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ABSTRACT

KEYWORDS: Wireless ad hoc network, Distributed algorithm, CSMA,

Gibbs distribution, Bethe approximation, Kikuchi approximation,

Throughput optimality

CSMA algorithms based on Gibbs sampling can achieve throughput optimality. Cer-

tain parameters of the Gibbs distribution called the attempt rates are to be estimated to

support a given set of service rate requirements. However, the problem of computing

these attempt rates is NP-hard. Further, the existing algorithms that estimate the attempt

rates suffer from an impractically slow convergence. Inspired by the well-known Kikuchi

approximation, we propose a simple distributed algorithm, which obtains closed form es-

timates for the attempt rates. We also prove that our algorithm is exact for a class of

graphs, called the chordal graphs. Numerical results suggest that the proposed algorithm

outperforms the existing Bethe approximation based algorithms for spatial networks.
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CHAPTER 1

INTRODUCTION

Recently, Carrier Sense Multiple Access (CSMA) algorithms have received a lot of focus

since they are amenable to distributed implementation, and are proved to be throughput

optimal, ie, they can support any service rate in the rate region [2]. The central idea lies

in sampling the feasible schedules from a product form distribution, using a reversible

Markov chain called the Gibbs sampler [2]. In order to support a given service rate vector,

certain attempt rate parameters of the CSMA algorithm called the fugacities are to be ap-

propriately chosen. However, the problem of computing the fugacities for a given service

rate vector is NP-hard [2]. This work proposes an efficient closed form approximation for

this problem.

1.1 Related work

A stochastic approximation based iterative algorithm is proposed in [2], which asymptot-

ically converges to the exact fugacities. However, the convergence time of this algorithm

scales exponentially with the size of the network [1]. Hence, it is not amenable to practi-

cal implementation in large networks. In [11, 5, 6] the fugacities are approximated using

a well-known variational technique called the Bethe approximation [9]. This approxima-

tion scheme gives exact solutions when the underlying conflict graph is a tree. However,

for spatial networks, which inherently contain short loops, the performance of the Bethe

approximation is known to degrade [9].



An iterative approximation algorithm based on inverse generalized belief propagation

(I-GBP) is proposed in [3]. While the I-GBP considerably improves the performance in the

presence of short loops, it suffers from convergence issues. In particular, it is not always

guaranteed to converge, and hence not very reliable [11].

1.2 Our Contribution

We make two contributions in this paper. Firstly, we derive closed form estimates of the

fugacities based on the Kikuchi approximation framework [4, 10]. Secondly, we prove

that our estimates are exact for a class of graphs called the Chordal graphs. In terms

of accuracy, it can be shown that our algorithm gives the same solution as the I-GBP

algorithm, and hence retains the good performance in the presence of short loops. Further,

unlike the I-GBP, it does not suffer from convergence issues since we provide a closed

form solution. We evaluate the performance of our algorithm for spatial networks modeled

using geometric random graphs. Numerical results suggest that the proposed algorithm

outperforms the existing algorithms based on the Bethe approximation.

We would like to remark that a recent work [8] proposed closed form expressions for

the fugacities for chordal graphs. As our algorithm is exact for chordal graphs, our works

establishes an interesting connection between the result in [8] and the Kikuchi approxima-

tion framework.
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CHAPTER 2

SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a single-hop wireless network with N links, and represent it using the widely

used conflict graph interference model [2, 1]. Given a conflict graph G(V,E), each vertex

in the graph corresponds to a wireless link (Transmitter - Receiver pair), and two vertices

share an edge if simultaneous transmissions from the corresponding wireless links result

in a collision. For a given link i ∈ V , the neighbour set Ni := {j : (i, j) ∈ E} denotes

the set of links that conflict with it. We consider a slotted time model, and use x(t) =

[xi(t)]
N
i=1 ⊆ {0, 1}N to denote the transmission status (or schedule) of the links in the

network. Specifically, if a link i is scheduled to transmit in a given time slot t, then the link

is said to be active, and xi(t) is set to 1. We assume that an active link can transfer unit

data in a given time slot if there is no collision.

2.1 Rate region:

A schedule x is said to be feasible if no conflicting links are active simultaneously. Hence,

the set of feasible schedules is given by I := {x ∈ {0, 1}N : xi + xj ≤ 1, ∀(i, j) ∈ E}.

