Verification of e-class processor based on RISC-V
ISA

A Project Report

submitted by

B V S Kavya Sree
EE12B012

in Partial Fulfillment of the Requirements
for the Degree of

Bachelor of Technology

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN
INSTITUTE OF TECHNOLOGY, MADRAS.

June 2016

THESIS CERTIFICATE

This is to certify that the thesis entitled Verification of E-class processor based on
RISC-V ISA, submitted by B V S Kavya Sree, EE12B012 , to the Indian Institute of
Technology Madras, for the award of the degree of Bachelor of Technology, is a
bona fide record of the research work carried out by her under my supervision. The
contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. V. Kamakoti

Research Guide

Professor

Dept. of Computer Science and Engineering
IIT Madras, 600 036

Place: Chennai

Date: 20th June, 2016

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude towards several people who enabled me to

reach this far with their timely guidance, support and motivation.

First and foremost, I offer my earnest gratitude to my guide, Dr. V. Kamakoti whose
knowledge and dedication has inspired me to work efficiently on the project and I thank
him for motivating me, and allowing me freedom and flexibility while working on the

project.

My special thanks and deepest gratitude to Rahul B and Vinod G who has been

very supportive with invaluable suggestions.

ABSTRACT

The project involves understanding and verification of E-class processor(SoC) which is
based on 32-bit RISC-V Instruction set architecture. The E-class processor is
implemented using 3-stage pipelining which is realized in Bluespec
SystemVerilog(BSV). The functionality and correctness of the e-class processor is

verified using the AAPG and Spike tools.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

LIST OF TABLES

LIST OF FIGURES
ABBREVIATIONS

1 Introduction

L.l OVEIVIEW . . oo et e e e e e e e i

1.2 Organisation of thesis

2 Background
2.1 Bluespec SystemVerilog
2.2 Python Scripting covviiiiiiiiiiiiiiaa

3 RISC-V Architecture
3.1 OVerview

3.2 Base Instruction Format

10
10
11

12
13
14

4 3 Stage Pipeline

4.1 StagesofPipeline..............................

5 Verification Environment

51 AAPGmakepyfileoooiiiiiiiiiii
5.2 System Requirementsccooviiiiiiiiiiinininnnn.
5.3 Bluespec project Makefileccooiiiiil.

6 Conclusion

7 Bibliography

LIST OF FIGURES
3.1 RISC-V instruction length encoding
3.2.1 RISC-V base instruction formats

3.2.2 Types of immediate produced by RISC-V instructions

4.2 Pipeline stages

15
15

17

18

18

19

20

20

13

14

14

15

BSV
TLM
FIFO
RISC
HDL
CPU

ABBREVIATIONS

Bluespec SystemVerilog
Transaction Level Modelling

First In First Out

Reduced Instruction Set Computer
Hardware Description Language

Central Processing Unit

CHAPTER 1

Introduction

1.1 Overview

The Processor design team of Reconfigurable and Intelligent Systems Engineering
(RISE) Lab in the Computer Science Department of IIT Madras has been actively
involved in research of The SHAKTI Processor project. The SHAKTI processor
project aims to build variants of processors based on the RISC-V ISA from UC
Berkeley. The project will develop a series of cores, SoC fabrics and a reference SoC
for each core family. One such core variant is the E-Class processor. It is a 32 bit 3
stage in-order core aimed at 10 - 50 Mhz uC variants. The processor has optimal
memory protection and very low power static design. The design of the E-class
processor is done using a Hardware Description Language(HDL) named Bluespec
SystemVerilog(BSV). This report aims at the description of the implementation of
E-class processor and its verification using tools like AAPG- Automatic Assembly

Program Generator and SPIKE, a RISC-V ISA Simulator.
1.2 Organisation of thesis

Chapter 2 gives some insight about the HDL- Bluespec SystemVerilog- its key
features and Python Scripting
Chapter 3 discusses about RISC-V Instruction Set Architecture and different base

encodings.

Chapter 4 gives us an understanding of the implementation of 3 stage processor
with intermediate FIFOs
Chapter 5 contains an explanation of the verification environment.

Chapter 6 contains a conclusion of the work.

CHAPTER 2

Background

2.1 Bluespec SystemVerilog

The design of the blocks and their testing is written in Bluespec SystemVerilog (BSV).
BSV is a high level Hardware Description Language. It expresses synthesizable
behavior with rules, a rule can be viewed as a declarative assertion expressing a
potential atomic state transition. The BSV compiler produces efficient RTL code that
manages all the potential interactions between rules by inserting appropriate arbitration
and scheduling logic, logic that would otherwise have to be designed and coded
manually. BSV connects the modules by interfaces and methods. It also provides
predefined library elements like FIFOs, BRAMs etc. which are modeled using BSV
methods.

It has powerful static type checking which removes potential human errors which
can’t be detected at the stage of compilation normally but can be detected now during
the compilation. BSV also has more general type parameterization (polymorphism) due
to which modules and functions can be parameterized by other modules and functions,
this enables the designer to reuse designs and glue them together in much more flexible
ways. BSV’s static elaboration helps to arrive at the design much faster than the other
HDLs. The BSV compiler also can generate the synthesizable Verilog code of the
written bluespec code which can be used later for synthesis purposes.

