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ABSTRACT

The P-I-N waveguide phase modulator is an important component for on-chip opti-

cal modulation in SOI platform. This structure is basically single-mode rib waveguide

region (intrinsic) with p-type and n-type impurities doped either side of it. Its elec-

trical characteristics (carrier dynamics) are analyzed by semiconductor device simula-

tor (mainly Poisson equation solver) and optical characteristics are evaluated by eigen

mode solver (mainly Maxwell equation solver). The project objective is to understand

the numerical techniques and to design a simulator with graphical user interface which

can analyze the performance of P-I-N waveguide structures for any geometry of the rib

waveguide.

The eigen mode solver developed at our lab has been adapted and modified to this

program requirements and integrated with electrical simulator. Our simulator has shown

Lπ(Length required for π phase in optical signal) of around 250 µm for the dimensions

of rib height of 4.5 µm, slab height of 3 µm,rib width of 4 µm. It shows the figure of

merit less than 0.27 V-mm which is considerable and close to the practical results.
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CHAPTER 1

Introduction

1.1 Background

The science of Photonics involves generation, transmission, detection of photons as

which acts as the information carriers. The main advantages of optical communica-

tion are high bandwidth, low loss. Silicon Photonics is the technology involved with

producing photonic devices, which are fabricated by CMOS compatible process flow.

With the technological developments in electronics industry, the device dimensions are

reducing. After a threshold limit, the electrical interconnect delay has become the pri-

mary bottleneck for achieving high bandwidth. One of the solution to overcome this

problem is to go for optical interconnects which is possible with silicon photonics.

One of the essential components in silicon photonics are optical modulators, which

are necessary to convert the electrical signals into optical signals. "Plasma Dispersion

effect" is most common technique used to achieve the phase modulation which is ob-

tained through change in refractive index via variation in mobile carrier concentration

i.e., electrons and holes. The Drude model is used to derive an analytical expression for

absorption, α. This change in absorption leads to a change in the complex refractive

index. The equation(Drude-Lorentz equation [1]), relating the change in electron and

hole concentration to the absorption is,

∆α =
e3λ20

4π2c3ε0n
(

Ne

µe(m∗ce)
2

+
Nh

µh(m∗ch)
2
) (1.1)

and the corresponding equation for change in real part of refractive index(∆n) is,

∆n =
e2λ20

8π2c2ε0n
(
Ne

m∗ce
+

Nh

m∗ch
) (1.2)

Ne, Nh are the electron and hole concentrations, µe, µh are the electron and hole mobil-

ities, m∗ce, m
∗
ch are the electron and hole effective masses respectively. e is the electron



charge. λ0 is the free space wavelength 1.55 µm. ε0 is the free space permittivity and n

is the refractive index.

An empirical fit for ∆n, ∆α was produced by Soref and Benette, which was found

to be in close agreement with that predicted by the Drude-Lorentz equation (1.1) and

(1.2). At λ = 1.55 µm, which is the wavelength of interest for us,the relations are,

∆n = ∆ne + ∆nh = −[8.8× 10−22∆Ne + 8.5× 10−18(∆Nh)
0.8] (1.3)

∆α = ∆αe + ∆αh = [8.5× 10−18∆Ne + 6.0× 10−18∆Nh] (1.4)

where ∆Ne,∆Nh are the change in electron and hole concentrations respectively.

The mach-zehnder interferometer(MZI) is shown in Figure 1.1. The continuous

signal is split into two arms of MZI. One of the arms were doped with p type (mainly

boron) and n type (mainly phosphorous) impurities. We make sure to get the phase shift

of π by applying sufficient voltage. The phase modulation will be converted into inten-

sity modulation by destructive interference at the junction and hence, we get intensity

modulated wave.

Continuous 

wave
Intensity 

Modulated  Wave

p+ n+

Silicon

Si substrate

BOX

Digital input

Z

X

X

Y

𝐿𝜋

Figure 1.1: Mach-zender Interferometer with p-type and n-type impurities

To obtain free carrier concentration variation in silicon, four major techniques have

been implemented by several authors and are listed below.

1) Carrier injection in PN/PIN diode (forward bias) [2]

2) Carrier plasma shift in BMFET(Bipolar mode field effect transistor) [3]

3) Carrier accumulation in MOS Capacitor [4]
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4) Carrier depletion in PN/PIN diode (reverse bias) [5]

In this report, we mainly emphasis on solving for electrical and optical characteris-

tics of Carrier injection modulators.

1.2 Project Motivation

In order to understand the characteristics of Silicon photonic devices, we need to solve

the device structure using Laplace (electrostatic characteristics for insulator), Poisson

(electrostatic characteristics for semiconductor region), Eigen mode (for optical char-

acteristics of entire structure), transport and continuity (carrier movement information

for semiconductor region) equations.

Before fabricating the device, it is important to design the waveguide geometry, elec-

trode positions, doping distributions to obtain the optimized performance.

The conventional approach is to use a simulation tool (RSoft-BeamProp) to get the op-

timized dimensions for optical field confinement. Considering these dimensions, we

simulate the waveguide in semiconductor device simulation tool to get electrical char-

acteristics. With the help of Soref experimental fit as explained with equations 1.3 and

1.4, we find the corresponding refractive index variation for the geometry. Considering

this refractive index as input to another simulator tool RSoft-Femsim, we obtain the

field confinement and effective index under equilibrium and for applied bias.

This complete process need to be repeated if we need to change the dimensions or elec-

trode width. In most cases, we can not get the Poisson solver and Eigen mode solver

in single package. Moreover, it is important to know the numerical techniques for

solving the equations. This served as the motivation to develop a numerical simulator

for computing both electrical and optical characteristics of P-I-N based silicon optical

modulators.

1.3 Research objective

The objective is to develop a numerical simulator which shows the electrical and optical

characteristics of a particular waveguide simultaneously and to show the variation of

3



design parameters with respect to electrode offset and width, doping distribution on

a Graphical user interface(GUI). The platform used was Matlab with uniform finite

difference technique .

The P-I-N based carrier injection modulators have already been demonstrated in our

lab. Based on suggestions considered, we have implemented the numerical simulator.

The simulated results were in accordance with the experimental results.

1.4 Thesis Organization

The thesis work contains four chapters. Second chapter consists of device simulation

algorithm at equilibrium and applied bias which were explained in detail. Followed

by, simulation and results including the graphical user interface. In final chapter, we

discussed about summary and future work.
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CHAPTER 2

P-I-N waveguide structures : Numerical building blocks

As explained earlier chapter, The optical modulation can be achieved by considering

single mode waveguide structure [6] with sufficient doping concentration enough to

change the effective index of the optical mode. Figure 1.1 shows the rib waveguide

structure which is used for guiding the optical signal. The structure we considered for

simulation is shown in Figure 2.1. Doping distribution is considered to be gaussian

function. Junction depth is considered to be 1 µm for both P and N regions. In this

chapter, we explain the algorithm design to solve the structure, Poisson equation solu-

tion at equilibrium, eigen mode equation at equilibrium, poisson equation solution in

quasi equilibrium with help of transport-continuity equations ,solution of eigen mode

equation at applied bias, followed by transient electrical characteristics.

We have chosen the device dimensions satisfying the single mode condition.

Intrinsic silicon

30μm

10μm 10μm1μm 1μm

0.5μm

3μm

1.5μm

0.5μm

4μm

P-type doping N-type doping

Insulator : Laplace equation to be solved : 𝛁𝟐𝑽 = 𝟎 Semiconductor : Poisson equation

to be solved : 𝛁𝟐𝑽 = −𝝆/𝝐
Conductor : 𝑽 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

Figure 2.1: SOI rib waveguide structure



2.1 Algorithm for simulation

The procedure is explained through flow chart. Left column explains the inputs neces-

sary for each step to execute. Right column indicates the output we get from that step.

The mesh size of the structure is taken as minimum of Debye length and 1
10
λ.

