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ABSTRACT

KEYWORDS: 64-bit processor, execution unit, decoder, ISA

The processor design team in RISE lab has been involved in development of processor
for defence and security related applications. As the instruction set architecture plays
an important role in implementation of processor, the study on the ANUPAMA, MIPS
and Power Instruction Set architectures were carried out and Power ISA was chosen for
implementation, as it is one of the most popular ISA for embedded and desktop PC design
and also for its exceptional branch handling capability. It also provides multimedia and
signal processing support with Vector-Scalar Instruction Set Architecture. The project
deals with the architecture and design of the fixed-point scalar execution units and decoder
of a 64-bit RISC processor. The design has been modeled in Bluespec System Verilog

HDL and functional verification policies adopted for each unit have been described.
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CHAPTER 1

Introduction

1.1 The Overall Architecture

The overall architecture is as shown in Figure 1.1.
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Figure 1.1: Overall Architecture



The processor design team in RISE lab is involved in development of processor for
defence applications, the overall view of which is as shown in figure 1.1. It has four cores
(quad-core) and each core is composed of a CPU unit, Memory Management Unit, L1
Dcache and L1 Icache. The CPU core is designed to support 64-bit PowerPC Instruction
Set Architecture. It supports dual issue and out of order execution. It has two level cache
hierarchy and supports cache coherency at L1 cache level, with coherency bus. It also
has an on-chip main memory (DRAM). It has a Memory Management Unit for better data
transfer between main memory and cores of the processor. Then in order to interact with

external device there is a NVM Express based 1/0 subsystem with PCI Express interface.
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— Cache
e
Instruction Fetch Cache
Unit Controller
| [ s Data
‘I' \l’ Cache
le—|
Decoder Queue 1 Decoder Queue 2
[ [
Issue Queue 1 Issue Queue 2
T— T

File

| |

RS ALU RS Branch RS Vector RS Memory

Vector Memory
Branch Unit Unit Unit

g &

Commit Stage

| RoB

Figure 1.2: Stages of a pipelined processor



My contribution :

Different stages of pipelined processor is as shown in Figure 1.2. This is a pipelined su-
perscalar processor with the instruction fetch, decode, issue, execution and commit stages.
My work deals with architecture and design of the fixed-point scalar execution units and
decoder of a this 64-bit RISC processor. Highlighted portion in the figure is my contribu-

tion to the development of targeted overall processor architecture.

1.2 Overview of content

Chapter-2 gives the background study of the Instruction Set Architecture and the role of
execution unit along with the introduction to Bluespec System Verilog.

Chapter-3 is the introduction to the Power instruction set architecture.

Chapter-4 includes the design and implementation of various execution units and decoder.
Chapter-5 concludes with a short description on the future work that can be done.
Appendix A provides the set of all fixed-point scalar instructions that have been imple-

mented along with their opcodes.



CHAPTER 2

Background

2.1 Instruction Set Architecture

Instruction Set Architecture (ISA) is the portion of the processor or computer that is avail-
able to the compiler writer or programmer. They play important role in building a processor

[1]. There are three areas where these ISA are applied namely:
e Desktop computers: Here the importance is given to performance of programs with
integer and floating point data types.

e Servers : These are used primarily for database, file server, and Web applications
and some time-sharing applications.

e Embedded applications : Here the importance is given to power and cost hence
code size is important and some classes of instructions like floating point becomes
optional.

Broadly the ISA is classified into four types :
e Stack Architecture : The operands in this architecture are implicitly on the TOS (top
of the stack).

e Accumulator Architecture : In this architecture one of the operand is implicitly ac-
cumulator.

e Register-Memory Architecture : The accessing of memory can be part of any in-
struction in this architecture.

e [oad-Store Architecture : The accessing of memory can be done only with load
store instructions.



ALU

Figure 2.1: Load-Store Architecture

The most popular and the one chosen for implementation is the Load-Store Architec-
ture as shown in Figure 2.1. The major reasons for the success of general purpose register
(GPR) computers are that , registers like other forms of storage internal to the processor
are faster than memory and registers are more efficient for a compiler to use than other

forms of internal storage [1].

e Advantages : Simple, fixed-length instruction encoding, simple code generation
model and instructions take similar numbers of clocks to execute.

e Disadvantages : Higher instruction count than architectures with memory references
in instructions. More instructions and lower instruction density may lead to larger
programs.

2.1.1 Memory Addressing

Usually the instruction sets are byte addressed and can provide access to byte, halfword,
word and doubleword.

The byte ordering is done in one of the following ways [1]:

e Little Indian : In this type of ordering the byte with address ending with ”000” is put
in the LSB of the double word and so on.



e Big Indian : In this type of ordering the byte with address ending with ”000” is put
in the MSB of the double word and so on.

Whenever there is a need to access the memory of size larger than byte then it should
be usually aligned. An access to an object of size s bytes at byte address A is aligned if A

mod s = 0.

Addressing Modes
Addressing modes are the ways by which addresses are specified by the instruction.When
a memory location is used, the actual memory address specified by addressing mode is

called effective address [1]. Some of the addressing modes widely used are:

e Register

e Immediate

e Displacement

e Register indirect
e Direct

e Indexed

e Memory indirect
e Autoincrement
e Scaled

e Autodecrement

Each of the addressing modes have their own uses like register addressing mode is
used when the value is in the register, immediate addressing mode is used for constants,
displacement mode for accessing local variables, register indirect for accessing using the

pointer. Indexed addressing mode is used in array handling while direct mode is used



for accessing static data. Displacement and immediate addressing modes are mostly used
addressing modes. In these cases choosing the displacement field sizes is important be-
cause they directly affect the instruction length. Because of popularity, we would expect
a architecture to support at least displacement, immediate, and register indirect addressing
modes. Also we would expect the size of the address for displacement mode to be at least

12 to 16 bits and we would expect the size of the immediate field to be at least 8 to 16 bits.

2.1.2 Type of operands and operations in instruction set

The most common form of operands are byte (8 bits), half word (16 bits), word (32 bits),
double word (64 bits), single and double precision floating point. Integers are represented
in two’s complement form. Sometimes there is also use of decimal operands. The operators

supported by most instruction set architectures can be categorized as [1]:

e Arithmetic and logical

Data transfer

Branch Control

System

Floating point

Most of the computers will provide support to all of these operations. The Arithmetic
and logical operations are like add, and etc. The data transfer operations are the load and
store. The control operations are branch conditionally , jump etc. System functions are the
system call etc while the floating point operations involve floating point add, multiply etc.
For a control flow instruction destination address must always be specified. This destina-
tion is specified explicitly in the instruction in the vast majority of cases procedure return

being the major exception, since for return the target is not known at compile time. The
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most common way to specify the destination is to supply a displacement that is added to
the program counter (PC). Control flow instructions of this sort are called PC-relative. It
is advantageous because the target is often near the current instruction, and specifying the
position relative to the current PC requires fewer bits. Using PC-relative addressing also
permits the code to run independently of where it is loaded. This property, called position
independence, can eliminate some work when the program is linked and is also useful in
programs linked dynamically during execution. In case of branch instructions large num-
ber of the comparisons are simple tests, and a large number are comparisons with zero.
Thus, some architectures choose to treat these comparisons as special cases, especially if

a compare and branch instruction is being used. The three primary techniques are:

e Condition code : These test the bits which are set by other alu operations.
e Condition register : These test a particular register to compare with the result.

e Compare and branch : Here compare forms a part of branch.

2.1.3 Encoding an Instruction Set

All of the above mentioned choices will effect how the instructions are encoded. This not
only affects the length of the program but also the implementation of the processor. The
good encoding helps in quickly decoding the instruction and finding its operands and oper-
ation. The important decision is how to encode the addressing modes with the operations.
This decision depends on the range of addressing modes and the degree of independence
between opcodes and modes. Number of register and number of addressing modes have
significant impact on size of the instruction as the register field and addressing mode field
may appear many times in a single instruction.