BSV has an inbuilt package called TLM (Transaction Level Modeling) which was

10

used in implementing the 3-stage pipeline core.

2.2 Python Scripting

Python is a widely used high-level, general-purpose, interpreted, dynamic programming
language. Its design philosophy emphasizes code readability, and its syntax allows
programmers to express concepts in fewer lines of code than possible in languages such
as C++ or Java. Python is a great flexible programming language. Indeed, the AAPG is
based on Python language. Python programming was necessary to understand the

existing AAPG code and modify it accordingly to verify the e-class processor code.

Understanding the make.py file and suitably modifying it, needed the knowledge of
Bash Commands also. Bash commands were needed in order to compile and link to
generate the assembly program. These bash commands using the riscv64-unknown-elf
compiler and linker were incorporated in the make.py file using the subprocess module

in Python.

11

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)

CHAPTER 3

RISC-V ARCHITECTURE

RISC-V (pronounced "risk-five") is an open source instruction set architecture (ISA)

based on established reduced instruction set computing (RISC) principles. It was

originally designed to support computer architecture research and education and is now

set to become a standard open architecture for industry implementations. Main goals of

RISC-V include:

A completely open ISA that is freely available to academia and industry.

A real ISA suitable for direct native hardware implementation, not just
simulation or binary translation.

An ISA separated into a small base integer ISA, usable by itself as a base for
customized accelerators or for educational purposes, and optional standard
extensions, to support general purpose software development.

Support for the revised 2008 IEEE-754 floating-point standard.

Both 32-bit and 64-bit address space variants for applications, operating system
kernels, and hardware implementations.

An [ISA with support for highly-parallel multicore or manycore
implementations, including heterogeneous multiprocessors.

Optional variable-length instructions to both expand available instruction
encoding space and to support an optional dense instruction encoding for

improved performance, static code size, and energy efficiency.

12

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing

e A fully virtualizable ISA to ease hypervisor development.

3.1 RISC-V ISA Overview

The RISC-V ISA is defined as a base integer ISA, which must be present in any
implementation, plus optional extensions to the base ISA. Each base integer
instruction set is characterized by the width of the integer registers and the
corresponding size of the user address space. The base RISC-V ISA has fixed-length

32-bit instructions that must be naturally aligned on 32-bit boundaries.

Figure 3.1: RISC-V instruction length encoding

| XXXXXXXXXXXXXXaa | 16-bit (aa # 11)

| XXX XXX XXX XXAXXKX | XXXXXXXXXXXbbb11 | 32-bit (bbb # 111)

CXXXX | AXXXXAXXXXAXXALX | xxxxxxxxxx011111 | 48-bit

- XXXX | XXXXXXXXXXXXXEEX | xxxxxxxxx0111111 | 64-bit

- “XKXXX | XXXXXXXXXXXXXXXX | xxxxxonnnll11111 | (80+16*nnnn)-bit, nnnn#1111

S XXXX | XXAXXXXXXXXXXAKX | xxxxx11111111111 | Reserved for >320-bits

Byte Address: hase+4 bhase+2 base

13

3.2 Base Instruction Format

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure
3.2.1. All are a fixed 32 bits in length and must be aligned on a four-byte boundary in
memory. An instruction address misaligned exception is generated if the pc is not
four-byte aligned on an instruction fetch. The RISC-V ISA keeps the source (rs1 and
rs2) and destination (rd) registers at the same position in all formats to simplify
decoding. Immediate are packed towards the leftmost available bits in the instruction
and have been allocated to reduce hardware complexity. In particular, the sign bit for

all immediate is always in bit 31 of the instruction to speed sign-extension circuitry.

Figure 3.2.1: RISC-V base instruction formats.

31 2 24 20 19 514 121 76 0
[fwmet? | 2 | sl [fma3| opeode | Retype
| mm[110] [1 [fwmet3| 1d | opeode | Ltype
[imm[I15] | 2 | sl | funct3 | imm[d:0] | opcode | S-type
| imm[31:12] | rd | opeode |U-type

Figure 3.2.2: Types of immediate produced by RISC-V instructions. The
fields are labeled with the instruction bits used to construct their value.
Sign extension always uses inst[31].

330 20 19 2 1 10 5 4 1 0
| — inst[31] — | inst[30:25] | inst[24:21] | inst[20] | I-immediate
| — inst[31] — | inst[30:25] | inst[11:8] | inst[7] | S-immediate
| — inst[31] — | inst[7] [inst[30:25] | inst[11:8] | 0 | B-immediate
[inst[31] | inst[30:20] | inst[19:12] | —0— | U-immediate
| — inst[31] — | inst[19:12] [inst[20] [inst[30:25] [inst[24:21]] 0 | J-immediate

14

CHAPTER 4
3 Stage pipeline

Pipelining is breaking down execution into multiple steps, and executing each step in
parallel. It is an implementation technique in which multiple instructions are
overlapped in execution. Multiple tasks operating simultaneously using different
resources. Pipelining doesn’t help latency of single task, it helps throughput of entire
workload. Pipeline rate is limited by the slowest pipeline stage. There are three stages
in E-class core pipeline. Basic 3 stage pipeline includes Fetch, Decode and Execute
processes. Here we use 2 FIFOs to control the flow of data from each stage to next till
the present task is executed in that cycle. The pipeline organization gives one

instruction per cycle throughput.

