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Abstract

Vocal Tract Length Normalization (VTLN) for standard filterbank-
based Mel Frequency Cepstral Coefficient (MFCC) features is usually im-
plemented by warping the center frequencies of the Mel filterbank, and the
warping factor is estimated using the maximum likelihood score (MLS)
criterion. A linear transform (LT) equivalent for frequency warping (FW)
would enable more efficient MLS estimation. In this study, a novel LT
to perform FW for VTLN is analysed. The study is based on ”VTLN
Using Analytically Determined Linear-Transformation on Conventional
MFCC” by S.Umesh and D.R.Sanand, IEEE TRANSACTIONS ON AU-
DIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 5,
JULY 2012

1 Introduction

Automatic speech recognition systems must be able to cope with consid-
erable variation among speakers, major sources of this inter-speaker acoustic
variation are physiological factors such as gender and vocal tract length. Vo-
cal tract length normalization is one of the easiest ways of doing fast speaker
adaptation. The underlying idea is simple.

Resonances in an acoustic tube (such as the vocal tract) are inversely propor-
tional to the length of the tube. Thus, as female vocal tracts are 10-15% shorter
than male vocal tracts, resulting female formant positions are higher than the
equivalent male formant positions. Given the all in all moderate variations in
vocal tract length, the effect of vocal tract length variation can be modeled
well by a linear warping of the frequency axis. VTLN tries to normalize the
position of the formant peaks by warping the spectrum to represent an average
vocal tract. Hence by warping a spectrum by a speaker specific warping factor,
typically towards a global average vocal tract length, we obtain a ’normalized’
(wrt. vocal tract length) spectral estimate. By normalizing out this physio-
logical influence the obtained spectral estimates are more homogeneous across
speakers and hence more suitable for recognizing the acoustic phonetic content.
The linear warping itself can be incorporated into the filterbank that is used to
convert from linear frequency to mel frequency.

The main advantage of feature normalization is that the number of param-
eters to be estimated from the adaptation data is generally smaller compared
with the standard model based adaptation techniques. Hence, adaptation can
be carried out with very little adaptation data.
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2 Conventional VTLN

2.1 Computation of Mel-Frequency Cepstral Coefficients

The first step in any automatic speech recognition system is to extract fea-
tures i.e. identify the components of the audio signal that are good for iden-
tifying the linguistic content and discarding all the other stuff which carries
information like background noise, emotion etc. Steps involved in determina-
tion of MFCCs:

1. Frame the signal into short frames.

2. For each frame calculate the periodogram estimate of the power spectrum.

3. Apply the mel filterbank to the power spectra, sum the energy in each
filter.

4. Take the logarithm of all filterbank energies.

5. Take the DCT of the log filterbank energies.

6. Keep DCT coefficients 2-13, discard the rest.

Mel Frequency Cepstral Coefficients (MFCCs) are a very popular choice of
features used for automatic speech recognition. Standard MFCCs are computed
as shown in Fig.1, and the Mel filterbank is shown in Fig.2. The filters are
assumed to be triangular and half overlapping, with center frequencies spaced
equally apart on the Mel frequency scale. The Mel scale was derived from
experiments on pitch perception (frequencies which are spaced equally apart
according to pitch) and is calculated from the regular frequency scale using the
formula,

mel(f) = 1125 ∗ log(1 +
f

700
) (1)

During MFCC feature extraction, the speech signal is pre-emphasized and
divided into frames and each frame is first windowed using the Hamming win-
dow. The short-time power spectrum vector P is obtained from the squared
magnitude of the FFT of the windowed frame. The log of the filterbank out-
puts is obtained as:

L = log(F.P ) (2)

where F is the Mel filterbank matrix. Here, we use the notation that the log
of a vector is the log applied to each component. The MFCCs are then given
by

c = D.L (3)

c = D ∗ log(F.P ) (4)

where D is a type-II DCT matrix. The final feature vector x used for recogni-
tion, typically consists of the MFCCs and their first and second time derivatives,
often called the deltas and delta-deltas:
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Figure 1: Plot of Mel Filterbank and windowed power spectrum.