Points to focus on when encoding the instruction set are the desire to have as many reg-



isters and addressing modes as possible [1], its impact on instruction size (average) and
also a suitable length that will be easy to handle in a pipelined implementation. Its better
if the instructions are multiples of bytes, rather than an arbitrary bit length. Many desktop
and server architects have chosen to use a fixed-length instruction to gain implementation

benefits while sacrificing average code size. Three types of encoding are :

e Variable
e Fixed

e Hybrid

Variable : Since the instruction length is variable it can support all kinds of addressing
modes and operations but the decoding becomes the problem. E.g.,Intel 80x86, VAX.
Fixed : This combines the operation and the addressing mode into the opcode. It will have
only a single size for all instructions and works best when there are few addressing modes
and operations. E.g., MIPS, PowerPC, Arm.

Hybrid : The hybrid approach has multiple formats specified by the opcode, adding one
or two fields to specify the addressing mode and one or two fields to specify the operand

address.E.g., IBM 360/370, MIPS16, Thumb.

2.2 Advantages of Power ISA

There is one register that always has the value 0 when used in address modes [1], the
absolute address mode with limited range can be synthesized using zero as the base in
displacement addressing. Similarly, register indirect addressing is synthesized by using
displacement addressing with an offset of 0. Simplified addressing modes is one distin-

guishing feature of PowerPC architectures. Register + offset and update register is one of



the features that is unique.

PowerPC using PowerISA uses four condition codes: less than, greater than, equal, and
summary overflow, but it has eight copies of them. This allows the PowerPC instructions
to use different condition codes without conflict, essentially giving PowerPC eight extra 4-
bit registers. Any of these eight condition codes can be the target of a compare instruction,
and any can be the source of a conditional branch. The integer instructions have an option
bit that behaves as if the integer op is followed by a compare to zero that sets the first con-
dition register. PowerPC also lets the second register be optionally set by floating-point
instructions. PowerPC provides logical operations among these eight 4-bit condition code
registers , allowing more complex conditions to be tested by a single branch. PowerPC
adds 64-bit right shift, load, store, divide, and compare and has a separate mode deter-
mining whether instructions are interpreted as 32 or 64 bit operations In the Endian row,
Big/Little means there is a bit in the program status register that allows the processor to act
either as Big Endian or Little Endian This can be accomplished by simply complementing

some of the least-significant bits of the address in data transfer instructions [1].

e Rather than dedicate one of the 32 general-purpose registers to save the return ad-
dress on procedure call, PowerPC puts the address into a special register called the
link register. Since many procedures will return without calling another procedure,
link doesnt always have to be saved away. Making the return address a special regis-
ter makes the return jump faster since the hardware need not go through the register
read pipeline stage for return jumps.

e PowerPC has a count register to be used in for loops where the program iterates
for a fixed number of times. By using a special register the branch hardware can
determine quickly whether a branch based on the count register is likely to branch,
since the value of the register is known early in the execution cycle. Tests of the
value of the count register in a branch instruction will automatically decrement the
count register.

e Given that the count register and link register are already located with the hardware
that controls branches, and that one of the problems in branch prediction is getting

10



the target address early in the pipeline PowerPC architects decided to make a sec-
ond use of these registers. Either register can hold a target address of a conditional
branch. Thus PowerPC supplements its basic conditional branch with two instruc-
tions that get the target address from these registers (BCLR, BCCTR).

Load multiple and store multiple save or restore up to 32 registers in a single instruc-
tion.

Rotate with mask instructions support bit field extraction and insertion. One ver-
sion rotates the data and then performs logical AND with a mask of ones, thereby
extracting a field. The other version rotates the data but only places the bits into
the destination register where there is a corresponding 1 bit in the mask, thereby
inserting a field.

Algebraic right shift sets the carry bit (CA) if the operand is negative and any 1 bits
are shifted out. Thus a signed divide by any constant power of 2 that rounds toward
0 can be accomplished with a SRAWI followed by ADDZE, which adds CA to the
register.

SUBFIC computes (immediate RA), which can be used to develop a ones or twos
complement.

Logical shifted immediate instructions shift the 16-bit immediate to the left 16 bits
before performing AND, OR, or XOR.

2.3 Basic Processor Architecture

The part of the computer that performs bulk of the data processing operations is called the

CPU (central processing unit). The CPU is formed of three basic components like regis-

ter set which is used to store the data which is used during the execution of instructions.

The alu unit required to perform the required micro operations for executing the instruc-

tions.The control unit will supervise the transfer of information among the registers and

instructs the alu as to which operation to perform. Pipelining is a technique of decom-

posing a sequential process into the sub operations and each of these sub operations are

executed in dedicated segment which operates concurrently with all other segments. A

collection of processing segments through which the information flow is called pipelining.

11



|

RS ALU

ALU 1

Instruction
> Cache
le— |

Instruction Fetch Cache
Unit Controller
l > Data
Cache
le—o
Decoder Queue
v
Decoder
Issue Queue
Issue g
Stage File
RS ALU RS Branch RS Vector RS Memory
Vector Memory

ALU 2

i

g

Branch Unit

)

Unit

Unit

g

g

Common Data Bus

U

Commit Stage

| nos |

The result obtained from each segment will be passed onto other segment. simplest way
to view a pipeline structure is to imagine each segment consisting of the input register fol-

lowed by a combinational logic circuit. The register holds the data and the combinational

Figure 2.2: Basic Processor Architecture

circuit performs the required suboperations in the segment.

The basic pipelined RISC Processor will have the following stages in it.

Instruction Fetch

e This stage supplies the instructions to the rest of the pipeline.

e There can be use of instruction cache containing the recently used instructions which

will reduce latency due to memory access.

e Program counter will provide Icache with the instruction address.

12




e The default instruction fetching method is to increment the program counter by 4
and use the incremented program counter to fetch the next instruction.

e In case of branch instruction which redirect the flow of control, however, the fetch
mechanism must be redirected to fetch instructions from the branch target.

Instruction Decode
e During this stage the instruction from the fetch unit which is present in the fetch
buffer is decoded based on the instruction set architecture chosen.
e This stage will also classify the instruction into different types.

e Then it forms the bundle of data involving the addresses of operands and the desti-
nation address.

e The decode bundle is then forwarded to the issue stage.

Instruction Issue
e The instruction from the decode stage enter issue stage along with additional infor-
mation from the decode stage.

e This stage will allot the reservation station to each instruction based on its type and
the reservation station will execute the instruction.

e The dispatch of the instruction will occur only if both the slot in reservation station
and the reorder buffer (ROB) are empty.

e The operands are also fetched in this stage based on the addresses obtained from the
previous stage.

e First register file will be checked to obtain the data , but if its not present then it will
have the ROB entry which will provide the valid value.

e If neither ROB nor the register file has the valid value then ROB number is passed to
the reservation station as operand sources and this method is called register renam-
ing.

e This ROB number, which is passed to the reservation station along with other data, is
used to put the result from the reservation station (result coming from the execution
unit) into the specific ROB entry.

Instruction Execution and write

13



e Now the instruction is in the reservation station and if any operand is missing then it
continuously monitor the particular ROB number.

e As soon as the required ROB entry receives the valid result then the value is for-
warded to the reservation station to update the operands of instruction being exe-
cuted.

e This step checks for RAW hazards. Only when both or all operands are available the
reservation station will send them to the functional units for execution purpose.

e The execution unit performs the required operation based on the instruction.

e The execution unit will compute the arithmetic and logical results for the alu in-
structions. It will compute the effective address in case of load/store instruction
along with the value to be stored. Then it computes the new program counter value
in case of control flow instructions.

e The results from the functional units will then be sent to the ROB to the entry speci-
fied by the ROB number of the destination address which was assigned during issue
phase. This process of writing the result into the ROB is known as write phase.