4.1 Stages of pipeline

1. Instruction Fetch (IF):
Index the Current Program counter (PC) to the instruction memory. Increment
the PC at the end of cycle. Fetch the data from input and write the values of

interest to Pipeline FIFO (IF/ID) between IF and Instruction decode stage.

. . 1| WE
instruction
memary
addr mc
4 Q
J B =
00 = read word 1 € o
2
o
Y
<t (o]
1 o S|
[Q
o
_____ foled- - NN——
__________ Pperel " - TTTTTA I CCIIIE
______________ Peabs_ " - C-CCCC
IF/ID

15

2. Instruction Decode (ID):

Read from IF/ID FIFO to get instruction bits. Decode instruction, generate

control signals and then read from register file. Write values of interest to next

pipeline FIFO (ID/EX). Control information, Rd index, immediates, offsets,

contents of Ra, Rb are sent to next stage.

decode

register
file B
Ra Rb

result

IF/ID

3. Execute (EX):

Stage 1: Instruction Fetch
| PC+4|_| inst |

Rest of pipeline

Read ID/EX pipeline FIFO to get value and control bits and then perform ALU

operations. Compute targets (PC+4+offset) n case this a branch statement. Then

write back the result.

16

CHAPTER 5

Verification Environment

This chapter discusses about the available verification environment and tools like

AAPG and Spike. AAPG stands for Automatic Assembly Program Generator generates

a random and valid assembly program. The program is compiled with RISC-V

toolchain and is run through spike. Spike is an RISCV ISA Simulator. Spike will dump

register values after execution of every instruction. The AAPG also generates

instruction and initial memory in hex format which can be run on the processor RTL.

The RTL Register Dump and the spike Register Dump are compared using diff

operations to check the functionality and correctness of the core.

The diff operations can be done either by modifying the AAPG make.py code or by

modifying the Makefile of the bluespec project.

AAPG
/make.py

code.hex

=)

Spike

=

Bluespec
project

Spike Register
Dump

RTL Register
Dump

—| Diff

|

Functional

Errors

17

51 AAPG make.py file

The make.py file is an Python Shell Script. It requires Python 3 environment. It
contains functions to compile the assembly program, link it to the object file, generate
the object dump, run spike to generate Spike register dump, and to run the RTL
simulation. This makefile contains the following maketypes: clean, all, generate
assembly and run spike, generate assembly program only, compile assembly program
only, link assembly program to object file only. One of the most used packages for
writing shell scripts in Python is the subprocess package. The simplest use of this
package is to use the call function to call a shell command. Hence, all the above
mentioned functions have been implemented using this subprocess.call() function in

Python.

The difference operation between the RTL register dump and Spike register dump is
implemented in the maketype:all. The output in the terminal saying if the results match
or not is done by checking the stdout, stderr of the diff operation. This is implemented
by using subprocess.getoutput() function. This subprocess.getoutput(cmd) function
returns the output that is stdout or stderr of executing *cmd* in a shell. So, we check if
there is any output from subprocess.getoutput(). If there isn’t any that implies the
results match. Else if there is output from subprocess.getoutput() that implies that the
results do not match and further the E-class processor code is revisited to check for the

above mis-match and correct the processor code accordingly.

5.2 System Requirements

The system requirements for the make.py to successfully execute are: Python 3, the

18

modified riscv tools and the modified spike.

5.3 Bluespec project Makefile

The Bluespec project Makefile can be exported from the Bluespec workstation once the
e-class processor project is opened in the workstation. This makefile contains compile,
link, simulate, clean and full clean modules. One more module can be added naming
difference. This difference module shall compare the Spike register dump and the RTL
register dump and write the difference log to a log file. This log file contains the Spike
and RTL register dump values next to each other. However, the register values that
have not matched are separated by the character vertical bar ‘|’. Hence, searching for
this vertical bar character can point us to the mis-match and subsequently the processor

code can be revisited to correct the mis-match.

19

CHAPTER 6

Conclusion

This project has given me an opportunity to study and understand the functionality of
the E-class 3-stage pipelined processor based on RISC V 32-bit Instruction set
architecture that was realized in BSV. Integrated verification environment for the
E-class processor has been set up by modifying AAPG to compare the RTL and Spike

register dumps.

Bibliography

1. https://riscv.org/2016/04/risc-v-ofters-simple-modular-isa/
2. Bluespec,Inc.Bluespec System Verilog User Guide
3. Bluespec,Inc.Bluespec System Verilog Reference Guide

20

