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ABSTRACT

KEYWORDS: Online algorithms; Budgeted matching; Adwortligibile offload-

ing; Greedy algorithms

We consider a problem where multiple servers have indiVidagacity constraints,
and at each time slot, a set of jobs arrives, that have pathndifferent weights to
different servers. At each time slot, a one-to-one matchiag to be found between
jobs and servers, subject to individual capacity condisain an online manner. The
objective is to maximize the aggregate weight of jobs albto servers, summed across

time slots and servers, subject to individual server capaonstraints.

For this general problem, we give a randomized online algarthat is5-competitive
in expectation. Much of previous work on the problem eithesumes randomized ar-
rivals, or that the job weights are much smaller than serapacities. Our guarantee,
in contrast, holds for worst-case inputs, and does not reguy assumptions about job
weights. For the special case of identical servers and sreadjht jobs, we show that
a load-balancing algorithm is optimal. We also considerctme when assignments are
temporary — each job arriving has a fixed span in which it caresiresources. This
models, e.g., the completion of jobs by the servers. We shaivdur algorithm can
be extended to obtain a 12-competitive algorithm for the ealsen each node has the
same span, and 3 (log Zﬁ)-competitive for the general case, wherg,, and s,

are the maximum and minimum spans respectively.
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CHAPTER 1

INTRODUCTION

We study a basic online resource allocation problem mato/aly a number of applica-
tions, where the goal is to maximize utilization of capaeithresources that are avail-
able ahead of time (offline). In each time step, a set of jolisea (online) that have
to be matched instantaneously and irrevocably to the setganaximize capacity uti-
lization subject to individual server capacity constrairExamples of such applications
include online ad auctions with multiple slots, crowdsaogowith multi-agent tasks,
and scheduling parallel tasks on multi-processor systevaesdescribe these applica-
tions in detail later). In each of these, a set of capacits¢eders is available offline. At
each time step, a set of requests arrives that must be iablyoassigned to the servers,
and each request has a different weight (or processing tie@@nding on its assign-
ment. Crucially, at each time step, the assignment must batehing: each server can
be assigned at most one request, and each request can beeddsigit most a single
server. The objective is to maximize the total weight of esjs allocated, without
exceeding the capacities. We call this general problem thiee budgeted repeated

matching (OBRM) problem.

As is standard in online problems, we use the competitivie rat the worst-case
ratio over all instances of the optimal value of the objextie the value obtained by the
algorithm — as our metric for performance. In general resewllocation problems,
requests have both weights and values, and the goal is &theximize value subject
to constraints on the weight (as in many versions of the s&agr@roblem, (Babaioff
et al, 2007)), or to minimize some function of the weight (as inimalmakespan min-
imization (Aspne<t al, 1997)). However there are strong lower bounds on the com-
petitive ratio obtainable for these problems with arbyreaputs. Thus prior work on
these general resource allocation problems require agguman the input, and either
restrict the requests to have small weight, or require tlderoof request arrivals be

randomized.



However, in the applications we study, the value and weighefch request co-
incide, and the goal is to maximize the weight of requestscatied, or equivalently,
utilization of the resources. In this case, we show in thiggpahat good performance
guarantees can be obtained without the earlier assumptiastead of randomized ar-
rivals, we construct a randomized algorithm that perforned a expectation on any
input. While the coincidence of values and weights for retgiallow for competitive
algorithms on worst-case inputs, the presence of matctungtints further differen-

tiates the OBRM problem from prior work on online algorithms

Indeed, in the absence of matching constraints, OBRM regdiacthe well-studied
online budgeted allocation problem. It is known that a semgleedy algorithm i /2-
competitive (Lehmanrt al., 2006; Mehtaet al, 2007) for the latter problem. This,
however, assumes that capacity constraints are violablehd budgeted allocation
problem, the weight of requests allotted to a server caneskite capacity, and in this
case the server’s contribution to the objective is its caypalt is easily seen that with-
out this relaxation, as in our case, where the weight of retgueannot exceed server

capacity, no deterministic algorithm is competitive evend single server.
We briefly describe some applications for the OBRM problem.

1. ad-auctions with multiple slots: When a keyword is entered in a search en-
gine, an auction is instantly conducted among advertiseselkect an ad to be
displayed. Advertisers have limited budgets, and have @evar each keyword
which is revealed when the keyword is entered. The goal isaximize revenue
subject to their budgets. In particular, the total valuelbkeywords assigned to
any one advertiser can be more than its budget, but in whish tee advertiser
is only charged as much as its budget. In ad auctions withipheilots, there
are multiple slots for advertisements for each keywordesgonding to positions
on a webpage. Advertisers have different values for eactvéeyand each slot,
and have no value if their advertisements appear in mulsifgts for the same
keyword. Thus, multiple slots appear in each time step, aadible allocations
correspond to matchings between advertisers and slots.afpieation is de-
scribed in more detail by Mehet al. (2007).

2. delayed mobile offloading: Consider the wireless networking scenario where
there are a number of mobile phones at different locaticash ®f which needs
to download a certain amount of data by a deadline. Theravargypes of access
providers (APs) available at various geographical locetiq1) licensed 3G/4G
basestations that provide costly connections, and (2) A6Eess points that can
be used cheaply by mobiles to download data (e.g., seelak(2013); Deng
and Hou (2015)). For each mobile, if the data demand is notmyéte deadline
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using only the WiFi APs, then the mobile uses the 3G/4G catoreto download
the rest of the data. The goal is to maximize the sum of the tdatsferred to
all mobiles from only the WiFi APs within their respectiveadiines (that may
or may not be the same). This problem is equivalent to OBRM;dnsidering
servers as mobile phones and jobs as WiFi APs, where thedataldemand of
each mobile is the server capacity and the data rate that aARilEan provide
to a particular mobile is the weight on the edge connectirgniiobile and AP.
Depending on relative locations of WiFi APs and mobiles, &xcan provide very
different data rate to different mobiles, hence the weightedges incident on the
same job can be very different. Moreover, the weights alsgmgh across slots
because of mobility of users. To model the different deadliof each mobile,
we consider the case when each server has a finite span ofioperatime for
which it is active. The problem as before, is to associaté éde to only one
mobile in each time slot that maximizes the sum of the datasteared to all
mobiles from only the WiFi APs within their deadlines. We ethat in practice
each WiFi AP can actually serve more than one mobile (seatezach time with
time-sharing, which is in contrast to the matching constriai OBRM, however,
for lack of space we don’t consider that case here.

1.1 Contributions

We make the following contributions in this paper.

e We propose a simple greedy algorithm for OBRM that is shovlretycompetitive,
whenever the weight of any job is at most half of the corregipunserver capac-
ity. In fact, we prove a more general result that if the weightiny job on a
server is at most times the corresponding server capacity, the greedy atgori
is (1 + ﬁ)-competitive. We show via an example that our analysis o&the-
rithm is tight.

e For the unrestricted edge weights case, we propose a raneldwersion of the
greedy algorithm and show that it G6scompetitive when the job weights are ar-
bitrary against ambliviousadversary, that decides the input prior to execution of
the algorithm. That is, the adversary decides the inputrbdafe random bits are
generated. For our algorithm, we define a jothaavyfor a server if its weight
is more than half of the server capacity, digiht otherwise. Our randomization
is rather novel, where a server accepts or rejects heavydgbsnding on a coin
flip. Typically, the randomization is on the edge side, whaameedge is accepted
or not depending on the coin flips.