Instruction Commit

e The final stage of the instruction is the commit stage.

e The main purpose of this stage is to maintain the sequential flow of execution even
though the actual execution of instructions may occur non sequentially which is
nothing but out of order execution.

e Once the execution of instruction is done the results from various functional units
are gathered and is sorted as per the program issue order.

e Then the results are written into the register file in same order.
e Reorder buffer is a circular queue data structure.

e The actions of the commit stage will now depend on the type of instruction stored
in the ROB. In case of normal arithmetic instructions only the register file will be
updated.

e In case of control flow instructions it may be required to flush the pipe and start fetch
from a new program counter. Committing a store operation requires accessing the
external memory/device and updating it with the respective data.

e Another feature important to the Commit stage is the operand forwarding mecha-
nism. Each time an instruction is committed, the data that is to be written into the
register file is sent to all reservation station along with the ROB number of the ROB
entry which is committed.

14



2.4 Bluespec System Verilog

BSV (Bluespec SystemVerilog) is a language used in the design of electronic systems
(ASICs, FPGAs and systems)[2]. BSV is used across the spectrum of applications like
processors, memory subsystems, interconnects, DMAs and data movers, multimedia and
communication I/O devices, multimedia and communication codecs and processors, signal
processing accelerators, high-performance computing accelerators, etc. BSV is also used
across marketsfrom low-power, portable consumer items to enterprise-class server-room
systems.

Some of the major application areas are :

e Executable specifications

Virtual platforms

Architectural modeling

Design and Implementation

Verification Environments

Some of the key features of BSV are listed below :

e Bluespec presents the hardware designer an new way to simplify the complexity
of constructing control logic while retaining full control over the architecture and
performance of the design[3].

e For behavioral description Bluespec System Verilog introduces rules and interface
methods which helps in expressing complex control and concurrency logic.

e Parallelization is achieved implicitly in Bluespec.
e Bluespec provides higher level of abstraction than Verilog, VHDL , System Verilog.
e The design is simulated and debugged using Bluesim simulation tool.

e [t is best suited for hardware designers designing complex control logic and data
path such as processing elements, DMA controller, memory controller etc.
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With Bluespec, the quality of results is comparable to hand-coded RTL.
It has a powerful static checking, parameterization and static elaboration.
Familiar module hierarchy from Verilog.

Atomic Transactions (Rules) instead of verilog always blocks. A rule is an action
guarded by boolean condition.

Atomic Methods instead of Verilog port lists. There are three kinds of methods
namely Value , Action and ActionValue method.

More powerful Types and strong Type-checking.
Function arguments are of correct type

Modules parameters, interface is of correct type

In case of case mismatch, issues an error message

No automatic sign or zero extension also no automatic truncation

Rich parameterized libraries of interconnect IPs.
Fully synthesizable.
Types play a important role in Bluespec System Verilog.

Some of the basic types are Integer,Bool,String,bit and it also allows defining of new
types.

Bluespec also has powerful notation for construction of state machines with auto-
matic generation of necessary state variables and registers.
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CHAPTER 3

Power Instruction Set Architecture

The Power Instruction Set Architecture (ISA) 1.10. The original architecture defined in
the 1990s by Apple, IBM, and Motorolas Semiconductor Products Sector (SPS) (now
Freescale). This mature architecture continues to form the basis for developing PowerPC
processors that use Freescales G2, €300, and €600 processor cores. Power Architecture
processors are fundamentally a classic load/store RISC architecture. In general, such RISC
architectures have fixed-width instruction length, and contain a substantial number of se-
lectable registers to provide inputs and outputs of computations. The instructions that
are defined are generally less complex, with the expectation that those instructions can
be implemented simply, and that the implementation will more easily be able to execute
instructions out of order, resulting in an implementation that is smaller, lower in power
usage, and less complex. The architecture supports demand-paged virtual memory as well
other memory management schemes that depend on precise control of effective-to-physical
address translation and flexible memory protection. The mapping mechanism consists of
software-managed unified (translate both instruction and data references) TLBs that sup-

port variable-sized pages with per-page properties and permissions.

Implementations of EIS may be either 64-bit implementations or 32-bit implementa-
tions [4]. 64-bit implementations provide for 64-bit effective addresses and provide 64-bit
registers, and instructions for manipulating 64-bit addresses and 64-bit integer data. 32-bit

implementations provide for 32-bit effective addresses and provide 32-bit registers, and



instructions for manipulating 32-bit addresses and 32-bit integer data. There are vector

units that support the Altivec instructions.

3.1 Register Model

In order to implement the fixed point scalar instructions the registers that are involved are
as described below.

General Purpose Registers : In order to perform the integer operations there are 32 gen-
eral purpose registers named as GPRO to GPR31. Since there are only 32 GPRs the 5-bit

fields are provided by the instruction format for specifying the the GPRs.

63 0
GPRO

GPR1

GPR 30

GPR 31

Figure 3.1: General Purpose Registers

Integer Exception Register : The bits of this register is set based on the result of the

integer operation. It is a 64 bit register. The important bits that are set are:
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e Bit 31 : Summary Overflow
e Bit 30 : Overflow
e Bit 29 : Carry

The Summary overflow bit is set whenever the overflow bit is set by the instruction
and it remains set till it is cleared by the move to special register instruction.Executing an
mtspr instruction to the XER, supplying the values O for SO and 1 for OV, causes SO to be
set to 0 and OV to be set to 1.

The overflow bit is set whenever a overflow occurs in a arithmetic instruction. The instruc-
tion in order to set the overflow bit must have the OE field to be equal to 1. The OV bit is
not altered by compare or other instructions. It is to 1 if the carry out of bit 63 is not equal
to the carry out of bit 62, and set it to O otherwise.

The Carry bit ( CA) is set during execution of certain instructions like Add Carrying, Sub-
tract From Carrying, Add Extended, and Subtract From Extended types of instructions
and set it to 1 if there is a carry out of bit 63 , and set it to O otherwise. Shift Right Al-
gebraic instructions set it to 1 if any 1-bits have been shifted out of a negative operand,
and set it to 0 otherwise. The CA bit is not altered by Compare instructions, or by other

instructions.Remaining bits are reserved.

Condition Register : This is one of the important register for the branch operation[5]. It
is a 32 bit register and it provides the mechanism for testing and branching. CR bits are

grouped into eight 4-bit fields, CRO to CR7, which are set as follows:

Specified CR fields can be set by a move to the CR from a GPR (mtcrf, mtocrf).

A specified CR field can be set by a move to the CR from another CR field (mcrf).

CRO can be set as the implicit result of an integer instruction if the RC bit in instruc-
tion is set.

e CRI can be set as the implicit result of a floating-point instruction.
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e CR6 can be set as the implicit result of a vector floating-point instruction.
e A specified CR field can be set as the result of either an integer compare instruction.

e Any CR bit can also be set to 1 or 0 based on various condition register logical
operations.

The first three bits of CR Field O (bits 3:1 of the Condition Register) are set by signed
comparison of the result to zero, and the fourth bit of CR Field 0 (bit O of the Condition
Register) is copied from the SO field of the XER. If any portion of the result is undefined,
then the value placed into the first three bits of CR Field 0 is undefined.

e Bit 0: Summary overflow

e Bit 1: Zero

e Bit 2: Positive

e Bit 3: Negative

Here it should be noted that for the bluespec implementation the bit order naming is
done as 31 : 0 from left to right when compared to that of the PowerPC specification which
is 0 : 31 . This way of naming is followed everywhere and this is the thing to be noted
while giving data to the processor from the assembly code. Just reversing of each bit field
is to be done , then the instructions work fine here.

Link Register : The Link Register (LR) is a 64-bit register. It can be used to provide the
branch target address for the Branch Conditional to Link Register instruction, and it holds
the return address after Branch instructions for which LK=1.

