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ABSTRACT

KEYWORDS: Online algorithms; Budgeted matching; Adwords;Mobile offload-

ing; Greedy algorithms

We consider a problem where multiple servers have individual capacity constraints,

and at each time slot, a set of jobs arrives, that have potentially different weights to

different servers. At each time slot, a one-to-one matchinghas to be found between

jobs and servers, subject to individual capacity constraints, in an online manner. The

objective is to maximize the aggregate weight of jobs allotted to servers, summed across

time slots and servers, subject to individual server capacity constraints.

For this general problem, we give a randomized online algorithm that is6-competitive

in expectation. Much of previous work on the problem either assumes randomized ar-

rivals, or that the job weights are much smaller than server capacities. Our guarantee,

in contrast, holds for worst-case inputs, and does not require any assumptions about job

weights. For the special case of identical servers and small-weight jobs, we show that

a load-balancing algorithm is optimal. We also consider thecase when assignments are

temporary — each job arriving has a fixed span in which it consumes resources. This

models, e.g., the completion of jobs by the servers. We show that our algorithm can

be extended to obtain a 12-competitive algorithm for the case when each node has the

same span, and isO
(

log smax

smin

)

-competitive for the general case, wheresmax andsmin

are the maximum and minimum spans respectively.
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CHAPTER 1

INTRODUCTION

We study a basic online resource allocation problem motivated by a number of applica-

tions, where the goal is to maximize utilization of capacitated resources that are avail-

able ahead of time (offline). In each time step, a set of jobs arrives (online) that have

to be matched instantaneously and irrevocably to the servers to maximize capacity uti-

lization subject to individual server capacity constraints. Examples of such applications

include online ad auctions with multiple slots, crowdsourcing with multi-agent tasks,

and scheduling parallel tasks on multi-processor systems (we describe these applica-

tions in detail later). In each of these, a set of capacitatedservers is available offline. At

each time step, a set of requests arrives that must be irrevocably assigned to the servers,

and each request has a different weight (or processing time)depending on its assign-

ment. Crucially, at each time step, the assignment must be a matching: each server can

be assigned at most one request, and each request can be assigned to at most a single

server. The objective is to maximize the total weight of requests allocated, without

exceeding the capacities. We call this general problem the online budgeted repeated

matching (OBRM) problem.

As is standard in online problems, we use the competitive ratio — the worst-case

ratio over all instances of the optimal value of the objective, to the value obtained by the

algorithm — as our metric for performance. In general resource allocation problems,

requests have both weights and values, and the goal is eitherto maximize value subject

to constraints on the weight (as in many versions of the secretary problem, (Babaioff

et al., 2007)), or to minimize some function of the weight (as in online makespan min-

imization (Aspneset al., 1997)). However there are strong lower bounds on the com-

petitive ratio obtainable for these problems with arbitrary inputs. Thus prior work on

these general resource allocation problems require assumptions on the input, and either

restrict the requests to have small weight, or require the order of request arrivals be

randomized.



However, in the applications we study, the value and weight for each request co-

incide, and the goal is to maximize the weight of requests allocated, or equivalently,

utilization of the resources. In this case, we show in this paper that good performance

guarantees can be obtained without the earlier assumptions. Instead of randomized ar-

rivals, we construct a randomized algorithm that performs well in expectation on any

input. While the coincidence of values and weights for requests allow for competitive

algorithms on worst-case inputs, the presence of matching constraints further differen-

tiates the OBRM problem from prior work on online algorithms.

Indeed, in the absence of matching constraints, OBRM reduces to the well-studied

online budgeted allocation problem. It is known that a simple greedy algorithm is1/2-

competitive (Lehmannet al., 2006; Mehtaet al., 2007) for the latter problem. This,

however, assumes that capacity constraints are violable: in the budgeted allocation

problem, the weight of requests allotted to a server can exceed its capacity, and in this

case the server’s contribution to the objective is its capacity. It is easily seen that with-

out this relaxation, as in our case, where the weight of requests cannot exceed server

capacity, no deterministic algorithm is competitive even for a single server.

We briefly describe some applications for the OBRM problem.

1. ad-auctions with multiple slots: When a keyword is entered in a search en-
gine, an auction is instantly conducted among advertisers to select an ad to be
displayed. Advertisers have limited budgets, and have a value for each keyword
which is revealed when the keyword is entered. The goal is to maximize revenue
subject to their budgets. In particular, the total value of all keywords assigned to
any one advertiser can be more than its budget, but in which case the advertiser
is only charged as much as its budget. In ad auctions with multiple slots, there
are multiple slots for advertisements for each keyword corresponding to positions
on a webpage. Advertisers have different values for each keyword and each slot,
and have no value if their advertisements appear in multipleslots for the same
keyword. Thus, multiple slots appear in each time step, and feasible allocations
correspond to matchings between advertisers and slots. Theapplication is de-
scribed in more detail by Mehtaet al. (2007).

2. delayed mobile offloading: Consider the wireless networking scenario where
there are a number of mobile phones at different locations, each of which needs
to download a certain amount of data by a deadline. There are two types of access
providers (APs) available at various geographical locations: (1) licensed 3G/4G
basestations that provide costly connections, and (2) WiFiaccess points that can
be used cheaply by mobiles to download data (e.g., see Leeet al. (2013); Deng
and Hou (2015)). For each mobile, if the data demand is not metby the deadline
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using only the WiFi APs, then the mobile uses the 3G/4G connection to download
the rest of the data. The goal is to maximize the sum of the datatransferred to
all mobiles from only the WiFi APs within their respective deadlines (that may
or may not be the same). This problem is equivalent to OBRM, byconsidering
servers as mobile phones and jobs as WiFi APs, where the totaldata demand of
each mobile is the server capacity and the data rate that a WiFi AP can provide
to a particular mobile is the weight on the edge connecting the mobile and AP.
Depending on relative locations of WiFi APs and mobiles, an AP can provide very
different data rate to different mobiles, hence the weightson edges incident on the
same job can be very different. Moreover, the weights also change across slots
because of mobility of users. To model the different deadlines of each mobile,
we consider the case when each server has a finite span of operation or time for
which it is active. The problem as before, is to associate each AP to only one
mobile in each time slot that maximizes the sum of the data transferred to all
mobiles from only the WiFi APs within their deadlines. We note that in practice
each WiFi AP can actually serve more than one mobile (server)at each time with
time-sharing, which is in contrast to the matching constraint in OBRM, however,
for lack of space we don’t consider that case here.

1.1 Contributions

We make the following contributions in this paper.

• We propose a simple greedy algorithm for OBRM that is shown tobe3-competitive,
whenever the weight of any job is at most half of the corresponding server capac-
ity. In fact, we prove a more general result that if the weightof any job on a
server is at mostα times the corresponding server capacity, the greedy algorithm
is
(
1 + 1

1−α

)
-competitive. We show via an example that our analysis of thealgo-

rithm is tight.

• For the unrestricted edge weights case, we propose a randomized version of the
greedy algorithm and show that it is6-competitive when the job weights are ar-
bitrary against anobliviousadversary, that decides the input prior to execution of
the algorithm. That is, the adversary decides the input before the random bits are
generated. For our algorithm, we define a job asheavyfor a server if its weight
is more than half of the server capacity, andlight otherwise. Our randomization
is rather novel, where a server accepts or rejects heavy jobsdepending on a coin
flip. Typically, the randomization is on the edge side, wherean edge is accepted
or not depending on the coin flips.

A simple example (Example 3.1) shows that no deterministic algorithm has bounded
competitive ratio when the job weights are arbitrary, and anextension of this gives
a lower bound of 2 for OBRM for randomized algorithms.

• When each server has identical capacity1 and isparallel, that is, a job has the
same weight on every server, we give a deterministic1 + O(ǫ)-competitive al-

3



gorithm, whereǫ is the maximum job weight. Thus ifǫ → 0, this algorithm is
nearlyoptimal.

• Lastly, we consider the case when jobs have finite span in addition to their weight,
and release the resources consumed at the end of their span. The server ca-
pacity is thereafter available for other requests. If all jobs have the same span,
then we show that our algorithm is12-competitive. If they have unequal spans,
and the maximum and minimum spans are given to the algorithm,we obtain an
O(log smax

smin

)-competitive algorithm, wheresmax andsmin are the maximum and
minimum spans respectively.