A simple example (Example 3.1) shows that no determinisgicrghm has bounded
competitive ratio when the job weights are arbitrary, anebaension of this gives
a lower bound of 2 for OBRM for randomized algorithms.

e When each server has identical capaditgnd isparallel, that is, a job has the
same weight on every server, we give a deterministic O(e)-competitive al-

3



gorithm, wherer is the maximum job weight. Thus # — 0, this algorithm is
nearlyoptimal

e Lastly, we consider the case when jobs have finite span itiaddo their weight,
and release the resources consumed at the end of their sgensefver ca-
pacity is thereafter available for other requests. If dllgdave the same span,
then we show that our algorithm i2-competitive. If they have unequal spans,
and the maximum and minimum spans are given to the algoritvegbtain an
O(log Ssm#)-competitive algorithm, where,,., ands,,;, are the maximum and
minimum spans respectively.

1.2 Related Work

Most related to our work is the paper by Buchbindégrl. (2007) who give an online
algorithm based on primal-dual techniques for the ad afioogroblem with multiple

slots. Their competitive ratio depends &,.., the ratio of the maximum bid to the
minimum budget of any advertiser, and goes to zer®as, increases. However, for
small values of?,,...., their competitive ratio isef—l, which is optimal. The ad allocation
problem was earlier introduced by Melggal. (2007) with a similar competitive ratio

for the single-slot ad allocation problem (popularly knosgitheadwords problem).

For stochastic input with known distribution, OBRM with gle job arrival at each
time has also been studied extensively in literature Agghet al. (2011); Devanur
and Hayes (2009); Feldmaat al. (2010); Haeupleet al. (2011); Mehta and Panigrahi
(2012). Assuming small edge weight, Devanur and Hayes (26@8dmaret al.(2010)
achieve near optimal+ o(e) competitive ratio, while Mehta and Panigrahi (2012) gives
a 1/.567 competitive ratio. The case when estimates are unreligsebeen studied
in Mahdianet al. (2007). From a resource allocation or crowdsourcing jobcimaty
perspective, OBRM with single job and stochastic input hesnbstudied in Tan and
Srikant (2012); Jaillet and Lu (2012) and Ho and Vaughan 220h a minor departure
from other work, Tan and Srikant (2012) allowed a little Histack in terms of capacity
constraint and showed that the derived profit is within(a) of the optimal profit while

allowing constraint violations aP (1 /e).

The offline version of our problem is a special case of a s@paessignment prob-

lem (SAP) (Fleischeet al,, 2006). An SAP is defined by a setwohins and a set afz
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items to pack in the bins, with valug; for assigning iteny to bini. In addition, there
are separable constraints for each bin, describing whibketiof items can fit in that
bin. The objective is to maximize the total value of itemskeatin the bins, subject to
the bin constraints. The online version of SAP has beeneatiidi Alaeiet al. (2013)
with expected competitive rati?_l%, where similar to prior work two restrictions are
made; that the weights and sizes of each item are stochastiesgch items’ size is less

than a fractior% of the bin capacity.

There are many related online problems to OBRM, such as marimeight match-
ing (Korula and Pal, 2009), knapsack (Babatfél., 2007) etc., but all of which require
the input to be randomized (secretary model) to get nomtreompetitive ratios. For
OBRM, we get constant competitive ratio even under the waase inputs since the

value and the weight for each request coincide.



CHAPTER 2

PROBLEM DEFINITION

We are given a sef of n servers, where servérhas capacityC;. We consider an
onlinescenario, in which at each time steg {1,...,7'}, a set of jobs/(¢) and a set
of edgesFE(t) from servers/ to jobs.J(t) is revealed. Edges are weighted, ang)
for e = (i,j) is the weight of jobj on serveri. In particular, if jobj is assigned to
serveri, it consumesu(e) resources of serverout of the possible”;. In general, a
job may have different weights on different servers, thusdistinct servers andi’,
w(i,j) # w(, j). The entire set of jobs i$ = U;<7J(t), andE = U< E(t). For a
set of edged”, definelW (F) := > _,w(e), andF{t} := F' N E(t) as the set of edges
incident to jobs in time step Define(G(t) as the bipartite grapfy U J (), E(t)). A set
of edgesF is feasibleif (i) F'{t} is a matching for alt < T, i.e., each server and job
is connected to at most one job and one server respectivelcht, and (ii) the total
weight of edges incident to each server summed across @litim., 7" is at most its

capacity. We will also call a feasible set of edgesafiacation

The Online Budgeted Repeated Matching (OBRM) problem isi¢& patchings
M(t) C E(t) irrevocablyat each time stepto maximizeW (U;<r M (t)), so that the

sum of the weight of edges in,< M (¢) incident to servet is at mostC;.

An optimal allocation for an instance of OBRM has maximumgiiamong all
allocations. Theeompetitive ratidfor an algorithm for the OBRM problem is defined
as the maximum over all instances of the ratio of the weighhefoptimal allocation
to that obtained by the algorithm. Forandomizedalgorithm, the competitive ratio is
obtained by taking the denominator of the previous ratidhagxpectedveight of the
allocation obtained by the algorithm. We yseA) to denote the competitive ratio for

an algorithmA.



CHAPTER 3

INFINTE SPAN JOBS

We first consider the OBRM problem when jobs have a weight &@heserver, and no
span; the resources allocated to a job are never releaseoedWeby illustrating via an

example the difficulty in solving the OBRM problem.

Figure 3.1: lllustration for example 3.1 to show non trivcaimpetitive ratio in a fully
adversarial setting.

Example 3.1.In Fig. 3.1, there is a single server with capacity At¢ = 1, a job
of weighte < 1 arrives. If the algorithm does not accept the job, the inpuds
in this case, the optimal value iswhile the the algorithm obtains value zero. If the
algorithm accepts the job, the second job with weigltrives. Since the capacity is
1, the algorithm cannot accept this job. In this case, theroptivalue isl while the
algorithm obtainse, and hence any deterministic algorithm has competitiveorat

leastl /e.

A simple randomized extension to this example, where the agmsists of only the
job in the first step with probability — ¢, and both jobs with probability, shows that
any randomized algorithm also cannot be better than 2-caitiyge Any deterministic
algorithm for this distribution gets value at maswhile the optimal expected value is
2¢ — €2. The lower bound on randomized algorithms follows by aniapfibn of Yao's

lemma Yao (1977).

If we restrict the maximum weight of a job to t%e then every server can accept
at least two jobs, and a deterministic algorithm can givetnwial competitive ratio
even on adversarial sequences. Under this restriction, rojgope an @Line GREEDY

algorithm that is shown to b&competitive next.



In the discussion of the following algorithms, we us&(t) to denote the set of
edges selected by the algorithm in time step(t) := U.<,M (1), andM;(t) and A,(t)

to denote the set of edgesMi(t) and A(t) incident to servet.