Counter Register : The Count Register (CTR) is a 64-bit register. It can be used to hold
a loop count that can be decremented during execution of Branch instructions that contain
an appropriately coded BO field. If the value in the Count Register is 0 before being
decremented, it is -1 afterward. The Count Register can also be used to provide the branch

target address for the Branch Conditional to Count Register instruction.
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3.2 Instruction Format

Instructions are 32 bits in length and contain a primary opcode in the first six bits. Instruc-
tions are described using 32-bit numbering. For most primary opcode values, bits 10-1
contain the secondary opcode. Instructions which encode large immediate values gener-
ally occupy a single primary opcode, and use bits 15-0 to provide a signed or unsigned
immediate field. Most computational instructions are triadic (that is, they contain three
register operands). One of the register operands specifies a destination or target (where
the output of the computation is placed). The other register operands specify inputs to
the computation. All instructions are four bytes long and word-aligned. Thus, whenever
instruction addresses are presented to the processor the low-order two bits are ignored.
Similarly, whenever the processor develops an instruction address the low-order two bits

are zZero.

Bits [31:26] always will specify the opcode in every instruction. There are quite a bit
of instructions with the extended opcode (XO). Remaining bits vary based on the various
instruction formats. Some of the instruction formats and field descriptions are described
here:

OPCD : Primary opcode field.

LI : Immediate field used to specify a 24-bit signed twos complement integer which is
concatenated on the right with 2°b00 and sign-extended to 64 bits.

AA : Absolute Address bit.

LK : LINK bit. If 1 then address of the instruction following the Branch instruction is
placed into the Link Register.

BO : Field used to specify options for the Branch Conditional instructions.
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BI : Field used to specify a bit in the CR to be tested by a Branch Conditional instruction.

31 25 1 0

OPCD LI AA| LK

Figure 3.2: I Instruction Format

31 25 20 15 1 0

OPCD BO Bl BD AA|LK

Figure 3.3: B Instruction Format

BD : Immediate field used to specify a 14-bit signed twos complement branch displace-
ment which is concatenated on the right with 2°b00 and sign-extended to 64 bits.

BT : Field used to specify a bit in the CR.

BA : Field used to specify a bit in the CR to be used as a source.

BB : Field used to specify a bit in the CR to be used as a source.

XO : Extended opcode field.

31 25 20 15 10 0

OPCD BT BA BB XO /

Figure 3.4: XL Instruction Format

RA : Field used to specify a GPR to be used as a source or as a target.
RB : Field used to specify a GPR to be used as a source.
RS : Field used to specify a GPR to be used as a source.

RT : Field used to specify a GPR to be used as a target.
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31

25

20

15

10

OPCD RS RA sh X0 sh| RC
Figure 3.5: XS Instruction Format
sh : Field used to specify a shift amount.
RC : RECORD bit. If 1 then alter the condition register field.
OPCD RS RA RB MB ME RC
OPCD RS RA sh MB ME RC
Figure 3.6: M Instruction Format
OPCD RT RA RB OE XO RC
OPCD RT RA RB / X0 RC
OPCD RT RA RB / XOo /
OPCD RT RA Y774 OE XO RC

3.3 Addressing Modes

Figure 3.7: XO Instruction Format

The Power Instruction Set Architecture supports various addressing modes. The address-

ing modes supported for the calculation of effective address are Register Indirect with
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31 25 20 15

OPCD RT RA D

Figure 3.8: D Instruction Format

31 25 20 is5 10 o

OPCD RT RA RB xXO RC
oPCD RS RA RB xXO RC
OoPCD RT RA RB xXO /
OoPCD RS RA RB xXO /
OoOPCD RT RA / XOo /
OoPCD RS RA / XO /

Figure 3.9: X Instruction Format

Immediate Index Addressing and Register Indirect with Index Addressing. Also there are

various data and instruction addressing modes supported by it.

e Base+displacement addressing modeThe 16-bit D field is sign-extended and added
to the contents of the GPR designated by rA or to zero if rA = 0. Instructions that
use this addressing mode are of the D instruction format.

e Base+index addressing modeThe contents of the GPR designated by rB are added to
the contents of the GPR designated by rA or to zero if rA = 0. Instructions that use
this addressing mode are of the X instruction format.

e For I instruction format the 24-bit LI field is concatenated on the right with 2°b00,
sign-extended, and added either to the address of the branch instruction if AA =0,
orto Oif AA=1.

e For B instruction format the 14-bit BD field is concatenated on the right with 2°b00,
sign-extended, and added either to the address of the branch instruction if AA =0,
orto 0if AA=1.
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CHAPTER 4

Implementation

This chapter describes the implementation of various execution units and decoder. We shall
start with branch execution unit where we present its design consideration, interface and
micro-architectural design decisions. The verification process and synthesis reports are
also provided. Similarly this is done for condition register, arithmetic and logical, memory
execution units and decoder unit. The different Functional Units make up a distributed
Execution Unit, with all of the units sharing a common interface. Each unit contains its
own set of Reservation Stations, subunits for performing its respective operation, and a
result register. Each unit is responsible for having a set of rules that actually execute
instructions. For simple functional units, this is just one rule that finds a ready instruction
in the reservation stations, calculates the result, and stores it in the result register. A ready
instruction is an instruction where all of the operands have values rather than tags that refer
to results of other instructions. Each unit differs in how it implements the execution of an
instruction.The decode rule is responsible for getting an instruction from the Fetch Unit

and deciding which functional unit to issue the instruction to.

4.1 Branch Execution Unit

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word-aligned; processors ignore the two low-order bits of the

generated branch target address.The inputs and outputs are both registered. The model of



program execution in which the processor appears to execute one instruction at a time,
completing each instruction before beginning to execute the next instruction is called the
sequential execution model. The Condition Register (CR) is a 32-bit register which reflects
the result of certain operations, and provides a mechanism for testing (and branching). All
the operations take 1 clock cycle.The input PC to this module is obtained from the branch
prediction unit which will tag the PC to be either Predicted taken or Predicted not taken,
this also takes in the load register and counter register values and outputs them.The bits
in the Condition Register are grouped into eight 4-bit fields, named CR Field 0 (CRO), ...,
CR Field 7 (CR7). For all fixed-point instructions in which RC=1, and for addic., andi.,
and andis., the first three bits of CR Field O (bits 3:1 of the Condition Register) are set
by signed comparison of the result to zero, and the fourth bit of CR Field O (bit O of the
Condition Register) is copied from the SO field of the XER. If any portion of the result is
undefined, then the value placed into the first three bits of CR Field O is undefined.

e Bit 0: Summary overflow

e Bit 1: Zero

e Bit 2: Positive

e Bit 3: Negative

Here it should be noted that for the bluespec implementation the bit order naming is
done as 31 : O from left to right when compared to that of the powerpc specification which
1s 0 : 31 . This way of naming is followed everywhere and this is the thing to be noted
while giving data to the processor from the assembly code. Just reversing of each bit field

is to be done , then the instructions work fine here.

The sequence of instruction execution can be changed by the Branch instructions. Be-

cause all instructions are on word boundaries, bits 1 and O of the generated branch target
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address are ignored by the processor in performing the branch. Branching can be condi-
tional or unconditional, and the return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address of the instruction following the
Branch instruction is placed into the Link Register after the branch target address has been
computed; this is done regardless of whether the branch is taken. The instructions that are

implemented are b,ba,bl,bla,bc,bca,bcla,bel,belr,belrl,beetr,bectrl.

4.1.1 Branch Module Interface

instruction 3;
64

t ——/—> new pc
curr.en pc 64 -
ctrin /64 B h ———/—> ctr out
Irin 64 ral_nc i M Sirout
cin___ g Execution Unit %:L—> cr out
robno 4 —3#—» rob no.
flush -/ 3 exception

_—

Figure 4.1: Branch Module Interface

The method _inputs will be invoked by the reservation station to supply the required
inputs to the module. While there are several output methods for supplying the reservation

station with the computed result.

The Branch instructions compute the effective address (EA) of the target in one of the

following ways:

e Adding a displacement to the address of the Branch instruction (Branch or Branch
Conditional with AA=0).

e Specifying an absolute address (Branch or Branch Conditional with AA=1).
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Table 4.1: Description of branch module interface

Method Type Description
_inputs input This method is used to supply the module
with required data.This involves 32 bit instruction,
64 bit program counter, 64 bit counter register value,
64 bit link register value, 32 bit condition register value
and rob number.
_flush input | Signal used to flush the pipeline. This abandons any current
execution and brings all the registers to their default state.
new_pc_ output | This method gives the new pc which is the primary output
of this module , contains the final branch address
ctr_out_ output This method outputs the counter register value
Ir_out_ output This method outputs the link register value
cr-out_ output This method outputs the condition register value
rob_number_ | output This method outputs the rob number assigned
to this instruction
exception_ | output This provides all the exception that were
generated during computation

e Using the address contained in the Link Register (Branch Conditional to Link Reg-

ister).

e Using the address contained in the Count Register (Branch Conditional to Count
Register).