Start

Define the structure and 
other parameters

Solve for electrical 
characteristics at 

equilibrium

Solve for optical 
characteristics at 

equilibrium

Solve for electrical 
characteristics at applied 

bias

Solve for optical 
characteristics at applied 

bias

Solve for electrical 
transient characteristics at 

applied bias

End

Input

Device dimensions, mesh size Device grid with uniform mesh

Doping distribution, Intrinsic 
concentration, Thermal voltage, 

Dielectric constant 

Output

Equilibrium potential, electric 
field, electron and hole 

concentrations

Electron, hole concentrations
Effective index, absorption 

coefficient, field profile

Applied voltage, step voltage for 
increment

potential, electric field, Current 
density, Recombination 

coefficient, electron and hole 
concentrations

Electron, hole concentrations Effective index, absorption 
coefficient, field profile

Input AC signal, 
DC bias voltage

Rise time , fall time, electrical 
bandwidth

Figure 2.2: Flowchart for extracting the electro-optic effects of waveguide

Debye length is defined as, LD =
√

ε×Vt
q×N [13]

where ε is permittivity of the medium. Vt is the thermal voltage 0.026eV at room tem-

perature. q is the electron charge. N is the impurity concentration.

2.2 Assumptions considered

Before proceeding to the detailed explanation of the algorithm for solving the structure,

we need to address some of the assumptions considered for solving the structure since

the equations are specific to homogeneous semiconductor material Si.
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Boltzmann approximation:

When the individual Si atoms brought nearer to form crystalline silicon, the discreet

energy levels in the atoms form a continuous band. When the equilibrium is attained,

this band splits to form conduction band(upper band which has empty energy states)

and valance band(lower band and filled energy states) and they will be separated by

energy gap [11].

At T = 300K , the resulting thermal energy will be sufficient to break the Si-Si

bonds to produce electron-hole pair. This phenomenon is called Thermal Generation.

To increase the conductivity, we will dope the intrinsic silicon with impurities of p or n

type which makes it extrinsic semiconductor. At T = 300K, we will have majority and

minority carriers because of the extra carriers obtained from ionization of impurities.

This phenomenon can be described as Impurity ionization.

When we form P-N junction, the Fermi levels align so as to reach equilibrium. The

energy band diagram is shown in Figure 2.3.

p - Si n - Si

𝐸𝑐

x

𝐸𝑖

𝐸𝑣

𝐸𝑓
𝐸𝑔

−𝑞𝑉0

Figure 2.3: Energy band diagram of P-N junction semiconductor. Ec is the conduction
band minimum energy level. Eν is the valance band maximum energy level.
Ei is the intrinsic energy level. Eg indicates the energy gap. Ef is the
fermi level at equilibrium. V0 is the built-in potential. The energy levels
are always meant to be electron energy. The potential is considered to be
for positive charge. Hence we represent the E-V relationship with negative
sign.

The electron and hole concentrations can be written as [11]

n = nie
Efn−Ei

kT

p = nie
Ei−Efp
kT

(2.1)
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where n, p represent electron and hole concentrations respectively. ni is intrinsic con-

centration. Efn, Efp are the quasi-fermi levels of n-type and p-type semiconductors.

At equilibrium, both are equal to Ef . kT is thermal energy at room temperature and

typically 0.026eV . Ei is the intrinsic level and is at the mid level of the conduction and

valance bands.

Constant temperature:

The temperature is assumed to be constant at 300K i.e., there is no effect of temperature

gradient.

Neglecting surface state effects:

Surfaces have different behavior compared to the bulk region. We assume these effects

are absent. However, we consider that there are infinite number of recombinations at

conductor-semiconductor junction.

Complete ionization assumption:

We assume that the impurities are completely ionized at room temperature T= 300K.

Concentration dependent mobility:

Mobility of the carrier is dependent on ionized impurity concentration, electric field,

carrier-carrier interactions. For this simulation purpose, we consider only the concen-

tration dependent mobility.

Presence of Shockley-Read-Hall recombination

The recombination rate is always equals generation rate at equilibrium. The recombi-

nation are mainly of three types.

1.Direct band-band recombination

2.Indirect recombination

8



3.Auger recombination

Since Silicon is an indirect band gap semiconductor, the recombination occurs through

trapping. we consider Shockley-Read-Hall or SRH theory to explain and implement

the continuity equation. The direct band-band recombination is negligible in Sili-

con material. At high doping, we need to include the Auger recombination effects

which were not included here. Taking SRH theory into consideration, Generation-

Recombination coefficient is defined as,

U =
np− n2

i

τp(n+ n1) + τn(p+ p1)
= −g (2.2)

where U is net recombination rate , g is net generation rate, n is electron concentration,

p is hole concentration, n1 = nie
Et−Ei
kT ; p1 = nie

Ei−Et
kT where Et is the trap energy

level. τp, τn are the hole and electron life times . The below is the modeled equation

considered for the simulation [13].

U =
(np− n2

i )

(n+ p+ (2ni))

1

[(5× 10−5)/(1 + ((NA +ND)/(5× 104)))]
(2.3)

Relaxing the electrode effects on optical mode

When we solve for optical characteristics, the conductor electrode affects the optical

field profile. In this case, we consider that the metal electrodes are at sufficient distance

from the rib structure and hence they are not considered here while solving for optical

characteristics.

2.3 Electrical characteristics at equilibrium

-Poisson/Laplace equation

The Gauss law states that the total electric flux through any closed surface is equal to

the total charge enclosed by that surface [7].

If we assume that the medium is linear (the electric flux densityD is linear to the electric

field E), homogeneous (ε is constant within the structure) and isotropic (D and E have
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same direction), the Poisson equation can be written as,

∇2V = −ρ/ε (2.4)

If the close surface does not have any charge density , the poisson equation will become

Laplace equation. In 1D, equation 2.4 can be represented as,

d2V

dx2
= −ρ(x)/ε (2.5)

One of the techniques to solve the above equation is by finite difference scheme by

central difference method.These finite difference approximations are algebraic in form.

They relate the value of the dependent variable at a point in the solution region to the

values at some neighboring points [8]. The solution is obtained through these basic

steps.

1. Descretize the region by choosing proper mesh size as explained in 2.1.

2. Approximate the equation into discretized form relating the dependent variable at
a point to its values at neighboring points.

3. Apply initial condition and boundary conditions to the discretized equation.

4. Update the dependent variable at all points in the region and solve the equation
again till the norm of the difference of last two iterative solutions reach a tolerance
value which in this case is, 10−5.

In 2D the equation 2.4 can be written as,

d2V

dx2
+
d2V

dy2
=
−ρ
ε

(2.6)

The ρ in this equation is the net charge density which is dependent on dependent vari-

able, in this case the electric potential. Hence, it is called as non-linear poisson equation.

The algorithm that is followed is known as Gummel method [13].

With the discretization scheme mentioned, we can rewrite the above equation as,

V (i+ 1, j) +V (i−1, j) +V (i, j−1) +V (i, j+ 1)−4V (i, j) =
−ρ(i, j)× h2

ε
(2.7)

where h is the mesh size of the structure, ε is the permittivity of the structure, i implies

that node at a distance of i × h horizontal distance from origin, j implies node at a

10



distance of j × h vertical distance from origin or the reference point.

This equation implies that the potential at a node in the region is different from the

averaging potential from the neighboring nodes by a factor which is proportional to the

charge density at that node. For this case, the neighbors either horizontal or vertical with

respect to the current node by one incremental distance h are considered for solution.

The discretized poisson equation is,

V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j) =
−ρ(i, j)× h2

ε

=
−(p(i, j)− n(i, j) +ND(i, j)−NA(i, j))× h2

ε

(2.8)

And the discretized Laplace equation is,

V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j) = 0 (2.9)

represents that the potential at the current node can be found by averaging the potentials

at neighboring nodes.