Then the feasible rate region Λ, which is the set of all the possible service rates over the

links, is the convex hull of I given by Λ := {
∑

x∈I αxx :
∑

x∈I αx = 1, αx ≥ 0,∀x ∈ I}.

Next, we describe the basic CSMA algorithm [1].



2.2 Basic CSMA:

In this algorithm, each link i is associated with a real-valued parameter vi ∈ R (referred

to as fugacity) which defines how aggressively a link captures the channel. In each time

slot, one randomly selected link i is allowed to update its schedule xi(t) based on the

information in the previous slot:

• If the channel is sensed busy, i.e., ∃j ∈ Ni such that xj(t− 1) = 1, then xi(t) = 0.

• Else, xi(t) = 1 with probability exp(vi)
1+exp(vi)

.

Except for the selected link i, all the other links do not update their schedule, i.e.,

xj(t) = xj(t − 1),∀j 6= i. It can be shown that the above algorithm induces a Markov

chain on the state space of schedules. Further, the stationary distribution is a product-form

Gibbs distribution [1] given by

p(x) =
1

Z(v)
exp

(
N∑
i=1

xivi

)
, ∀x ∈ I ⊆ {0, 1}N , (2.1)

where v = [vi]
N
i=1, and Z(v) is the normalization constant. Note that p(x) = 0 if x is not a

feasible schedule. Then, due to the ergodicity of the Markov chain, the long-term service

rate of a link i denoted by si is equal to the marginal probability that link i is active, i.e.,

p(xi = 1). Thus, the service rates and the fugacity vector v are related as follows:

si = pi(1) =
∑

x : xi=1

Z(v)−1 exp

(
N∑
i=1

xivi

)
, ∀i ∈ N , (2.2)

where pi(1) denotes p(xi = 1).

4



2.3 Problem Description:

The CSMA algorithm can support any service rate in the rate region if appropriate fugac-

ities are used for the underlying Gibbs distribution [2]. We consider the scenario where

the links know their target service rates, and address the problem of computing the cor-

responding fugacity vector. In principle, the fugacities can be obtained by solving the

system of equations in (2.2). Unfortunately, for large networks, solving these equations

is highly intractable since it involves computing the normalization constant Z(v) which

has exponentially many terms. In this work, we provide a simple, distributed algorithm to

efficiently estimate the fugacities.

Our solution is inspired by the well known Kikuchi approximation frame work [9]

which is useful in estimating the marginals of a product distribution. It is worth nothing

that Kikuchi approximation framework is generally useful in computing the service rates

for given fugacities. The novelty of our work lies in using this framework to solve the

reverse problem of computing the fugacities for a given service rate vector.

5



CHAPTER 3

DISTRIBUTED ALGORITHM FOR FUGACITIES

In this section, we propose a distributed algorithm to estimate the fugacities. Each link in

the network can independently execute the algorithm once it obtains the a) target service

rates of the neighbours, b) the local neighbourhood topology, i.e., which of its neighbours

share an edge among themselves in the conflict graph.

There are mainly two steps in the algorithm at a link i. The first step involves computing

the maximal cliques1, and their intersections in which the link i is part of. The next step

is to compute its fugacity by using the formula (3.2). We introduce some notations before

we present the algorithm.

3.1 Notation:

Let Ri
0 be the collection of maximal cliques of the conflict graph G(V,E) in which the

vertex i is part of. For example, if we consider the graph in Figure 3.1, then R2
0 =

{{1, 2}, {2, 8, 7}, {2, 3, 7}}. Similarly R3
0 = {{2, 3, 7}, {3, 5, 6, 7}, {3, 4}}. Using the

information about the local topology, any standard algorithm like [7] can be used for find-

ing this set of maximal cliques Ri
0. For every maximal clique r ∈ Ri

0, let us associate a

constant cr = 1.

1Note that, this overhead of computing the maximal cliques is involved in the I-GBP algorithm [3] too.



Figure 3.1: Example of a small conflict graph consisting of 8 labeled nodes .

3.2 Algorithm

Distributed algorithm at link i

Input: Ri
0, service rates {sj}j∈Ni

; Output: fugacity ṽi.

