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ABSTRACT

KEYWORDS: Gaussian Interference channels(IC), Many-to-one IC, One-to-many IC, HK

scheme, Nested Lattice codes.

In this work, we obtain new sum capacity results for the Gaussian many-to-one and one-

to-many interference channels. Simple Han-Kobayashi (HK) schemes, i.e., HK schemes with

Gaussian signaling, no time-sharing, and no common-private power splitting, achieve sum ca-

pacity under the channel conditions for which the new results are obtained. First, by careful

Fourier-Motzkin elimination, we obtain the HK achievable rate region for the K-user Gaussian

many-to-one and one-to-many channels in simplified form, i.e., only in terms of theK ratesR1,

R2, . . ., RK . We also obtain the achievable sum rate using Fourier-Motzkin elimination. Then,

to obtain sum capacity results, we derive genie-aided upper bounds that match the achievable

sum rate of simple HK schemes under certain channel conditions. We then show how the al-

ready existing nested lattice code results for symmetric many-to-one ICs can be extended to

asymmetric cases also. We also discuss a little about separability in multi-antenna case.
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CHAPTER 1

Introduction

In a multi-user wireless network where all the users share the same communication medium

interference is common. The signal from a transmitter acts as an interference at all the receivers

other than its intended receivers. The existence of interference affects the performance of the

system greatly. The users should strategize in the best way to possible to achieve the best

results. A lot of effort has been put into identifying strategies that achieve capacity in the

presence of interference.

TheK-user Interference channel (IC) is a special case which hasK distinct transmit-receive

pairs that interfere with each other. The capacity region or even the sum capacity are not known

in general. In this thesis we studytwo special cases of K - user interference channels namely

Many-to-one interference channels (Fig. 3.1) and One-to-many interference channels(Fig. 4.1).

In a many-to-one interference channel the interference is seen only at one receiver from all

the transmitters, while in a one-to-many interference channel, signal from a single transmitter

interferes with all the other receivers.

1.1 Literature review

The capacity region or even the sum capacity are not known in general. The sum capacity of

the Gaussian IC is known under some channel conditions Carleial (1975); Shang et al. (2008);

Motahari and Khandani (2009); Shang et al. (2009); Annapureddy and Veeravalli (2009). In

Carleial (1975), the capacity region and sum capacity for the 2-user IC were determined under

strong interference conditions. In Shang et al. (2008); Motahari and Khandani (2009); Shang

et al. (2009); Annapureddy and Veeravalli (2009), the sum capacity of the K-user Gaussian

IC was obtained under noisy interference conditions. Under these conditions, Gaussian sig-

naling and treating interference as noise at each receiver achieves sum capacity. In Motahari



and Khandani (2009), the sum capacity of the 2-user Gaussian IC under mixed interference

conditions was also obtained.

The many-to-one Gaussian IC and one-to-many Gaussian IC are special cases of the Gaus-

sian IC where only one receiver experiences interference or only one transmitter causes in-

terference. Even for these simpler topologies, exact capacity results are hard to obtain. The

one-to-many IC and many-to-one IC were studied in Jovicic et al. (2010); Bresler et al. (2010);

Annapureddy and Veeravalli (2009); Cadambe and Jafar (2009); Prasad et al. (2016, 2014).

In Jovicic et al. (2010); Bresler et al. (2010), approximate capacity and degrees of freedom

results are obtained for the many-to-one and one-to-many ICs. The sum capacity under noisy

interference conditions is obtained for the many-to-one and one-to-many Gaussian ICs in An-

napureddy and Veeravalli (2009); Cadambe and Jafar (2009). The same results can also be

obtained as a special case of the result in Shang et al. (2008). Recently, for the many-to-one

Gaussian IC, channel conditions under which Gaussian signalling and a combination of treat-

ing interference as noise and interference decoding is sum rate optimal were obtained in Prasad

et al. (2016).

For the symmetric many-to-one IC, structured lattice codes were shown to achieve sum

capacity under some strong interference conditions in Zhu and Gastpar (2015). Other special

cases of the Gaussian IC, namely the cyclic IC and cascade IC were studied in Zhou and Yu

(2013); Liu and Erkip (2011).

1.2 Overview

First we look at a motivating example that directed us towards this work in Chapter 2. Then we

obtain new sum capacity results for Gaussian many-to-one and one-to-many ICs in chapters 3

and 4 . Then we look at how lattice coding may help us achieve sum-capacity in some region

in chapter 5 for a many-to-one IC. And we discuss about seperability in a multi-antenna case

and the scope for future work in chapter 6.

We consider the work done in chapters 3 and 4 to be our major contribution. First, by

careful Fourier-Motzkin elimination, we obtain the Han-Kobayashi (HK) achievable rate re-
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gion for the K-user Gaussian many-to-one and one-to-many channels in simplified form, i.e.,

only in terms of the K rates R1, R2, . . ., RK . Then, we focus on simple HK schemes with

Gaussian signaling, no timesharing, and no common-private power splitting. We show that

genie-aided sum capacity upper bounds match the achievable sum rates of simple HK schemes

under some channel conditions. We also discuss how the genie-aided bounds used in this paper

differ from the bounds in Nam (2015b,a) for the K-user many-to-one Gaussian IC. Overall,

we obtain new sum capacity results for a larger subset of possible channel conditions than cur-

rently known in exisiting literature in Annapureddy and Veeravalli (2009); Cadambe and Jafar

(2009); Prasad et al. (2016); Zhu and Gastpar (2015); Tuninetti (2011). In Annapureddy and

Veeravalli (2009); Cadambe and Jafar (2009) only the case when all the interference is treated

as noise was considered. In Zhu and Gastpar (2015), only the symmetric many-to-one IC was

considered. In Tuninetti (2011); Prasad et al. (2016), only a successive decoding strategy was

considered. Furthermore, the conditions under which sum capacity is achieved in Tuninetti

(2011) are not obtained explicitly in terms of the channel parameters. We allow joint decoding

of the desired and interfering signals as well and obtain conditions explicitly in terms of the

channel parameters. In the simple HK schemes considered in our paper, either the interference

from a particular transmitter is decoded fully or gets treated as noise. For the many-to-one case,

we consider schemes where k out of K-1 interfering signals are decoded at receiver 1. For the

one-to-many case, we consider schemes where k out of K-1 receivers decode the interfering

signal.