1.2 Related Work

Most related to our work is the paper by Buchbinderet al. (2007) who give an online

algorithm based on primal-dual techniques for the ad allocation problem with multiple

slots. Their competitive ratio depends onRmax, the ratio of the maximum bid to the

minimum budget of any advertiser, and goes to zero asRmax increases. However, for

small values ofRmax, their competitive ratio is e
e−1

, which is optimal. The ad allocation

problem was earlier introduced by Mehtaet al. (2007) with a similar competitive ratio

for the single-slot ad allocation problem (popularly knownas theadwords problem).

For stochastic input with known distribution, OBRM with single job arrival at each

time has also been studied extensively in literature Aggarwal et al. (2011); Devanur

and Hayes (2009); Feldmanet al. (2010); Haeupleret al. (2011); Mehta and Panigrahi

(2012). Assuming small edge weight, Devanur and Hayes (2009); Feldmanet al.(2010)

achieve near optimal1+o(ǫ) competitive ratio, while Mehta and Panigrahi (2012) gives

a 1/.567 competitive ratio. The case when estimates are unreliable has been studied

in Mahdianet al. (2007). From a resource allocation or crowdsourcing job matching

perspective, OBRM with single job and stochastic input has been studied in Tan and

Srikant (2012); Jaillet and Lu (2012) and Ho and Vaughan (2012). In a minor departure

from other work, Tan and Srikant (2012) allowed a little bit of slack in terms of capacity

constraint and showed that the derived profit is within aO(ǫ) of the optimal profit while

allowing constraint violations ofO(1/ǫ).

The offline version of our problem is a special case of a separable assignment prob-

lem (SAP) (Fleischeret al., 2006). An SAP is defined by a set ofn bins and a set ofm
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items to pack in the bins, with valuevij for assigning itemj to bin i. In addition, there

are separable constraints for each bin, describing which subset of items can fit in that

bin. The objective is to maximize the total value of items packed in the bins, subject to

the bin constraints. The online version of SAP has been studied in Alaeiet al. (2013)

with expected competitive ratio 1
1− 1√

k

, where similar to prior work two restrictions are

made; that the weights and sizes of each item are stochastic and each items’ size is less

than a fraction1
k

of the bin capacity.

There are many related online problems to OBRM, such as maximum weight match-

ing (Korula and Pál, 2009), knapsack (Babaioffet al., 2007) etc., but all of which require

the input to be randomized (secretary model) to get non-trivial competitive ratios. For

OBRM, we get constant competitive ratio even under the worstcase inputs since the

value and the weight for each request coincide.
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CHAPTER 2

PROBLEM DEFINITION

We are given a setI of n servers, where serveri has capacityCi. We consider an

onlinescenario, in which at each time stept ∈ {1, . . . , T}, a set of jobsJ(t) and a set

of edgesE(t) from serversI to jobsJ(t) is revealed. Edges are weighted, andw(e)

for e = (i, j) is the weight of jobj on serveri. In particular, if jobj is assigned to

serveri, it consumesw(e) resources of serveri out of the possibleCi. In general, a

job may have different weights on different servers, thus for distinct serversi and i′,

w(i, j) 6= w(i′, j). The entire set of jobs isJ = ∪t≤TJ(t), andE = ∪t≤TE(t). For a

set of edgesF , defineW (F ) :=
∑

e∈F w(e), andF{t} := F ∩E(t) as the set of edges

incident to jobs in time stept. DefineG(t) as the bipartite graph(I ∪J(t), E(t)). A set

of edgesF is feasibleif (i) F{t} is a matching for allt ≤ T , i.e., each server and job

is connected to at most one job and one server respectively ateacht, and (ii) the total

weight of edges incident to each server summed across all time 1, . . . , T is at most its

capacity. We will also call a feasible set of edges anallocation.

The Online Budgeted Repeated Matching (OBRM) problem is to pick matchings

M(t) ⊆ E(t) irrevocablyat each time stept to maximizeW (∪t≤TM(t)), so that the

sum of the weight of edges in∪t≤TM(t) incident to serveri is at mostCi.

An optimal allocation for an instance of OBRM has maximum weight among all

allocations. Thecompetitive ratiofor an algorithm for the OBRM problem is defined

as the maximum over all instances of the ratio of the weight ofthe optimal allocation

to that obtained by the algorithm. For arandomizedalgorithm, the competitive ratio is

obtained by taking the denominator of the previous ratio as theexpectedweight of the

allocation obtained by the algorithm. We useµ(A) to denote the competitive ratio for

an algorithmA.



CHAPTER 3

INFINTE SPAN JOBS

We first consider the OBRM problem when jobs have a weight for each server, and no

span; the resources allocated to a job are never released. Webegin by illustrating via an

example the difficulty in solving the OBRM problem.

t = 1: t = 2:
ǫ 1

Figure 3.1: Illustration for example 3.1 to show non trivialcompetitive ratio in a fully
adversarial setting.

Example 3.1. In Fig. 3.1, there is a single server with capacity1. At t = 1, a job

of weightǫ ≪ 1 arrives. If the algorithm does not accept the job, the input ends;

in this case, the optimal value isǫ while the the algorithm obtains value zero. If the

algorithm accepts the job, the second job with weight1 arrives. Since the capacity is

1, the algorithm cannot accept this job. In this case, the optimal value is1 while the

algorithm obtainsǫ, and hence any deterministic algorithm has competitive ratio at

least1/ǫ.

A simple randomized extension to this example, where the input consists of only the

job in the first step with probability1 − ǫ, and both jobs with probabilityǫ, shows that

any randomized algorithm also cannot be better than 2-competitive. Any deterministic

algorithm for this distribution gets value at mostǫ while the optimal expected value is

2ǫ− ǫ2. The lower bound on randomized algorithms follows by an application of Yao’s

lemma Yao (1977).

If we restrict the maximum weight of a job to be1
2
, then every server can accept

at least two jobs, and a deterministic algorithm can give a non-trivial competitive ratio

even on adversarial sequences. Under this restriction, we propose an ONLINEGREEDY

algorithm that is shown to be3-competitive next.



In the discussion of the following algorithms, we useM(t) to denote the set of

edges selected by the algorithm in time stept, A(t) := ∪τ≤tM(τ), andMi(t) andAi(t)

to denote the set of edges inM(t) andA(t) incident to serveri.

3.1 Deterministic Algorithm for Restricted Edge Weights

Definition 3.1. Active server: The serveri is active at time stept + 1 if the sum of the

weights of edges assigned to it so far is at most half its capacity, i.e.,W (Ai(t)) ≤
1
2
Ci.

We will useS to denote the set of active servers.

3.1.1 GREEDY

The deterministic algorithm GREEDY takes as inputs a weighted bipartite graphG, as

well as a setS of active servers. GREEDY greedily picks maximum weight edges from

the bipartite graphG to form a matchingM . The algorithm only adds an edge to the

matching if the server connected to it is active.

Algorithm 1 : GREEDY(G, S)
Input : Weighted bipartite graphG, set of active serversS
Output : MatchingM
begin

M ← ∅
for e = (i, j) ∈ G in descending order of weightdo

if (M ∪ e is a matching)AND (i ∈ S) then
M ←M ∪ e

end
return M

3.1.2 ONLINE GREEDY

We present a deterministic algorithm ONLINEGREEDY that is 3-competitive for the re-

stricted weights case, where the weight of each edge incident to a server is at most half

the server capacity, i.e.,w(i, j) ≤ 1
2
Ci for each serveri and jobj.

