for populating the tables in switches. Stored in file “com-

mands.txt”

49

table_set_default ecmp_group _drop

table_set_default ecmp_nhop _drop

table_set_default forward _drop

table_set_default send_frame _drop

table_set_default flowlet lookup_flowlet_map

table_set_default new_flowlet update_flowlet_id

table_add ecmp_group set_ecmp_select 10.0.0.1/32 => 0 2

table_add ecmp_nhop set_nhop 0 => 10.0.1.1 1

table_add ecmp_nhop set_nhop 1 => 10.0.2.1 2

table_add forward set_dmac 10.0.1.1 => 00:04:00:00:00:00

table_add forward set_dmac 10.0.2.1 => 00:04:00:00:00:01

table_add send_frame rewrite_mac 1 => 00:aa:bb:00:00:00

table_add send_frame rewrite_mac 2 => 00:aa:bb:00:00:01

The environmental variables should be updated properly in rundemo.py for the

code to work. Sometimes pythonpath should be updated to include all necessary

python modules

50

APPENDIX D

Building docker image

The docker setup file used is as follows. This can be found in p4factory/docker.

Changes to libraries included in the docker image can be edited in this file.

FROM ubuntu:14.04

MAINTAINER Antonin Bas <antonin@barefootnetworks.com>

RUN apt-get update

RUN apt-get install -y \

automake \

bridge-utils \

build-essential \

ethtool \

git \

libboost-dev \

libboost-filesystem-dev \

libboost-program-options-dev \

libboost-system-dev \

libboost-test-dev \

libedit-dev \

libevent-dev \

libglib2.0-dev \

libgmp-dev \

libhiredis-dev \

libjudy-dev \

libnl-route-3-dev \

libpcap0.8 \

libpcap0.8-dev \

libtool \

libssl-dev \

openssh-server \

packit \

pkg-config \

python-dev \

python-pygraph \

python-pygraphviz \

python-setuptools \

python-thrift \

python-yaml \

quagga \

redis-server \

redis-tools \

subversion \

tshark \

xterm

install thrift

RUN mkdir -p /tmp/thrift ; \

cd /tmp/thrift ; \

wget -q http://archive.apache.org/dist/thrift/0.9.2/thrift-0.9.2.tar.gz ; \

52

tar xvzf thrift-0.9.2.tar.gz; \

cd thrift-0.9.2; \

./configure ; cd test/cpp ; ln -s . .libs ; cd ../.. ; \

make -j 4 install; ldconfig ; \

rm -fr /tmp/thrift

install scapy

RUN mkdir -p /tmp/scapy ; \

cd /tmp/scapy ; \

git clone https://github.com/p4lang/scapy-vxlan.git ; \

cd scapy-vxlan ; \

python setup.py install ; \

rm -fr /tmp/scapy

install p4-hlir

RUN mkdir -p /tmp/p4-hlir ; \

cd /tmp/p4-hlir ; \

git clone https://github.com/p4lang/p4-hlir.git ; \

cd p4-hlir ; \

python setup.py install ; \

rm -fr /tmp/p4-hlir

install mstpd

RUN mkdir -p /third-party/diffs

COPY diffs/mstpd.diff /third-party/diffs/mstpd.diff

RUN cd /third-party; \

svn checkout svn://svn.code.sf.net/p/mstpd/code/trunk mstpd; \

cd mstpd; patch -p0 -i /third-party/diffs/mstpd.diff; make install

install ctypesgen

53

RUN mkdir -p /tmp/ctypesgen ; \

cd /tmp/ctypesgen ; \

git clone https://github.com/davidjamesca/ctypesgen.git ; \

cd ctypesgen ; \

python setup.py install ; \

rm -fr /tmp/ctypesgen

#install nanomsg

RUN mkdir -p /tmp/nanomsg ; \

cd /tmp/nanomsg ; \

wget -q http://download.nanomsg.org/nanomsg-0.5-beta.tar.gz ; \

tar xvzf nanomsg-0.5-beta.tar.gz; \

cd nanomsg-0.5-beta ; \

./configure ; \

make && sudo make install ; \

rm -fr /tmp/nanomsg

ADD p4factory /p4factory

ENV VTYSH_PAGER more

To build the image, change directory to targets/switch in terminal and enter the

command

sudo make docker-image

The docker image is built if a similar output is observed when the first line is

entered into terminal.