3



CHAPTER 2

The motivating example - GZIC

In this chapter we look at the capacity results for the a Gaussian Z-interference channel, which

will motivate us towards the results obtained in Chapters 3 and 4.

+

+

z1

z2
a

1

1 y1

y2

x1

x2

Figure 2.1: Standard form Many-to-one ZIC

2.1 Channel Model

The Z-IC is a special case of a two user IC, where interference happens only at once receiver.

he channel model in standard form for the Gaussian Z-IC are shown in Fig. 2.1. The received

signals in the Gaussian many-to-one IC in standard form are given by:

y1 = x1 + ax2 + z1 (2.1)

y2 = x2 + z2, (2.2)

where xi is transmitted from transmitter i, zi ∼ N (0, 1) for each i. The average power con-

straint at transmitter i is Pi. We take a look at the the sum capacity results available for the

GZIC channel.



2.2 Sum Capacity results

Based on the results in Han and Kobayashi (1981), Sato (2006), Annapureddy and Veeravalli

(2009) Shang et al. (2008), we give the following sum-capacity results for the GZIC. The sum-

rate capacity of a GZIC is given by


1
2

log(1 + P1) + 1
2

log(1 + P2), if a2 ≥ 1 + P1

1
2

log(1 + P1 + a2P2) if 1 ≤ a2 < 1 + P1

1
2

log(1 + P1

1+a2P2
) + 1

2
log(1 + P2) if a2 < 1

and is achieved by using Gaussian inputs, decoding and subtracting interference X2 for a2 ≥

1+P1, jointly decoding X1 and X2 at Receiver 1 for 1 ≤ a2 < 1+P1, and treating X2 as noise

for a2 < 1.

2.3 Comparison with the sum-capacity results available for

Many-to-one and One-to-many ICs

For the many-to-one Gaussian IC, channel conditions under which Gaussian signalling and a

combination of treating interference as noise and interference decoding is sum rate optimal

were obtained in Prasad et al. (2016). In Tuninetti (2011), sum capacity was obtained for

K-user Gaussian Z-like interference channels under some channel conditions. In both Prasad

et al. (2016) and Tuninetti (2011), a successive decoding strategy where interference is decoded

before decoding the desired signal is considered. They don’t consider a case where the inter-

fering signals get jointly decoded along with the required signal.Prasad et al. (2016) doesn’t

even consider jointly decoding a set of interfering signals. Similarly for the One-to-many ICs

also don’t have results that consider jointly decoding the interference and the required signal.

In this work, we obtain some region where sum-capacity is achieved for both the one-to-many

and Many-to-one interference channels if we also consider jointly decoding the interference

and signal.

5



CHAPTER 3

Many-to-one IC

3.1 Channel Model in standard form

+

+

+

+
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z2

z3

zK

h2
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hK

1

1

1

y1

y2

y3

yK

x1

x2

x3

xK

1

Figure 3.1: Standard form Many-to-one IC

Many-to-one IC is a special case of Gaussian IC where interference occurs at only one

receiver. The channel model in standard form for the Gaussian many-to-one are shown in Fig.

3.1. The received signals in the Gaussian many-to-one IC in standard form are given by:

y1 = x1 +
K∑
j=2

hixi + z1 (3.1)

yi = xi + zi, i = 2, 3, ..., K, (3.2)

where xi is transmitted from transmitter i, zi ∼ N (0, 1) for each i. The average power con-

straint at transmitter i is Pi.



3.2 Achievable rate region for Han-Kobayashi (HK) scheme

in simplified form

Let Wi be the message at transmitter i. For each i = 2, 3, ..., K, the message is split into

two parts Wi = {Wi0,Wi1}, where Wi0 is common message that gets decoded at receiver

i and also at receiver 1, and Wi1 is the private message that gets decoded only at receiver

i. The HK achievable rate region in simplified form in the Theorem below is stated for the

discrete memoryless channel, and can be readily extended to the Gaussian many-to-one IC

with average power constraints using standard approaches Han and Kobayashi (1981); Gamal

and Kim (2011).

Theorem 1. For the discrete memoryless K-user many-to-one IC, the HK achievable rate

region is given by the set of all (R1, R2, . . . , RK) that satisfy:

R1 +
∑
j∈N

Rj ≤
∑
j∈N

I(Xj;Yj|Q,Uj) + I(UNX1;Y1|UF−N , Q),∀N ⊆ F (3.3)

Ri ≤ I(Xi;Yi|Q), i ∈ [2 : K] (3.4)

where UA = {Ui, i ∈ A}, F = {2, 3, ..., K} and (Q,U2, U3, . . . , UK, X1, X2, . . . XK) is dis-

tributed as

p(q, u2, . . . , uK, x1, . . . , xK) = p(q)p(x1|q)
K∏
i=2

(p(ui|q)p(xi|ui, q). (3.5)