3.1 Deterministic Algorithm for Restricted Edge Weights

Definition 3.1. Active server: The servérs active at time step+ 1 if the sum of the
weights of edges assigned to it so far is at most half its dapae., W (A;(t)) < 3C..

We will useS to denote the set of active servers.

3.1.1 Greeov

The deterministic algorithm &&epvy takes as inputs a weighted bipartite graphas
well as a sefS of active servers. &epy greedily picks maximum weight edges from
the bipartite grapltZ to form a matchingV/. The algorithm only adds an edge to the

matching if the server connected to it is active.

Algorithm 1: Greeov(G, S)

Input : Weighted bipartite grapty, set of active serverS
Output: Matching M
begin

M«

for e = (i, j) € G in descending order of weiglb

if (M U eis a matchingAND (i € S) then
M <+ MUe

end
return M

3.1.2 Onuine Greepy

We present a deterministic algorithmv@e Greepy that is 3-competitive for the re-
stricted weights case, where the weight of each edge incidenserver is at most half

the server capacity, i.eu(i, 7) < %Ci for each servei and jobj.

OnLINeGReEDY Maintains a set of active servess along with setsA;(¢) for each

serveri, where A;(t) is the set of edges selected that are incident to serettil
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Algorithm 2 : OnLiNe GREEDY
Input : Server capacitie§, Cs, ..., C,
Weighted bipartite graphS(¢) fort < T,
such thatw(i, j) < 3C; Vi, j
Output: Feasible allocatiodd(T") = Up<r M ()
begin
S« 1
A(0)«—0Viel
fort < 1to7T do
M (t) «+-Greeoy(G(t), S)
A(t) < A(t — 1) U M(t)
for (i,7) € M(t) do
if W (A;(t)) > < then

2

S« S\ {i}

end

timet. At each time step, OnuneGRreepy calls Greepy and passes to it as input the
weighted bipartite grapl(¢) along with the current set of active serveérs For each
edge(i,j) € M(t), whereM (t) is the matching returned byreeoy, edge(i, j) is
added to the allocatior;(¢). OnuNeGreepy then checks itV (A;(t)) > $C;, in which
case serverf is no longer active and is removed from the set of active ssiSdor

next time slot. If a servef is active at timet, i.e., W(A;(t — 1)) < 1C;, and an
edgee is added tod;(¢ — 1), thenW (A;(t — 1)) increases by at mogt;, and hence
W(A;(t)) < C;. Hence, assigning a job to an active server always resutideasible
allocation. Also, since &epy performs a matching at each time step, the degree con-
straints (one job/server is assigned to at most one sevbergspectively) are always

satisfied. The algorithm continues either usti= ) ort = 7.

Remark 3.1. We note that the restriction on edge weights is only usedoripg the
feasibility of the allocation obtained, and not in the pradf3-competitiveness below.
In particular, if the edge weights are unrestricted, theoalition obtained may violate

the capacity constraints, but will be 3-competitive.

Theorem 3.1. OnLNEGREEDYIS 3-competitive.

Proof. For each time stefy let M (¢) denote the matching produced by@eGreeby,
and letM*(t) denote the corresponding matching given by the optimalneffélgo-

rithm. Let A*(¢) = U,<,M*(7), and A} (t) is the set of edges to servein the optimal
allocation until timet. Also, A7 = AX(T), A; = A(T), andA = U, A;, A* = U AL
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We say thatan edge= (i, j) € M*(t)\ M (t), has beeblockedby a heavier weight
edgef € M(t) if w(f) > w(e) and f shares a server verte®) or job vertex () with e.
As f has more weight than, Greepy would select it first inV/(¢), and hence cannot
be selected without violating matching constraints. Fehealge(i, j) € M*(t)\M(t),

there are three possible reasons why the edge was not sitsof@iLiNne GREEDY:

1. An edgef = (i,j') € M(t), j* # j blocks(i, ), i.e. server was matched to
some jobj’ by Greeoy, such thatu(z, j') > w(i, j).

2. Anedgef = (¢/,7) € M(t), i # i blocks(i, j), i.e. jobj was matched to some
serveri’ by Greepy, such thatw (7', j) > w(i, 7).

3. The servef was inactive at time stepi.e.,i ¢ S.

Let £1(t), E2(t) and E3(t) denote the set of edges M*(¢) \ M(¢) that satisfy
the first, second and third condition respectively. Cleafly(t) U Ey(t) U E5(t) =
M~*(t) \ M(t). Note: No edge can satisfy the first and third condition simultaiséou
as a server which is inactive at timeannot be matched to any job at timé herefore,
Ei(t) N E3(t) = 0. However, in generalE; (t) N Ey(t) # 0 and Ey(t) N E3(t) # 0, as

edges can satisfy conditions 1 and 2 or 2 and 3.

Let S be the set of active servers at tiriie+ 1. For all servers,i ¢ S, since

W (A7) < C;andW (4;) > 1C;, the allocationd; is a$ approximation to4;, i.e.,

Z Z w(e) < 2 Z Z w(e) . (3.1)

1:1¢S e€AY i:1¢S e€A;

LetFy = U?:lEl(t)a E, = U?zlEQ(t), Es = UszlEg(t) DefineE’fv = {6 = (Z,j) S
Ey|ie S} ES ={e=(i,j) € By | i€ S}. Clearly,E{ UE5 = Usies (AF \ A;), as

no edges = (i, 7j),¢ € S can satisfy the third condition.

The edges € E7 U E5 were not selected in the greedy allocation as they were

blocked by edges of heavier weight frofin\, A*. The edges in the set\ A* are of two
types:

1. f=(i,j) € A;\ A,i € S. As alledges = (7', 5') € E{ U E5 are such that
i € S, e was blocked either becaus@and f share a server vertex £ i') or they
share a job vertexj(= j'). Thus, for every edg¢ = (i,j) € A; \ Af,i € S,
there may exist at most two edges= (i, '), e; = (¢, 7) that are blocked by,
sothate;, e, € EY U EY andw(f) > w(er), w(f) > w(ey).
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2. 9= (i,j) € A;\ A;,i ¢ S. As alledges: = (7', ') € F7 U Ejy are such that
i € S, e was blocked only becaugeande share the same job vertex € j)
andg was greedily picked first. Thus, for every edge- (i,j) € A\ A*,i ¢ S,

there may exist at most one edge= (7', j) € EY U E5 that is blocked by and
is such thatv(g) > w(ey).

As f = (i,j) € A;\ A;,i € S can block at most two edges iy U EY and
g=(i,j) € A;\ Af,i ¢ S can block at most one edge iy U EY,

NN we= Y we)<2) Y wh)+ > Y w). (B2

€S e€ AT\ A; c€c ESUES iH€S fEA;\ AL ii¢S geA;\A?

Adding (5.2), (5.4),

DD wl@+> ) Y wle)<2>d Y wle)+2) . > w(f)+

1:1¢S e€AY 11€S e€AF\A; 1:i¢S e€ A; 1€S fEA\AT
> > wlg).

i S geA;\A?