4.1.2 Branch to absolute addressing and relative addressing

Instructions that use branch to absolute addressing mode and relative addressing mode to
generate the next instruction address by sign extending and appending 2°b00 to the im-
mediate displacement operand LI, and adding the resultant value to the current instruction
address. Branches using this relative addressing mode have the absolute addressing option
disabled (AA field, bit 1, in the instruction encoding = 0) while branches using absolute
addressing mode have the absolute addressing option enabled (AA field, bit 1, in the in-

struction encoding = 1). The LR update option can be enabled (LK field, bit 31, in the
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instruction encoding = 1). This option causes the EA of the instruction following the

branch instruction to be placed in the LR.

4.1.3 Branch conditional to relative and absolute addressing

If branch conditions are met, instructions that use the branch conditional to relative ad-
dressing mode generate the next instruction address by sign extending and appending re-
sults to the immediate displacement operand (BD) and adding the resultant value to the

current instruction address.

Different type of branching is accomplished by checking the value of BO field.

Table 4.2: Description of BO field

BO Description
x0000 | Decrement the CTR, then branch if
decremented CTR !=0 and CR[BI] =0
x1000 | Decrement the CTR, then branch if
decremented CTR =0 and CR[BI] =0
xx100 Branch if CR[BI] =1
x0010 | Decrement the CTR, then branch if
decremented CTR !=0 and CR[BI] =1
x1010 | Decrement the CTR, then branch if
decremented CTR =0 and CR[BI] =1
xx110 Branch if CR[BI] =1
x00x1 Decrement the CTR, then branch if
decremented CTR !=0
x10x1 Decrement the CTR, then branch if
decremented CTR =0
xx1x1 Branch Always

Branches using this relative addressing mode have the absolute addressing option dis-
abled (AA field, bit 1, in the instruction encoding = 0) while branches using absolute

addressing mode have the absolute addressing option enabled (AA field, bit 1, in the in-

29



struction encoding = 1). The LR update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the EA of the instruction following the

branch instruction to be placed in the LR.

YES
Is BO[2]==0

|

NO CTR <- CTR-1

ctr_ok <- BO[2] | ((CTR != 0) ~ BO[1])
cond_ok <- BO[4] | (CRIBI+32]==BO[3])

Is
cond_ok & ctr_ok==

YES

NO

NIA <- CIA + EXTS(BD || 0b00)| [NIA <- EXTS(BD || 0b00)

LR <- CIA +4

Figure 4.2: Branch Conditional

In order to compute the overall condition the cond_ok and ctr_ok are computed. The

NIA is the next instruction address and CIA is the current instruction address. The LR is
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the link register which is updated based on LK bit.

4.1.4 Branch Conditional to Link Register

If the branch conditions are met, the branch conditional to LR instruction generates the next
instruction address by fetching the contents of the LR and clearing the two low-order bits
to zero. The LR update option can be enabled (LK field, bit 0, in the instruction encoding
= 1). This option causes the EA of the instruction following the branch instruction to be

placed in the LR.

YES
Is BO[2]==0

NO | CTR <- CTR-1

ctr_ok <- BO[2] | ((CTR != 0) ~ BO[1])
cond_ok <- BO[4] | (CRIBI+32]1==BOI[31

Is
cond_ok & ctr_ok==1

NIA <- {LRI[63:21, 2'b00}

NO
LR <-CIA +4

Figure 4.3: Branch Conditional to Link Register

In order to compute the overall condition the cond_ok and ctr_ok are computed. The
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NIA is the next instruction address and CIA is the current instruction address. The LR is

the link register which is updated based on LK bit.

4.1.5 Branch Conditional to Count Register

If the branch conditions are met, the branch conditional to count register instruction gen-
erates the next instruction address by fetching the contents of the count register (CTR) and
clearing the two low-order bits to zero. The LR update option can be enabled (LK field, bit
0, in the instruction encoding = 1). This option causes the EA of the instruction following

the branch instruction to be placed in the LR.

cond_ok <- BO[4] | (CR[BI+32]==BO[3])

Is
cond_ok ==1

NIA <- {CTRI[63:2], 2'b00}

YES

| LR <- CIA +i|

Figure 4.4: Branch Conditional to Link Register

In order to compute the overall condition the cond_ok is computed. The NIA is the next

instruction address and CIA is the current instruction address. The LR is the link register
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which is updated based on LK bit.

This bluespec module interaction can be described by the figure below.

STATE

[ |

1 Rule Writes State
RS

BUFFER RESULT -_

Rule Reads State

Figure 4.5: Bluespec module interaction

4.1.6 Verification

The verification setup involves development of testbench which will act as the Reservation
Station for the execution units by providing the required inputs to the execution unit. The
result obtained that is the next instruction address present in the program counter is checked
to verify the functioning of the branch execution unit. It is needed to check if all kinds
of branch is supported so the plan is to provide the required instruction ( opcode) and
also the different register values. Then the obtained results after execution is checked for

correctness.

e Verified if the correct instruction is been selected for the given opcode. This verifies
the correctness of the case structure designed. Then proceed to individual instruc-
tions.

e For Branch conditional type instruction seen if desired mode of condition is selected
based on the BO field.

e Checked if sign-extend function is working as intended.
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e Checked if proper addressing modes selected based on AA bit.

e Checked if Link register gets updated only if LK bit is one.

4.1.7 Synthesis Report

To Synthesis the Bluespec System Verilog code it is compiled using ”compiled to verilog”
option upon which the corresponding verilog code is generated. This code along with
library verilog codes which includes the following files, found in ”"BlueSpecHome/lib/ver-
ilog”, was given as input to ’Xilinx ISE” on Virtex 6 evaluation board (6vIx240tff1156-1):

Table 4.3: Device utilization summary

Attribute Statistics
No. of Slice Registers 487
No. of Slice LUT’s 870
No. of 64 bit adders 4
No. of multiplexers 203

Table 4.4: Timing summary

Attribute Statistics
Minimum period 4.762ns (Maximum Frequency: 209.974MHz)
Minimum input arrival time before clock 3.236ns
Maximum output required time after clock 1.342ns
Maximum combinational path delay No path found

4.2 Arithmetic and Logical Execution Unit

The arithmetic unit is responsible for the execution of arithmetic instructions like add, sub-

tract,rotate, shift etc. This execution unit is pipelined. The ALU unit is one of the most
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important execution unit as most of the programs require the arithmetic and logical op-
erations to be performed. The PowerPc architecture supports various kinds of arithmetic,
logical , shift and rotate operations. The input to this module is obtained from the reserva-
tion station and the result produced is given back to the reservation station along with the
destination address. As this is load/store model the arithmetic operations are performed on
the GPR in case of integer arithmetic instructions. The registers that are altered by these
instructions are the GPR’s, exception register which has the summary overflow, overflow
and the carry bits. There are move from and to special register instructions which is used to
alter the special registers like XER,LR,CTR and CR. The method _inputs will be invoked
by the reservation station to supply the required inputs to the module. While there are

several output methods for supplying the reservation station with the computed results.