Proof. Let Si, i = 2, 3, . . . , K, denote the rates for private messages Wi1, i = 2, 3, . . . , K, re-

spectively. Let Ti, i = 2, 3, . . . , K, denote the rates for common messagesWi0, i = 2, 3, . . . , K,

respectively. Note that Ri = Si + Ti, i = 2, 3, . . . , K. Using standard analysis of HK schemes,

we get the following achievable rate region in terms of {Ri} and {Ti}:

Ri − Ti ≤ I(Xi;Yi|Q,Ui) (3.6)

Ri ≤ I(Xi;Yi|Q), (3.7)
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for i = 2, 3, . . . , K, and

R1 +
∑
i∈N

Ti ≤ I(UN , X1;Y1|Q,UF−N ) (3.8)

for all possible N ⊆ F and F = {2, 3, . . . , K}. We also add the trivial constraints

Ti ≥ 0, Ti ≤ Ri. (3.9)

The simplified rate region in (3.3) and (3.4) in terms of only the Ri’s can be obtained using

Fourier-Motzkin elimination. The main steps of the Fourier-Motzkin elimination are provided

below.

We eliminate the variables in the following sequence: T2, T3, . . . , TK . After eliminating

T2, T3, . . . , Tk, the set of inequalities is given by:

R1 +
∑
i∈N

Ri +
∑
i∈S

Ti ≤
∑
i∈N

I(Xj;Yj|Q,Uj) + I(UN , US , X1;Y1|UF−(S⋃
N ), Q),

∀N ⊆ {2, 3, . . . , k},S ⊆ {k + 1, . . . , K}.

For k + 1 ≤ i ≤ K

Ri − Ti ≤ I(Xi;Yi|Q,Ui),

Ti ≥ 0, Ti ≤ Ri.

For 2 ≤ i ≤ K

Ri ≤ I(Xi;Yi|Q). (3.10)

This can be proved by induction.

Setting k = K, we get the required inequalities in (3.3) and (3.4) after elimination of

T2, T3, . . . , TK .

Corollary 1. The achievable sum rate S for a discrete memoryless many-to-one IC satisfies:

8



S ≤
∑
i∈N

I(Xi;Yi|Q,Ui) +
∑

i∈F−N

I(Xi;Yi|Q) + I(UNX1;Y1|UF−N , Q),∀N ⊆ F , (3.11)

where F = {2, 3, . . . , K}.

Proof. First, we substituteR1 = S−
∑K

i=2Ri. Then, we eliminate the variables in the following

sequence: R2, R3, . . . , RK . After eliminating R2, R3, . . . , Rk, the set of inequalities is given

by:

S −
∑
i∈B

Ri ≤
∑

i∈(S−B)

I(Xi;Yi|Q,Ui) +
∑
i∈N

I(Xi;Yi|Q,Ui)∑
i∈M−N

I(Xi;Yi|Q) + I(US−B, UN , X1;Y1|UM−N , UB, Q),

∀B ⊆ S and S = {k+1, . . . , K} and ∀N ⊆M andM = {2, 3, . . . , k}, and for k+1 ≤ i ≤ K

Ri ≤ I(Xi;Yi|Q). (3.12)

This can be proved by induction.

Setting k = K, we get the required result in (3.11) after elimination ofR2, R3, . . . , RK .

Simple HK schemes: Consider HK schemes with Gaussian signaling, no timesharing, and

no common-private power splitting, i.e., Xi ∼ N (0, Pi), ∀ 1 ≤ i ≤ K, Q is constant, and

Ui = Xi, i ∈ B and Ui = φ, i /∈ B for a fixed B ⊆ {2, 3, . . . , K}. The set B denotes the

indices of the set of transmit messages decoded at receiver 1. For simple HK schemes, we get

the following sum rate result directly from Corollary 1.

Corollary 2. The achievable sum rate of a simple HK scheme over the Gaussian many-to-one

IC satisfies:

S ≤ 1

2

∑
i/∈B

log(1 + Pi) +
1

2

∑
i∈M

log(1 + Pi) +
1

2
log

1 +

P1 +
∑

i∈B−M
h2iPi

1 +
∑
i/∈B
h2iPi

 , ∀M ⊆ B

(3.13)

for a fixed B ⊆ {2, 3, . . . , K}.
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3.3 Sum capacity results

Consider the simple HK scheme with B = {2, 3, . . . , k}, i.e., interference from transmitters

2 to k are decoded at receiver 1. We choose successive indices 2 to k only for notational

convenience, and the results can be generalized to any set of k − 1 indices by just relabeling

the transmitters. For this case, from (3.13), we have the following 2k−1 sum rate constraints:

S ≤ 1

2

K∑
i=k+1

log(1 +Pi) +
1

2

∑
i∈M

log(1 +Pi) +
1

2
log

1 +

P1 +
∑

i∈B−M
h2iPi

1 +
K∑

i=k+1

h2iPi

 , ∀M ⊆ B.

(3.14)

The least of these 2k−1 upper bounds will determine the maximum achievable sum rate for this

simple HK scheme. We will now discuss two cases below where we can show that the simple

HK scheme achieves sum capacity.

Case 1 (MIk0): Here we consider the case when the inequality corresponding toM = B

in (3.14) is the dominant inequality, i.e., its right hand side is the least.

Theorem 2. For the K-user Gaussian many-to-one IC satisfying the following channel condi-

tions:

∏
i∈B−N

(1 + Pi).(1 +
K∑

j=k+1

h2jPj + P1) ≤ 1 +
∑
i/∈N

h2iPi + P1,∀N ⊂ B,N 6= B, (3.15)

K∑
j=k+1

h2j ≤ 1, (3.16)

where B = {2, 3, . . . , k} , k ∈ {1, 2, .., K}, the sum capacity is given by

S =
1

2
log

(
1 +

P1

1 +
∑K

j=k+1 h
2
jPj

)
+

K∑
i=2

1

2
log(1 + Pi). (3.17)

Proof. The converse or upper bound has already been proved in (Prasad et al., 2016, Thm.