ONLINEGREEDY maintains a set of active serversS, along with setsAi(t) for each

serveri, whereAi(t) is the set of edges selected that are incident to serveri until

8



Algorithm 2 : ONLINEGREEDY

Input : Server capacitiesC1, C2, ..., Cn

Weighted bipartite graphsG(t) for t ≤ T ,
such thatw(i, j) ≤ 1

2
Ci ∀i, j

Output : Feasible allocationA(T ) = ∪t≤TM(t)
begin

S ← I
Ai(0)← ∅ ∀ i ∈ I
for t← 1 to T do

M(t)←GREEDY(G(t), S)
A(t)← A(t− 1) ∪M(t)
for (i, j) ∈M(t) do

if W (Ai(t)) >
Ci

2
then

S ← S \ {i}
end

time t. At each time stept, ONLINEGREEDY calls GREEDY and passes to it as input the

weighted bipartite graphG(t) along with the current set of active serversS. For each

edge(i, j) ∈ M(t), whereM(t) is the matching returned by GREEDY, edge(i, j) is

added to the allocationAi(t). ONLINEGREEDY then checks ifW (Ai(t)) >
1
2
Ci, in which

case serveri is no longer active and is removed from the set of active servers S for

next time slot. If a serveri is active at timet, i.e., W (Ai(t − 1)) ≤ 1
2
Ci, and an

edgee is added toAi(t − 1), thenW (Ai(t − 1)) increases by at most1
2
Ci, and hence

W (Ai(t)) ≤ Ci. Hence, assigning a job to an active server always results ina feasible

allocation. Also, since GREEDY performs a matching at each time step, the degree con-

straints (one job/server is assigned to at most one server/job, respectively) are always

satisfied. The algorithm continues either untilS = ∅ or t = T .

Remark 3.1. We note that the restriction on edge weights is only used in proving the

feasibility of the allocation obtained, and not in the proofof 3-competitiveness below.

In particular, if the edge weights are unrestricted, the allocation obtained may violate

the capacity constraints, but will be 3-competitive.

Theorem 3.1.ONLINEGREEDYis 3-competitive.

Proof. For each time stept, letM(t) denote the matching produced by ONLINEGREEDY,

and letM∗(t) denote the corresponding matching given by the optimal offline algo-

rithm. LetA∗(t) = ∪τ≤tM
∗(τ), andA∗

i (t) is the set of edges to serveri in the optimal

allocation until timet. Also,A∗
i = A∗

i (T ),Ai = Ai(T ), andA = ∪i∈IAi,A∗ = ∪i∈IA
∗
i .

9



We say that an edgee = (i, j) ∈M∗(t)\M(t), has beenblockedby a heavier weight

edgef ∈ M(t) if w(f) ≥ w(e) andf shares a server vertex (i) or job vertex (j) with e.

As f has more weight thane, GREEDY would select it first inM(t), and hencee cannot

be selected without violating matching constraints. For each edge(i, j) ∈M∗(t)\M(t),

there are three possible reasons why the edge was not selected by ONLINEGREEDY:

1. An edgef = (i, j′) ∈ M(t), j′ 6= j blocks(i, j), i.e. serveri was matched to
some jobj′ by GREEDY, such thatw(i, j′) ≥ w(i, j).

2. An edgef = (i′, j) ∈ M(t), i′ 6= i blocks(i, j), i.e. jobj was matched to some
serveri′ by GREEDY, such thatw(i′, j) ≥ w(i, j).

3. The serveri was inactive at time stept, i.e.,i /∈ S.

Let E1(t), E2(t) andE3(t) denote the set of edges inM∗(t) \ M(t) that satisfy

the first, second and third condition respectively. Clearly, E1(t) ∪ E2(t) ∪ E3(t) =

M∗(t) \M(t). Note: No edge can satisfy the first and third condition simultaneously,

as a server which is inactive at timet cannot be matched to any job at timet. Therefore,

E1(t) ∩ E3(t) = ∅. However, in general,E1(t) ∩ E2(t) 6= ∅ andE2(t) ∩ E3(t) 6= ∅, as

edges can satisfy conditions 1 and 2 or 2 and 3.

Let S be the set of active servers at timeT + 1. For all serversi, i /∈ S, since

W (A∗
i ) ≤ Ci andW (Ai) >

1
2
Ci, the allocationAi is a 1

2
approximation toA∗

i , i.e.,

∑

i:i/∈S

∑

e∈A∗
i

w(e) < 2
∑

i:i/∈S

∑

e∈Ai

w(e) . (3.1)

LetE1 = ∪
T
t=1E1(t), E2 = ∪

T
t=1E2(t), E3 = ∪

T
i=1E3(t). DefineES

1 = {e = (i, j) ∈

E1 | i ∈ S}, ES
2 = {e = (i, j) ∈ E2 | i ∈ S}. Clearly,ES

1 ∪ ES
2 = ∪i:i∈S (A

∗
i \ Ai), as

no edgee = (i, j), i ∈ S can satisfy the third condition.

The edgese ∈ ES
1 ∪ ES

2 were not selected in the greedy allocation as they were

blocked by edges of heavier weight fromA \A∗. The edges in the setA \A∗ are of two

types:

1. f = (i, j) ∈ Ai \ A
∗
i , i ∈ S. As all edgese = (i′, j′) ∈ ES

1 ∪ ES
2 are such that

i′ ∈ S, e was blocked either becausee andf share a server vertex (i = i′) or they
share a job vertex (j = j′). Thus, for every edgef = (i, j) ∈ Ai \ A

∗
i , i ∈ S,

there may exist at most two edgese1 = (i, j′), e2 = (i′, j) that are blocked byf ,
so thate1, e2 ∈ ES

1 ∪ ES
2 andw(f) ≥ w(e1), w(f) ≥ w(e2).

10



2. g = (i, j) ∈ Ai \ A
∗
i , i /∈ S. As all edgese = (i′, j′) ∈ ES

1 ∪ ES
2 are such that

i′ ∈ S, e was blocked only becauseg ande share the same job vertex (j = j′)
andg was greedily picked first. Thus, for every edgeg = (i, j) ∈ A \ A∗, i /∈ S,
there may exist at most one edgee1 = (i′, j) ∈ ES

1 ∪E
S
2 that is blocked byg and

is such thatw(g) ≥ w(e1).

As f = (i, j) ∈ Ai \ A
∗
i , i ∈ S can block at most two edges inES

1 ∪ ES
2 and

g = (i, j) ∈ Ai \A
∗
i , i /∈ S can block at most one edge inES

1 ∪ ES
2 ,

∑

i:i∈S

∑

e∈A∗
i
\Ai

w(e) =
∑

e∈ES
1
∪ES

2

w(e) ≤ 2
∑

i:i∈S

∑

f∈Ai\A∗
i

w(f) +
∑

i:i/∈S

∑

g∈Ai\A∗
i

w(g) . (3.2)

Adding (5.2), (5.4),

∑

i:i/∈S

∑

e∈A∗
i

w(e) +
∑

i:i∈S

∑

e∈A∗
i
\Ai

w(e) ≤ 2
∑

i:i/∈S

∑

e∈Ai

w(e) + 2
∑

i:i∈S

∑

f∈Ai\A∗
i

w(f) +

∑

i:i/∈S

∑

g∈Ai\A∗
i

w(g).

Adding
∑

i:i∈S
∑

e∈Ai∩A∗
i

w(e) to LHS and RHS,

∑

i:i/∈S

∑

e∈A∗
i

w(e) +
∑

i:i∈S

∑

e∈A∗
i

w(e) ≤
∑

i:i∈S

∑

e∈Ai∩A∗
i

w(e) + 2
∑

i:i∈S

∑

f∈Ai\A∗
i

w(f)+

3
∑

i:i/∈S

∑

g∈Ai

w(g).

Simplifying,
∑

i∈I
∑

e∈A∗
i

w(e) ≤ 3
∑

i∈I
∑

e∈Ai
w(e), as required.

0.5

0.5-ε
S2

:

t=1 t=3

0

t=4

0

0.5 0.5

.

.

.

.

.

.

0.5-ε 0
.

.

.

0

t=2

0

ε

.

.

.

0

Figure 3.2: Illustration for example 3.2 to show tightness of ONLINEGREEDY

Example 3.2. This example is used to show the tightness of analysis forTheorem 3.1.

There aren servers with capacity 1. The sequence of jobs is illustratedin Fig. 3.2. At

t = 1, only the edge to server 1 has weight0.5, all other edges have weight(0.5−ǫ). At

11



t = 2, only the edge to server 1 has weightǫ, all other edges have weight0. At t = 3, 4

only the edge to server 1 has weight0.5, all other edges have weight 0. ONLINEGREEDY

assigns the job att = 1, 2 to server 1, and can’t assign any more jobs att = 3, 4, as

server 1 is not active during those time slots, and the total weight of the allocation by

ONLINEGREEDYis 0.5 + ǫ. The optimal allocation would be to assign the job(0.5− ǫ) at

t = 1 to server 2, and then assign the jobs at time slott = 3, 4 to server 1, so that the

optimal weight allocation is(1.5 − ǫ). Hence ONLINEGREEDYis a 1
3
-approximation, and

this infinite family of instances shows that the analysis of the algorithm is tight.