1. Initialize l = 0.

2. Consider the set of all the intersections of the cliques inRi
l to obtainRi

l+1 := {q1 ∩
q2 | q1, q2 ∈ Ri

l, q1 6= q2}. If there are no intersections, i.e., Rl+1 = Φ, go to Step 6;
Else continue.

3. From the setRi
l+1, discard the cliques which are proper subsets of some other cliques

inRi
l+1, i.e., discard r ∈ Ri

l+1 if there exist any other set q ∈ Ri
l+1 such that r ⊂ q.

4. For each clique r ∈ Ri
l+1, compute

cr = 1−
∑

q∈S(r)

cq, (3.1)

where S(r) = {q ∈ ∪k≤lRi
k | r ⊂ q} is the set of cliques which are super sets of a

given set r.

5. Increment l by 1, and go to step 2.

6. Let Ri := ∪kRi
k denote the collection of all the regions computed above. Then the

fugacity is computed as

exp(ṽi) = si
∏
r∈Ri

(
1−

∑
j∈r

sj

)−cr
. (3.2)

7



3.3 Complexity:

The worst case complexity incurred by a link to compute the corresponding maximal

cliques Ri
0 is O(3d/3), where d is the the maximum degree of the graph [7]. Hence, for

spatial networks, where the degree of the graph does not scale with the network size, our

algorithm computes the fugacities with O(1) complexity.

3.4 Information exchange:

The information exchange required for our algorithm is very limited, since the algorithm

is fully distributed except for obtaining the local topology information and neighbours

service rates.

3.5 Simple example:

Let us consider the conflict graph shown in Figure 3.1, and compute the fugacity for the

link 2 using the proposed algorithm. Then the set of maximal cliques containing the vertex

2, will beR2
0 = {{1, 2}, {2, 8, 7}, {2, 3, 7}}. Considering their intersections we getR2

1 =

{{2, 7}, {2}}. However, we discard the set {2} since it is a proper subset of {2, 7}. Hence

R2
1 = {{2, 7}}. From (3.1), it can be easily observed that for the set {2, 7}, cr = −1, since

it has two super sets namely q1 = {2, 8, 7}, q2 = {2, 3, 7} with cq1 = 1, cq2 = 1. As there

are no further intersections to be taken in R2
1, the following expression gives the fugacity

exp(ṽ2):

s2(1− s2 − s7)
(1− s1 − s2)(1− s2 − s8 − s7)(1− s2 − s3 − s7)

.

8



Our claim is that the fugacities computed in (3.2) are good estimates of the exact fu-

gacities. We justify our claim using the Kikuchi approximation framework.

9



CHAPTER 4

REVIEW OF KIKUCHI APPROXIMATION

In this section, we introduce the notion of Kikuchi free energy (KFE), which is useful in

finding accurate estimates of the marginals of a distribution like p(x) in (2.1). We require

the following definitions to introduce KFE [9], [4], [10].

4.1 Regions and Counting numbers:

For a given conflict graph G(V,E), let R ⊂ 2V denote some collection of subsets of the

vertices V . These subsets are referred to as regions. Further, assume that each region

r ∈ R is associated with an integer cr called the counting number of that region. A

valid set of regions R, and the corresponding counting numbers {cr} should satisfy the

following two basic rules: a) Each vertex in V should be covered in at least one of the

regions in R, i.e., {r ∈ R|i ∈ r} 6= Φ, b) For every vertex, the counting numbers of all

the regions containing it, should sum to 1, i.e.,
∑
{r∈R|i∈r} cr = 1, ∀i ∈ V .

4.2 Regional schedule:

The regional schedule at a region r ∈ R, denoted by xr ∈ {0, 1}r, is defined as the set

of variables corresponding to the transmission status of the vertices in that region, i.e.,

xr := {xk | k ∈ r} .



Figure 4.1: Region graph containing regions for conflict graph in Figure 3.1.

4.3 Regional distribution:

If b denotes the probability mass function of the random variable x = [xi]
N
i=1, then the

regional distribution br denotes the marginal distribution of b corresponding to xr ⊂ x. In

the special case of a region being a singleton set, i.e., r = {i} for some i, then we denote

the corresponding marginal distribution as bi instead of b{i}.