Adding ) e > cea,na- w(e) to LHS and RHS,

X w@+Y Y we <y Y we+2d 3w+

i:i¢S e€ A} €S e€AY i:ES e€ A;NAY ii€S fEA;\AF
3 ulo)
1:9¢S geEA;
Simplifying, > ., ZeeA? w(e) <3 icr > eea, w(e), as required. O

0.5 € 0.5 0.5
t=1 t=2 t=3 t=4
Figure 3.2: Illustration for example 3.2 to show tightnes®eLiNe GREEDY

Example 3.2. This example is used to show the tightness of analysiHeorem 3.1.
There aren servers with capacity 1. The sequence of jobs is illustratdedg. 3.2. At

t = 1, only the edge to server 1 has weiglit, all other edges have weighi.5 —¢€). At
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t = 2, only the edge to server 1 has weighall other edges have weight Att = 3,4
only the edge to server 1 has wei@h#, all other edges have weight 0.NONEGREEDY
assigns the job at = 1,2 to server 1, and can't assign any more jobs at 3,4, as
server 1 is not active during those time slots, and the totbht of the allocation by
OnLINEGREEDYIS 0.5 + €. The optimal allocation would be to assign the jokb — ¢€) at
t = 1to server 2, and then assign the jobs at time slet 3, 4 to server 1, so that the
optimal weight allocation i$1.5 — ¢). Hence @QuiNeGREEDYIS a %-approximation, and

this infinite family of instances shows that the analysisefdlgorithm is tight.

Remark 3.2. In the more general case, where edge weights are restriotbd ait most
a (< 1) times the corresponding server capacities, i.ew(t,j) < aC;Vi,j, the
following modification of @uneGreepbymakes it(1 + = )-competitive. Instead of re-
moving a servet from the set of active servetswhenlV (A;(t)) > 1C;, if we remove

it whenW (A4;(t)) > (1 — a)C;, then (5.2) can be changed 30,45 > c - w(e) <

1—«
competitive algorithm. Clearly, as — 1, the competitive ratio tends to 0, and

( ! ) Y iigs 2oeea, w(e). The rest of the proof follows directly to give a+ - )-

OnuneGreepywill fail, as expected from Example 3.1. To handle the casmgstricted
job weights, in the next subsection, we present a randoraigedithm RboMONLINEGREEDY

which is6—competitive.

3.2 Randomized Algorithm for Unrestricted Edge Weights

Now we present a randomized version ofL@e Greepy, called RinbomONLINE GREEDY,
that is6— competitive for the general case of unrestricted edge wighlote that
while w(i, j) can be unbounded, any edge such that j) > C; will be ignored as it

can never be allocated to server

Definition 3.2. An edgee = (i, j) that satisfies”: < w(i, j) < C; is called a heavy
edge and the corresponding job is called a heavy job for taates. In other words, the
weight of a heavy edgg, j) connected to a serveris at least half the server’s initial
capacity. An edge that is not heavy is called light, and theesponding job is called

light for that server.

12



Algorithm 3 : RanoomMONLINEGREEDY
Input : Server capacitie§, Cs, ..., C,
Weighted bipartite grapt¥(¢) for t < T, such thatv(i, j) < C; Vi,

Output: Random feasible allocatioA = U;¢; A;
begin

S 1

Sl, SQ < @

A;(0), Bi(0)«0OViel

Il For each server

for k < 1tondo

vy ~ Bernoulli(3)

if v, = 1then
S1 + S U{k} [lacceptonly heavy jobs
else

Sy «— Sy U{k} [l accept only light jobs
fort < 1toT do
M (t) «+-Greeny(G(t), S)
for e = (i,7) € M(t) do
Bi(t) < Bi(t — 1)U {e}
if W (B;(t)) > < then
S+ S\ {i}
if (i €51 AND w(i,j) > <) OR (i € S, AND w(i, j) < &) then
Ai(t) « Ai(t — 1) U {e}
end

At the start of the algorithm RioomONLINEGREEDY, @an unbiased coin is flipped for
each servef. If heads, then serveris added to sef;, else it is added to sef,. If
server; € S, it can only accept jobs corresponding to heavy edges, while S5, it

can only accept jobs corresponding to light edges.

Similar to OvLiINeGReeDY, RanoomMONLINEGREEDY Maintains a set of active serves's
along with setsA(¢) and B(t). At each time step, the weighted bipartite graph; and
set of active server§ are passed as input tor&ov, which returns a matching/(t).
The setB(t) := U,<;M(7) and B;(t) represents the set of edgeshiit) connected to
serveri. The setA;(t) is conditioned on the coin toss for servelf i € S, A;(t) only
contains the heavy edges B)(t). Otherwise, ifi € Sy, A;(t) only contains the light
edges inB;(t).

At time ¢, if RanoomOnLNEGREEDY adds an edge = (i, 7) to B, the algorithm
checks the weightV (B;(t)) to see if it should be active for the next time step. If

W (B;(t)) > +C;, then servet is removed fron5. The reason for maintaining two sets

13



B and A is that it is possible fo3;(T") to be infeasible for some server However,
A;(T) is a feasible allocatiolvs, andE [W(4;(T))] = W (B,(T)). The algorithm

continues until eithes = ort = T.

Lemma 3.2. The allocationA;(T) is feasible for each machinec 1.

Proof. Since Geepy performs a matching at each time step, the degree consteait
always satisfied. We show that the capacity constraints laegenl as well. Note that
A;(t) C B;(t) for all i, t. By construction, ifiV (B;(t)) > 1C; at any timet, server
i is deactivated. Hence every server can accept at most ong joda At timet, if a
serveri € S (i.e., it can accept only heavy jobs) is active, there are eevi edges
in B;(t — 1) and the set;(t — 1) must be empty. I18e = (i,7) € M(¢) which is
a heavy edge, it is added 1,(¢t — 1) and A;(t — 1), and servei is deactivated. As
W(B;(t — 1)), W(A;(t — 1)) increase by at most; after adding: to B and 4, it may
be thatV(B;(t)) > C; butW (A;(t)) < C; sinceA;(t) was empty before. However, if
de = (4,j) € M(t) which is a light edge, then itis added®(¢ — 1) but notA,(t — 1),
andA;(t) remains empty. Therefore,ife Sy, W(A;(t)) < C; V.

On the other hand, if the serviee S, is active at time, thenWW (A;(t—1)), W (B;(t—
1)) < 3C;. If 3e = (i,j) € M(t) which is a heavy edge, thenis added taB; (¢t — 1)
andi is deactivated. Howeve, is not added tod;(¢ — 1) and W (4,(t)) < iC; as
no edge has been addedAg(t — 1) at timet¢. If 3e = (i,j) € M(t) which is a
light edge, there is added toB;(t — 1) and A;(t — 1). With the addition of a light
edge, W (B;(t — 1)), W(4,(t — 1)) increase by at mostC;, and asi¥ (4;(t — 1)) <
sC;, W(A;(t)) < C;. Therefore, ifi € Sy, W(A;(t)) < C; V. O

Example 3.3. This example illustrates how,;(7") may be an infeasible allocation,
while A;(T) is feasible. Consider a single server with capacityAt each time step, one
job is presented, and = 2. Att = 1, a job of weight% — ¢ is presented, while at time

t = 2, ajob of weightC' is presented. RiboMONLINEGREEDYWIll put both jobs intoB(2).