Remark 3.2. In the more general case, where edge weights are restricted to be at most

α (≤ 1) times the corresponding server capacities, i.e., ifw(i, j) ≤ αCi ∀ i, j, the

following modification of ONLINEGREEDYmakes it
(
1 + 1

1−α

)
-competitive. Instead of re-

moving a serveri from the set of active serversS whenW (Ai(t)) >
1
2
Ci, if we remove

it whenW (Ai(t)) > (1 − α)Ci, then (5.2) can be changed to
∑

i:i/∈S
∑

e∈A∗
i

w(e) <
(

1

1− α

)
∑

i:i/∈S
∑

e∈Ai
w(e). The rest of the proof follows directly to give a

(
1 + 1

1−α

)
-

competitive algorithm. Clearly, asα → 1, the competitive ratio tends to 0, and

ONLINEGREEDYwill fail, as expected from Example 3.1. To handle the case ofunrestricted

job weights, in the next subsection, we present a randomizedalgorithm RANDOMONLINEGREEDY

which is6−competitive.

3.2 Randomized Algorithm for Unrestricted Edge Weights

Now we present a randomized version of ONLINEGREEDY, called RANDOMONLINEGREEDY,

that is 6− competitive for the general case of unrestricted edge weights. Note that

while w(i, j) can be unbounded, any edge such thatw(i, j) > Ci will be ignored as it

can never be allocated to serveri.

Definition 3.2. An edgee = (i, j) that satisfiesCi

2
< w(i, j) ≤ Ci is called a heavy

edge and the corresponding job is called a heavy job for that server. In other words, the

weight of a heavy edge(i, j) connected to a serveri is at least half the server’s initial

capacity. An edge that is not heavy is called light, and the corresponding job is called

light for that server.

12



Algorithm 3 : RANDOMONLINEGREEDY

Input : Server capacitiesC1, C2, ..., Cn

Weighted bipartite graphG(t) for t ≤ T , such thatw(i, j) ≤ Ci ∀ i, j
Output : Random feasible allocationA = ∪i∈IAi

begin
S ← I
S1, S2 ← ∅
Ai(0), Bi(0)← ∅ ∀ i ∈ I
// For each server
for k ← 1 to n do

vk ∼ Bernoulli(1
2
)

if vk = 1 then
S1 ← S1 ∪ {k} // accept only heavy jobs

else
S2 ← S2 ∪ {k} // accept only light jobs

for t← 1 to T do
M(t)←GREEDY(G(t), S)
for e = (i, j) ∈ M(t) do

Bi(t)← Bi(t− 1) ∪ {e}
if W (Bi(t)) >

Ci

2
then

S ← S \ {i}
if
(
i ∈ S1 AND w(i, j) > Ci

2

)
OR

(
i ∈ S2 AND w(i, j) ≤ Ci

2

)
then

Ai(t)← Ai(t− 1) ∪ {e}
end

At the start of the algorithm RANDOMONLINEGREEDY, an unbiased coin is flipped for

each serveri. If heads, then serveri is added to setS1, else it is added to setS2. If

serveri ∈ S1, it can only accept jobs corresponding to heavy edges, whileif i ∈ S2, it

can only accept jobs corresponding to light edges.

Similar to ONLINEGREEDY, RANDOMONLINEGREEDY maintains a set of active serversS,

along with setsA(t) andB(t). At each time stept, the weighted bipartite graphGt and

set of active serversS are passed as input to GREEDY, which returns a matchingM(t).

The setB(t) := ∪τ≤tM(τ) andBi(t) represents the set of edges inB(t) connected to

serveri. The setAi(t) is conditioned on the coin toss for serveri. If i ∈ S1, Ai(t) only

contains the heavy edges inBi(t). Otherwise, ifi ∈ S2, Ai(t) only contains the light

edges inBi(t).

At time t, if RANDOMONLINEGREEDY adds an edgee = (i, j) to B, the algorithm

checks the weightW (Bi(t)) to see if it should be active for the next time step. If

W (Bi(t)) >
1
2
Ci, then serveri is removed fromS. The reason for maintaining two sets

13



B andA is that it is possible forBi(T ) to be infeasible for some serveri. However,

Ai(T ) is a feasible allocation∀ i, andE [W (Ai(T ))] =
1
2
W (Bi(T )). The algorithm

continues until eitherS = ∅ or t = T .

Lemma 3.2. The allocationAi(T ) is feasible for each machinei ∈ I.

Proof. Since GREEDY performs a matching at each time step, the degree constraints are

always satisfied. We show that the capacity constraints are obeyed as well. Note that

Ai(t) ⊆ Bi(t) for all i, t. By construction, ifW (Bi(t)) > 1
2
Ci at any timet, server

i is deactivated. Hence every server can accept at most one heavy job. At time t, if a

serveri ∈ S1 (i.e., it can accept only heavy jobs) is active, there are no heavy edges

in Bi(t − 1) and the setAi(t − 1) must be empty. If∃e = (i, j) ∈ M(t) which is

a heavy edge, it is added toBi(t − 1) andAi(t − 1), and serveri is deactivated. As

W (Bi(t− 1)), W (Ai(t− 1)) increase by at mostCi after addinge to B andA, it may

be thatW (Bi(t)) > Ci butW (Ai(t)) ≤ Ci sinceAi(t) was empty before. However, if

∃e = (i, j) ∈M(t) which is a light edge, then it is added toBi(t−1) but notAi(t−1),

andAi(t) remains empty. Therefore, ifi ∈ S1, W (Ai(t)) ≤ Ci ∀ t.

On the other hand, if the serveri ∈ S2 is active at timet, thenW (Ai(t−1)),W (Bi(t−

1)) ≤ 1
2
Ci. If ∃e = (i, j) ∈ M(t) which is a heavy edge, thene is added toBi(t − 1)

and i is deactivated. However,e is not added toAi(t − 1) andW (Ai(t)) ≤
1
2
Ci as

no edge has been added toAi(t − 1) at time t. If ∃e = (i, j) ∈ M(t) which is a

light edge, thene is added toBi(t − 1) andAi(t − 1). With the addition of a light

edge,W (Bi(t − 1)),W (Ai(t − 1)) increase by at most1
2
Ci, and asW (Ai(t − 1)) ≤

1
2
Ci, W (Ai(t)) ≤ Ci. Therefore, ifi ∈ S2, W (Ai(t)) ≤ Ci ∀ t.

Example 3.3. This example illustrates howBi(T ) may be an infeasible allocation,

whileAi(T ) is feasible. Consider a single server with capacityC. At each time step, one

job is presented, andT = 2. At t = 1, a job of weightC
2
− ǫ is presented, while at time

t = 2, a job of weightC is presented. RANDOMONLINEGREEDYwill put both jobs intoB(2).

If the coin showed heads,A(2) will contain the second edge. If the coin showed tails,

A(2) will contain the first edge at timet = 1, i.e.,A(2) = {1
2
C − ǫ} or A(2) = {C},

and both allocations occur with probability1
2
. However,W (B(2)) =

(
3
2
C − ǫ

)
, which

is an infeasible allocation.
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Example 3.4.This example illustrates how RANDOMONLINEGREEDYperforms well on Ex-

ample 3.1. If the job weights to serveri are C at t = 2, then the optimal matching

decision would be to not make any allocations to serveri at t = 1, an event which

occurs in RANDOMONLINEGREEDYwith probability 0.5 (i.e., ifi ∈ S1). Similarly, if the

job weights to serveri are 0 att = 2, then the optimal matching decision would be to

allocate a job of weightǫ, an event which occurs in RANDOMONLINEGREEDYwith proba-

bility 0.5 (i.e., if i ∈ S2). Thus, for the sequence in Example 3.1, with probability 0.5,

RANDOMONLINEGREEDYfinds the optimum allocation for a server.

Theorem 3.3.RANDOMONLINEGREEDYis 6−competitive.