4.4 Local consistency:

Let {br} be some set of distributions which may not necessarily come from a distribution

b. If every two regions r, q ∈ R such that r ⊂ q, satisfy
∑

xq\xr
bq(xq) = br(xr), ∀xr, then

the set of distributions {br} are said to be locally consistent, and are referred to as pseudo

marginals.

11



4.5 Region graph

The set of regionsR constitute the vertices of the region graph as shown in Figure 4.1, and

two regions r ⊂ q ∈ R share an edge if there does not exist any other region s ∈ R such

that r ⊂ s ⊂ q. This condition for edges is useful in removing some redundant equations.

4.6 Kikuchi Free Energy

Assume that a valid collection of regions R, and the corresponding counting numbers are

given.1 Then the KFE for the CSMA distribution, with a fugacity vector v, is defined as

follows.

Definition 1. (Kikuchi Free Energy) Let v be the fugacity vector of CSMA. Then, given

a random variable x = [xi]
N
i=1 on the space of feasible schedules I, and its probability

distribution b, the KFE denoted by FK(b; v) is defined as

FK(b; v) = FK({br}; v) = UK({br}; v)−HK({br}), (4.1)

where the first term, called the average energy, is given by the following weighted expec-

tation

UK({br}; v) = −
∑
r∈R

crEbr

[∑
j∈r

vjxj

]
,

and the term HK({br}), known as the Kikuchi entropy, is an approximation to the actual

1We assume that all the singleton sets are present in the collection of the regionsR. In case, this assump-
tion is not satisfied, one can simply add those missing singleton sets with a counting number 0.

12



entropy H(x), and is given by

HK({br}) = −
∑
r∈R

cr

(∑
xr

br(xr) log br(xr)

)
. (4.2)

The stationary points of the KFE with respect to the regional distributions {br}, con-

strained over the set of psuedo marginals, provide accurate estimates [9] of the marginal

distributions of p(x) in (2.1). In other words, if the set of psuedo marginals {b∗r} is a sta-

tionary point of the KFE FK({br}; v), then they correspond to the estimates of the marginal

distribution of p(x) over the respective regions. In particular, b∗i (xi = 1) provides an esti-

mate of the service rate si corresponding to the fugacity vector v.

13



CHAPTER 5

MAIN RESULTS

In this section, we state our main theorem which explains the connection between our dis-

tributed algorithm for the fugacities, and the Kikuchi approximation. Recall that Ri is

the set of cliques computed in the distributed algorithm at link i. Then, it can be easily

verified that the set of regions given by R := ∪Ni=1Ri, with {cr} computed in (3.1), con-

stitute a valid collection of Kikuchi regions1, and counting numbers. Further, the set of

local consistency conditions can be captured using a region graph with the cliques inR as

its vertices. For example, Figure 4.1 shows the region graph corresponding to the conflict

graph considered in Figure 3.1.

The non trivial step of our algorithm is the formula (3.2) proposed for the fugacities.

The following theorem justifies the proposed formula. If CSMA algorithm employs the set

of fugacities {ṽi}Ni=1 estimated in (3.2), then the service rates obtained by the CSMA, are

close to the desired service rates. This is because, the desired service rates correspond to

stationary point of the KFE defined by {ṽi}Ni=1 as stated below.

Theorem 1. Let ṽ be a set of fugacities that define the Kikuchi free energy FK({br}; ṽ). A

locally consistent set of pseudo marginals {br} will be a stationary point of the KFE if and

only if
∑

j∈r bj(1) < 1,∀r ∈ R, and

exp(ṽi) = bi(1)
∏
r∈Ri

(
1−

∑
j∈r

bj(1)
)−cr

, ∀i, (5.1)

1In fact, the regions computed in this paper are inspired by the cluster variation method [10], which is a
standard algorithm to generate valid regions.



where bi(xi), bj(xj) are the regional distributions corresponding to the singleton region

sets {i}, {j} respectively.

Proof. Recall that a schedule x = {xi} is feasible iff no two adjacent links of the conflict

graph transmit simultaneously. Since all our regions are cliques of the conflict graph, for

any feasible distribution that is locally consistent, we have

br(xr) =



bj(1), if xj = 1, xk = 0,∀k ∈ r \ {j},

1−
∑

j∈r bj(1), if xj = 0,∀j ∈ r,

0, otherwise.