If the coin showed heads}(2) will contain the second edge. If the coin showed tails,
A(2) will contain the first edge at time= 1, i.e., A(2) = {3C — €} or A(2) = {C},
and both allocations occur with probability. HoweverW (B(2)) = (2C — ¢), which

2

is an infeasible allocation.

14



Example 3.4. This example illustrates howaRboMONLINEGREEDY performs well on Ex-
ample 3.1. If the job weights to serveare C' att = 2, then the optimal matching
decision would be to not make any allocations to sefivat¢ = 1, an event which
occurs in RnooMONLINEGReEDY With probability 0.5 (i.e., ifi € S;). Similarly, if the
job weights to server are 0 att = 2, then the optimal matching decision would be to
allocate a job of weight, an event which occurs inaRooMONLINEGREEDY With proba-
bility 0.5 (i.e., ifi € S5). Thus, for the sequence in Example 3.1, with probabiliy O.

RanooMONLINEGREEDYfiNdS the optimum allocation for a server.

Theorem 3.3. RanboMONLINEGREEDYIS 6—Ccompetitive.

Proof. Let W(A*(T)) = W(Ul_,AX(T)) be the value of the allocation made by the
optimal offline algorithm, andV (B(T")) = W (U, B;(T")) be the value of the infea-

sible allocationB(T"). Moreover, letE [IW(A)] = E [W (U™, A;(T))] be the expected

)
)

value of the feasible allocatiod(7") made by RnoomOnLineGreepy(denoted as4),

then fromLemma 3.4andLemma 3.5 y(A) = max (%) = 6. O
(A(1))
Lemma 3.4. WB(D) <3

Proof. As the arguments for (5.2), (5.4) hold for the sBiét) V4, the proof folL,emma
3.4 follows similar to the proof foiTheorem 3.1 A full proof is provided in the Ap-

pendix. O
W(B(T))

EWAD)]

Lemma 3.5.

Proof. The setB;(t) can be partitioned into two mutually exclusive subsgt&) and
Y;(t), such thatX;(¢) only contains heavy edges, whi¥&¢) only contains light edges.
Note that|X;(t)| <

As A,(t) is a feasible allocatiol't and A;(t) = X;(t),t < T'if v; = 1, andA4,(t) =

1. Letv; = 1(= 0) if serveri accepts only heavy (light) jobs.

Yi(t),t < Tif v; = 0, X;(¢),Yi(t),t < T are both feasible allocations. Therefore
B;i(t) = X;(t) UYi(t), X;(t) NYi(t) = 0V, andW (B;(t)) = W(Xi(t)) + W(Yi(t)).

Hence

E[W(A(T))] = Ploi=1W(A(T) | vi=1)+Po; = 0| W(A(T) | v =0),
5 (WOX(T)) + W (Y(T))).
15



ThereforelE [W (A;(T))
% Yo W(B(T)), and

umming over all serveis> ;" | E [W(A;(T))] =

(7).
| U

S
1
>

3.3 Deterministic Algorithm for Small Job Weights and

Parallel Servers

Servers arparallelif C; = C; ande;; = e;/; for all jobsj and all servers, 7. That is,

the servers are identical, and each job consumes the samgtygoéresources on each
server. Thus instead of edge weights we now refer to the weigtach job. If servers
are parallel, each with capacify, and each job has weight at mesthen we show a

simple deterministic load-balancing algorithm tham-competltlve.
— 4€

Algorithm 4 : ParaLLEL LoADBALANCE
Input : Capacities” of servers
JobsJ(t) at each time stepe {1,..., T},
with weightw(y) for j € J(t).
Output: Feasible server allocations, i € {1,2,...,n}
begin
A; + 0Vie{1,...,n}initially.
fort < 1toT do
for j € J(t), in decreasing order of weighb
Let i be the machine with highest remaining capacity- W (A;) that
is not assigned a job in current time step.
if W(A;U{j}) <Cthen
A — AU {j}
else
return

end

Lemma 3.6. After any time step, the remaining capacity of any pair of machingesg

differs by at most with the P\raLLELLoaDBALANcE@lgOrithm.

Theorem 3.7. Algorithm ParaLLEILoADBALANCEIS -competitive.

1
(1-2¢/C)
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CHAPTER 4

FINITE SPAN JOBS

We now generalise our model by assuming that the jobs do nuroe server re-
sources for infinite time, i.e, along with the job weight, tdversary also announces
the span over which the job remains in the server. If a jobés@nted at timé& and has
spans, then it consumes resources fosuch that’ < ¢ < ¢’ + s. Once an allocated
job expires, the capacity corresponding to the weight dfjtitais made available to the

server for future job requests.

Example 4.1. For each job let(w, s) be the tuple representing the weight and span,

respectively. Let there be a single server with capaCity_et the input sequencg =
{(e,T),(0,1),...,(0,1)}, while S, = {(¢,T), (.7 —1),(5/0,1),...,(£/0,1)},

721 ) T 1 .
where$ /0 means either the weight {s or 0 depending on earlier matchings. If at time

t =1, the job is not matched to the server, the competitive ratidois co. Otherwise,
the adversary presents the sequesse where if job at timet = 2 is not matched
then the weights of jobs for all further time instants &reand the competitive ratio is
0.5C/e. If the server does accept the jobtat 2, then all future jobs have weigh
and sparnl. The server cannot accept any jobsfor 3 due to lack of capacity, and the
competitive ratio |§@EO’(;(#T+_€2) ~ T'—2. This shows that &6 — oo, the competitive ratio

can be made arbitrarily bad for all deterministic algoritismeven when edge weights

are restricted to be at most half the server capacity.

4.1 Uniform Span

We first look at the case where all jobs have the same spalgorithms WNiForRMGREEDY
and RinoomUNiForMGREEDY are similar to @QuineGreepy(if each job weight is at most
half the server capacity) andakbomOnLINEGReeDY(fOr general weights), with the fol-

lowing modification. If the algorithm assigns jalio server; at timet, the resources



used are released at time- s. The algorithms and the analyses are formally presented
in the Appendix. The analysis is similar tovGne Greeby and RANDOMONLINE GREEDY.
However, a more intricate argument is required since we cdomger argue about the
jobs allocated at each time step. Instead, our analysisdemssa window of size, and

obtains bounds on the weight of all jobs that are active withis window.

Theorem 4.1. UniForMGREEDYIS 6-competitive where all job requests to a server are at

most half the capacity of the corresponding server.

Theorem 4.2. RanooMUnIFORMGREEDYIS 12-competitive.

Proof. The proof follows similar to Theorem 3.3, with Theorem 4.fllaging Theorem

3.1.

4.2 Non Uniform Span

In this section we presentaRoomNoNUNIFORMGREEDY, 2O (log (ZM—» —competitive

algorithm for the case where all jobs do not have the same span

Algorithm 5 : RanoomNoNUNIFORMGREEDY
Input : Server capacitie§, Cs, ..., C,
Weighted bipartite grapt¥(¢) for t < T, such thatv(i, j) < C; Vi,
Minimum spans,,,;,,; Maximum spars,,,,.
Output: Random feasible allocatiod = U, A;
begin

,— (10g2 <srza§+1> w

kE~U{0,1,2,---,r—1})

51 = 2k * Smin

S9 = 2k+1 * Smin

Run RanbomUniForMGREEDY, Only accepting jobs of span such that; < s < s
end

max
Smin

Theorem 4.3. RanooMNoNUNIFORMGREEDYIS O <log <S—>> competitive.