sudo docker images

54

REPOSITORY TAG IMAGE ID CREATED SIZE

p4dockerswitch latest d9d6b0a6ab79 7 weeks ago 4.456 GB

ubuntu 14.04 07c86167cdc4 3 months ago 188 MB

The python code for running the mininet network is

from mininet.net import Mininet, VERSION

from mininet.log import setLogLevel, info

from mininet.cli import CLI

from distutils.version import StrictVersion

from p4_mininet import P4DockerSwitch

from time import sleep

import sys

def main(cli = 0, ipv6 = 0):

net = Mininet(controller = None)

add hosts

h1 = net.addHost(’h1’, ip = ’172.16.101.5/24’, mac = ’00:04:00:00:00:02’)

h2 = net.addHost(’h2’, ip = ’172.16.102.5/24’, mac = ’00:05:00:00:00:02’)

h3 = net.addHost(’h3’, ip = ’172.16.103.5/24’, mac = ’00:06:00:00:00:02’)

add switch 1

sw1 = net.addSwitch(’sw1’, target_name = "p4dockerswitch",

cls = P4DockerSwitch, config_fs = ’configs/sw1/l3_ospf’,

pcap_dump = True)

add switch 2

sw2 = net.addSwitch(’sw2’, target_name = "p4dockerswitch",

cls = P4DockerSwitch, config_fs = ’configs/sw2/l3_ospf’,

pcap_dump = True)

55

#add switch 3

sw3 = net.addSwitch(’sw3’, target_name = "p4dockerswitch",

cls = P4DockerSwitch, config_fs = ’configs/sw3/l3_ospf’,

pcap_dump = True)

add links

if StrictVersion(VERSION) <= StrictVersion(’2.2.0’):

net.addLink(sw1, h1, port1 = 1)

net.addLink(sw1, sw2, port1 = 2, port2 = 2)

net.addLink(sw1, sw3, port1 = 3, port2 = 2)

net.addLink(sw2, h2, port1 = 1)

net.addLink(sw2, sw3, port1 = 3, port2 = 3)

net.addLink(sw3, h3, port1 = 1)

else:

net.addLink(sw1, h1, port1 = 1, fast=False)

net.addLink(sw1, sw2, port1 = 2, port2 = 2, fast=False)

net.addLink(sw1, sw3, port1 = 3, port2 = 2, fast=False)

net.addLink(sw3, h3, port1 = 1, fast=False)

net.addLink(sw2, h2, port1 = 1, fast=False)

net.addLink(sw2, sw3, port1 = 3, port2 = 3, fast=False)

net.start()

configure hosts

h1.setDefaultRoute(’via 172.16.101.1’)

h2.setDefaultRoute(’via 172.16.102.1’)

h3.setDefaultRoute(’via 172.16.103.1’)

if ipv6:

hosts configuration - ipv6

56

h2.setIP6(’2ffe:0102::5’, 64, ’h2-eth0’)

h1.setIP6(’2ffe:0101::5’, 64, ’h1-eth0’)

h3.setIP6(’2ffe:0103::5’, 64, ’h3-eth0’)

h1.setDefaultRoute(’via 2ffe:0101::1’, True)

h2.setDefaultRoute(’via 2ffe:0102::1’, True)

h3.setDefaultRoute(’via 2ffe:0103::1’, True)

#Opening wireshark for each of the hosts

for host in net.hosts:

host.cmd(’wireshark &’)

sleep (10)

#TODO:tshark in switches

#

sw1.cmd(’tshark -w /tmp/sw1.pcap -i swp1 -i swp2 -i swp3 ’)

#

sw2.cmd(’tshark -w /tmp/sw2.pcap -i swp1 -i swp2 -i swp3 ’)

#

sw3.cmd(’tshark -w /tmp/sw3.pcap -i swp1 -i swp2 -i swp3 ’)

print "DONE pcap"

#Start Quagga in switches

sw1.cmd(’service quagga start’)

sw2.cmd(’service quagga start’)

sw3.cmd(’service quagga start’)

result = 0

if cli:

CLI(net)

57

else:

sleep(60)

node_values = net.values()

print node_values

hosts = net.hosts

print hosts

ping hosts

print "PING BETWEEN THE HOSTS"

result = net.ping(hosts,30)

if result != 0:

print "PING FAILED BETWEEN HOSTS %s" % (hosts)

else:

print "PING SUCCESSFUL!!!"