7) under the condition (3.16) using the genie-aided channel in Fig. 3.2. This sum rate can

be achieved by the simple HK scheme if the inequality corresponding to theM = B case is

10



the dominant inequality in (3.14). This inequality is dominant if the conditions in (3.15) are

satisfied.

Remark 1. The case of k = 1 is taken to be B = φ resulting in condition (3.16) alone, thereby

recovering the sum capacity result for treating all interference as noise in Annapureddy and

Veeravalli (2009).

Remark 2. The achievability conditions in (3.15) are less stringent than the achievability con-

ditions in Prasad et al. (2016) since joint decoding in the simple HK scheme is better than the

successive interference cancellation decoding used in Prasad et al. (2016). This can be noted

in Fig. 5.1 where the region obtained using this theorem includes an additional shaded region

for the caseMI30 compared to the result in Prasad et al. (2016).

.

.

.

.

z1

zk

zk

zK

x1

x2

xk

xK

{x2, ...xk}Dec 1

Dec 2

Dec k

Dec K

Figure 3.2: Side Information forMIk0

Case 2 (MIk1): Here we consider the case when the inequality corresponding to M =

B\{k} = {2, 3, . . . , k − 1} in (3.14) is the dominant inequality.

Theorem 3. For the K-user Gaussian many-to-one IC satisfying the following channel condi-

tions:

∏
i/∈B−N

(1 + Pi)

(
1 + P1 +

K∑
i=k+1

h2iPi +
∑

i∈B−N

h2iPi

)
≥

K∏
i=2,i 6=k

(1 + Pi)(1 + P1 +
K∑
j=k

h2jPj)

(3.18)
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Figure 3.3: Side Information forMIk1

∀N ⊆ B,N 6= {2, 3, .., k − 1} and B = {2, 3, ...k}
K∑

i=k+1

h2i ≤ 1− ρ2, ρhk = 1 +
K∑

i=k+1

h2iPi (3.19)

the sum capacity is given by

S =
K∑
i=2
i 6=k

1

2
log(1 + Pi) +

1

2
log

1 +
P1 + h2kPk

1 +
K∑

i=k+1

h2iPi

.

Proof. The sum rate S in the theorem statement can be achieved by the simple HK scheme

if the inequality corresponding to M = B\{k} is the dominant inequality in (3.13). This

inequality is dominant if (3.18) is satisfied.

For the converse or upper bound, we consider the genie-aided channel in Fig. 3.3, where a

genie provides the signal sn1 = {xn2 ,xn3 , ...,xnk−1} to receiver 1 and the signal snk =
K∑
i=k

hix
n
i +wn

to receiver k, where wn is i.i.d. N (0, 1), and w and zk are jointly Gaussian with E[wzk] = ρ.

Now, we have

nS ≤ I(xn1 ;yn1 |sn1 ) +
K∑

i=2,i 6=k

I(xni ;yni ) + I(xnk ;ynk , s
n
k)

12



= h(yn1 |sn1 )− h(yn1 |sn1 ,xn1 ) +
K∑

i=2,i 6=k

(h(yni )− h(zni )) + h (snk) + h(ynk |snk)− h(ynk , s
n
k |xnk)

(a)

≤ nh(y1G|s1G)− h(yn1 |sn1 ,xn1 ) +
k−1∑
i=2

(nh(yiG)− nh(zi))

+
K∑

i=k+1

(h(yni )− nh(zi)) + h (snk) + nh(ykG|skG)− h

(
K∑

i=k+1

hix
n
i + wn|znk

)
− h(znk)

(b)

≤ nh(y1G|s1G) +
k−1∑
i=2

(nh(yiG)− nh(zi)) +
K∑

i=k+1

(h(yni )− nh(zi)) + nh(ykG|skG)

−h

(
K∑

i=k+1

hix
n
i + wn|znk

)
− nh(zk)

(c)

≤ nh(y1G|s1G) +
k−1∑
i=2

(nh(yiG)− nh(zi)) +
K∑

i=k+1

(nh(yiG)− nh(zi)) + nh(ykG|skG)

−nh(
K∑

i=k+1

hixiG + w|zk)− nh(zk)

(d)
= nI(x1G; y1G|s1G) +

K∑
i=2,i 6=k

nI(xiG; yiG) + nI(xkG; skG)

= nI(x1G, xkG; y1G|s1G) +
K∑

i=2,i 6=k

nI(xiG; yiG),

where xiG ∼ N (0, Pi), siG and yiG represent the Gaussian side information and output that

result when all the inputs are Gaussian as described in Annapureddy and Veeravalli (2009), (a)

follows from the fact that Gaussian inputs maximize differential entropy and h(ynk , s
n
k |xnk) =

h(znk)+h

(
K∑

i=k+1

hix
n
i + wn|znk

)
, (b) follows from h(yn1 |sn1 ,xn1 ) = h (snk), (c) follows from ap-

plication of (Prasad et al., 2016, Lemma 2) to
K∑

i=k+1

h(yni )−h(
K∑

i=k+1

hix
n
i +wn|znk) under (3.19),

and (d) follows from the fact that xkG → skG → ykG forms a Markov Chain (Annapureddy and

Veeravalli, 2009, Lemma 8) for our choice of ρ in (3.19).