18



4.3 Finite Span Servers

We now consider the case in which servers have finite spagolmsihave infinite span.
At time ¢/, the adversary announces that a seiweill be alive for s; time steps, i.e.,
for ¢ such that’ < t < t' + s;, jobs can be scheduled on serveie argue that our

previous algorithm RvbomONLINEGREEDY IS 6-competitive in such a setting.

Theorem 4.4. RanooMONLINEGREEDYIS 6-competitive for the case of finite span servers.

Proof. Assume that the adversary has the sequence of job requestearer spans
s; fixed for all serverg(this does not restrict the adversary, as the competititie i
taken as the worst case over all possible sequences), dnkisakequencé. Using.S,
construct the sequenég as follows:
1. If the number of distinct servers tis n, thenS’ will have n servers at each time
step.

2. If aserver is announced at timg and has spag;, then the job weights to server
1 attimet is non-zeroifand only if; <t < t; + s;, i.e., if a server is not alive at
timet, then all job weights presented to it are strictly O.

3. If serveri is alive at timet, then the job weights to servérat timet in the
sequences’ andS are the same.

As the job weights are the same ft and S, the optimal offline algorithm will
produce the same allocation for both sequences. When joleséxjare presented from
sequences$ and S’ at timet, RanoomONLINEGREEDY Will make the same allocation at
each time step. From theorem 3.3, asubdMONLINEGREEDY IS 6-Ccompetitive on the

sequence’, it is also 6-competitive on the sequente 0
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CHAPTER 5

MODIFIED OBJECTIVE FUNCTION

In this chapter we extend our results to the mobile offloagiadplem by making a small
modification in our objective function. For each server, Wecount the minimum of
its capacity and the cumulative weight of jobs assigned iceit min{C;, W(A;(T))},
where(; is the capacity of serveérand A;(7T") denotes the jobs allocated to servéy

our algorithm. Thus the new objective is:

maXZ min{C;, W (A;(T))} (5.1)

The previous formulation places a hard constraint thatdfréfmnant capacity of a
server !, then it cannot serve jobs that have weight greater tharetheant capacity.
However, in the mobile offloading problem, the remnant capaenotes the remaining
data that a mobile user requires. Thus, if the remaining e requirement g’
for mobile useri, then it is acceptable for an AP with data rate greater ttato be
matched to uset, and the hard constraift’(A;(7")) < C; is unnecessary. The case
of finite span servers help model the limited life time of ABRsd along with the new
formulation given by 5.1, we find that OBRM with finite spansss models the mobile

offloading problem nicely.

The original formulation of AdWords by Meh&t al. (2007) uses the same formu-

lation as in 5.1.

All our previous results(except those associated withdisgan jobs- the new ob-
jective function does not work in this scenario) hold for ttesv ojective function. We
present the proof of Theorem 3.1 as an example. The proothdoother algorithms

follow along the same lines.

Theorem 5.1. OnuneGREEDYIS 3-competitive for the formulation given by (5.1)



Remark 5.1. In prior work, under the restriction that any job weight is rost half

the corresponding capacity, the best competitive ratiokms jg\/_gl Buchbinderet al.
(2007).

Proof. For each time stef let M (¢) denote the matching produced by.@eGreepy,
and letM*(t) denote the corresponding matching given by the optimalneffélgo-
rithm. Let A*(¢) = U,<,M*(7), and A} (¢) is the set of edges to servein the optimal
allocation until timef. Also, Af = AX(T), A; = Ai(T),andA = U A;, A* = Ui AL

We say that an edge= (i, j) € M*(t)\ M (t), has beeblockedby a heavier weight
edgef € M(t) if w(f) > w(e) and f shares a server verte®) or job vertex () with e.
As f has more weight thany Greepy would select it first inM/ (¢), and hence cannot
be selected without violating matching constraints. Fehesalge(i, j) € M*(t)\M(t),
there are three possible reasons why the edge was not sbgof@iLine GReEDY:

1. An edgef = (i,5') € M(t), 7/ # j blocks(i, j), i.e. serveri was matched to

some jobj’ by Greepy, such thatu(z, j') > w(i, j).

2. Anedgef = (¢/,7) € M(t), i # i blocks(i, j), i.e. jobj was matched to some
serveri’ by Greeoy, such thatw (7', j) > w(i, j).

3. The servef was inactive at time stepi.e.,i ¢ S.

Let £1(t), E2(t) and E5(t) denote the set of edges M*(¢) \ M(¢) that satisfy
the first, second and third condition respectively. Cleafly(t) U Ey(t) U Es(t) =
M~*(t) \ M(t). Note: No edge can satisfy the first and third condition simultaiséou
as a server which is inactive at timeannot be matched to any job at timé herefore,
Ei(t) N E3(t) = 0. However, in general; (t) N Ey(t) # 0 and Ey(t) N E3(t) # 0, as

edges can satisfy conditions 1 and 2 or 2 and 3.

Let S be the set of active servers at tiriie+ 1. For all servers,i ¢ S, since
W (A;) > 1C; andmin (W (4}),C;) < C;, the allocationd, is a1 approximation to

Az ie.,

Z min (C’i, Z w(e)) <2 Z Z w(e) . (5.2)

1:9¢S e€ Ay 1:1¢S e€ A;
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Let By = UL | E\(t), By = UL, Ey(t), B3 = UL E3(t). DefineEy = {e = (i,5) €
E1 | 1€ S},Eég = {6 = (’l,j) € EQ | 1€ S} Clearly,Ef U Eég = Uj.ies (A:( \ Az)’ as

no edge: = (i, 5),7 € S can satisfy the third condition.

The edges: € E} U E5 were not selected in the greedy allocation as they were

blocked by edges of heavier weight frofin\ A*. The edges in the set\ A* are of two
types:

1. f=(i,j) € A;\ Ar,i € S. As all edges: = (7', j) € E{ U E5 are such that
i" € S, e was blocked either becausand f share a server vertex £ i') or they
share a job vertexj(= j'). Thus, for every edgg¢ = (i,j) € A; \ Af,i € S,
there may exist at most two edges= (i, j'), es = (7', 7) that are blocked by,
sothate;, e, € EY U EY andw(f) > w(er), w(f) > w(ey).

2.9g=(i,j) € A;\ A;,i ¢ S. As all edges = (i',j') € EY U Ej are such that
i € S, e was blocked only becaugeande share the same job vertex € ;')
andg was greedily picked first. Thus, for every edge- (i,j) € A\ A*,i ¢ S,
there may exist at most one edge= (i’, j) € EY U E5 that is blocked by and
is such thatv(g) > w(ey).

As f = (i,j) € A; \ A;,i € S can block at most two edges iy U F5 and
g=(i,j) € A; \ A;,i ¢ S can block at most one edge by’ U EY,

Zmin( Z w(e),C’i) §Z Z w(e)SQZ Z w(f)+z Z w(g).