Proof. Let W (A∗(T )) = W (∪ni=1A
∗
i (T )) be the value of the allocation made by the

optimal offline algorithm, andW (B(T )) = W (∪ni=1Bi(T )) be the value of the infea-

sible allocationB(T ). Moreover, letE [W (A)] = E [W (∪ni=1Ai(T ))] be the expected

value of the feasible allocationA(T ) made by RANDOMONLINEGREEDY(denoted asA),

then fromLemma 3.4andLemma 3.5, µ(A) = max

(
W (A∗(T ))

E [W (A(T ))]

)

= 6.

Lemma 3.4.
W (A∗(T ))

W (B(T ))
≤ 3.

Proof. As the arguments for (5.2), (5.4) hold for the setsBi(t) ∀ i, the proof forLemma

3.4 follows similar to the proof forTheorem 3.1. A full proof is provided in the Ap-

pendix.

Lemma 3.5.
W (B(T ))

E [W (A(T ))]
= 2.

Proof. The setBi(t) can be partitioned into two mutually exclusive subsetsXi(t) and

Yi(t), such thatXi(t) only contains heavy edges, whileYi(t) only contains light edges.

Note that|Xi(t)| ≤ 1. Let vi = 1(= 0) if server i accepts only heavy (light) jobs.

As Ai(t) is a feasible allocation∀ t andAi(t) = Xi(t), t ≤ T if vi = 1, andAi(t) =

Yi(t), t ≤ T if vi = 0, Xi(t), Yi(t), t ≤ T are both feasible allocations. Therefore

Bi(t) = Xi(t) ∪ Yi(t), Xi(t) ∩ Yi(t) = ∅ ∀ t, andW (Bi(t)) = W (Xi(t)) +W (Yi(t)).

Hence

E [W (Ai(T ))] = P [vi = 1]W (Ai(T ) | vi = 1) + P [vi = 0]W (Ai(T ) | vi = 0),

=
1

2
(W (Xi(T )) +W (Yi(T ))) .

15



Therefore,E [W (Ai(T ))] =
1
2
W (Bi(T )). Summing over all serversi,

∑n
i=1 E [W (Ai(T ))] =

1
2

∑n
i=1W (Bi(T )), and

E [W (A(T ))]

W (B(T ))
=

1

2
.

3.3 Deterministic Algorithm for Small Job Weights and

Parallel Servers

Servers areparallel if Ci = Ci′ andeij = ei′j for all jobsj and all serversi, i′. That is,

the servers are identical, and each job consumes the same quantity of resources on each

server. Thus instead of edge weights we now refer to the weight of each job. If servers

are parallel, each with capacityC, and each job has weight at mostǫ, then we show a

simple deterministic load-balancing algorithm that is
1

1− 2ǫ/C
-competitive.

Algorithm 4 : PARALLELLOADBALANCE

Input : CapacitiesC of servers
JobsJ(t) at each time stept ∈ {1, . . . , T},
with weightw(j) for j ∈ J(t).

Output : Feasible server allocationsAi, i ∈ {1, 2, ..., n}
begin

Ai ← ∅ ∀i ∈ {1, . . . , n} initially.
for t← 1 to T do

for j ∈ J(t), in decreasing order of weightdo
Let i be the machine with highest remaining capacityC −W (Ai) that
is not assigned a job in current time step.
if W (Ai ∪ {j}) ≤ C then

Ai ← Ai ∪ {j}
else

return
end

Lemma 3.6. After any time stept, the remaining capacity of any pair of machinesi, i′

differs by at mostǫ with the PARALLELLOADBALANCEalgorithm.

Theorem 3.7.Algorithm PARALLELLOADBALANCEis
1

(1− 2ǫ/C)
-competitive.
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CHAPTER 4

FINITE SPAN JOBS

We now generalise our model by assuming that the jobs do not consume server re-

sources for infinite time, i.e, along with the job weight, theadversary also announces

the span over which the job remains in the server. If a job is presented at timet′ and has

spans, then it consumes resources fort such thatt′ ≤ t < t′ + s. Once an allocated

job expires, the capacity corresponding to the weight of that job is made available to the

server for future job requests.

Example 4.1. For each job let(w, s) be the tuple representing the weight and span,

respectively. Let there be a single server with capacityC. Let the input sequenceS1 =

{(ǫ, T ), (0, 1), . . . , (0, 1)
︸ ︷︷ ︸

T−1

}, while S2 = {(ǫ, T ),
(
C
2
, T − 1

)
,
(
C
2
/0, 1

)
, . . . ,

(
C
2
/0, 1

)

︸ ︷︷ ︸

T−1

},

whereC
2
/0 means either the weight isC

2
or 0 depending on earlier matchings. If at time

t = 1, the job is not matched to the server, the competitive ratio onS1 is∞. Otherwise,

the adversary presents the sequenceS2, where if job at timet = 2 is not matched

then the weights of jobs for all further time instants are0, and the competitive ratio is

0.5C/ǫ. If the server does accept the job att = 2, then all future jobs have weightC
2

and span1. The server cannot accept any jobs fort ≥ 3 due to lack of capacity, and the

competitive ratio is0.5C(T−2)
0.5C+ǫ

≈ T−2. This shows that asT →∞, the competitive ratio

can be made arbitrarily bad for all deterministic algorithms, even when edge weights

are restricted to be at most half the server capacity.

4.1 Uniform Span

We first look at the case where all jobs have the same spans. Algorithms UNIFORMGREEDY

and RANDOMUNIFORMGREEDY are similar to ONLINEGREEDY(if each job weight is at most

half the server capacity) and RANDOMONLINEGREEDY(for general weights), with the fol-

lowing modification. If the algorithm assigns jobi to serverj at timet, the resources



used are released at timet+ s. The algorithms and the analyses are formally presented

in the Appendix. The analysis is similar to ONLINEGREEDY and RANDOMONLINEGREEDY.

However, a more intricate argument is required since we can no longer argue about the

jobs allocated at each time step. Instead, our analysis considers a window of sizes, and

obtains bounds on the weight of all jobs that are active within this window.

Theorem 4.1.UNIFORMGREEDYis 6-competitive where all job requests to a server are at

most half the capacity of the corresponding server.

Theorem 4.2.RANDOMUNIFORMGREEDYis 12-competitive.

Proof. The proof follows similar to Theorem 3.3, with Theorem 4.1 replacing Theorem

3.1.

4.2 Non Uniform Span

In this section we present RANDOMNONUNIFORMGREEDY, aO
(

log
(

smax

smin

))

−competitive

algorithm for the case where all jobs do not have the same span.

Algorithm 5 : RANDOMNONUNIFORMGREEDY

Input : Server capacitiesC1, C2, ..., Cn

Weighted bipartite graphG(t) for t ≤ T , such thatw(i, j) ≤ Ci ∀ i, j
Minimum spansmin; Maximum spansmax

Output : Random feasible allocationA = ∪i∈IAi

begin

r =
⌈
log2

(
smax+1
smin

) ⌉

k ∼ U ({0, 1, 2, · · · , r − 1})
s1 = 2k · smin

s2 = 2k+1 · smin

Run RANDOMUNIFORMGREEDY, only accepting jobs of spans, such thats1 ≤ s < s2
end

Theorem 4.3.RANDOMNONUNIFORMGREEDYisO
(

log
(

smax

smin

))

competitive.
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4.3 Finite Span Servers

We now consider the case in which servers have finite span, butjobs have infinite span.

At time t′, the adversary announces that a serveri will be alive for si time steps, i.e.,

for t such thatt′ ≤ t < t′ + si, jobs can be scheduled on serveri. We argue that our

previous algorithm RANDOMONLINEGREEDY is 6-competitive in such a setting.

Theorem 4.4.RANDOMONLINEGREEDYis 6-competitive for the case of finite span servers.

Proof. Assume that the adversary has the sequence of job requests and server spans

si fixed for all serversi(this does not restrict the adversary, as the competitive ratio is

taken as the worst case over all possible sequences), and call this sequenceS. UsingS,

construct the sequenceS ′ as follows:

1. If the number of distinct servers inS isn, thenS ′ will haven servers at each time
step.

2. If a serveri is announced at timeti and has spansi, then the job weights to server
i at timet is non-zero if and only ifti ≤ t < ti + si, i.e., if a server is not alive at
time t, then all job weights presented to it are strictly 0.