We need to solve the laplace equation for insulator region, Poisson equation for semi-

conductor and constant potential for conductor region simultaneously in order to obtain

the simulation characteristics.

The procedure to solve these equations is explained below.

2.3.1. Initialization:

In this step, we initialize the potential of the semiconductor region using the charge

neutrality condition [9] and potential at the insulator nodes are initialized to zeros.

n(i, j)− p(i, j) = ND(i, j)−NA(i, j) (2.10)

By boltzmann approximation explained in 2.2,taking Ef as reference energy level and

Ei = −qV and simplifying, the equation can be written as,

V (i, j) = 2× Vt × sinh−1
(ND(i, j)−NA(i, j)

2ni

)
(2.11)
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The above obtained matrix is considered as initial guess for potential.Similarly mobility

for electrons and holes were also initialized based on impurity concentrations ND, NA.

2.3.2. Applying Dirichlet condition at metal interface:

Since conductor is an equipotential surface, we need to initialize the potential value at

the conducting surface to the potential at semiconductor surface.

2.3.3. Calculating the coefficients of Poisson/Laplace equation:

The potential for solving poisson equation is taken as V + δ and substituted into 2.8

along with botlzmann equation 2.2 [13] and the complete equation can be written as,

δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1) + δ(i, j)(−4− qh2ni
εVt

(e−V (i,j) + eV (i,j)))

+V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j)

=
−qh2

εVt
(nie

−V (i,j) − nieV (i,j) +ND(i, j)−NA(i, j))

(2.12)

This equation along with Laplace equation can be generalized as,

a(i, j)δ(i− 1, j) + b(i, j)δ(i, j) + c(i, j)δ(i+ 1, j)

+d(i, j)δ(i, j − 1) + e(i, j)δ(i, j + 1) = k(i, j)
(2.13)

The matrices a, b, c, d, e are 2 dimensional and are either constants or function of poten-

tial from previous iteration.

The coefficient matrices b, k are formed based on the material of the current node i.e.,

(i, j). If it is laplace equation, the charge density is taken as zero and hence k is 0. If it

is conducting region, b is taken as 1 and k is taken as 0 so as to fill the matrix without

any discontinuities.The table 2.1 consists of the coefficients a, b, c, d, e, k for all types

of regions we process.

More details on the derivation were given in A.3
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Table 2.1: Coefficients of Poisson/Laplace equation

Coefficient Conductor Semiconductor Insulator
a 0 1 1

b 1 (−4− qh
2ni
εVt

(e−V (i,j) +

eV (i,j)))

-4

c 0 1 1
d 0 1 1
e 0 1 1

k 0
−qh2

εVt
(nie

−V (i,j) −

nie
V (i,j) + ND(i, j) −

NA(i, j))+ 4V(i,j)-V(i-
1,j)-V(i+1,j)-V(i,j-1)-
V(i,j+1)

4V(i,j)-V(i-1,j)-
V(i+1,j)-V(i,j-1)-
V(i,j+1)

2.3.4. Boundary conditions:

While simulating any rectangular region, we will come across the situation of boundary

condition which are the limits for any structure.

For solving the structure, Neumann boundary condition is taken. Example,

V (i+ 1, j) = V (i− 1, j)

δ(i+ 1, j) = δ(i− 1, j)
(2.14)

when i exceeds number of horizontal nodes [13]. Likewise, we have total 8 boundary

conditions to implement with 4 being the corners of the structure and remaining are the

sides of the structure. The complete boundary conditions for calculating V and δ are

shown in Figure 2.4.
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V(i-1,j)=V(i+1,j)
V(i,j-1)=V(i,j+1)

V(i-1,j)=V(i+1,j)
V(i,j+1)=V(i,j-1)

V(i+1,j)=V(i-1,j)
V(i,j+1)=V(i,j-1)

V(i+1,j)=V(i-1,j)
V(i,j-1)=V(i,j+1) V(i+1,j)=V(i-1,j)

V(i-1,j)=V(i+1,j)

V(i,j+1)=V(i,j-1)V(i,j-1)=V(i,j+1)

j nodes

i nodes

Figure 2.4: Boundary conditions used for calculating potential

2.3.5. Conversion from 2 Dimensional(2D) matrices to 1D matrices:

To solve the equation of the form (3.12), Matrix inversion method has been used.

Writing equation for each node, we get m × n number of equations where m is the

number of nodes in X direction and n is the number of nodes in Y direction. Solving

these equations in their original form requires 3D matrix formulation. To avoid that,

the 2D coefficient matrices a, b, c, d, e, k have been converted into 1D by assigning a

unique ID, l for each 2D node (i, j). l can be obtained as,

l = (number of horizontal nodes)(i− 1) + j

The scanning of nodes follows horizontal direction as shown in below figure for an

example containing 11 nodes in X direction.

Following this, the coefficients a, b, c, d, e have been calculated in 1D and matrix

A is formulated. Matrix k is calculated in 1D to formulate matrix B. Then δ can be

obtained as, δ = A−1B.

The size of matrix A is mn ×mn, which is huge and the program may run out of

memory. Hence memory optimization techniques have been implemented for this pur-

pose.

Instead of creating the 2D matrix A, it has been created as a sparse matrix by consid-

ering 3 linear arrays. In one array, the x location is stored . Similarly, second array
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1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

Indicates node

1 Unique ID

Unique ID (l) = 11*(i-1)+j

j

i

In generalized form, Unique ID (l) = (number of nodes in horizontal)*(i-1)+j

Figure 2.5: Converting 2D to 1D matrix using unique ID

consists of y location and in the final matrix, the corresponding coefficient is stored by

using the following transformations.

Since a(i,j) is the coefficient of V(i-1,j) - the upper node,

A(l, l − (nodes in horizontal)) < −− a(i, j) (2.15)

A(l, l) < −− b(i, j) (2.16)

Since c(i,j) is the coefficient of V(i+1,j) - the lower node,

A(l, l + (nodes in horizontal)) < −− c(i, j) (2.17)

Since d(i,j) is the coefficient of (i,j-1) - the left node,

A(l, l − 1) < −− d(i, j) (2.18)

Since e(i,j) is the coefficient of (i,j+1) - the right node,

A(l, l + 1) < −− e(i, j) (2.19)
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B,X are made single dimension matrices.

B(l) < −− k(i, j) (2.20)

X(l) < −− δ(i, j) (2.21)

2.3.6. Updating the potential and calculating the norm of δ:

The obtained result from matrix inversion method is used to update the potential V by

using the following relation which converts back 2D node voltage from 1D using the

unique ID relation.

V (i, j) = V (i, j) +X(number of horizontal nodes) ∗ (i− 1) + j) (2.22)

We calculate the norm of the matrix X and if it is less than tolerance value which is

1× 10−5 normalized volts, we consider the current potential distribution as the solution

of the Poisson equation.

And by using the Boltzmann equations , the electron and hole concentrations were ob-

tained. The potential distribution is shown in the Figure 3.1.

2.4 Optical characteristics at equilibrium

-Eigen mode equation

Before fabricating the waveguide, we need to know the Mode profile, effective in-

dex,absorption coefficient and related information to explain the optical characteristics

of that opto-electronic device. In this section, the discretized wave equations were dis-

cussed.

The non-magnetic medium with the relative permittivity εr, the vectorial wave equa-

tion for electric field E is,
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∇2E +∇(
∇εr
εr

.E) + k20εrE = 0 (2.23)

where∇2 is laplacian operator andd can be represented as ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

∇ε indicates the dielectric constant variation along X and Y directions.

k0 is the wave number in free space. k0 = ω
√
µ0ε0

Similarly for magnetic field,

∇2H +
∇εr
εr
× (∇×H) + k20εrH = 0 (2.24)

εr is assumed to be independent of z direction.

the above equations can be modified as below if the cross components were ne-

glected which are usually small leading to semivectorial equations and can be solved

numerically.