if ipv6:

print "PING6 BETWEEN THE HOSTS"

result = net.ping6(hosts, 30)

if result != 0:

print "PING6 FAILED BETWEEN HOSTS %s" % (hosts)

else:

print "PING6 SUCCESSFUL!!!"

print host arp table & routes

for host in hosts:

print "ARP ENTRIES ON HOST"

print host.cmd(’arp -n’)

print "HOST ROUTES"

print host.cmd(’route’)

58

print "HOST INTERFACE LIST"

intfList = host.intfNames()

print intfList

#Something more to dump pcap files

net.stop()

return result

if __name__ == ’__main__’:

args = sys.argv

setLogLevel(’info’)

cli = 0

ipv6 = 0

if "--cli" in args:

cli = 1

if "--ipv6" in args:

ipv6 = 1

main(cli, ipv6)

The startup_config script for building the switch is

#!/bin/bash

stty -echo; set +m

ip link set dev swp1 address 00:01:00:00:00:01

ip link set dev swp2 address 00:01:00:00:00:02

ip link set dev swp3 address 00:01:00:00:00:03

ip address add 172.16.101.1/24 broadcast + dev swp1

ip address add 172.16.10.1/24 broadcast + dev swp2

ip address add 172.16.11.1/24 broadcast + dev swp3

59

sysctl -q net.ipv6.conf.all.forwarding=1

ip address add 2ffe:0101::1/64 dev swp1

ip address add 2ffe:0010::1/64 dev swp2

ip address add 2ffe:0011::1/64 dev swp3

cp /configs/quagga/* /etc/quagga/

chown quagga.quagga /etc/quagga/*

Switches need to be configured and the IP addresses of the neighbours are to be

entered in the config file of switches. We are not using BGP to let the switches

know all the IPs automatically so the config files needs to be changes. The config

file for one switch is shown below:

ospf.conf

hostname ospfd

password zebra

enable password zebra

router ospf

network 172.16.10.0/24 area 0

network 172.16.11.0/24 area 0

network 172.16.101.0/24 area 0

60

REFERENCES

Brebner, G. (2015). P4 for an fpga target. URL http://schd.ws/hosted_files/
p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf. 5.1.2

Consortium, P. L. (2015a). The p4 language specification. URL http://p4.org/
wp-content/uploads/2015/04/p4-latest.pdf. 2.2.4

Consortium, P. L. (2015b). The p4 language web site. URL http://www.p4.org. A

Han Wang, K. S. L. H. W., Vishal Shrivastav (2015). P4fpga: Towards an open
source p4 backend for fpga. URL http://p4.org/wp-content/uploads/2015/12/
Cornell-Demo-Poster.pdf. 5.1.1

Heller, B. (2012). Sdn for engineers. URL http://opennetsummit.org/archives/apr12/
site/talks/heller-tutorial.pdf. 1

NETRONOME (2015). Programming nfp with p4 and c. 5.2

Paul Jakma, V. J. and G. Troxel (v1.9, 2015). Quagga routing suite. URL http://www.
nongnu.org/quagga/.

Ross, J. F. K. . K. H., Computer Networking A Top-Down Approach. Pearson, 2013.

Sivaraman, A. (2015). P4 language evolution. URL http://p4.org/p4/
p4-language-evolution/.

Subramaniam, K. (2015). Switch abstraction interface (sai) officially accepted by
the open compute project (ocp). URL https://azure.microsoft.com/en-in/blog/
switch-abstraction-interface-sai-officially-accepted-by-the-open-compute-project-ocp/.

61

http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/33/GordonB-P4-Workshop-June-04-2015.pdf
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf
http://p4.org/wp-content/uploads/2015/04/p4-latest.pdf
http://www.p4.org
http://p4.org/wp-content/uploads/2015/12/Cornell-Demo-Poster.pdf
http://p4.org/wp-content/uploads/2015/12/Cornell-Demo-Poster.pdf
http://opennetsummit.org/archives/apr12/site/talks/heller-tutorial.pdf
http://opennetsummit.org/archives/apr12/site/talks/heller-tutorial.pdf
http://www.nongnu.org/quagga/
http://www.nongnu.org/quagga/
http://p4.org/p4/p4-language-evolution/
http://p4.org/p4/p4-language-evolution/
https://azure.microsoft.com/en-in/blog/switch-abstraction-interface-sai-officially-accepted-by-the-open-compute-project-ocp/
https://azure.microsoft.com/en-in/blog/switch-abstraction-interface-sai-officially-accepted-by-the-open-compute-project-ocp/