1:1E€S ec AT\ A; iE€S e€ AT\ A; €S feA\AY ¢S ge A\ A}
(5.3)
Note that on the RHS, nmin is required, since all job weights are less than half
of the corresponding server capacity, and the server ididate as soon as more than
half of its capacity is exhausted, hence the contributiomfall jobs associated to any

server can be counted in full without involving then.

Adding ) e > cea,na- w(e) to LHS and RHS,

Zmin Zw(e),()’i < Zmin Z w(e), C; —1—2 Z w(e),
1:9€S ecA? 1:9€S e€AT\A; ieS e€A;NAY
< Y D w@r2)y) Y wh+), > wlg),
€S e€ A;NA} ii€S fEAN\AY ¢S ge A\ A}
< 2) D wlhH)+> ) wlg). (5.4)
1:9E€S fEA; 1:1¢S geA;
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Adding (5.2), (5.4),

Zmin (Z w(e),Cl) SZZ Zw(e)+22 Zw(f)+z Zw(g).

iel e A’ ini¢tS e A; iHieS feA; iigS geA;

Simplifying, > ., min (Zeem w(e), CZ-> < 3D ier Doeea, w(e), asrequired. O
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APPENDIX

51 UniForm GREEDY

We use the set{t¢} to denote the set of jobs that consume resources attfinge, if an

edgee was allocated at timg, andt; <t < t; + s, thene € A{t}.

Algorithm 6 : UniForRMGREEDY
Input : Server capacitie§, Cs, ..., C,
Weighted bipartite graphS(¢) fort < T,
such thatw (i, j) < 3C; Vi, j
Output: Feasible allocatiod(7") = U< M ()
begin
S« 1
A;(0)«—DPViel
fort <« 1to7T do
M (t) «+—Greeoy(G(t), S)
A(t) < A(t — 1) U M(t)
for (i,7) € M(t) do
if W (A4;{t}) > < then
S« S\ {i}
for i ¢ S do
for (i,7) € A;{t} do
if j isreleased at + 1 then
S« Su{i}

end

In the same way we modifiedNONEGRreepy to get UniFormGREEDY, we can modify

RanpomONLINE GREEDY tO get RanoomUNIFORMGREEDY.

5.2 Proofof Lemma 3.4

Proof. For each time stef let M (¢) denote the matching produced byN8omOnNLINEGREEDY,
and letM*(t) denote the corresponding matching given by the optimalneffélgo-
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rithm. Let A*(¢) = U, <,M*(7), and A} (¢) is the set of edges to servein the optimal
allocation until timef. Also, Af = A;(T) andB; = B;(T).

For each edgéi, j) € M*(t) \ M (t), there are three possible reasons why the edge
was not selected byARpbomONLINE GREEDY:
1. An edgef = (i,j') € M(t), j* # j blocks(i, 5), i.e. server was matched to
some jobj’ by Greepv, such thatw(i, j') > w(i, 7).

2. Anedgef = (¢/,7) € M(t), i # i blocks(i, j), i.e. jobj was matched to some
serveri’ by Greeoy, such thatw (7', j) > w(i, j).

3. The servef was inactive at time stepi.e.,i ¢ S.

Let F,(t), E2(t) and E5(t) denote the set of edges M*(¢) \ M (t) that satisfy
the first, second and third condition respectively. Cleafly(t) U Ey(t) U E5(t) =
M~*(t) \ M(t). Note: No edge can satisfy the first and third condition simultaiséou
as a server which is inactive at timeannot be matched to any job at timé herefore,
Ei(t) N E3(t) = 0. However, in generalE; (t) N Ey(t) # 0 and Ey(t) N E3(t) # 0, as

edges can satisfy conditions 1 and 2 or 2 and 3.

For all servers, i ¢ S, sincelW (Ay) < C; andW (B;) > 3C;, the allocationB; is

1 - - * -
a; approximation tod;, i.e.,

Z Z w(e) <2 Z Z w(e) . (5.5)

1:1¢S e€ A7 1:1¢S e€B;

Let By = UL | E\(t), By = UL Ey(t), B3 = UL E3(t). DefineEy = {e = (i,j) €
Ey|ie S}, By ={e=(i,j) € Ey|ie S}. Clearly,Ey UE5 = Ujes (A \ B;), as

no edge: = (i, 5),7 € S can satisfy the third condition.

The edges: € E7 U E5 were not selected in the greedy allocation as they were

blocked by edges of heavier weight frash\ A*. The edges in the sét\ A* are of two
types:

1. f=(i,j) € B;\ A;,i € S. As alledges: = (7', ') € E{ U E5 are such that
i" € S, e was blocked either becaus@and f share a server vertex € i') or they
share a job vertexj(= j'). Thus, for every edg¢ = (i, j) € B;\ A;,i € S, there
may exist at most two edges = (4, '), eo = (i, 7) such thak,, e, € EY U EY
andw(f) = w(er), w(f) = w(ez).
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2. g=(i,j) € Bi\ A,i ¢ S. As all edges: = (i',j') € EY U Ej are such that
i € S, e was blocked only becaugeande share the same job vertex € j)
andg was greedily picked first. Thus, for every edge- (i,j) € B\ A*,i ¢ S,
there may exist at most one edge= (7', j) € EY U Es such thato(g) > w(e;).

As f = (i,j) € B; \ Af,i € S can block at most two edges iy U F5 and
g=(i,7) € B;\ A;,i ¢ S can block at most one edge iy’ U E5,

Yo wle) = DY we<2d Y whH+d. Y w(g)5.6)

i1i€S e€ AT\ B; c€ESUES ii€S fEB;\ A} i:i¢S gEB;\A?

Adding (5.5), (5.6),

ZZw(e)+Z Z w(e)SQZZw(e)+QZ Z w(f)+

¢S eCA¥ i:i€ES e€ AF\B; ¢S e€B; ii€S feB;\ A7
E E w(g).

1S gEBi\A;‘

Adding ... D epna- w(e) to LHS and RHS,

Zzw(€)+zzw(€)§2 Z w(e)JrQZ Z w(f)+

i:i¢S eC A} €S e€ A} €S e€BiNAY €S fEB;\A?
3E E w(g).
i:i¢tS g€B;
Simplifying,

Z Z w(e) < 32 Z w(e). (5.7)

i€l e€A] i€l e€B;

5.3 Proof of Lemma 3.6.

Proof. The proof is by induction. Suppose the lemma is true at theadrine step
t—1,andA;(t—1), Ay (t—1) are the set of jobs assigned by the algorithm to machines
i, 7" until time stept — 1. Assume without loss of generality thet(A;(t — 1)) <
W(Ay(t —1)). Then by the inductive hypothesig;(A;(t — 1)) > W (A (t — 1)) —e.
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Further if j, j/ are the jobs assigned 9’ respectively in time step, then by the
algorithme > w(j) > w(y’). It follows that|W (A4;(t)) — W (A (t))] < e. O