Quasi TE  mode Quasi TM  mode

𝐸𝑥

𝐻𝑦

𝐸𝑦

𝐻𝑥

The EM wave is propagating along Z direction 

x

y

z

Figure 2.6: The field components for Quasi TE and TM ploarizations

Furthermore, These equations can be analyzed considering quasi TE or quasi TM

modes which have Ex and Hy or Ey and Hx as their field components respectively [10].

If we consider ∂
∂z

= −jβ, TE wave equation can be written as,

∂

∂x

( 1

εr

∂

∂x
(εrEx)

)
+
∂2Ex
∂y2

+ (k20εr − β2)Ex = 0 (2.25)

and TM wave equation is,

∂2Ey
∂x2

+
∂

∂y
(

1

εr

∂

∂y
(εrEy)) + (k20εr − β2)Ey = 0 (2.26)

Considering TE wave equations,using the finite difference scheme assuming uni-
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form mesh size throughout the structure. If we consider that (i,j) as the node that repre-

sents the point of the region at a distance of i × h horizontal direction and j × h from

vertical direction , these can be rewritten as,

∂2Ex
∂x2

=
E(i+ 1, j) + E(i− 1, j)− 2E(i, j)

h2

∂2Ex
∂y2

=
E(i, j + 1) + E(i, j − 1)− 2E(i, j)

h2

(2.27)

The above equation can be written of the form,

AE(i+1, j)+BE(i−1, j)+CE(i, j+1)+DE(i, j−1)+FE(i, j) = GE(i, j) (2.28)

where A,B,C,D, F,G are the coefficients explained above for both TE and TM polar-

izations. The standard derivation of eigen mode equations and related approximations

were discussed in detail in appendix A.2.

The equations are solved for Quasi TE and TM modes. These equations are known

as, semivectorial wave equations since, the coupled field components are neglected.

Table 2.2: Coefficients of eigen mode equations
TE Polarization TM Polarization

A
2εr(i+ 1, j)

ε(i+ 1, j) + ε(i, j)

1

(k0 × h)2
1

(k0 × h)2

B
2εr(i− 1, j)

ε(i− 1, j) + ε(i, j)

1

(k0 × h)2
1

(k0 × h)2

C
1

(k0 × h)2
2εr(i, j + 1)

ε(i, j + 1) + ε(i, j)

1

(k0 × h)2

D
1

(k0 × h)2
2εr(i, j − 1)

ε(i, j − 1) + ε(i, j)

1

(k0 × h)2

F εr(i,j)-
2(1+εr(i,j))( 1

εr(i+1,j)+εr(i,j)
+

1
εr(i−1,j)+εr(i,j))

εr(i, j) − 2(1 +
εr(i, j))(

1
εr(i+1,j)+εr(i,j)

+
1

εr(i−1,j)+εr(i,j))

G β2/k20 = n2
eff β2/k20 = n2

eff

From equations (1.3) and (1.4) , the change in refractive index (∆n) and change in

absorption coefficient (∆α) can be obtained from change in electron and hole concen-

trations.
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The discretized equations mentioned above were solved and the optical characteris-

tics mainly Effective index(neff ), absorption coefficient(αeff ), Mode profile were ob-

tained for both quasi TE and TM polarizations. The mode profiles were shown in figure

3.2.

The program code is developed by IOLAB [15] and the code has been adapted and

modified so as to meet the requirements of this algorithm mainly, the plasma dispersion

effect as explained through equations 1.3 and 1.4.

2.5 Steady state electrical and optical characteristics at

forward bias

In equilibrium, since the drift is balanced by diffusion for both electrons and holes,

there will be no carrier movement. Hence, transport and continuity equations were not

solved. In applied bias condition, the poisson equation need to be solved along with

continuity and transport equations. The procedure is explained below.

2.5.1. Increase the voltage at anode:

The anode voltage i.e., the potential at the surface of the conductor is increased in

multiple of step voltage as mentioned at the starting of the program.

2.5.2. Solving the drift-diffusion equation:

Conduction in a semiconductor will happen through Drift (which is due to presence of

electric field) and Diffusion (which happens because of concentration gradient). Includ-

ing both these effects, the current densities for electrons and holes can be written in 1D

as,

Jp(x) = qµp(x)p(x)E(x)− qDp(x)
dp(x)

dx

Jn(x) = qµn(x)n(x)E(x) + qDn(x)
dn(x)

dx

(2.29)
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where q is electron charge and is = 1.6 ×10−19 Coloumb. Jp, Jn are the current

density of hole and electron respectively. µp, µn are the mobility of hole and electron.

E is the electric field. p, n are the hole and electron concentrations. x is the distance

from anode. Dp, Dn are the diffusion constants and can be related to mobility with

following Einstein relation.

Dp = µp × Vt

Dn = µn × Vt
(2.30)

where Vt is the thermal voltage and = kT/q = 0.026eV at room temperature.

The total current density

J(x) = Jp(x) + Jn(x) (2.31)

The above mentioned are Transport equations. Electron and hole concentrations

vary with distance x and tend to recombine. This can be explained with continuity

equation which states that,

Rate of carrier buildup = Net generation rate - Net rate of carriers leaving

Writing in derivative form,

∂p

∂t
= g − 1

q

∂Jp
∂x

∂n

∂t
= g +

1

q

∂Jn
∂x

(2.32)

where g = −U is the generation-recombination rate of carriers which is already

discussed in the previous chapter.

In order to process the equations for simulation, they need to be discretized.

Considering the transport equation,

Jp(x) = qµp(x)p(x)E(x)− qDp(x)dp(x)
dx

If we assume that current density Jp, electric field E, mobility µp are assumed to be

constant within the node as shown in Figure 2.7, we can rewrite the equation as,
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i i+1

𝐽, 𝜇, 𝜀 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
𝑡𝑜 𝑏𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

Mesh size = h

V,n,p are computed 
at these nodes

Figure 2.7: Scharfetter-Gummel Discretization scheme

=> qDp
dp(x)
dx

= qµpp(x)E − Jp

=> dp(x)
qµpp(x)E−Jp = dx

qDp

=>
∫ p(i+1)

p(i)
dp(x)

qµpp(x)E−Jp =
∫ (i+1)h

ih
dx
qDp

By solving this with help of equation 2.30, we get the equation of the form,

Jp

(
eEh/Vt − 1

)
= −qµpp(i+ 1)E + qµpp(i)Ee

Eh/Vt (2.33)

where E is the electric field which is constant within the cell and can be written as ,

E = −dV
dx

= −V (i+ 1)− V (i)

h

=
V (i)− V (i+ 1)

h

(2.34)

From equations 2.33 and 2.34, we get [12]

Jp(i+ 1/2) =

[
− p(i+ 1)B

(
V (i)

Vt
− V (i+ 1)

Vt

)
+ p(i)B

(
V (i+ 1)

Vt
− V (i)

Vt

)]

×qDp(i+ 1/2)

h

(2.35)
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Similarly for electron, we get

Jn(i+ 1/2) =

[
n(i+ 1)B

(
V (i+ 1)

Vt
− V (i)

Vt

)
− n(i)B

(
V (i)

Vt
− V (i+ 1)

Vt

)]

×qDn(i+ 1/2)

h

(2.36)

where

B(x) =
x

ex − 1
(2.37)

Equation 2.32 can be discretized as,

p
(k+1)
i − p(k)i

∆t
= g − 1

qh
(Jp(i+ 1/2)− Jp(i− 1/2)) (2.38)

where k indicates k ×∆t time.