Figure 2: A Mel-Filterbank containing 10 filters. This Filterbank starts at 0Hz
and ends at 8000Hz.
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The delta cepstra are computed using the following formula

∆ct =

∑K
k=1 k(ct+k − ct−k)

2
∑K
k=1 k

2
(5)

This approximation of the time derivative is obtained by fitting a second
order polynomial to a sequence of 2K + 1 cepstral coefficients. ∆2c is similarly
calculated from ∆c.
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Figure 3: Conventional frame work for generating warped features in VTLN.

Figure 4: Illustrating the change in the filter-bank structure with VTLN-
warping in linear-frequency (Hz) domain.

2.2 Computation of Conventional VTLN Features

VTLN features are originally obtained in the original method of Andreou
et al. [1], by frequency-warping the magnitude spectra P to get Pα before
applying the unwarped Mel filter-bank. This is done by re-sampling the signal.
Therefore, in this case the signal is warped for each VTLN warp-factor, while
the Mel filter-bank is left unchanged.

Lee and Rose [2] proposed an efficient alternate implementation, where the
Mel filter-bank is inverse-scaled for each , while the signal spectra is left un-
changed as shown in Fig.3. This is the most popular method of VTLN-warping.
Therefore, in the Lee-Rose method, VTLN warping is integrated into the Mel
filter-bank and Fαdenotes the (inverse) VTLN-warped Mel filter-bank. Conven-
tionally the warp-factor, α, used for warping the spectra is in the range of 0.80
to 1.20 based on physiological arguments. For each α, the center frequencies and
bandwidths of the Mel filter-bank are appropriately scaled to obtain Mel- and
VTLN-warped smoothed spectra [2]. The change in the filter-bank structure
for different warp-factors is illustrated in Fig.4. The slope in the last filter has
been modified appropriately using piece-wise linear warping, so that the Nyquist
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Figure 5: Piece-wise linear warping function used in conventional VTLN.

frequency maps onto itself after frequency scaling. This avoids the bandwidth
mismatch that arises due to frequency warping. The piece-wise linear warping
function used in our experiments is given by

fα<1 =

{
αf, if f ≤ Fcu
αFcu + FN−Fcuα

FN−Fcu (f − Fcu), otherwise

fα>1 =

{
αf, if f ≤ Fcu/α
Fcu + FN−Fcu

FN−Fcu/α (f − Fcu/α), otherwise

and is shown in Fig.5. Fcu represents the cutoff frequency where the slope
is changed and FN is the Nyquist frequency. The warped cepstral features Cα

are given by

Cα = D[log(Fα.P )] (6)

These are obtained by first warping and smoothing the power spectrum,
followed by log and the DCT operations. The filterbank is integrated with
both Mel- and VTLN-warping, to perform smoothing as well as scaling of the
spectrum. For the case of α = 1.00, Cα exactly corresponds to the case of
conventional MFCC without VTLN warping. From (4) and (6), the relation
between Cα and C is given as

Cα = D[logFα(F−1.exp(D−1.C1.00))] (7)

A linear-transformation between Cα and C1.00 can be derived if all the
intermediate operations can be represented as linear operations, but from (7),
it is evident that log is a nonlinear operation and in practice F−1 does not exist.
This is because, the power-spectrum P cannot be completely reconstructed from
the filter-bank outputs because of the smoothing operation.

We need to obtain P , since conventional VTLN warping relations are always
specified in the linear-frequency (Hz) domain, usually through a mathematical
relation of the type fα = gα(f), where fα is the warped-frequency and gα(f) is
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the frequency warping function. Therefore, in this case, it is not possible to com-
pletely recover P from the filter-bank output and hence a linear-transformation
is not possible.

2.3 Examples of Normalized Frequency Warping Func-
tions

Piecewise Linear: These are the type of Frequency Warping functions that
are commonly used in VTLN.