In Tuninetti (2011), only a successive decoding strategy where the desired signal is always

decoded after decoding the interfering signals, is considered. However, jointly decoding the

interfering signal and the desired signal (SchemeMIk1) is required above to achieve capacity.

(Tuninetti, 2011, Theorem 2) identifies channel conditions where sum-capacity is achieved

for a Z-like interference channel. By considering a appropriate H matrix for a many-to-one IC

13



we can derive the channel constitions necessary for achieving sum-capacity for theMI10 as

shown in (Tuninetti, 2011, Example 1).

(Tuninetti, 2011, Theorem 3) extends the result to a general K-user IC by using a "succes-

sive decoding strategy". Even though the paper does not give the channel conditions explicitly,

we can see that if we consider that only the receiver k receive the interference, we obtain the

results we get forMIk0. The (Tuninetti, 2011, Theorem 2) gives the condition (3.16). And

the (Tuninetti, 2011, Theorem 3) gives the condition (3.15). As the interference occurs only at

receiver k, the constraints we get from (Tuninetti, 2011, Theorem 3) are nothing but the HK

achievable region when Ui = Xi for i ∈ {2, 3, . . . k} and Ui = φ for i ∈ {k + 1, . . . K} in

Theorem 1. This gives the constraints on sumrate given by (3.14) whenM = B = {2, 3, ...k}.

And we can easily see that the sum-rate capacity they mention also matches with our sum-rate

capacity forMIk0.

The outer bound in (Nam, 2015b, Theorem 2) for the 3-user case matches our outer bound

only forMI21. Our K-user upper bounds are tighter than the K-user upper bounds in Nam

(2015a) for the many-to-one setting. Furthermore, the genie signal used in Theorem 3 is dif-

ferent from the genie signals considered in Nam (2015a).

If we consider a many-to-one IC, we can see that according to (Nam, 2015b, Theorem), we

get the upper bound on the sumrate as

R1 +R2 +R3 ≤ I(X1G;Y1G) + I(X2G;Y2G, S2G) + I(X3G;Y3G)

if h23 ≤ σ2
VN2

, where VN2 = (N2|Z2) and E[Z2N2] = ρN2 , where S2 = h2X2 + h3X3 + N2.

This upper bound matches with (*) in the proof of Theorem 3.

In Bresler et al. (2010), there is an example 3-user channel where the HK scheme does

not achieve capacity, while a scheme based on interference alignment does. It can be verified

that this 3-user example channel, when written in standard form, does not satisfy any of the

conditions under which sum capacity is derived in this paper.

In (Bresler et al., 2010, Section II.B), the authors consider a 3 user many-to-one IC with

14



the channel conditions given below.

y1 = βx̃1 + βx̃2 + βx̃3 + z1

y2 =
√
βx̃2 + z2

y3 =
√
βx̃3 + z3,

where zi ∼ N (0, 1) for each i ∈ {1, 2, 3}. The average power constraint at transmitter i is P̃i.

This can be converted to the standard form by considering

x1 = β.x̃1, x2 =
√
β.x̃2, x2 =

√
β.x̃2.

The equations in standard form will be

y1 = x1 +
√
βx2 +

√
βx3 + z1

y2 = x2 + z2

y3 = x3 + z3,

with power constraints

P1 = β2.P̃1, P2 = β.P̃2, P3 = β.P̃3.

We can see that h2 = h3 =
√
β. They consider a case where P̃1 = P̃2 = P̃3 = 1 The authors

prove that for β ≥ 2, the capacity cannot be achieved by any HK-type scheme.

We can see that these channel conditions do not satisfy any of the conditions given in Table

3.1 or the conditions forMI10 andMI20 given in Prasad et al. (2016). We here explicitly see

how it does not satisfy the conditions necessary forMI30.

To satisfy the conditions for MI¸ 30, the following conditions must be satisfied.

β ≥ 1 + β2

2β2 ≥ ((1 + β)2 − 1)(1 + β2)

15



Strategy Channel conditions

MI21 (i) h22 ≤ 1 + P1 + h23P3,

h23 ≤ 1−
(

1+h23P3

h2

)2
, h22 ≥ 1

(ii) h23 ≤ 1 + P1 + h22P2,

h22 ≤ 1−
(

1+h22P2

h3

)2
, h23 ≥ 1

MI30 h22 ≥ 1 + P1, h
2
3 ≥ 1 + P1

h22P2 + h23P3 ≥ ((1 + P2)(1 + P3)− 1)(1 + P1)

MI31 (i) h22 ≥ 1 + P1 + h23P3, h
2
3 ≤ 1 + P1, h

2
3 ≥ 1,

1+P3

1+P2
≥ 1+P1+h23P3

1+P1+h22P2

((i) h23 ≥ 1 + P1 + h22P2, h
2
2 ≤ 1 + P1, h

2
2 ≥ 1,

1+P2

1+P3
≥ 1+P1+h22P2

1+P1+h23P3

Table 3.1: Channel conditions under which sum capacity is achieved using simple HK schemes
in Theorems 2 and 3 for the 3-user Gaussian many-to-one IC. Conditions forMI10

andMI20 are already given in Prasad et al. (2016). These conditions are plotted in
Fig. 5.1 for a given set of power constraints.

We can see that for β ≥ 2 none of the conditions are satisfied.