From equations 2.35 and 2.38 we get,

−g +
p(k+1)(i)− p(k)(i)

∆t
=

1

qh2

[
p(i− 1)Dp(i− 1/2)B

(V (i)

Vt
− V (i− 1)

Vt

)
−p(i)

(
Dp(i+ 1/2)B

(V (i+ 1)

Vt
− V (i)

Vt

)
+Dp(i− 1/2)B

(V (i− 1)

Vt
− V (i)

Vt

)
+p(i+ 1)Dp(i+ 1/2)B

(V (i)

Vt
− V (i+ 1)

Vt

)]
(2.39)

Similarly for electron,
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−g +
n(k+1)(i)− n(k)(i)

∆t
=

1

qh2

[
n(i− 1)Dn(i− 1/2)B

(V (i− 1)

Vt
− V (i)

Vt

)
−n(i)

(
Dn(i− 1/2)B

(V (i)

Vt
− V (i− 1)

Vt

)
+Dn(i+ 1/2)B

(V (i)

Vt
− V (i+ 1)

Vt

)
+n(i+ 1)Dn(i+ 1/2)B

(V (i+ 1)

Vt
− V (i)

Vt

)]
(2.40)

After increasing the voltage at the electrode, this drift-diffusion equation is solved in

order to obtain the modified electron and hole concentrations. This equation is solved

only for semiconductor region since there will be no current flow inside insulator. The

equations 2.39 and 2.40 can be extended to 2D as,

U(i, j) =
1

qh2

[
p(i− 1, j)Dp(i− 1/2, j)B

(V (i, j)

Vt
− V (i− 1, j)

Vt

)
−p(i, j)

(
Dp(i+ 1/2, j)B

(V (i+ 1, j)

Vt
− V (i, j)

Vt

)
+

Dp(i− 1/2, j)B
(V (i− 1, j)

Vt
− V (i, j)

Vt

)
+Dp(i, j − 1/2)B

(V (i, j − 1)

Vt
− V (i, j)

Vt

)
+Dp(i, j + 1/2)B

(V (i, j + 1)

Vt
− V (i, j)

Vt

)
+p(i+ 1, j)Dp(i+ 1/2, j)B

(V (i, j)

Vt
− V (i+ 1, j)

Vt

)
+p(i, j − 1)Dp(i, j − 1/2)B

(V (i, j)

Vt
− V (i, j − 1)

Vt

)
+p(i, j + 1)Dp(i, j + 1/2)B

(V (i, j)

Vt
− V (i, j + 1)

Vt

)]
(2.41)
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Similarly for electron,

U(i, j) =
1

qh2

[
n(i− 1, j)Dn(i− 1/2, j)B

(V (i− 1, j)

Vt
− V (i, j)

Vt

)
−n(i, j)

(
Dn(i+ 1/2, j)B

(V (i, j)

Vt
− V (i+ 1, j)

Vt

)
+

Dn(i− 1/2, j)B
(V (i, j)

Vt
− V (i− 1, j)

Vt

)
+Dn(i, j − 1/2)B

(V (i, j)

Vt
− V (i, j − 1)

Vt

)
+Dn(i, j + 1/2)B

(V (i, j)

Vt
− V (i, j + 1)

Vt

)
+n(i+ 1, j)Dn(i+ 1/2, j)B

(V (i+ 1, j)

Vt
− V (i, j)

Vt

)
+n(i, j − 1)Dn(i, j − 1/2)B

(V (i, j − 1)

Vt
− V (i, j)

Vt

)
+n(i, j + 1)Dn(i, j + 1/2)B

(V (i, j + 1)

Vt
− V (i, j)

Vt

)]
(2.42)

where (i, j) indicates the current node. The voltage distribution of the previous step is

taken as initial guess and the concentrations at conductor-semiconductor boundary as

considered to be constant and equal to the equilibrium concentrations. The diffusitivity

constants Dp, Dn can be obtained from equation 2.30 and U is obtained from Recom-

bination theory explained in previous chapter.

Initially U(i, j) is considered as zero.

2.5.3. Boundary conditions:

The above equations can be written of the form,

a(i, j)p(i− 1, j) + b(i, j)p(i, j) + c(i, j)p(i+ 1, j)

+d(i, j)p(i, j − 1) + e(i, j)p(i, j + 1) = U(i, j)
(2.43)

where a, b, c, d, e are the coefficients which are function of normalized potential and

mobility. The boundary conditions for above equations are shown in the Figure 2.8.

At the semiconductor-insulator junction, neumann boundary conditions were used

and at conducting boundary, dirichlet boundary conditions were used since the carrier

concentration at conductor-semiconductor junction is same as equilibrium concentra-
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p(i-1,j)=p(i+1,j)
p(i,j-1)=p(i,j+1)
n(i-1,j)=n(i+1,j)
n(i,j-1)=n(i,j+1)

p(i-1,j)=p(i+1,j)
p(i,j+1)=p(i,j-1)
n(i-1,j)=n(i+1,j)
n(i,j+1)=n(i,j-1)

p(i+1,j)=p(i-1,j)
p(i,j+1)=p(i,j-1)
n(i+1,j)=n(i-1,j)
n(i,j+1)=n(i,j-1)

p(i+1,j)=p(i-1,j)
p(i,j-1)=p(i,j+1)
n(i+1,j)=n(i-1,j)
n(i,j-1)=n(i,j+1)

p(i+1,j)=p(i-1,j)
n(i+1,j)=n(i-1,j)

P(i,j)=p0 & n(i,j)=n0

p(i,j+1)=p(i,j-1)
n(i,j+1)=n(i,j-1)

p(i,j-1)=p(i,j+1)
n(i,j-1)=n(i,j+1)

j nodes

i nodes

p(i-1,j)=p(i+1,j)
n(i-1,j)=n(i+1,j)

Figure 2.8: Boundary conditions used for calculating carrier concentrations

tion because of infinite amount of recombinations at the surfaces.

As per the boundary conditions, the matrices a, b, c, d, e were formulated with U

being the recombination coefficient.

For a node which is below conductor-semiconductor junction, the equation can be

written as,

b(i, j)p(i, j) + c(i, j)p(i+ 1, j) + d(i, j)p(i, j − 1)

+e(i, j)p(i, j + 1) = U(i, j)− a(i, j)p0(i− 1, j)
(2.44)

where p0 denotes the equilibrium hole concentration.

2.5.4. Converting from 2D matrices to 1D matrices:

To solve these equations, the carrier concentrations are converted from 2D to 1D using

unique ID as explained in section 2.3 while solving for equilibrium.
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2.5.5. Rewriting the carrier concentrations and Generation-Recombination rate:

With Matrix inversion method, the carrier concentrations were calculated and the 2D

carrier concentration were replaced with new values using the unique ID. With the mod-

ified carrier concentrations, the generation-recombination rate U(i, j) will be updated

[13].

2.5.6. Solving the linearized Poisson equation:

With the carrier concentrations obtained above, we solve for Poisson equation. Since,

the fermilevel is changed after positive bias, the equilibrium procedure for poisson equa-

tion is not considered.

The Poisson equation is solved for potential for the complete region. The equation

(2.17) can be written as,

δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1)+

δ(i, j)

(
− 4− qh2

εVt
(p(i, j) + n(i, j)))

)
= 4V (i, j)− V (i+ 1, j)− V (i− 1, j)− V (i, j − 1)− V (i, j + 1)−

qh2

εVt

(
p(i, j)− n(i, j) +ND(i, j)−NA(i, j)

)
(2.45)

The above equation is of the form (2.13) and the coefficients can be found in similar

way mentioned in section (2.2.3).

2.5.7. Boundary conditions:

The procedure mentioned in section (2.2.4) was repeated for boundary conditions for

calculating the potential.
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2.5.8. Conversion from 2D matrices to 1D matrices:

For updating the potential,the linearization principle used in section (2.2.5) was used

here.

2.5.9. Updating the potential and calculating the norm of δ:

After formulating the equation(2.51) to AX=B form, X or δ is calculated with matrix

inversion method. After calculating X , the potential V is updated by using the following

relation.

V (i, j) = V (i, j) + δ(number of horizontal nodes) ∗ (i− 1) + j) (2.46)

The norm of the matrix X is calculated and if it is less than tolerance value, we consider

the current electrical characteristics as the solution for the region and we exit from the

iteration. Potential distribution is shown in 3.3 and recombination coefficient is shown

in 3.5.