θp(λ) =

{
pλ, 0 ≤ λ ≤ λ0
pλ0 + 1−pλ0

1−λ0
(λ− λ0), λ0 < λ ≤ 1

Linear: This FW can be used for adaptation from adult models to chil-
dren’s models, where the original models have more spectral information than
necessary for children’s speech. For p ≤ 1,

θp(λ) = pλ, 0 ≤ λ ≤ 1 (8)

Sine-Log Allpass Transforms (SLAPT): SLAPT frequency warping functions
are capable of approximating any 1-1 arbitrary frequency warping function, and
are therefore suitable for multi-class adaptation or the adaptation of individual
distributions. The K-parameter SLAPT, denoted SLAPT-K, is given by:

θp(λ) = λ+

K∑
k=1

pksin(πkλ) (9)

3 Previous works on VTLN

Recently there have been many types of linear transformation approaches
proposed for VTLN. Pitz and Ney[3] have proposed a method for analytical
computation of the linear transformation in the continuous frequency domain.
In continuation Umesh.et.al[4] have showed that assuming que-frency limited-
ness and using the idea of band-limited interpolation to implement the method
of Pitz and Ney in discrete-domain. They exploit the idea of separating the
smoothing and warping operations, which requires modification in the signal
processing for extraction of cepstral features. Though the method was basically
aimed at the discrete implementation of the method proposed by Pitz and Ney,
the method could be easily modified to work in the conventional frame work
with out any modification in the signal processing.

For standard MFCC features, because of the non-invertible filterbank with
non-uniform filter widths, even with the assumption of quefrency limitedness,
the MFCC features after warping cannot even be expressed as a function (linear
or non-linear) of the unwarped MFCC features. For a given warping of the linear
frequency signal spectrum, there is not a single function (for all possible cepstra)
that will give the warped cepstra from the unwarped cepstra. An exact inverse
transformation of the mel-FB smoothed spectrum is not possible. We cannot
construct the original power spectrum from the smoothed spectrum. Another
problem is the presence of a logarithm (non-linear operation), which can not be
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represented as a matrix operation. Hence, approximate linear transforms have
been developed for frequency warping with MFCC features (Claes et al., 1998;
Cui and Alwan, 2006; Umesh et al., 2005).

Panchapagesan[5] proposed the idea of incorporating the transformation into
the DCT matrix. Here he assumes the linear-warping relation, defined in the
frequency Hz domain between the speakers to be true in the mel-frequency do-
main, which needs clarification and is not valid. Sanand.et.al[6] have proposed
the idea of using dynamic frequency warping for obtaining a linear transfor-
mation. They also exploited the idea of separating smoothing and warping
operation, hence modified the signal processing in the feature extraction.

While the methods in [4] and [5] do not require knowledge of the closed form
equation for frequency warping function, they do require knowledge of the exact
mapping between unwarped and warped discrete frequencies. This means the
correspondences between warped and unwarped frequencies at certain discrete
points are assumed to be known, but not the exact functional relation between
them.

In the next section, the separation of the frequency warping operation from
the filter-bank avoiding the need to invert the filter-bank operation or the loga-
rithm is discussed which allows us to derive a linear transformation on conven-
tional MFCC.

4 Analytically Determined VTLN Warping

4.1 Band Limited Sinc Interpolation

Bandlimited interpolation of discrete-time signals is a basic tool having ex-
tensive application in digital signal processing. In general, the problem is to
correctly compute signal values at arbitrary continuous times from a set of
discrete-time samples of the signal amplitude. In other words, we must be able
to interpolate the signal between samples. Since the original signal is always
assumed to be bandlimited to half the sampling rate, (otherwise aliasing dis-
tortion would occur upon sampling), Shannon’s sampling theorem tells us the
signal can be exactly and uniquely reconstructed for all time from its samples
by bandlimited interpolation.

We review briefly the ”analog interpretation” of sampling rate conversion
on which the present method is based. Suppose we have samples x(nTs) of a
continuous absolutely integrable signal x(t), where t is time in seconds (real),
n ranges over the integers, and TS is the sampling period. We assume x(t) is
bandlimited to ±FS/2, where FS = 1/TS is the sampling rate. If X(ω) denotes
the Fourier transform of x(t), i.e.,

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt (10)

then we assume X(ω) = 0 for |ω| ≥ πFS . Consequently, Shannon’s sampling
theorem gives us that x(t) can be uniquely reconstructed from the samples
x(nTS) via

x(t) =

∞∑
n=−∞

x(nTs)hs(t− nTs) (11)
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where hs(t) = sinc(Fst)
To resample x(t) at a new sampling rate FS = 1/TS , we need only evaluate

Eq.11 at integer multiples of TS .