4.2.1 Arithmetic and Logical Module Interface

instruction_#) 5 ,destination address
current pc /64 | th out It
operand 1 /64 | —F——M‘ arith ogt(result)

64
operand 2 6a . . ) =/ > ctr out
o e ] acution unit [ o
; cr ou

Tr -|n R L8 > new pc

:: " R | 64/ _  xerout
ctr in 64
rob no 7 > —,L——>4 rob no

— % 3/ > exception

flush N

Figure 4.6: Arithmetic and Logical Module Interface

The description of the methods in the interface are as given in the table 4.5.
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Table 4.5: Description of Arithmetic and Logical Module Interface

Method Type Description
_inputs input This method is used to supply the module
with required data.This involves 32 bit instruction,
64 bit program counter, 64 bit counter register value,
64 bit operand1,64 bit operand2, 64 bit counter register value,
64 bit link register value, 32 bit condition register value
64 bit exception register and rob number.
_flush input | Signal used to flush the pipeline. This abandons any current
execution and brings all the registers to their default state.
arith_out_ output This is the primary output method which provides the
computed result. This method is invoked by the
reservation station to obtain the result
destination_address_ | output This method gives the address of the GPR to
which the result is to be put into.

new_pc_ output This method gives the new pc which is the primary output

of this module , contains the final branch address
ctr_out_ output This method outputs the counter register value
Ir_out_ output This method outputs the link register value
croout_ output This method outputs the condition register value
xer_out_ output This method outputs the exception register value

rob_number_ output This method outputs the rob number assigned
to this instruction
exception_ output This provides all the exception that were

generated during computation

4.2.2 Micro-Architecture

The inputs are obtained using the inputs method then the opcode and extended opcode is

checked in systematic manner to decide the instruction. This checking happens systemat-

ically as the width of the muxes implemented is determined by this. Then the instruction

can be one of the following :

e [ogical
e Arithmetic

e Rotate / Shift
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e others

LOGICAL

Arithmetic

Start

Check Opcode and
ed opcode
methodically

extend

Rotate / Shift

Others

Perform required arithmetic
operation with destination
address being in location [25:21]

Perform required logical
operation with destination
address being in location [20:16]

update the overflow
and carry flag locally

Perform arithmetic operation to
get details of mask and rotation|

l

Produce the required mask

Rotl64(x,y)

Rotl32(x,y)

Perform the required operation

Rotate 64 bit x left

Rotate 64 bit {x,x} left

by y positions where x

b iti
Yy posTons is 32 it long
Check RC bit Check OE bit
'b0 'b1 'b0 b1
Update the overflow and

Check if result is negative zero
or positive and update CR register|

SO bits of XER register

END

Figure 4.7: Arithmetic and Logical Module Architecture flow

Logical instructions : There are two major forms in which these instructions occur namely

X-form with RC bit and with D form.

e The destination address of the result of these instructions are specified by the bits
[20:16] of the 32 bit instruction.
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e The immediate instructions are all unsigned and hence zero extended. The executed
form of the no-op instruction is actually the xor immediate instruction.

e There are logical instructions which perform logical operation on contents from two
GPR’s.

e There are sign-extension instructions which are used to provide sign-extend byte,
halfword or a word to form a 64 bit value.

e There are also parity word and double word instructions which check for odd parity.

Arithmetic instructions :There are two major forms in which these instructions occur
namely XO-form with RC bit and with D form.
e The destination address of the result of these instructions are specified by the bits
[25:21] of the 32 bit instruction.

e There are instruction which always set the carry flag to reflect the carry out of bit 63.

e These instructions set the SO and the OV bits when the OE bit in the instruction is
set to 1. In case of the immediate operations the immediate data is considered as
signed value and it is sign-extended to form the 64 bit value.

e The subtraction is done by the 2’s complement method.

e There are add and subtract extended instructions which take into consideration the
carry bit while performing addition or subtraction.

e There is also a negate instruction.

Rotate / Shift instructions :
e The destination address of the result of these instructions are specified by the bits
[20:16] of the 32 bit instruction.

e These instructions performs rotation operations on data from a GPR and returns the
result, or a portion of the result, to a GPR.

e The rotation operations rotate a 64-bit quantity left by a specified number of bit
positions. Bits that exit from position 63 enter at position 0.

e There are two types of rotate instructions available i.e., rotate 64 bits or rotate the 32
bits.
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The Rotate and Shift instructions employ a mask generator. The mask is 64 bits
long, and consists of 1-bits from a start bit through and including a stop bit, and
0-bits elsewhere.

The values of start bit and stop bit range from 0 to 63. If start bit  stop bit, the 1-bits
wrap around from position 0 to position 63.

There is no way to specify an all-zero mask.
Rotate and Shift instructions do not change the OV and SO bits.
Rotate and Shift instructions, except algebraic right shifts, do not change the CA bit.

The Rotate Left instructions allow right-rotation of the contents of a register to be
performed (in concept) by a left-rotation of 64-n, where n is the number of bits by
which to rotate right.

Immediate-form logical shift operations are obtained by specifying appropriate masks
and shift values for certain Rotate instructions.

Rotate / Shift

l

Perform arithmetic operation to
get details of mask and rotation

Rotl64(x,y) Rotl32(x,y)

Produce the required mask -
Rotate 64 bit x left Rotate 64 bit {x,x} left

by y positions where x
is 32 bit long

by y positions

Perform anding of mask and rotated
data with other minor operations

Required result

Figure 4.8: Pipelined rotate ans shift
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Since a huge logic is required in executing these instructions it can be pipelined as

below:

e The calculation of start and stop bits for mask and rotate operation.
e The mask generation along with rotate operation performed.

e Next anding of the mask and the rotated data is performed along with other minor
operations based on instructions.

Is NO

Target reg. < 0

Is
Target reg. > 0

c <- 'bl100

c <-'b001 c <-'b010

CRO <- {c,SO}

Figure 4.9: Value for CRO field

Other instructions : These involve the move from and to special registers. The register to

be altered is specified by the SPR field as indicated in table 4.6.

For all the above instructions when RC bit of the instruction is 1 then the result is used

to modify the CRO field of the condition register.
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Table 4.6: SPR field and register

SPR Register
0000000001 XER
0000001000 LR
0000001001 CTR

Bit 0: Summary overflow

Bit 1: Zero

Bit 2: Positive

Bit 3: Negative

And when the OE bit is 1 then the overflow and the summary overflow bits are set
based on the result obtained. The overflow is computed by xoring the carry out of 63 and

62 bits.

This bluespec module interaction can be described by the figure below.

RULE

STATE

L |

4 Rule Writes State
RS

BUFFER RESULT -__

Rule Reads State

Figure 4.10: Bluespec module interaction
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4.2.3 Verification

The verification setup involves development of testbench which will act as the Reservation
Station for the execution units by providing the required inputs to the execution unit. Then
the obtained results after execution is checked for correctness. Also one more method
is followed where the functioning is described in high level language and the results are

matched for correctness.

Bluespec Test Bench

File containing
Design under necessary inputs
Verification (Stimulus)

A4

Observe the result

Figure 4.11: Verification setup

e Verified if the correct instruction is been selected for the given opcode. This verifies
the correctness of the case structure designed. Then proceed to individual instruc-
tions.

e For all ALU instruction the result is passed through the compare with zero stage
to update the CRO field of Condition Register. Hence checking if this comparison
produces accurate results.

e Checked if Overflow bit and CRO field gets updated only if OE bit is 1 and RC bit is
1 respectively.

e For logical instruction checked their logical functioning.

e For arithmetic instructions checked if overflow and summary overflow is detected.
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e For rotate and shift instructions checked if proper mask is produced, required shift
occurs, by displaying results in intermediate stages. Also checked for extreme ends
of shift in this case.

e For move to and from special register type of instructions checked if proper register
is selected.