3. If serveri is alive at timet, then the job weights to serveri at time t in the
sequencesS ′ andS are the same.

As the job weights are the same inS ′ andS, the optimal offline algorithm will

produce the same allocation for both sequences. When job requests are presented from

sequencesS andS ′ at timet, RANDOMONLINEGREEDY will make the same allocation at

each time step. From theorem 3.3, as RANDOMONLINEGREEDY is 6-competitive on the

sequenceS ′, it is also 6-competitive on the sequenceS.
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CHAPTER 5

MODIFIED OBJECTIVE FUNCTION

In this chapter we extend our results to the mobile offloadingproblem by making a small

modification in our objective function. For each server, thewe count the minimum of

its capacity and the cumulative weight of jobs assigned to it, i.e.,min{Ci,W (Ai(T ))},

whereCi is the capacity of serveri andAi(T ) denotes the jobs allocated to serveri by

our algorithm. Thus the new objective is:

max
∑

i

min{Ci,W (Ai(T ))} (5.1)

The previous formulation places a hard constraint that if the remnant capacity of a

server isC ′
i, then it cannot serve jobs that have weight greater than the remnant capacity.

However, in the mobile offloading problem, the remnant capacity denotes the remaining

data that a mobile user requires. Thus, if the remaining datarate requirement isC ′
i

for mobile useri, then it is acceptable for an AP with data rate greater thanC ′
i to be

matched to useri, and the hard constraintW (Ai(T )) ≤ Ci is unnecessary. The case

of finite span servers help model the limited life time of APs,and along with the new

formulation given by 5.1, we find that OBRM with finite span servers models the mobile

offloading problem nicely.

The original formulation of AdWords by Mehtaet al. (2007) uses the same formu-

lation as in 5.1.

All our previous results(except those associated with finite span jobs- the new ob-

jective function does not work in this scenario) hold for thenew ojective function. We

present the proof of Theorem 3.1 as an example. The proofs forthe other algorithms

follow along the same lines.

Theorem 5.1.ONLINEGREEDYis 3-competitive for the formulation given by (5.1)



Remark 5.1. In prior work, under the restriction that any job weight is atmost half

the corresponding capacity, the best competitive ratio known is 2
√
3√

3−1
Buchbinderet al.

(2007).

Proof. For each time stept, letM(t) denote the matching produced by ONLINEGREEDY,

and letM∗(t) denote the corresponding matching given by the optimal offline algo-

rithm. LetA∗(t) = ∪τ≤tM
∗(τ), andA∗

i (t) is the set of edges to serveri in the optimal

allocation until timet. Also,A∗
i = A∗

i (T ),Ai = Ai(T ), andA = ∪i∈IAi,A∗ = ∪i∈IA
∗
i .

We say that an edgee = (i, j) ∈M∗(t)\M(t), has beenblockedby a heavier weight

edgef ∈ M(t) if w(f) ≥ w(e) andf shares a server vertex (i) or job vertex (j) with e.

As f has more weight thane, GREEDY would select it first inM(t), and hencee cannot

be selected without violating matching constraints. For each edge(i, j) ∈M∗(t)\M(t),

there are three possible reasons why the edge was not selected by ONLINEGREEDY:

1. An edgef = (i, j′) ∈ M(t), j′ 6= j blocks(i, j), i.e. serveri was matched to
some jobj′ by GREEDY, such thatw(i, j′) ≥ w(i, j).

2. An edgef = (i′, j) ∈ M(t), i′ 6= i blocks(i, j), i.e. jobj was matched to some
serveri′ by GREEDY, such thatw(i′, j) ≥ w(i, j).

3. The serveri was inactive at time stept, i.e.,i /∈ S.

Let E1(t), E2(t) andE3(t) denote the set of edges inM∗(t) \ M(t) that satisfy

the first, second and third condition respectively. Clearly, E1(t) ∪ E2(t) ∪ E3(t) =

M∗(t) \M(t). Note: No edge can satisfy the first and third condition simultaneously,

as a server which is inactive at timet cannot be matched to any job at timet. Therefore,

E1(t) ∩ E3(t) = ∅. However, in general,E1(t) ∩ E2(t) 6= ∅ andE2(t) ∩ E3(t) 6= ∅, as

edges can satisfy conditions 1 and 2 or 2 and 3.

Let S be the set of active servers at timeT + 1. For all serversi, i /∈ S, since

W (Ai) >
1
2
Ci andmin (W (A∗

i ), Ci) ≤ Ci, the allocationAi is a 1
2

approximation to

A∗
i , i.e.,

∑

i:i/∈S
min



Ci,
∑

e∈A∗
i

w(e)



 < 2
∑

i:i/∈S

∑

e∈Ai

w(e) . (5.2)
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LetE1 = ∪
T
t=1E1(t), E2 = ∪

T
t=1E2(t), E3 = ∪

T
i=1E3(t). DefineES

1 = {e = (i, j) ∈

E1 | i ∈ S}, ES
2 = {e = (i, j) ∈ E2 | i ∈ S}. Clearly,ES

1 ∪ ES
2 = ∪i:i∈S (A

∗
i \ Ai), as

no edgee = (i, j), i ∈ S can satisfy the third condition.

The edgese ∈ ES
1 ∪ ES

2 were not selected in the greedy allocation as they were

blocked by edges of heavier weight fromA \A∗. The edges in the setA \A∗ are of two

types:

1. f = (i, j) ∈ Ai \ A
∗
i , i ∈ S. As all edgese = (i′, j′) ∈ ES

1 ∪ ES
2 are such that

i′ ∈ S, e was blocked either becausee andf share a server vertex (i = i′) or they
share a job vertex (j = j′). Thus, for every edgef = (i, j) ∈ Ai \ A

∗
i , i ∈ S,

there may exist at most two edgese1 = (i, j′), e2 = (i′, j) that are blocked byf ,
so thate1, e2 ∈ ES

1 ∪ ES
2 andw(f) ≥ w(e1), w(f) ≥ w(e2).

2. g = (i, j) ∈ Ai \ A
∗
i , i /∈ S. As all edgese = (i′, j′) ∈ ES

1 ∪ ES
2 are such that

i′ ∈ S, e was blocked only becauseg ande share the same job vertex (j = j′)
andg was greedily picked first. Thus, for every edgeg = (i, j) ∈ A \ A∗, i /∈ S,
there may exist at most one edgee1 = (i′, j) ∈ ES

1 ∪E
S
2 that is blocked byg and

is such thatw(g) ≥ w(e1).

As f = (i, j) ∈ Ai \ A
∗
i , i ∈ S can block at most two edges inES

1 ∪ ES
2 and

g = (i, j) ∈ Ai \A
∗
i , i /∈ S can block at most one edge inES

1 ∪ ES
2 ,

∑

i:i∈S
min




∑

e∈A∗
i
\Ai

w(e), Ci



 ≤
∑

i:i∈S

∑

e∈A∗
i
\Ai

w(e) ≤ 2
∑

i:i∈S

∑

f∈Ai\A∗
i

w(f)+
∑

i:i/∈S

∑

g∈Ai\A∗
i

w(g).

(5.3)

Note that on the RHS, nomin is required, since all job weights are less than half

of the corresponding server capacity, and the server is deactivated as soon as more than

half of its capacity is exhausted, hence the contribution from all jobs associated to any

server can be counted in full without involving themin.

Adding
∑

i:i∈S
∑

e∈Ai∩A∗
i

w(e) to LHS and RHS,

∑

i:i∈S
min




∑

e∈A∗
i

w(e), Ci



 ≤
∑

i:i∈S
min




∑

e∈A∗
i
\Ai

w(e), Ci



+
∑

i:i∈S

∑

e∈Ai∩A∗
i

w(e) ,

≤
∑

i:i∈S

∑

e∈Ai∩A∗
i

w(e) + 2
∑

i:i∈S

∑

f∈Ai\A∗
i

w(f) +
∑

i:i/∈S

∑

g∈Ai\A∗
i

w(g) ,

≤ 2
∑

i:i∈S

∑

f∈Ai

w(f) +
∑

i:i/∈S

∑

g∈Ai

w(g) . (5.4)
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Adding (5.2), (5.4),

∑

i∈I
min




∑

e∈A∗
i

w(e), Ci



 ≤ 2
∑

i:i/∈S

∑

e∈Ai

w(e) + 2
∑

i:i∈S

∑

f∈Ai

w(f) +
∑

i:i/∈S

∑

g∈Ai

w(g) .