2.5.10. Calculating Current density:

After obtaining the potential and concentrations from above step, the current densities

are back calculated using equations 2.35 and 2.36 for all nodes in the semiconductor

region only. The current density is shown in Figure 3.4.

2.5.11. Optical characteristics:

The method explained in section (2.4) for calculating the Field profile, effective index

and absorption coefficients for applied bias is applied for steady state. The mode profiles

for TE and TM polarizations were shown in Figure 3.7.

27



2.5.12. Incrementing the step voltage:

The step voltage is given at the start of the simulation. In this step, we check if the anode

voltage exceeding the applied voltage. If it does, we will end the steady state analysis.

Otherwise, we increment the voltage at anode to next multiple of the step voltage and

begin from step 1.

The results are shown in next chapter are for applied bias of 1 volt.

The applied voltage is extended more than 1 volt and plotted the variation of current

density J at mid point of the rib structure and the current density variation with respect

to applied anode voltage is shown in Figure 3.6.

2.6 Transient characteristics

We tried to analyze the transient characteristics of the structure for an AC small signal

voltage and the results are hopefully positive and can be improved by adapting and

investigating various time domain techniques for calculating the rise time , fall time

and bandwidth. Below is the procedure to calculate the transient parameters.

For calculating the transient characteristics the equations can be written for node

(i, j) as [14],
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U(i, j)

]
k

+
p(k+1)(i, j)− p(k)(i, j)

∆t
=

1

qh2

[
p(i− 1, j)Dp(i− 1/2, j)B

(V (i, j)

Vt
− V (i− 1, j)

Vt

)
−p(i, j)

(
Dp(i+ 1/2, j)B

(V (i+ 1, j)

Vt
− V (i, j)

Vt

)
+

Dp(i− 1/2, j)B
(V (i− 1, j)

Vt
− V (i, j)

Vt

)
+Dp(i, j − 1/2)B

(V (i, j − 1)

Vt
− V (i, j)

Vt

)
+Dp(i, j + 1/2)B

(V (i, j + 1)

Vt
− V (i, j)

Vt

)
+p(i+ 1, j)Dp(i+ 1/2, j)B

(V (i, j)

Vt
− V (i+ 1, j)

Vt

)
+p(i, j − 1)Dp(i, j − 1/2)B

(V (i, j)

Vt
− V (i, j − 1)

Vt

)
+p(i, j + 1)Dp(i, j + 1/2)B

(V (i, j)

Vt
− V (i, j + 1)

Vt

)]
(k+1)

(2.47)

Similarly for electron,

U(i, j)

]
k

+
n(k+1)(i, j)− n(k)(i, j)

∆t
=

1

qh2

[
n(i− 1, j)Dn(i− 1/2, j)B

(V (i− 1, j)

Vt
− V (i, j)

Vt

)
−n(i, j)

(
Dn(i+ 1/2, j)B

(V (i, j)

Vt
− V (i+ 1, j)

Vt

)
+

Dn(i− 1/2, j)B
(V (i, j)

Vt
− V (i− 1, j)

Vt

)
+Dn(i, j − 1/2)B

(V (i, j)

Vt
− V (i, j − 1)

Vt

)
+Dn(i, j + 1/2)B

(V (i, j)

Vt
− V (i, j + 1)

Vt

)
+n(i+ 1, j)Dn(i+ 1/2, j)B

(V (i+ 1, j)

Vt
− V (i, j)

Vt

)
+n(i, j − 1)Dn(i, j − 1/2)B

(V (i, j − 1)

Vt
− V (i, j)

Vt

)
+n(i, j + 1)Dn(i, j + 1/2)B

(V (i, j + 1)

Vt
− V (i, j)

Vt

)]
(k+1)

(2.48)

2.6.1. Fixing the dc bias point

Before proceeding to transient analysis, a dc bias point should be fixed on which AC

small signal voltage need to be applied. For this case, 1 volt has been chosen to be the

bias point.
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2.6.2. Applying the AC signal

The AC signal was taken to be 0.01 V(peak-to-peak) amplitude which is 1% of the dc

bias voltage.

Figure 2.9: Input AC signal

2.6.3. Starting the iterative procedure and Choosing the time step ∆t

Time step is limited by dielectric relaxation time. It is defined as the time at which the

charge density inside a volume reduces to 1/e of it’s initial value. And is the quantity

which indicates the conductivity of the material.

tdr =
ε

qNµ
(2.49)

where ε is the dielectric constant of the material. q denotes the charge, N is the doping

concentration and µ denotes the mobility of the charge carrier. The step size should be

atleast one tenth of tdr [13].

For this case, since the time step is of femto seconds, adaptive time step technique is

considered. At voltage step increase, more number of samples are taken and at remain-

ing voltage levels, less number of samples were considered by increasing the step size.

For above input, at the rising edge till another 2ns and at the falling edge till another

2ns, time step of 10−16sec is taken and the step size decrements as the applied voltage

is constant.
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2.6.4. Procedure for iteration

U has been updated with carrier concentration using SRH theory.

For each time step, the input voltage is sampled and applied to anode of the de-

vice. Followed by the obtaining the solution of above equation followed by the steps

mentioned from (2.5.3) till (2.5.11).

This procedure is followed till complete time period is reached. the result is shown

in 3.8.
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CHAPTER 3

Simulation Results and Discussion

In this chapter, we have shown the results obtained from our simulator and from device

simulator MEDICI [16].

3.1 Equilibrium

Electrical and Optical characteristics were shown under zero applied bias.

3.1.1 Electrical characteristics

Equilibrium potential distribution:

Built-in Voltage = 𝟐 × 𝟎. 𝟎𝟐𝟔 × 𝐥𝐧
𝟏𝟎𝟕

𝟎.𝟎𝟏𝟓
= 𝟐 × 𝟎. 𝟓𝟐𝟖𝟐𝟔𝟐𝟖 = 𝟏. 𝟎𝟓𝟔𝟓𝟐 𝑽

Figure 3.1: Equilibrium potential distribution

The potential we obtained from the simulation is in accordance with the theoretical

result. The second figure is the voltage distribution obtained from medici. The tendency

of the results are matching though, some variation is observed because of boltzmann

approximation and neglecting heavy doping effects on intrinsic carrier concentration.



3.1.2 Optical characteristics

Field Profile:

Figure 3.2: TE and TM mode profile at equilibrium

3.2 Steady state forward bias

Electrical and Optical characteristics were shown under forward bias of 1volt.

3.2.1 Electrical characteristics

Potential distribution:

Figure 3.3: Potential distribution at applied bias. Left figure is the result obtained from
the program. The right figure shows the result calculating from medici.
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Since, the mobility depends only on impurity concentration and Auger recombina-

tion is neglected, the variation is observed. However, the results are in agreement with

the expected variation.

Current density distribution:

Figure 3.4: Current density distribution at applied bias of 1 Volt. The right figure shows
the result obtained from medici. The peaks are observed some nodes in the
region because of the reason that the lateral electrodes were considered.

Recombination coefficient:

Figure 3.5: Recombination coefficient at applied bias

Since, Auger recombination is neglected and the recombination model is symmetric

for P and N type semiconductors, the program result shows symmetry and hence the
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variation occurred comparing with medici result.

I-V characteristics:

Figure 3.6: Current density-Voltage forward bias characteristics are shown. The left
plot shows the variation of current density J at the center of waveguide cross
section with applied voltage varied from 0 to 1.6 Volt. The right plot is the
current variation with applied voltage.

3.2.2 Optical characteristics

Field Profile:

Figure 3.7: TE and TM mode profiles for applied bias of 1 Volt
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3.3 Transient characteristics

The transient characteristics were shown which were obtained from adaptive time step

technique. It can be further investigated.

Figure 3.8: Current density variation at the center of waveguide geometry as a function
of time with applied AC signal.