(5.2)

An interesting implication of the above observation is, the KFE Fk({br}; ṽ) in (4.1), which

is in general a function of all the pseudo marginals, can now be expressed as a function of

the singleton marginals alone. Specifically, the average energy is

UK({br}; ṽ) = −
∑
r∈R

crEbr

[∑
j∈r

ṽjxj

]
,

= −
∑
r∈R

cr

(∑
j∈r

ṽjbj(1)
)
,

= −
N∑
j=1

( ∑
{r | j∈r}

cr

)
ṽjbj(1) = −

N∑
j=1

ṽjbj(1).

Similarly, the term corresponding to a region r in the Kikuchi entropy HK({br}) defined

in (4.2) can be expressed as

∑
xr

br(xr) log br(xr)

=
(

1−
∑
j∈r

bj(1)
)

log
(

1−
∑
j∈r

bj(1)
)

+
∑
j∈r

bj(1) log bj(1).

Using this expression, the gradient of the Kikuchi free energy FK({bj(1)}; ṽ) can be com-

15



puted as

∂FK

∂bi(1)
= −ṽi +

∑
{r|i∈r}

cr

(
log bi(1)− log

(
1−

∑
j∈r

bj(1)
))
.

By using the fact that
∑
{r∈R|i∈r} cr = 1, and setting the gradient to zero, the proof is

complete.

Next, we state a corollary of Theorem 1 which derives the fugacities that correspond to

the Bethe approximation framework used in [11]. Specifically, if the collection of regions

R is formed using only the edges and the vertices of the conflict graph, it results in the

Bethe approximation framework.

Corollary 2. For a given set of required service rates, the estimate of the fugacities {vBi }

obtained using the Bethe approximation framework is given by

exp(vBi ) =
si(1− si)di−1∏
j∈Ni

(1− si − sj)
, ∀i,

where the set Ni denotes the neighbours of the vertex i in the conflict graph, and the di

denotes the degree.

Proof. The proof follows by observing a set of valid counting numbers for the regions.

Specifically, the counting number of the regions corresponding to each edge in the conflict

graph can be set to 1, and the counting number of a region corresponding to a vertex can

be set to 1− di. Then using (5.1), the proof is completed.

16



5.1 Accuracy of the Kikuchi approximation

The accuracy of the Kikuchi approximation crucially depends on the choice of the re-

gions. As the collection of regions becomes larger, the accuracy will improve at the cost

of increased complexity. Hence, the major challenge in using this Kikuchi approxima-

tion framework for an algorithm like CSMA is in choosing the regions that are as large

as possible, while retaining the property of distributed implementation. For example, if

the collection of regions include only the edges and the vertices of the conflict graph, the

resulting Bethe approximation is exact for tree graphs. As we have considered larger col-

lection of regions by including the maximal cliques of the graph, the accuracy is expected

to improve. Indeed, we confirm this intuition by proving that our approximation algorithm

is exact for a class of graphs called the chordal graphs, while the Bethe approximation is

exact only for trees (which constitute a special case of chordal graphs).

Definition 3. (Chordal graph) A graph is said to be chordal if all cycles of four or more

vertices have a chord. Here, a chord refers to an edge that is not part of the cycle but

connects two vertices of the cycle.

Theorem 2. If the conflict graph is chordal, the formula proposed in (3.2) gives the exact

fugacities that correspond to the desired service rates, i.e., if we marginalize the p(x)

corresponding to those fugacities, we obtain the required service rates.

Proof. The main idea of the proof is based on a framework called the hypertree reparame-

terization (HR) proposed in [9]. Let us introduce the notion of junction tree that is required

for the HR framework. LetR denote a given collection of regions, andR0 denote the max-

imal regions ofR. A junction tree T = (R0, E) is a tree in which the nodes correspond to

the maximal regions, and the edges are such that for any two maximal regions r, q ∈ R0,

the elements in r ∩ q are part of any maximal region on the unique path from r to q in T .

17



A collection of regionsR is said to satisfy the junction tree decomposition property if it is

possible to construct a junction tree with the maximal regions ofR.