4.2 A Mel-Filterbank Approach

In the Mel-frequency domain, the continuous Mel-warped logcompressed
spectrum, L(v) , can be interpreted as the convolved output of a triangle func-
tion on the Mel-warped magnitude spectrum and followed by a log operation on
the amplitudes. We can think of vector as being obtained by uniformly sampling
L(v) at vi = 2πi/N where i = 0,1,....,(N-1) and the positions of these samples
exactly correspond to the center frequencies of the filter-bank. Because of the
triangle smoothing and subsequent log-operation on the output (which reduces
dynamic range), the que-frency content of this -compressed smoothed spectrum
is only in the low que-frency region.

Figure 6: Framework of Analytically Determined VTLN.

During VTLN-warping, the filter center frequencies are appropriately scaled
in the linear-frequency (Hz) domain by inverse − α. This corresponds to the
center frequencies of the filter-bank to be non-uniformly spaced in the Mel-
frequency domain. As we represent the log-compressed Mel-warped smoothed
magnitude spectrum by the continuous function L(v), the output of the VTLN-
warped filterbank corresponds to sampling L(v) nonuniformly, L[vαi ] . These
nonuniformly spaced samples exactly correspond to the elements of the vector
Lα.

The elements of vector L (i.e., L[vi] ) can be interpreted as uniformly spaced
samples and elements of Lα(i.e., L[vαi ]) as nonuniformly spaced samples of the
same continuous function L(v). The main idea is that, given the samples in
L, the samples (or elements) in Lα can be reconstructed using band-limited
interpolation provided that the cepstrum is que-frency limited.

Let L(v) and H form a discrete-time Fourier transform (DTFT) pair. Then
sampling L(v) would result in periodic repetition of H. As long as H is strictly
que-frency limited and the sampling rate is sufficiently high, then there is no
aliasing in the cepstral domain. In such a case, the value of L(v) at any Mel-
frequency vαi can be found from its uniformly-spaced samples at vi through
band-limited interpolation. This is basically exploiting the sampling theorem,
where a signal (in this case a frequency domain signal) can be reconstructed
from its samples using Sinc-interpolation. H is nowhere used for any calculation
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purposes and is presented here only for better understanding in the derivation
of the band-limited interpolation matrix.

The que-frency limitedness ensures that there is no overlap in the periodic
repetition of H (i.e., no aliasing), and hence Lα can be exactly recovered. The
que-frency limitedness property depends both on the amount of smoothing done
by the Mel-filters (which controls the number of significant cepstral coefficients)
and on the number of Mel-filters which determines the periodicity. If there is
aliasing, there will be differences between Sinc-interpolated Lα and the actual
values.

4.3 Calculation of Linear Transformation Matrix

Let v0, v1, v2, v3...vN−1, represent the uniformly-spaced Mel frequencies with
samples of L(v) at these points being elements of vector L. Their correspond-
ing linear-frequencies (Hz) are nonuniformly spaced and are represented by
f0, f1, f2, f3...fN−1. These are the center frequencies of the Mel-filters in the
linear-frequency (Hz) domain and are related through the standard Mel-relation,
i.e.,

vi = 1125loge(1 +
fi

700
) (12)

During VTLN-warping, the warping function gα(f) is applied to obtain the
warped frequencies. Let, fαi = gα(f) represent the warped frequencies in the
linear-frequency (Hz) domain. The corresponding VTLN-warped center fre-
quencies of the filters in the Mel-frequency domain (vαi ) will not be related
through a linear scaling relation, since

vαi = 1125loge(1 +
gα(fi)

700
) (13)

Therefore, while fαi = gα(f) = αfαi for the linear scaling relation (i.e., along
x axis), along y-axis vαi 6= α(vi) as seen from (12) and (13).

The Fourier relation between H and L is given by

hk =
1

2N − 2

2N−3∑
i=0

L[vi]e
j2π

vi
2vs

k (14)

where vs is the Nyquist frequency in the Mel frequency domain. Here, we
assume that the signal is periodic with a period of 2N−2and symmetric around
N−1. Therefore, theoretically half-filters are present at indices 0 and N−1. The
values at these indices are required for performing band-limited interpolation.
If, we assume that H is que-frency limited, the elements of Lα can be determined
as

L[vαj ] =

2N−3∑
k=0

hke
−j2π

vαj
2vs

kj = 0, 1, ...2N − 3 (15)

Substituting hk of (14) in (15), we get

L[vαj ] =

2N−3∑
i=0

TαjiL[vi] (16)
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where Tαji is,

Tαji =
1

2N − 2

2N−3∑
k=0

e−j2π
vαj
2vs

kej2π
vi
2vs

k (17)

5 Implementation in KALDI

The Simulation accomplished in MATLAB was taken to a further level in
the form of a C code, which could be used in KALDI to automate the process
of VTLN and check results.