The results in Theorems 2 and 3 for the Gaussian K-user many-to-one IC are now listed in

Table 3.1 for the 3-user case.
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CHAPTER 4

One-to-Many IC

4.1 Channel Model in Standard Form

The channel models (in standard form) for the Gaussian many-to-one and one-to-many ICs are

shown in Fig. 4.1. The received signals in the Gaussian one-to-many IC in standard form are

given by:

yi = xi + hixK + zi, i = 1, 2, 3, · · · , K − 1 (4.1)

yK = xK + zK. (4.2)

where xi is transmitted from transmitter i, zi ∼ N (0, 1) for each i. The average power con-

straint at transmitter i is Pi.

4.2 Achievable rate region for Han-Kobayashi (HK) scheme

in simplified form

Let I denote the set of indices of the receivers at which interference is decoded, and J be the

set of receivers at which interference is treated as noise, i.e., J = {1, 2, · · · , K − 1}\I. Let Wi

be the message at transmitter i. The messageWK gets split into two partsWK = {WK0,WK1},

where WK0 represents the common message that gets decoded at every receiver in I and WK1

is the private message that gets decoded only at receiver K.

Theorem 4. For the discrete memoryless K-user one-to-many IC, the HK achievable rate
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Figure 4.1: Standard form One-to-many IC

region is given by the set of all (R1, R2, . . . , RK) that satisfy

Ri ≤ I(Xi;Yi|Q), i ∈ J

Ri ≤ I(Xi;Yi|Q,U), i ∈ I

Ri +RK ≤ I(Xi, U ;Yi|Q) + I(XK ;YK |Q,U), i ∈ I

RK ≤ I(XK ;YK |Q),

where (Q,U,X1, X2, . . . , XK) is distributed as

p(q, u, x1, x2, ..xK) = p(q)
K−1∏
i=1

p(xi|q)p(u|q)p(xK |u, q).

Proof. Let S denote the rate of the private message WK1 and T denote the rate of the common

message WK0. Note that RK = S + T . Using standard analysis of HK schemes, we get the

following achievable rate region in terms of {Ri} and {T}:

Ri ≤ I(Xi;Yi|Q), i ∈ J

Ri ≤ I(Xi;Yi|U,Q), i ∈ I

Ri + T ≤ I(XiU ;Yi|Q), i ∈ I

RK − T ≤ I(XK ;YK |U,Q)
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RK ≤ I(XK ;YK |Q)

Using Fourier-Motzkin elimination to eliminate T , we get the rate region

Simple HK scheme: Let Xi ∼ N (0, Pi), ∀ 1 ≤ i ≤ K, Q is constant, and U = XK . From

Theorem 4, we directly get the following result.

Corollary 3. The achievable rate region for the simple HK scheme over the Gaussian one-to-

many IC is given by:

Ri ≤
1

2
log(1 +

Pi
1 + h2iPK

), i ∈ J , (4.3)

Ri ≤
1

2
log(1 + Pi), i ∈ I, (4.4)

Ri +RK ≤
1

2
log(1 + Pi + h2iPK), i ∈ I, (4.5)

RK ≤
1

2
log(1 + PK). (4.6)

Corollary 4. The achievable sum rate S for the simple HK scheme over the Gaussian one-to-

many IC when J = φ satisfies

S ≤
K∑
j=1

1

2
log(1 + Pj), (4.7)

S ≤
K−1∑
j=1

j 6=i

1

2
log(1 + Pj) +

1

2
log(1 + Pi + h2iPK),

∀ 1 ≤ i ≤ K − 1. (4.8)

Proof. Given J = φ, we get the following rate constraints:

Ri ≤
1

2
log(1 + Pi), 1 ≤ i ≤ K − 1

Ri +RK ≤
1

2
log(1 + Pi + h2iPK), 1 ≤ i ≤ K − 1

RK ≤
1

2
log(1 + PK).

First, we substitute RK = S −
∑K−1

i=1 Ri. Then, we eliminate the variables in the following

sequence: R1, R2, . . . , RK−1. After eliminating R1, R2, . . . , Rk, the set of inequalities is given
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by:

Ri ≤
1

2
log(1 + Pi), k + 1 ≤ i ≤ K − 1

S −
K−1∑
j=k+1

Rj ≤
k∑
j=1

1

2
log(1 + Pj) +

1

2
log(1 + PK)

S −
K−1∑
j=k+1

Rj ≤
k∑

j=1,j 6=i

1

2
log(1 + Pj) +

1

2
log(1 + Pi + h2iPK), 1 ≤ i ≤ k

S −
K−1∑

j=k+1,j 6=i

Rj ≤
k∑
j=1

1

2
log(1 + Pj) +

1

2
log(1 + Pi + h2iPK), k + 1 ≤ i ≤ K − 1

This can be proved by induction.

Setting k = K−1, i.e., after elimination of R1, R2, . . . , RK−1, we get the required inequal-

ities in (4.7) and (4.8).

4.3 Sum capacity results

Consider the simple HK scheme where interference from transmitter K is decoded at k re-

ceivers. Without loss of generality, we can consider the set these k receivers to be I =

{1, 2, . . . , k} and J = {k + 1, k + 2, . . . , K − 1} (other choices can be easily handled by

relabeling the receivers). We denote this scheme to be OIk.

Theorem 5. For the K-user Gaussian one-to-many IC satisfying the following conditions:

1 + Pi ≤ |hi|2, 1 ≤ i ≤ k, (4.9)
K−1∑
j=k+1

|hj|2PK + |hj|2

|hj|2PK + 1
≤ 1, (4.10)

the sum capacity is given by

S =
1

2

k∑
i=1

log(1 + Pi) +
1

2
log(1 + PK) + +

1

2

K−1∑
j=k+1

log

(
1 +

Pj
1 + |hj|2PK

)
. (4.11)

Proof. For achievabililty, consider the achievable rate region in Corollary 3 for the simple HK
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Figure 4.2: Side Information for OIk

scheme OIk. Under (4.9), constraint (4.5) is redundant. From the remaining constraints (4.3),

(4.4), and (4.6), we get the achievable sum rate to be equal to the sum capacity in the theorem

statement.