4.2.4 Synthesis Report

To Synthesis the Bluespec System Verilog code it is compiled using ”compiled to verilog”
option upon which the corresponding verilog code is generated. This code along with
library verilog codes which includes the following files, found in ”BlueSpecHome/lib/ver-
ilog”, was given as input to "Xilinx ISE” on Virtex 6 evaluation board (6vIx240tff1156-1):

Table 4.7: Device utilization summary

Attribute Statistics
No. of Slice Registers 161
No. of Slice LUT’s 3723
No. of 64 bit , 8 bit ,6 bit adders 11,3,2
No. of 1 bit ,6 bit comparators 11,2

Table 4.8: Timing summary

Attribute Statistics
Minimum period 1.707ns (Maximum Frequency: 585.981MHz)
Minimum input arrival time before clock 7.661ns
Maximum output required time after clock 1.453ns
Maximum combinational path delay 1.023ns
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4.3 Condition Register Execution Unit

This execution unit executes the condition register logical instructions along with the com-
pare instructions associated with the condition register. The significant point about this unit
is that it will alter only the condition register value. PowerPC uses four condition codes:
less than, greater than, equal, and summary overflow, but it has eight copies of them. Any
of these eight condition codes can be the target of a compare instruction, and any can
be the source of a conditional branch. PowerPC provides logical operations among these
eight 4-bit condition code registers which allows more complex conditions to be tested by
a single branch.

The compare instruction compares the contents of register RA(operandl) with either of the

following:

e Sign extended value of the SI field in D form instructions
e Zero extended value of the Ul field in D form instructions

e Contents of register RB (operand 2) in X form instructions

The comparisons are of two types:

e Signed Comparison

e Unsigned Comparison

The Compare instructions set one bit in the leftmost three bits of the designated CR
field to 1, and the other two bits to 0. The summary overflow bit from the exception

register is placed in the LSB location of the CR field.

e Bit 0: Summary overflow from XER.

e Bit 1: This bit is set to 1 if the contents of RA is equal to Sign extended SI, Zero
extended UI or contents of RB.
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e Bit 2: This bit is set to 1 if contents of RA is greater than Sign extended SI or
contents of RB in case of signed comparison and contents of RA is greater than Zero
extended Ul or contents of RB in case of unsigned comparison.

e Bit 3: This bit is set to 1 if contents of RA is less than Sign extended SI or contents
of RB in case of signed comparison and contents of RA is less than Zero extended
UI or contents of RB in case of unsigned comparison.

The instructions implemented in this module are cmpi, cmp, cmpli, cmpl, crand, cr-

nand, cror, crnor, crxor, creqv, crandc, crorc.

4.3.1 CR Module Interface

The method _inputs will be invoked by the reservation station to supply the required inputs
to the module. While there are several output methods for supplying the reservation station

with the computed result. The description of the methods are as given in the table.

instruction 32

=

crin 32
7 | 32/ ycrout

xer in YR CR -
operand1 64, - xer out

operand 2 64 / Execution Unit —4,L—> rob no

rob no 4
_ﬁL)

flush

Figure 4.12: CR Module Interface

4.3.2 Micro-Architecture

In order to implement this module the micro-architecture followed is described here. First

once the inputs are obtained from the reservation station the opcode and extended opcode
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Table 4.9: Description of CR module interface

Method Type Description
_inputs input This method is used to supply the module
with required data.This involves 32 bit instruction,
64 bit operand 1 (RA), 64 bit operand 2 (RB),
64 bit exception register value, 32 bit condition register value
and rob number.

_flush input | Signal used to flush the pipeline. This abandons any current
execution and brings all the registers to their default state.
xer_out_ output This method outputs the exception register value
croout_ output This method outputs the condition register value
rob_number_ | output This method outputs the rob number assigned

to this instruction

is checked to decide the kind of instruction i.e., either compare or the condition logical
type.

In case of the condition logical type based on the extended opcode the different kinds of
logical operation is performed with the bits from the specific fields ( BA and BB fields
of the instruction) of the condition register and the computed result is then placed in the
destination bit of the condition register ( BT field of the instruction).

In case of the compare instruction one of the value for comparison is either the 64 bit
contents of RA register or the sign-extended lower word of the RA register. This choice
is done based on the L bit(Bit 21) of the instruction, L=0 means choose the sign-extended
value else the actual 64 bit value of the RA register. This obtained value is compared
with either sign extended value of the SI, zero extended value of the Ul or contents of
RB register based on the opcode. Once both the values are obtained the comparison is
performed and the 4 bit result is obtained based on the previously described method. Now
the 4 bit value is put into the specific field of the condition register based on the BF bits of

the instruction. This is accomplished by implementing a 1:8 De-Mux with the BF bits as
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select lines. The remaining bits of the condition register is left unaltered.

Start )

Check Opcode

compare | logical

l

EXTS(RA) RA

'b0 ‘bl
L bit

EXTS(si) or {48'b0,ui}
or EXTS(RB[31:0]) or
{32'b0,RB[31:0]}
based on opcode Check for extended opcode

and perform required operation

Perform compare operation
and provide 3 bits of field

concatinate SO

—’muulx

END

Figure 4.13: CR Module micro-architecture

4.3.3 Verification

The verification setup involves development of testbench which will act as the Reservation
Station for the execution units by providing the required inputs to the execution unit. The
result obtained that is the updated value of the condition register. Then the obtained results

after execution is checked for correctness.

47



Verity if the correct instruction is been selected for the given opcode. This verifies
the correctness of the case structure designed. Then proceed to individual instruc-
tions.

Check the working of signed and unsigned comparator designed.

Check if sign-extend function is working as intended.

Verify working of de-mux stage by giving various BF bit values.

This bluespec module interaction can be described by the figure below.

STATE

4 Rule Writes State
RS

BUFFER RESULT -_

Rule Reads State

Figure 4.14: Bluespec module interaction

4.3.4 Synthesis Report

To Synthesis the Bluespec System Verilog code it is compiled using ”compiled to verilog”
option upon which the corresponding verilog code is generated. This code along with
library verilog codes which includes the following files, found in ”BlueSpecHome/lib/ver-

ilog”, was given as input to "Xilinx ISE” on Virtex 6 evaluation board (6vIx240tff1156-1):
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Table 4.10: Device utilization summary

Attribute Statistics
No. of Slice Registers 32
No. of Slice LUT’s 662
No. of 64 bit comparators 4
No. of multiplexers 20

Table 4.11: Timing summary

Attribute Statistics
Minimum period 0.877ns (Maximum Frequency: 1140.251MHz)
Minimum input arrival time before clock 5.756ns
Maximum output required time after clock 0.783ns
Maximum combinational path delay 0.984ns

4.4 Memory Execution Unit

Memory instructions are responsible for moving the data between the main memory and
the register file, and hence are essential for execution of ALU instructions. Register
operands needed for ALU instructions must be first loaded from the memory. Not all
the operands can be kept in the register file due to limited number of registers. Hence
there is the need of the load/store instructions. For the working of this there is a need to
calculate the memory address and also need to access the location. The integer load and

store instructions can be classified into following types:

e Integer Load instructions.
e Integer Store instructions.
e Integer load and store with byte-reverse instructions.

e Integer load and store multiple instructions.
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4.4.1 Memory Module Interface

The method _inputs will be invoked by the reservation station to supply the required inputs
to the module. While there are several output methods for supplying the reservation station

and memory management unit with the computed result.

instruction 3

current pc 64, memory_out(result)
i 6432 5 update address
crin
7 g Memory 64, update value

operand1 64 E ti U it o, storevalue
operand2__ o7, xecution Uni Eaagi
operand 3 64, 2 sy crou

’ #——> rob no
rob 2 - —37l—> exception
flush ——)

Figure 4.15: Memory Module Interface

The description of the methods are as given in the table 4.12.

4.4.2 Micro-Architecture

The memory unit is responsible for the execution of the memory related operations like
Load and Store. This is the only unit which accesses the data cache. Finished store buffer
is used in implementing this module. The purpose of the using finished store buffer (FSB)
is to store the address and data of the recent store operations [6]. The size of the FSB
chosen is 8 and hence it can store data of up to 8 past store operations. When the 9th
store operation enters it is overwritten on the first store operation data. Thus each a time
a Store operation occurs, it updates the FSB with the address and the data to be stored in
the cache. The data cache is only written when the store operation reaches the head of

the Re-order buffer and is ready to commit. At this time, the Re-order buffer will send
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Table 4.12: Description of Memory module interface

Method Type Description
_inputs input This method is used to supply the module
with required data.This involves 32 bit instruction,
64 bit operand 1 (RA), 64 bit operand 2 (RB),64 bit operand 3 (RT),
64 bit current program counter , 32 bit condition register value
and rob number.
_flush input Signal used to flush the pipeline. This abandons any current
execution and brings all the registers to their default state.
memory_out_ | output This method outputs the type of instruction either
load byte, store byte, load halfword etc..
with the effective address.
update_address_ | output | This method gives the register address for update forms of instructions.
update_value_ | output | This method gives the update value for update forms of instructions.
store_value_ | output This method provides with the value to be stored in the
memory location in case of the store instructions.

croout_ output This method outputs the condition register value

rob_number_ | output This method outputs the rob number assigned
to this instruction
exception_ output This provides all the exception that were
generated during computation

the store operation address and data to the memory unit. The memory unit will only now

initiate the write operation in the data cache.