3.4 Derived parameters

With the assumptions considered, we have extracted the electro-optic effects in silicon

optical modulator and they are close to the practical results obtained.

Built-in potential = V0 = 1.05 Volt

Total current I = 0.04424 A/µm

nTEeff at equilibrium= 3.47112

nTMeff at equilibrium= 3.47086

nTEeff at applied bias of 1 volt= 3.46817

nTMeff at applied bias of 1 volt=3.4679

LTEπ = 1.55
2×(3.47112−3.46817) =262.712µm

LTMπ = 1.55
2×(3.47086−3.4679)=261.824µm

Figure of Merit = 0.262712 V-mm or 0.261824 V-mm
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3.5 Graphical user interface

Each parameter of the obtained electrical and optical characteristics have been stored

in a multidimensional array at equilibrium and at all step voltages. The parameters

include:

1)Potential distribution

2)Electron concentration

3)Hole concentration

4)Recombination coefficient

5)Electric field distribution

6)Electron and hole current densities

7)Effective index

8)Mode profile

9)Absorption coefficient

10)Confinement in X and Y directions of the mode

For the structure shown in Figure (3.2), the graphical interface is shown below.

Figure 3.9: Graphical user interface showing the electrical and optical characteristics in
separate plots with third figure showing the voltage distribution in 1D along
X direction for applied bias and for equilibrium
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CHAPTER 4

Conclusions

4.1 Summary

By using the Matlab, with assumptions considered in section 2.2, by considering Large

cross section rib waveguide, the electro-optic effects were calibrated and are close to

the practical values obtained at our lab. For diffusion type doping with surface concen-

tration of 1 × 1019 cm−3 , junction depth of 1 µm and with variation of 1volt, length

required for π phase shift is around 250 µm.

The program can process at least one lakh nodes in contrast to most of the simula-

tors which limit the number of nodes. Since finite difference algorithm is used, equal

number of nodes will be processed for both electrical and optical characteristics. With

graphical user interface, the changes in the output characteristics can be observed with

the variation in input parameters such as variation of effective index with junction depth.

The memory usage, time consumption are the limitations of the program which can be

overcome with optimization techniques.

4.2 Outlook

The project can be extended further. Some of the future work which can be implemented

are mentioned below.

4.2.1 Study on transient characteristics

The transient characteristics can be made more accurate by studying various time dis-

cretization techniques and applying appropriate one for the semiconductor device sim-

ulation.



4.2.2 Generalizing the program

The program has some assumptions based on which it delivers the results we needed.

These assumptions can be relaxed so that it furnishes the results which are more closer

to practical results.
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APPENDIX A

Appendix

A.1 Finite Difference Method

Given a function f(x) we can write its derivative as ,

f ′(x) =
f(x+ ∆x)− f(x)

∆x
(A.1)

assuming ∆x to be very small.

The second derivative can be written as,

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
(A.2)

A.2 Eigen mode equation

When we try to propagate the light through the waveguide, we need to know the Mode

profile, effective index and related information to explain the critical characteristics of

the opto-electronic device. Here, we try to solve the wave equations numerically to

obtain the absorption coefficient, refractive index, 1/e hight and 1/e width and complete

mode profile distribution.

The medium with the relative permittivity εr, the vectorial wave equation for electric

field E is,

∇2E +∇(
∇εr
εr

.E) + k20εrE = 0 (A.3)

The above equation can be reduced to helmholtz equation if εr is considered to be

constant.



The middle term can be written as,

∇(
∇εr
εr

.E) = ∇(
1

εr

∂εr
∂x

Ex +
1

εr

∂εr
∂y

Ey) (A.4)

Expanding the above equation in X and Y directions,

∂2Ex
∂x2

+
∂2Ex
∂y2

+
∂2Ex
∂z2

+
∂

∂x
(

1

εr

∂εr
∂x

Ex) +
∂

∂x
(

1

εr

∂εr
∂y

Ey) + +k20εrEx = 0 (A.5)

and

∂2Ey
∂x2

+
∂2Ey
∂y2

+
∂2Ey
∂z2

+
∂

∂y
(

1

εr

∂εr
∂x

Ex) +
∂

∂y
(

1

εr

∂εr
∂y

Ey) + k20εrEy = 0 (A.6)

The above equations can be simplified by combining 1st and 4th term in (2.17) and 2nd

and 5th terms in equation (2.18) ,

∂

∂x
(

1

εr

∂

∂x
(εrEx)) +

∂2Ex
∂y2

+
∂2Ex
∂z2

+ k20εrEx +
∂

∂x
(

1

εr

∂εr
∂y

Ey) = 0 (A.7)

and

∂2Ey
∂x2

+
∂

∂y
(

1

εr

∂

∂y
(εrEy)) +

∂2Ey
∂z2

+ k20εrEy +
∂

∂y
(

1

εr

∂εr
∂x

Ex) = 0 (A.8)

For magnetic field,

∇2H +
∇εr
εr
× (∇×H) + k20εrH = 0 (A.9)

The above equation can be reduced to helmholtz equation if εr is considered to be

constant.

The middle term can be expanded as,
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∇εr
εr
× (∇×H) =

∣∣∣∣∣∣∣∣∣
i j k

∂εr
∂x

∂εr
∂y

0

(∇×H)x (∇×H)y (∇×H)z

∣∣∣∣∣∣∣∣∣ (A.10)

εr is independent of z direction and hence it is taken as 0. The above equation can

be rewrite as,

∇εr
εr
× (∇×H) =

∂εr
∂y

(∇×H)zi−
∂εr
∂x

(∇×H)zj+

(
∂εr
∂x

(∇×H)y −
∂εr
∂y

(∇×H)x)k

(A.11)

Using the below expressions,

(∇×H)x =
∂Hz

∂y
− ∂Hy

∂z
(A.12)

(∇×H)y =
∂Hx

∂z
− ∂Hz

∂x
(A.13)

(∇×H)z =
∂Hy

∂x
− ∂Hx

∂y
(A.14)

We can expand the wave equations as,

∇εr
εr
× (∇×H) =

1

εr
(
∂εr
∂y

(
∂Hy

∂x
− ∂Hx

∂y
)i− ∂εr

∂x
(
∂Hy

∂x
− ∂Hx

∂y
)j

+

(
∂εr
∂x

(
∂Hx

∂z
− ∂Hz

∂x
)− ∂εr

∂y
(
∂Hz

∂y
− ∂Hy

∂z
)

)
k)

(A.15)

Substituting equation (2.27) into (2.21) and splitting into X and Y components, we

can split the wave equation as ,

∂2Hx

∂x2
+
∂2Hx

∂y2
+
∂2Hx

∂z2
+

1

εr

∂εr
∂y

(
∂Hy

∂x
− ∂Hx

∂y
) + k20εrHx = 0 (A.16)
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which can be written by combining 2nd and 5th terms as,

∂2Hx

∂x2
+ εr

∂

∂y
(

1

εr

∂Hy

∂y
) +

∂2Hx

∂z2
+ k20εrHx +

1

εr

∂εr
∂y

(
∂Hy

∂x
) = 0 (A.17)

and the Y component can be written as

∂2Hy

∂x2
+
∂2Hy

∂y2
+
∂2Hy

∂z2
− 1

εr

∂εr
∂x

(
∂Hy

∂x
− ∂Hx

∂y
) + k20εrHy = 0 (A.18)

which can be rewritten by combining 1st and 3rd terms as,

εr
∂

∂x
(

1

εr

∂Hy

∂x
) +

∂2Hy

∂y2
+
∂2Hy

∂z2
+ k20εrHy +

1

εr

∂εr
∂x

(
∂Hx

∂y
) = 0 (A.19)

For a wave propagating in z direction,

∂

∂z
= −jβ (A.20)

Substituting (2.32) into (2.19),(2.20),(2.29),(2.31) and rewriting the wave equations,

∂

∂x

( 1

εr

∂

∂x
(εrEx)

)
+
∂2Ex
∂y2

+ (k20εr − β2)Ex +
∂

∂x

( 1

εr

∂εr
∂y

Ey
)

= 0

∂2Ey
∂x2

+
∂

∂y
(

1

εr

∂

∂y
(εrEy)) + (k20εr − β2)Ey +

∂

∂y
(

1

εr

∂εr
∂x

Ex) = 0

∂2Hx

∂x2
+ εr

∂

∂y
(

1

εr

∂Hy

∂y
) + (k20εr − β2)Hx +

1

εr

∂εr
∂y

(
∂Hy

∂x
) = 0

εr
∂

∂x
(

1

εr

∂Hy

∂x
) +

∂2Hy

∂y2
+ (k20εr − β2)Hy +

1

εr

∂εr
∂x

(
∂Hx

∂y
) = 0

(A.21)

As we see, the set of equations mentioned in (2.33) are coupled. The first two

equations indicate the electric field variation in both directions. Similarly, 3rd and 4th
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equations show the magnetic field variation.