Simplifying,
∑

i∈I min
(
∑

e∈A∗
i

w(e), Ci

)

≤ 3
∑

i∈I
∑

e∈Ai
w(e), as required.
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APPENDIX

5.1 UNIFORM GREEDY

We use the setA{t} to denote the set of jobs that consume resources at timet, i.e., if an

edgee was allocated at timet1, andt1 ≤ t < t1 + s, thene ∈ A{t}.

Algorithm 6 : UNIFORMGREEDY

Input : Server capacitiesC1, C2, ..., Cn

Weighted bipartite graphsG(t) for t ≤ T ,
such thatw(i, j) ≤ 1

2
Ci ∀i, j

Output : Feasible allocationA(T ) = ∪t≤TM(t)
begin

S ← I
Ai(0)← ∅ ∀ i ∈ I
for t← 1 to T do

M(t)←GREEDY(G(t), S)
A(t)← A(t− 1) ∪M(t)
for (i, j) ∈M(t) do

if W (Ai{t}) >
Ci

2
then

S ← S \ {i}
for i /∈ S do

for (i, j) ∈ Ai{t} do
if j is released att+ 1 then

S ← S ∪ {i}
end

In the same way we modified ONLINEGREEDY to get UNIFORMGREEDY, we can modify

RANDOMONLINEGREEDY to get RANDOMUNIFORMGREEDY.

5.2 Proof of Lemma 3.4

Proof. For each time stept, letM(t) denote the matching produced by RANDOMONLINEGREEDY,

and letM∗(t) denote the corresponding matching given by the optimal offline algo-
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rithm. LetA∗(t) = ∪τ≤tM
∗(τ), andA∗

i (t) is the set of edges to serveri in the optimal

allocation until timet. Also,A∗
i = A∗

i (T ) andBi = Bi(T ).

For each edge(i, j) ∈M∗(t) \M(t), there are three possible reasons why the edge

was not selected by RANDOMONLINEGREEDY:

1. An edgef = (i, j′) ∈ M(t), j′ 6= j blocks(i, j), i.e. serveri was matched to
some jobj′ by GREEDY, such thatw(i, j′) ≥ w(i, j).

2. An edgef = (i′, j) ∈ M(t), i′ 6= i blocks(i, j), i.e. jobj was matched to some
serveri′ by GREEDY, such thatw(i′, j) ≥ w(i, j).

3. The serveri was inactive at time stept, i.e.,i /∈ S.

Let E1(t), E2(t) andE3(t) denote the set of edges inM∗(t) \ M(t) that satisfy

the first, second and third condition respectively. Clearly, E1(t) ∪ E2(t) ∪ E3(t) =

M∗(t) \M(t). Note: No edge can satisfy the first and third condition simultaneously,

as a server which is inactive at timet cannot be matched to any job at timet. Therefore,

E1(t) ∩ E3(t) = ∅. However, in general,E1(t) ∩ E2(t) 6= ∅ andE2(t) ∩ E3(t) 6= ∅, as

edges can satisfy conditions 1 and 2 or 2 and 3.

For all serversi, i /∈ S, sinceW (A∗
i ) ≤ Ci andW (Bi) >

1
2
Ci, the allocationBi is

a 1
2

approximation toA∗
i , i.e.,

∑

i:i/∈S

∑

e∈A∗
i

w(e) < 2
∑

i:i/∈S

∑

e∈Bi

w(e) . (5.5)

LetE1 = ∪
T
t=1E1(t), E2 = ∪

T
t=1E2(t), E3 = ∪

T
i=1E3(t). DefineES

1 = {e = (i, j) ∈

E1 | i ∈ S}, ES
2 = {e = (i, j) ∈ E2 | i ∈ S}. Clearly,ES

1 ∪ ES
2 = ∪i:i∈S (A

∗
i \Bi), as

no edgee = (i, j), i ∈ S can satisfy the third condition.

The edgese ∈ ES
1 ∪ ES

2 were not selected in the greedy allocation as they were

blocked by edges of heavier weight fromB \A∗. The edges in the setB \A∗ are of two

types:

1. f = (i, j) ∈ Bi \ A
∗
i , i ∈ S. As all edgese = (i′, j′) ∈ ES

1 ∪ ES
2 are such that

i′ ∈ S, e was blocked either becausee andf share a server vertex (i = i′) or they
share a job vertex (j = j′). Thus, for every edgef = (i, j) ∈ Bi\A

∗
i , i ∈ S, there

may exist at most two edgese1 = (i, j′), e2 = (i′, j) such thate1, e2 ∈ ES
1 ∪ ES

2

andw(f) ≥ w(e1), w(f) ≥ w(e2).
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2. g = (i, j) ∈ Bi \ A
∗
i , i /∈ S. As all edgese = (i′, j′) ∈ ES

1 ∪ ES
2 are such that

i′ ∈ S, e was blocked only becauseg ande share the same job vertex (j = j′)
andg was greedily picked first. Thus, for every edgeg = (i, j) ∈ B \ A∗, i /∈ S,
there may exist at most one edgee1 = (i′, j) ∈ ES

1 ∪E
S
2 such thatw(g) ≥ w(e1).

As f = (i, j) ∈ Bi \ A
∗
i , i ∈ S can block at most two edges inES

1 ∪ ES
2 and

g = (i, j) ∈ Bi \A
∗
i , i /∈ S can block at most one edge inES

1 ∪ ES
2 ,

∑

i:i∈S

∑

e∈A∗
i
\Bi

w(e) =
∑

e∈ES
1
∪ES

2

w(e) ≤ 2
∑

i:i∈S

∑

f∈Bi\A∗
i

w(f) +
∑

i:i/∈S

∑

g∈Bi\A∗
i

w(g) .(5.6)

Adding (5.5), (5.6),

∑

i:i/∈S

∑

e∈A∗
i

w(e) +
∑

i:i∈S

∑

e∈A∗
i
\Bi

w(e) ≤ 2
∑

i:i/∈S

∑

e∈Bi

w(e) + 2
∑

i:i∈S

∑

f∈Bi\A∗
i

w(f)+

∑

i:i/∈S

∑

g∈Bi\A∗
i

w(g).

Adding
∑

i:i∈S
∑

e∈Bi∩A∗
i

w(e) to LHS and RHS,

∑

i:i/∈S

∑

e∈A∗
i

w(e) +
∑

i:i∈S

∑

e∈A∗
i

w(e) ≤
∑

i:i∈S

∑

e∈Bi∩A∗
i

w(e) + 2
∑

i:i∈S

∑

f∈Bi\A∗
i

w(f)+

3
∑

i:i/∈S

∑

g∈Bi

w(g).

Simplifying,
∑

i∈I

∑

e∈A∗
i

w(e) ≤ 3
∑

i∈I

∑

e∈Bi

w(e). (5.7)

5.3 Proof of Lemma 3.6.

Proof. The proof is by induction. Suppose the lemma is true at the endof time step

t−1, andAi(t−1), Ai′(t−1) are the set of jobs assigned by the algorithm to machines

i, i′ until time stept − 1. Assume without loss of generality thatW (Ai(t − 1)) ≤

W (Ai′(t− 1)). Then by the inductive hypothesis,W (Ai(t− 1)) ≥W (Ai′(t− 1))− ǫ.
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Further if j, j′ are the jobs assigned toi, i′ respectively in time stept, then by the

algorithmǫ ≥ w(j) ≥ w(j′). It follows that|W (Ai(t))−W (Ai′(t))| ≤ ǫ.

5.4 Proof of Theorem 3.7

Proof. If theelsecondition in PARALLELLOADBALANCE is never encountered, then at every

time step then jobs of largest weight are assigned, and hence the assignment obtained

is optimal. Suppose that for some time stept, job j, and machinei, theelsecondition

is encountered. ThusW (Ai ∪ {j}) > C, and since each job has weight at mostǫ,

W (Ai) ≥ C − ǫ. By Lemma 3.6, for any machinei′, W (Ai′) ≥ C − 2ǫ. The proof

immediately follows.