The main objective of the code was to derive the Linear transformation
matrixes for the various values of alpha and store it in a file accessible to the
routine code of KALDI.

The inputs that can be given in as arguments are

1. Sampling frequency of the speech signal

2. Low frequency: Lower bound for frequency

3. High frequency: Upper bound for frequency

4. Warp inflection frequency: Cutoff frequency used in the calculation of
warping function

5. Num-bins: number of filters in the Filter-Bank

6. Num-ceps: number of cepstral coefficients taken after DCT

7. Start-alpha: Starting value of range of warping coefficients (α)

8. End-alpha: Ending value of range of warping coefficients (α)

9. Alpha-dist: distance/difference between two consecutive α

10. Cepliftering parameter

11. Delta: whether to include delta & delta-delta information in the matrix

12. Linearity: whether to store the matrix in an order linear to alpha or inverse
to alpha

The Value of logarithm of the determinant of the matrix was also required
in the specified format of KALDI. Since the matrices were large but almost
sparse, LU decomposition method was used to calculate the logdet value for
each warping factor.

The matrices were computed depending on the values input in the command
line arguments and were stored in a format compatible with KALDI.

For the experiments, matrices of size 13 as well as 40 bins were tried. Cases
of the matrices including and excluding delta and delta-delta features were con-
sidered. Hence matrices of size 13x13, 39x39, 40x40 and 120x120 were used for
Analytically Determined VTLN. Surprisingly we got the best results for 13x13
case rather than 40x40 and hence 13x13 results are used for inference in the
next section.
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6 Results

The resemblance between the plot of coefficients generated by the conven-
tional method and the ones generated by Analytically determined VTLN warp-
ing method signifies accuracy and efficiency of the new method.

Figure 7: MFCC: Conventional vs Analytically Determined.

Figure 8: Transformation Matrix: Conventional vs Analytically Determined.

The use of such matrices also enables the warp-factors to be estimated by
accumulating the sufficient statistics, there by simplifying the procedure for
optimal warp-factor estimation and reducing the computational complexity by
75%. Further, VTLN matrices can be used in regression tree framework to
perform VTLN at acoustic class level, allowing estimation of multiple warp-
factors for a single utterance which is very difficult to implement in conventional
VTLN framework.
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Table 1: 13 Bins Dev and Test Results

DEV TEST
MONO 31.6 32.4
TRI1 24 26.3
TRI1 KALDI VTLN 23.3 25.1
TRI1 LVTLN 23.6 25.5
TRI2 22.7 24.1
TRI2 KALDI VTLN 21.8 23.3
TRI2 LVTLN 22.5 23.9

The results obtained from the experiments have not been up-to par with
the expectations. Upon further investigation, it was found that the inbuilt
warping factor (α) estimator in KALDI is not compatible with the way the
Linear Transformation Matrices are generated.

The current VTLN model implemented in KALDI determines the Linear
Transformation Matrices by generating a set of warped features for various
values of alpha and a different set of unwarped features. Using these generated
sets, KALDI tries to estimate the possible values of the Linear Transformation
Matrix for each value of alpha, which then is later on used for the process of
VTLN. During this process many key information and values are calculated and
stored which are then used for the estimating the appropriate value of α for a
particular segment of speech belonging to a user. Once the warping factor is
estimated, it is tagged as the value of α for the particular user.

Since for the process of α estimation, KALDI uses the intermediate informa-
tion which is not calculated in the New method of VTLN, it is not compatible
with the Analytically Determined VTLN warping and is hence results are not
upto the mark.

But according to the Fig.7 and Fig.8, the filters generated in the new method
should work better as compared to the ones generated by KALDI. Hence a
proper α estimator for the new VTLN warping techniques will defintely improve
the performance and give better results.
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