5.4 Proof of Theorem 3.7

Proof. If the elsecondition in RraLLEL LoaDBALANCE IS never encountered, then at every
time step the: jobs of largest weight are assigned, and hence the assigmin&mned

is optimal. Suppose that for some time stepb j, and machineg, theelsecondition

is encountered. ThuB/(A4; U {j}) > C, and since each job has weight at mest
W(A;) > C —e. By Lemma 3.6, for any maching W (A;) > C — 2¢. The proof

immediately follows. O

5.5 Proof of Theorem4.1

Proof. Without loss of generality, assume that all edges have an spans. If an
allocated edge was presented at tintg, then it remains in the server forsuch that

t; <t < t; + s. We use the notatioR(¢) to denote the set of edges which consume
resources over the time interv[al— St g} . Stated formally, if an edgeallocated by
our algorithm was presented at tihethene € B(t) if [t1, ¢, + s)N[t — £, t + 5] # 0.
B(t) can be thought of as the set of all edges that consume resaweea time window

of width s centered at time. B;(¢) is used to denote the set of edgedii(t) that have
been allocated to serveér and the weight of the se&B(¢) is defined adV (B(t)) =

> cenw wle). Similarly, let B*(t) and B} (¢) denote the analogous set of edges in the
optimal allocation. The set¥/(t), M*(t), A(t), A*(t) are used as defined in Theorem
3.1.

For each edgéi, j) € B*(t) \ B(t), there are three possible reasons why the edge
was not selected byNForMGREEDY:
1. An edge(i,j) € B(t), /" # i was selected instead, i.e. jghwas matched to

some servet’ by Greepy, such thatw(i’, j) > w(i, j), as the edges were chosen
in decreasing order of weight.
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2. Anedge(i, ;') € B(t), j' # j was selected instead, i.e. servevas matched to
some jobj’ by Greepy, such thatu (i, j') > w(i, j), as the edges were chosen in
decreasing order of weight.

3. The servef was inactive when the edge was presented.

Let F1(t), E»(t) and E5(t) denote the set of edges iB*(¢) \ B(t) that satisfy
the first, second and third condition respectively. Cleafly(t) U Ey(t) U Es(t) =
B*(t) \ B(t) and hence we get,

W(B 1)\ Bt) < 3 W(E(®)). (5.8)

k=1

For eache; € E;(t) 3some edgég(e;) € B(t)\ B*(t) suchthatw (f(e1)) > w(ey)
and f(ey), e; share a common vertex. Similarly, for eaeh € FEy(t) 3 f(es) €

B(t) \ B*(t) such thatw (f(e2)) > w(es) andf(es), e2 Share a common vertex.

Yoowle)+ Y wle) < Y w(fle)+ Y w(f(er).  (5.9)

e1€E1(t) e2€FEs(t) e1€E1(t) e2€Es(t)

Eachf € FF = {f(e1) | e1 € E1(t)} U{f(e2) | ea € Ex(t)} appears at most twice in
the RHS of (5.9), and’ C B(t) \ B*(t),

S ow(fle))+ DY w(f(ea) <2 w(f).
feFr

e1€Fkq (t) e €l (t)

SinceF' C B(t) \ B*(t),

23 w(f) < 2 w(g).

fer gEB(t)\B*(t)
From (5.9),

W(E(t)) + W(E,(t)) < 2W(B(t) \ B*(t)). (5.10)

Now consider the weight of the sék(¢). Let S; denote the set of servers that are
active in the allocation by MrorvGreeDY for all time steps’ € [t — 5,¢ + 5]. As each

edge has spa# and the window is of widtR, it implies that for each serveéythere are
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at most 2 edges;;, e;» € F3(t) whose spans never overlap. Since over the span of a

job, the cumulative weight of edges allocated to seiveust be less tha;, we have,

> wles) < )20 (5.11)

es€Bs(t) ii¢ Sy

As all the servers; € {si,ss,....,5,} \ S; are inactive at somé ¢ [t — 3.t + 3],
W (B;(t)) > +C;, and hence,

2W(B(t) > Y 2W(Bi(t)) = Y Ci. (5.12)

z':z'gZSt i:i§ZSt

From (5.11) and (5.12),

AW(BE) > > wles). (5.13)

e3€FE3(t)
From (5.8), (5.10) and (5.13),

W(B*(t) \ B(1)) < 2W(B(t) \ B*(1)) + 4W (B(t)).

AddingW (B*(t) N B(t)) to the LHS an®W (B*(t) N B(t)) to the RHS,

W(B*(t)) < 6W(B(t)). (5.14)

We now show how the setd(7") and A*(T") can be windowed using(¢) and
B*(t). Consider the set®(tx),t, = 1+ k-s,k > 0. As each edge € A(t) is of
spans, and set$3(t;) are windows of widths centered arount;, e belongs to exactly
2 setsB(ty), B(ty11). If e was presented at timg, thene € B(t;) N B(tgi1), if
ti<1l+s-(k+3)<ti+s<1+s-((k+1)+1).
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Summing (5.14) ovek, we get,

S W(B () < > 6W(B(t), (5.15)
S owle) <Y Gule),

e€B*(t) e€B(ty)

2 Y wle) < 2 ) 6uwle),

e€A*(T) e€ A(T)

2-W(ANT)) < 2-6W(A(T)),

as required. O

5.6 Proof of Theorem 4.3

Proof. Letr = (log (S’”‘”H) W, and let
D(k) = {(i,4) | (i,j) € A(T),2" - $pmin < span(j) < 27! -5}, 0 <k <7 —1,

whereA* is the optimal allocation.

The allocationA returned by our algorithm has minimum span= 2* - s,,,;, and
maximum span, = 2**1.s, .. wherek ~ U{0,1,2,--- ,r—1}. DefineB(t), B*(t) C
D(k), Ey(t), Es(t), E5(t) as in the proof of Theorem 4.1. In this case, hower,)

and B*(t) are windows of widths, centered arountl

The proof follows along similar lines as that of Theorem 414 start with, assume
that the weights are restricted to be half the capacity, &bvirormGreepy. Then equa-
tion (5.10) holds for RnoomNonUNIForRMGREEDY. AS s, is the width of the window, and
s1 Is the minimum span of all jobs in the allocation, with= 2s;, it means that there
are at most 3 jobs;y, e;0, €;3 € E3(t) such that their spans do not overlap. Thus (5.11)

should be modified to

> wles) < >3,

e3€FE3(t) 1:9¢ St

and hence we géV/ (B*(t)) < 2W(B(t)) + 6W (B(t)) = 8W (B(t)).
As each windowB(t;) is centered at; = 1 + s, - 7 and has widths,, an edge
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e € B(t) can be present in at least one g&t;) or at most 2 setB(t;), B(tj11).

Proceeding similar to (5.15), we get

L-W(D(k) <Y W(B'(t;) <> _8W(B(t;) <2-8W(A(T).  (5.16)

Using randomisation as in Theorem 3.3, we can extend thistb (k)) < 32E[W (A(T) |
k)] for the case of unrestricted edge weights.
Summing overk, St W(D(k)) < 323t E[W(A(T) | k)], which implies
oW (D(k)) < 32r - Y320 LE[W(A(T) | k)], and finally W (A*(T)) < 32r -
By [E[W (A(T))]]
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