5.5 Proof of Theorem 4.1

Proof. Without loss of generality, assume that all edges have an even spans. If an

allocated edgee was presented at timet1, then it remains in the server fort′ such that

t1 ≤ t′ < t1 + s. We use the notationB(t) to denote the set of edges which consume

resources over the time interval
[
t− s

2
, t+ s

2

]
. Stated formally, if an edgee allocated by

our algorithm was presented at timet1, thene ∈ B(t) if [t1, t1 + s)∩
[
t− s

2
, t+ s

2

]
6= ∅.

B(t) can be thought of as the set of all edges that consume resources over a time window

of width s centered at timet. Bi(t) is used to denote the set of edges inB(t) that have

been allocated to serveri, and the weight of the setB(t) is defined asW (B(t)) :=
∑

e∈B(t) w(e). Similarly, letB∗(t) andB∗
i (t) denote the analogous set of edges in the

optimal allocation. The setsM(t),M∗(t), A(t), A∗(t) are used as defined in Theorem

3.1.

For each edge(i, j) ∈ B∗(t) \ B(t), there are three possible reasons why the edge

was not selected by UNIFORMGREEDY:

1. An edge(i′, j) ∈ B(t), i′ 6= i was selected instead, i.e. jobj was matched to
some serveri′ by GREEDY, such thatw(i′, j) ≥ w(i, j), as the edges were chosen
in decreasing order of weight.
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2. An edge(i, j′) ∈ B(t), j′ 6= j was selected instead, i.e. serveri was matched to
some jobj′ by GREEDY, such thatw(i, j′) ≥ w(i, j), as the edges were chosen in
decreasing order of weight.

3. The serveri was inactive when the edge was presented.

Let E1(t), E2(t) andE3(t) denote the set of edges inB∗(t) \ B(t) that satisfy

the first, second and third condition respectively. Clearly, E1(t) ∪ E2(t) ∪ E3(t) =

B∗(t) \B(t) and hence we get,

W (B∗(t) \B(t)) ≤
3∑

k=1

W (Ek(t)) . (5.8)

For eache1 ∈ E1(t) ∃ some edgef(e1) ∈ B(t)\B∗(t) such thatw (f(e1)) ≥ w(e1)

and f(e1), e1 share a common vertex. Similarly, for eache2 ∈ E2(t) ∃ f(e2) ∈

B(t) \B∗(t) such thatw (f(e2)) ≥ w(e2) andf(e2), e2 share a common vertex.

∑

e1∈E1(t)

w(e1) +
∑

e2∈E2(t)

w(e2) ≤
∑

e1∈E1(t)

w(f(e1)) +
∑

e2∈E2(t)

w(f(e2)). (5.9)

Eachf ∈ F = {f(e1) | e1 ∈ E1(t)} ∪ {f(e2) | e2 ∈ E2(t)} appears at most twice in

the RHS of (5.9), andF ⊆ B(t) \B∗(t),

∑

e1∈E1(t)

w(f(e1)) +
∑

e2∈E2(t)

w(f(e2)) ≤ 2
∑

f∈F
w(f).

SinceF ⊆ B(t) \B∗(t),

2
∑

f∈F
w(f) ≤ 2

∑

g∈B(t)\B∗(t)

w(g).

From (5.9),

W (E1(t)) +W (E2(t)) ≤ 2W (B(t) \B∗(t)). (5.10)

Now consider the weight of the setE3(t). Let St denote the set of servers that are

active in the allocation by UNIFORMGREEDY for all time stepst′ ∈ [t− s
2
, t+ s

2
]. As each

edge has spans, and the window is of widths, it implies that for each serveri, there are
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at most 2 edgesei1, ei2 ∈ E3(t) whose spans never overlap. Since over the span of a

job, the cumulative weight of edges allocated to serveri must be less thanCi, we have,

∑

e3∈E3(t)

w(e3) ≤
∑

i:i/∈St

2Ci. (5.11)

As all the serverssi ∈ {s1, s2, ..., sn} \ St are inactive at somet′ ∈ [t − s
2
, t + s

2
],

W (Bi(t)) >
1
2
Ci, and hence,

2W (B(t)) ≥
∑

i:i/∈St

2W (Bi(t)) ≥
∑

i:i/∈St

Ci. (5.12)

From (5.11) and (5.12),

4W (B(t)) ≥
∑

e3∈E3(t)

w(e3). (5.13)

From (5.8), (5.10) and (5.13),

W (B∗(t) \B(t)) ≤ 2W (B(t) \B∗(t)) + 4W (B(t)).

AddingW (B∗(t) ∩ B(t)) to the LHS and2W (B∗(t) ∩ B(t)) to the RHS,

W (B∗(t)) ≤ 6W (B(t)). (5.14)

We now show how the setsA(T ) andA∗(T ) can be windowed usingB(t) and

B∗(t). Consider the setsB(tk), tk = 1 + k · s, k ≥ 0. As each edgee ∈ A(t) is of

spans, and setsB(tk) are windows of widths centered aroundtk, e belongs to exactly

2 setsB(tk), B(tk+1). If e was presented at timet1, thene ∈ B(tk) ∩ B(tk+1), if

t1 ≤ 1 + s · (k + 1
2
) ≤ t1 + s ≤ 1 + s · ((k + 1) + 1

2
).
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Summing (5.14) overk, we get,

∑

k

W (B∗(tk)) ≤
∑

k

6W (B(tk)), (5.15)

∑

e∈B∗(tk)

w(e) ≤
∑

e∈B(tk)

6w(e),

2
∑

e∈A∗(T )

w(e) ≤ 2
∑

e∈A(T )

6w(e),

2 ·W (A∗(T )) ≤ 2 · 6W (A(T )),

as required.

5.6 Proof of Theorem 4.3

Proof. Let r =
⌈
log2

(
smax+1
smin

) ⌉
, and let

D(k) = {(i, j) | (i, j) ∈ A∗(T ), 2k · smin ≤ span(j) < 2k+1 · smin}, 0 ≤ k ≤ r − 1,

whereA∗ is the optimal allocation.

The allocationA returned by our algorithm has minimum spans1 = 2k · smin and

maximum spans2 = 2k+1·smin, wherek ∼ U{0, 1, 2, · · · , r−1}. DefineB(t),B∗(t) ⊆

D(k), E1(t), E2(t), E3(t) as in the proof of Theorem 4.1. In this case, however,B(t)

andB∗(t) are windows of widths2 centered aroundt.

The proof follows along similar lines as that of Theorem 4.1.To start with, assume

that the weights are restricted to be half the capacity, as inUNIFORMGREEDY. Then equa-

tion (5.10) holds for RANDOMNONUNIFORMGREEDY. As s2 is the width of the window, and

s1 is the minimum span of all jobs in the allocation, withs2 = 2s1, it means that there

are at most 3 jobsei1, ei2, ei3 ∈ E3(t) such that their spans do not overlap. Thus (5.11)

should be modified to
∑

e3∈E3(t)

w(e3) ≤
∑

i:i/∈St

3Ci,

and hence we getW (B∗(t)) ≤ 2W (B(t)) + 6W (B(t)) = 8W (B(t)).

As each windowB(tj) is centered attj = 1 + s2 · j and has widths2, an edge
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e ∈ B(t) can be present in at least one setB(tj) or at most 2 setsB(tj), B(tj+1).

Proceeding similar to (5.15), we get

1 ·W (D(k)) ≤
∑

j

W (B∗(tj)) ≤
∑

j

8W (B(tj)) ≤ 2 · 8W (A(T )). (5.16)

Using randomisation as in Theorem 3.3, we can extend this toW (D(k)) ≤ 32E[W (A(T ) |

k)] for the case of unrestricted edge weights.

Summing overk,
∑r−1

k=0W (D(k)) ≤ 32
∑r−1

k=0E[W (A(T ) | k)], which implies
∑r−1

k=0W (D(k)) ≤ 32r ·
∑r−1

k=0
1
r
E[W (A(T ) | k)], and finallyW (A∗(T )) ≤ 32r ·

Ek [E[W (A(T ))]].

34