Given a collection of regions R which satisfies the junction tree decomposition prop-

erty, and includes all the intersections of its maximal regions, the HR framework [9] fac-

torizes2 a product form distribution p(x) in terms of its exact regional distributions as

p(x) =
∏

r∈R pr(xr)
cr .

Now, we use the fact that maximal cliques of the chordal graphs satisfy the junction tree

decomposition property [9]. Hence, the distribution p(x) defined in (2.1) can be factorized

in terms of the collection of cliquesR computed earlier:

1

Z(v)
exp

(∑
j

vjxj

)
=
∏
r∈R

pr(xr)
cr , ∀x ∈ I. (5.3)

Substituting x = [xj]
N
j=1 with xj = 0 for all j ∈ N in (5.3), along with the observations

made in (A.1), we obtain

Z(v)−1 =
∏
r∈R

(
1−

∑
j∈r

pj(1)
)cr

. (5.4)

Similarly, substituting x = [xi]
N
i=1 with xi = 1, xj = 0 for all j ∈ N \ {i} in (5.3), and

using (A.1), we obtain

exp(vi)

Z(v)
=
∏
q∈Ri

(pi(1))cq
∏

r∈R\Ri

(
1−

∑
j∈r

pj(1)
)cr

. (5.5)

2This factorization is proposed in [9, page 101] using the terminology of mobius function. It can be easily
argued that the factorization that we use here is equivalent to that in [9].

18



From (5.4), (5.5), and the fact that
∑

q∈Ri cq = 1, we obtain

exp(vi) = pi(1)
∏
r∈Ri

(
1−

∑
j∈r

pj(1)
)−cr

.

Since, the service rate si is to be obtained as the marginal pi(1), the exact fugacities and

the corresponding service rates are related by the above equation. It can observed that our

estimate of fugacities (3.2) follows the same relation, and hence our algorithm is exact for

chordal graphs.
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CHAPTER 6

NUMERICAL RESULTS

6.1 Simulation Setting:

We generate random geometric graphs of size 20 on a two dimensional square of length

three as shown in Figure 6.1 . Two vertices are connected by an edge if they are within

a distance of 0.8. We present the results for random network topologies shown in Figure

6.2, 6.4,6.6 and 6.8. We consider symmetric service rate requirements for all the links, and

execute the proposed distributed algorithm to compute the fugacities.

6.2 Approximation error:

We define the approximation error e(st), as the maximum deviation from the required

service rate, among the links whose service requirements are not met. In particular, for a

given target service rate vector st = [sti]
N
i=1, e(st) = max

i
(sti − sai ), where, sa = [sai ]

N
i=1

are the service rates supported by using the approximated fugacities {ṽ}Ni=1. We vary the

load (the fraction of the maximum permissible service rate) of the network by increasing

the required service rates, and plot the percentage error in Figure ??. We compared the

accuracy of our algorithm with the existing Bethe approximation based algorithm [11].

For random graph in Figure 6.2 containing many big loops,from simulation results

in 6.3 we observe that Kikuchi approximation gives less error than Bethe approximation.

Also for random graph in Figure 6.4 containing few loops of sizes between 3 to 5,from
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Figure 6.1: Example of randomly generated 20 node graph

simulation results in 6.5 we observe that Kikuchi approximation gives less error( 5 per-

cent) than Bethe approximation(40 percent). Similarly for random graph in Figure 6.6

containing random loops,from simulation results in 6.7 we observe that Kikuchi approxi-

mation gives relatively less error than Bethe approximation. As proved in Theorem 2, our

algorithm is exact if the underlying conflict graph is chordal. This result is verified using a

randomly generated chordal graph shown in Figure 6.8. As shown in Figure 6.9, the Bethe

approximation based algorithm incurs an error of up to 27 percent as the network oper-

ates at the maximum capacity, while our Kikuchi approximation based algorithm is exact.