For the converse, consider the genie-aided channel in Fig. 4.2, where a genie provides xK

to receivers 1 to k. The first k receivers can now achieve the point-to-point channel capacities

without any interference. The genie-aided channel can be considered to be a combination of

these k point-to-point channels and a Gaussian one-to-many IC with users k + 1 to K of the

original channel. The sum capacity of the k point-to-point channels corresponds to the first

term in the right hand side of (4.11). The sum capacity of the Gaussian one-to-many IC with

users k + 1 to K is upper bounded by the sum of the second and third terms in (4.11) under

condition (4.10) (Annapureddy and Veeravalli, 2009, Thm. 5). Thus, we have the required sum

capacity result.

Now, we consider the special case where I = {1, 2, . . . , K − 1} and J = φ, i.e., the

interference gets decoded at all receivers. For this special case, we now have a sum capacity

result for conditions not included in Theorem 5. We will denote this case OIK−11 .
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Theorem 6. For the K-user Gaussian one-to-many IC satisfying the following conditions:

1 ≤ h2l ≤ 1 + Pl (4.12)
h2l

1 + Pl
≤ h2i

1 + Pi
, 1 ≤ i ≤ K − 1 and i 6= l (4.13)

for any l ∈ {1, 2, . . . , K − 1}, the sum capacity is

S =
1

2

K−1∑
j=1,j 6=l

log(1 + Pj) +
1

2
log(1 + Pl + h2lPK). (4.14)

Proof. For achievability, consider the achievable sum rate in corollary 4. The sum capacity

in (4.14) is the right-hand side of the inequality corresponding to i = l in Corollary 4. This

inequality is the dominant inequality under conditions (4.12) and (4.13).

For the converse, consider the genie-aided channel (shown in Fig. 4.3 for l = 1), where a

genie provides xK to all receivers 1 to K − 1 except receiver l. The genie-aided channel is a

combination of K − 2 point-to-point channels and a Gaussian one-sided IC with users l and K

of the original channel. The sum capacity of the K − 2 point-to-point channels corresponds

to the first term in (4.14). The sum capacity of the Gaussian one-sided IC with users l and K

is upper bounded by the second term in (4.14) under condition (4.12) (Sason, 2004, Thm. 2).

Thus, we have the required result.

The results in Theorems 5 and 6 for the Gaussian K-user one-to-many IC are now listed in
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Figure 4.4: Channel conditions where sum capacity is obtained for the 3-user one-to-many IC
using simple HK schemes, P1 = P2 = P3 = 1.

Table 4.1 for the 3-user case.

Strategy Channel conditions

OI0
2∑
j=1

h2jPK+h2j
h2jPK+1

≤ 1

OI1 (i) h21 ≥ 1 + P1, h
2
2 ≤ 1

(ii) h22 ≥ 1 + P1, h
2
1 ≤ 1

OI2 h21 ≥ 1 + P1, h
2
2 ≥ 1 + P2

OI21 (i) 1 ≤ h22 ≤ 1 + P1, h
2
2 ≥ 1+P2

1+P1
h21

(ii) 1 ≤ h21 ≤ 1 + P2, h
2
1 ≥ 1+P1

1+P2
h22

Table 4.1: Channel conditions under which sum capacity is achieved using simple HK schemes
in Theorems 5 and 6 for the 3-user Gaussian one-to-many IC. These conditions are
plotted in Fig. 5.1 for a given set of power constraints.
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CHAPTER 5

Lattice Codes for Many-to-One Interference Channels

Zhu and Gastpar (2015) shows that a coding scheme based on the compute and forward ap-

proach on the lattice codes achieves capacity for a symmetric IC under some strong interfer-

ence scheme. Here we extend the results to asymmetric channels. We first look at some of the

results from Zhu and Gastpar (2015) which we will be using. We use the same model here that

we used in Chapter 3.

5.1 Nested lattice codes(Zhu and Gastpar (2015))

For each user k we choose a lattice Λk which is good for AWGN channel. Let Λc denote the

coarsest lattice. It has been shown that we can find another K simultaneously good nested

lattice such that Λs
k ⊆ Λc where

σ2
k = σ2(Λs

k) = β2
kP, βk > 0

xk =

(
tk
βk

+ dk

)
mod Λs

k/βk

where tk is the lattice point corresponding to the message wk that is to be sent.

For a given coefficient matrix AL×K ,

A =


a1(1) . . . aK(1)

...
...

...

a1(L) . . . aK(L)



where all entries are integers and there are L sets of coefficients.

a(l) = [a1(l) ... ak(l)]



. All the L integer sums can be reliably decoded at receiver 1 if

Rk ≤ min rk(al|1:l−1, β), ak(l) 6= 0

rk(al|1:l−1, β) = max
α′
1..αl∈R

1/2 log+(
σ2
k

N0(l)
)

where al|1:l−1 means that when lth sum is being decoded, we assume that all the previous l − 1

sums are decoded.

N0(l) = α2
l +

K∑
k=2

(αlhk − ak(l)βk −
l−1∑
j=1

αjak(j)βk)
2Pk + (αl − a1(l)β1 −

l−1∑
j=1

αja1(j)β1)
2P1

5.2 Results

We take

A =

 0 1 1 . . . 1

1 0 0 . . . 0


and βk = hk. We try to minimise N0(l).