Usually, the terms ∂
∂x

( 1
εr
∂εr
∂y
Ey), ∂

∂y
( 1
εr
∂εr
∂x
Ex), 1

εr
∂εr
∂y

(∂Hy
∂x

), 1
εr
∂εr
∂x

(∂Hx
∂y

) are small. By

neglecting these terms, we get semivectorial wave equations which are now decoupled

and can be solved.

∂

∂x

( 1

εr

∂

∂x
(εrEx)

)
+
∂2Ex
∂y2

+ (k20εr − β2)Ex = 0

∂2Ey
∂x2

+
∂

∂y
(

1

εr

∂

∂y
(εrEy)) + (k20εr − β2)Ey = 0

∂2Hx

∂x2
+ εr

∂

∂y
(

1

εr

∂Hy

∂y
) + (k20εr − β2)Hx = 0

εr
∂

∂x
(

1

εr

∂Hy

∂x
) +

∂2Hy

∂y2
+ (k20εr − β2)Hy = 0

(A.22)

This approximation can be used if the interaction of the field components in one

direction is negligible in other direction. These can be analyzed considering quasi TE

or quasi TM modes which have Ex and Hy or Ey and Hx as their field components.

Therefore TE wave equation as per above discussion can be written as,

∂

∂x

( 1

εr

∂

∂x
(εrEx)

)
+
∂2Ex
∂y2

+ (k20εr − β2)Ex = 0 (A.23)

and TM wave equation is,

∂2Ey
∂x2

+
∂

∂y
(

1

εr

∂

∂y
(εrEy)) + (k20εr − β2)Ey = 0 (A.24)

Considering TE wave equations,using the finite difference scheme assuming uni-

form mesh size throughout the structure. If we consider that (i,j) as the node that repre-

sents the point of the region at a distance of i × h horizontal direction and j × h from

vertical direction , these can be rewritten as,

∂2Ex
∂x2

=
E(i+ 1, j) + E(i− 1, j)− 2E(i, j)

h2

∂2Ex
∂y2

=
E(i, j + 1) + E(i, j − 1)− 2E(i, j)

h2

(A.25)
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Table A.1: Coefficients of semivectorial wave equations
TE Polarization TM Polarization

A 2εr(i+1,j)
ε(i+1,j)+ε(i,j)

1
(k0×h)2

1
(k0×h)2

B 2εr(i−1,j)
ε(i−1,j)+ε(i,j)

1
(k0×h)2

1
(k0×h)2

C 1
(k0×h)2

2εr(i,j+1)
ε(i,j+1)+ε(i,j)

1
(k0×h)2

D 1
(k0×h)2

2εr(i,j−1)
ε(i,j−1)+ε(i,j)

1
(k0×h)2

F εr(i, j) − 2(1 +
εr(i, j))(

1
εr(i+1,j)+εr(i,j)

+
1

εr(i−1,j)+εr(i,j))

εr(i, j) − 2(1 +
εr(i, j))(

1
εr(i+1,j)+εr(i,j)

+
1

εr(i−1,j)+εr(i,j))

G β2/k20 = n2
eff β2/k20 = n2

eff

and the other terms can be expanded as,

∂

∂x
(

1

εr

∂εr
∂x

Ex) =
1

h

((
1

εr

∂εr
∂x

Ex

)
p+1/2,q

−
(

1

εr

∂εr
∂x

Ex

)
p−1/2,q

)
=

1

h2

(
εr(i+ 1, j)− εr(i, j)
εr(i+ 1, j) + εr(i, j)

(E(i+ 1, j) + E(i, j))−

εr(i, j)− εr(i− 1, j)

εr(i, j) + εr(i− 1, j)
(E(i− 1, j) + E(i, j))

) (A.26)

Substituting the equations (2.37) and (2.38) into (2.36) and rearranging the terms we

get,

AE(i+1, j)+BE(i−1, j)+CE(i, j+1)+DE(i, j−1)+FE(i, j) = GE(i, j) (A.27)

where A,B,C,D,F,G are the coefficients explained above for both TE and TM polariza-

tions.

A.3 Coefficients of Poisson equation

The potential for solving poisson equation is taken as V +δ and substituted into Poisson

equation 2.8 [13], we get
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δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1)− 4δ(i, j)

+V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j)

=
−q(nie

(Ei−Ef )
kT − nie

(Ef−Ei)
kT +ND(i, j)−NA(i, j))× h2

ε

(A.28)

We consider Ef as the reference in above equation. Since

Ei = −q × V (A.29)

we can rewrite the equation (2.13) as,

δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1)− 4δ(i, j)

+V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j)

=
−q(nie

(−V−δ)
Vt − nie

(V+δ)
Vt +ND(i, j)−NA(i, j))× h2

ε

(A.30)

Normalizing with respect to Vt, by the transformations V
Vt

= V ; δ
Vt

= δ we get,

δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1)− 4δ(i, j)

+V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j)

=
−q(nie(−V−δ) − nie(V+δ) +ND(i, j)−NA(i, j))× h2

εVt

(A.31)

We assume that δ is too small compared with the voltage V and hence we can rewrite

above equation as,

δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1)− 4δ(i, j)

+V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j)

=
−qh2

εVt
(nie

−V (i,j)(1− δ(i, j))− nieV (i,j)(1 + δ(i, j)) +ND(i, j)−NA(i, j))

(A.32)
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Rearranging the terms,

δ(i+ 1, j) + δ(i− 1, j) + δ(i, j − 1) + δ(i, j + 1) + δ(i, j)(−4− qh2ni
εVt

(e−V (i,j) + eV (i,j)))

+V (i+ 1, j) + V (i− 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j)

=
−qh2

εVt
(nie

−V (i,j) − nieV (i,j) +ND(i, j)−NA(i, j))

(A.33)

is of the form,

a(i, j)δ(i− 1, j) + b(i, j)δ(i, j) + c(i, j)δ(i+ 1, j)

+d(i, j)δ(i, j − 1) + e(i, j)δ(i, j + 1) = k(i, j)
(A.34)

The matrices a, b, c, d, e are 2 dimensional and are either constants or function of poten-

tial from previous iteration.

The following table consists of the coefficients a, b, c, d, e, k for all types of regions we

process.

Table A.2: Coefficients of Poisson equation for all processing regions

Coefficient Conductor Semiconductor Insulator
a 0 1 1

b 1 (−4− qh
2ni
εVt

(e−V (i,j) +

eV (i,j)))

-4

c 0 1 1
d 0 1 1
e 0 1 1

k 0
−qh2

εVt
(nie

−V (i,j) −

nie
V (i,j) + ND(i, j) −

NA(i, j))+ 4V(i,j)-V(i-
1,j)-V(i+1,j)-V(i,j-1)-
V(i,j+1)

4V(i,j)-V(i-1,j)-
V(i+1,j)-V(i,j-1)-
V(i,j+1)
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