These numerical simulations have to extended to many sets of graphs of different types and

it has been observed than in all cases Kikuchi performs better than Bethe approximation

i.e Kikuchi approximation gives less error compared to Bethe approximation.
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Figure 6.2: Randomly generated graph with 20 nodes and loops of sizes 3,4 and 5
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Figure 6.3: Simulation results indicating less error for Kikuchi compared to Bethe approx-
imation
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Figure 6.4: Randomly generated graph with 20 nodes and few loops
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Figure 6.5: Simulation results indicating less error for Kikuchi compared to Bethe approx-
imation
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Figure 6.6: Randomly generated graph with 20 nodes
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Figure 6.7: Simulation results indicating less error for Kikuchi compared to Bethe approx-
imation
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Figure 6.8: Randomly generated Chordal graph with 20 nodes
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Figure 6.9: Simulation results indicating exactness of Kikuchi for Chordal class of graphs
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CHAPTER 7

CONCLUSIONS

We addressed the problem of computing the CSMA attempt rates to support a desired

service rate vector. We proposed a simple distributed algorithm, which obtains closed

form estimates for the attempt rates. We also proved that our algorithm is exact for a

class of graphs, called the chordal graphs. Our algorithm is based on the well-known

Kikuchi approximation framework. Numerical results suggest that, for spatial networks,

which naturally contain many short loops, our algorithm outperforms the existing Bethe

approximation based algorithms.



APPENDIX A

CLIQUE SPECIAL PROPERTY

Clique is a class of graphs where every node in graph is connected to every other node

in graph. This class of graphs have an unique advantage for local fugacities computation

since local fugacitiy expression turns out to be a simple formula.

Since every node is connected to every other node in graph,to avoid conflicts at any point

only one of the node should be ’ON’ or there can be a case where none of them are ’ON’.

This makes the feasible region of cliques to be only one node ’ON’ and no node ’ON’

conditions. Now, to satisfy service rate expression, for all the one node ’ON’ scenarios we

have

br(xr) = bj(1), if xj = 1, xk = 0,∀k ∈ r \ {j}

where schedule xr is schedule where only one node is ’ON’.

All other two or more node ’ON’ scenarios are non-feasible thus giving

br(xr) = 0

Thus the only scenario of no node ’ON’ takes value of

br(xr) = 1−
∑
j∈r

bj(1), if xj = 0,∀j ∈ r

to ensure sum of all local fugacities i.e sum of probabilities of all possible scenarios leads

to one.



Thus,local fugacities for clique region turns out to be a formula given as,

br(xr) =



bj(1), if xj = 1, xk = 0, ∀k ∈ r \ {j},

1−
∑

j∈r bj(1), if xj = 0,∀j ∈ r,

0, otherwise.

(A.1)
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APPENDIX B

FUTURE WORK

The work done till now focuses on considering cliques as regions. This approach leads to

less error than Bethe approximation thus standing as better approximation. This method of

considering cliques as regions covers edge regions as Bethe does and also in addition takes

in cliques as regions thus eliminating loops of size 3(which are cliques) leading to better

accuracy. Based on the fact that loops in a graph are reason for error in Bethe approxima-

tion we have to try and cover all such loops for better accuracy. In accordance with this

idea, a concept of generalized region based approximation is being worked on where not

just cliques but also other regions are considered thus making it even more accurate than

clique based Kikuchi approximation. For instance, consider an extended version of clique

based approximation where we consider loops of size 4 along with cliques as regions. This

method eliminates loops of size 3 and 4 and since any loops of greater size do not have

much effect this approximation works very well and gives very less error compared to

clique based Kikuchi approximation. But the trick here is that since fugacity/service rate

at node depends on local fugacities of regions that node is involved in, we need an easy ap-

proach to compute local fugacities of regions we consider. This extended method proposes

use of cliques and 4-loops as regions. But here,local fugacities of clique region is easy

to compute(as stated in Appendix A) and also local fugacities of nodes in 4-loop reduce

down to a simple closed from expression thus making computation of fugacities easier and

the method on a whole to be more accurate than all existing methods. On similar grounds,

further work is being done to see if any other regions can be included which can lead to

further improvement in accuracy while still maintaining the property that computation of

local fugacitites is easy.
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Figure B.1: Randomly generated graph with 20 nodes and lots of loops

Correspondingly,a simulation of this new method is done on a randomly generated 20

node graph containing lots of loops as shown in Figure B.1. We can observe from simu-

lation results in Figure B.2 that loop region based approximation method is more accurate

than both Bethe and also clique based Kikuchi approximation thus giving a smaller error

than all existing approximations.

Further work and simulations are being done in search of best generalized region based

approximation method.
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