A =
(

0 1 1 . . . 1
)

Zhu and Gastpar (2015) says that this A can be used to achieve capacity within a constant gap

in a particular region if the channel is symmetric. We extend the result to non - symmetric

channels too using the same A matrix.

N0(1) = α′21 +
K∑
k=2

(α′1hk − hk)2Pk + α′21 P1

We have to find the α′1 which maximises N0(1). So α′1 =

K∑
i=2

h2iPi

1+P1+
K∑
i=1

h2iPi
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Therefore

N0(1) =

(1 + P1)(
K∑
i=2

h2iPi)

1 + P1 +
K∑
i=2

h2iPi

rk(a1, β) =
1

2
log+(

h2kPk(1 + P1 +
K∑
i=2

h2iPi)

(1 + P1)(
K∑
i=2

h2i )

)

=
1

2
log+

(
h2kPk∑K
i=2 h

2
iPi

+
h2kPk

1 + P1

)

≥ 1

2
log+(

h2kPk
1 + P1

)

Now

a2 = (1 0 0 ... 0)

.

N0(2) = α2
2 +

K∑
k=2

(α2hk − α1hk)
2Pk + (α2 − 1)2P1

The α1 and α2, which maximises the value of N0(2) are α1 = α2 = P1

1+P1

Therefore we get

r1(a2|1, β) = 1/2 log+(1 + P1)

Since this is the only constraint on user 1, we can see that user 1 always achieves capacity.

Now for

h2k ≥
(1 + Pk)(1 + P1)

Pk

every user achieves capacity. and for

h2k ≥ (1 + P1)

every user other than user 1 achieves rate within 0.5 bits of capacity.
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Figure 5.1: Channel conditions where sum capacity is obtained for the 3-user many-to-one IC
using nested lattice codes, P1 = P2 = P3 = 2.
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CHAPTER 6

Multi antenna Channels

6.1 Separability

It is known that the capacity of parallel (e.g., multi- carrier) Gaussian point-to-point, multiple

access and broadcast channels can be achieved by separate encoding for each sub-channel (car-

rier) subject to a power allocation across carriers.It has been shown that parallel interference

channels are not separable, i.e., joint coding is needed to achieve capacity in general. Cadambe

and Jafar (2010) studies the separability, from a sum-capacity perspective, of single hop Gaus-

sian interference networks with independent messages and arbitrary number of transmitters and

receivers. We provide the main results from the paper here.

6.1.1 MAC-Z-BC network

A network (S,D,E,M) (S = set of transmitters , D = Set of receivers , E ⊆ D × S = Set

of edges in the network , M ⊆ E = Message set,i.e. edges which carry messages ) is called

MAC-Z-BC if M = E and E has the following properties:

deg(Ti) > 1, i′ 6= i =⇒ deg(Ti′) = 1,∀i′, i ∈ S

deg(Rj) > 1, j′ 6= j =⇒ deg(Rj′) = 1,∀j′, j ∈ D

where deg(Ti) is the degree of Transmitter i and deg(Rj) is the degree of Receiver j.

Given a network N = (S,D,E,M), an instance of the network is uniquely identified by

(F, P̄ , H̄) where F denotes the number of carriers, P̄ denotes the power constraints and H̄ is a

DF × SF dimensional channel gain matrix.

Theorem 7. (Cadambe and Jafar, 2010, Theorem 1) A network N is separable if and only if it

is the MAC-Z-BC network (or one of its sub-networks).



Figure 6.1: A MAC-Z-BC network with S = 4 transmitters and D = 3 receivers

Theorem 8. (Cadambe and Jafar, 2010, Theorem 2) Consider a single-carrier MAC-Z-BC

channel characterized by (1, P̄ ,H̄), where deg(TI) > 1 < deg(Rj) =⇒ j = 1, i = S. Then

its sum-capacity is

CMAC_Z_BC(1, P̄ , H̄) =
1

2
log

(
1 +

S∑
j=1

|H1,j|2Pj

)
+ log

(
1 + |H|2PS

1 + |H1,S|2PS

)
, (6.1)

where H = maxj=1,2,...D |Hj,S|

Let us consider X channel(XC). We obtain XC by allowing messages in all links of an IC.

We can see that Many-to-one or One-to-many XC do not satisfy the conditions necessary for a

MAC-Z-BC network, except for the 2 user case where both the Many-to-one and One-to-many

XCs become a simple Z-network. So, we can say that except for the 2 user case, the multi-

antenna Many-to-one and One-to-many XCs are not seperable. So, that means that Z-IC is

also seperable, when regions where the strategy of decoding both the signal at the first receiver

achieves capacity.
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6.2 Future scope

The capacity region or region where sum-capacity is achieved for even a Multi-Antenna 2

user Gaussian Interference channel (GIC) does not have a closed form solution. We could

extend the results for multi-antenna Many-to-one and One-to-many ICs as done in (Shang and

Chen, 2013, Chapter 4).Cadambe and Jafar (2009) and Maddah-Ali et al. (2008) show that

interference alignment is very useful for MIMO channels. So, we could try using interference

alignment for the multi-antenna cases.
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CHAPTER 7

Summary

We derived new sum capacity results for the K-user Gaussian many-to-one and one-to-many

ICs. For both the many-to-one and one-to many IC, two new classes of channel conditions un-

der which sum capacity is achieved were determined (casesMIk0,MIk1,OIk,OIK−11). In

all these cases, simple HK schemes with Gaussian signaling, no time-sharing and no common-

private power splitting achieve sum capacity. Then we we extended the results of Zhu and Gast-

par (2015) from symmetric many-to-one IC to asymmetric many-to-one IC. We then looked at

how a general many-to-one and one-to-many ICs are not separable.
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