When a load instruction enter the memory unit, the FSB is first checked to check is it

contains the address from which data is to be loaded. If the FSB, has an entry correspond-

ing to the address then the data is read from the FSB and the data cache is bypassed by

tagging the address as the arithmetic operation. If the FSB has no information regarding

the load address then the data cache read cycle is initiated. The memory unit sends the

address to the cache controller on the data cache port. The memory unit will now wait

until the data cache has returned with value. During this time the memory unit is busy and

cannot accept any other input or carry out any other operation. Once the data is received
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the value is then sent to the Re-order buffer to commit.

Reservation Station

Store Load
. Adddress
Unit Unit
Tag match
Data
data addr

If no match: update
destination register

Finished
Store Buffer|

Data Cache

Match/ no match

Figure 4.16: Working with use of FSB

The effective address generation is done in two ways namely,

e Register Indirect with Immediate Index Addressing.

e Register Indirect with Index Addressing.

Register Indirect with Immediate Index Addressing : In this mode the 16-bit immediate
index is sign extended and this is added to the ra operand which is the contents of the
general purpose register (GPR) specified in the instruction. When the specified GPR is RO

then O is added to the sign extended value.
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31 25 20 15 0

Instruction Encoding| Opcode rD/rs rA d
63 15 0

Sign Extension d

YES n
@
NO
63 0 63 0
GPR(rA) I Effective Address

Figure 4.17: Register Indirect with Immediate Index Addressing

Register Indirect with Index Addressing : In this mode the rb operand is added to the
ra operand which is the contents of the general purpose register (GPR) specified in the

instruction. When the specified GPR is RO its value is chosen as 0.

31 25 20 15 10 0
Instruction Encoding| Opcode rD/rS rA rB
63 0
GPR(rB)
YES n
@
NO
63 0 63 0
GPR(rA) Effective Address

Figure 4.18: Register Indirect with Index Addressing

When the inputs are given to this module first the opcode and extended opcode is
checked to determine the instruction. This is achieved with the help of case statements.
Next the computation of the effective address is done. The effective address is obtained
either by Register Indirect with Index Addressing or by Register Indirect with Immediate
Index Addressing . Now for the load operation first the address is checked in the FSB to
obtain a match, if matched then it is tagged arithmetic and the GPR will be loaded with the

required value. In case of no match then the data is obtained by accessing the data cache.
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For the store instruction the store is performed and in case of multiple store then the FSB

is cleared.
( Start )
A4
Check Opcode and
extended opcode
methodically
Compution EA based
on instruction
|EA= (RA) + EXTS(D)| | EA= (RA) + (RB)
Load Store
h 4
Perform load operation and Perform store operation and
if required one is in FSB forward tag result store,check FSB for updating
that by tagging Arithmetic else tag else modify existing location and also flush
Load and check in cache FSB if its store for more than doubleword
END

Figure 4.19: Working of memory execution module

Integer Load Instructions : The instructions coming under this category are Load
Byte , Load Halfword, Load Word, Load Double word , where the zero extended load
is performed in Register Indirect with Immediate Index Addressing mode and the result-
ing value is stored in specified GPR. Load Halfword Algebraic and Load Word Algebraic ,

where sign extended load is performed Register Indirect with Immediate Index Addressing
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mode and the resulting value is stored in specified GPR. Load Byte Indexed , Load Half-
word Indexed, Load Halfword Algebraic Indexed, L.oad Word Indexed ,L.oad Word Al-
gebraic Indexed ,Load Doubleword Indexed are the instructions where load is performed
in Register Indirect with Index Addressing mode. Load Byte with update , Load Byte
Indexed with update, Load Halfword with update, Load Halfword Algebraic with update,
Load Halfword Indexed with update, Load Halfword Indexed Algebraic with update, Load
Word with update, Load Word Algebraic with update, Load Word Indexed Algebraic with
update, Load Doubleword with update, Load Doubleword Algebraic with update, Load
Doubleword Indexed with update, Load Doubleword Indexed Algebraic with update are
the instructions where one of the specified GPR is updated with the computed effective

address.

Integer Store Instructions : The instructions coming under this category are Store
Byte , Store Halfword, Store Word, Store Double word , where the zero extended store
is performed in Register Indirect with Immediate Index Addressing mode.Store Byte In-
dexed , Store Halfword Indexed, Store Word Indexed, Store Doubleword Indexed are the
instructions where store is performed in Register Indirect with Index Addressing mode.
Store Byte with update , Store Byte Indexed with update, Store Halfword with update,
Store Halfword Indexed with update, Store Word with update, Store Doubleword with up-
date, Store Doubleword Indexed with update are the instructions where one of the specified

GPR is updated with the computed effective address.

Integer load and store with byte-reverse instructions : The instructions coming un-
der this category are Load Halfword Byte-Reverse Indexed, Store Halfword Byte-Reverse
Indexed, Load Word Byte-Reverse Indexed, Store Word Byte-Reverse Indexed, L.oad Dou-

bleword Byte-Reverse Indexed, Store Doubleword Byte-Reverse Indexed. These instruc-
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tions have the effect of loading and storing data in the opposite byte ordering from that

which would be used by other Load and Store instructions.

Integer load and store multiple instructions : The instructions coming under this
category are Load Multiple Word and Store Multiple Word. The combination of the effec-
tive address and RT (RS) is such that the low-order byte of GPRs is loaded from or stored

into the last byte of an aligned quadword in storage.

This bluespec module interaction can be described by the figure below.

Cache

Controller

STATE

-

y Rule Writes State

RS
BUFFER RESULT .——

Rule Reads State

Figure 4.20: Bluespec module interaction

4.4.3 Verification

The verification setup involves development of testbench which will act as the Reservation
Station for the execution units by providing the required inputs to the execution unit. Also
a set up where the data is provided by the test bench given the address. Then the obtained

results after execution is checked for correctness.

e Verified if the correct instruction is been selected for the given opcode. This verifies
the correctness of the case structure designed. Then proceed to individual instruc-
tions.
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e For memory instruction checked if logic for calculation of effective address is accu-
rate.

e Checked if the result is tagged arithmetic if the desired data is present in FSB for
load instructions.

e Checked if the cache controller is given the proper signals in case of miss in FSB.

e Checked that FSB is updated for store instruction and also the cache controller is
given the signals like store, address and data.

4.4.4 Synthesis Report

To Synthesis the Bluespec System Verilog code it is compiled using ”compiled to verilog”
option upon which the corresponding verilog code is generated. This code along with
library verilog codes which includes the following files, found in ”BlueSpecHome/lib/ver-
ilog”, was given as input to Xilinx ISE” on Virtex 6 evaluation board (6vIx240tff1156-1):

Table 4.13: Device utilization summary

Attribute Statistics
No. of Slice Registers 847
No. of Slice LUT’s 1286
No. of 64 bit comparators 8
No. of multiplexers 70

Table 4.14: Timing summary

Attribute Statistics
Minimum period 4.373ns (Maximum Frequency: 228.695MHz)
Minimum input arrival time before clock 3.309ns
Maximum output required time after clock 1.432ns
Maximum combinational path delay 1.082ns
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4.5 Decoder Unit

Decoder unit is responsible for getting the instruction from the fetch unit and supply the
necessary inputs to the issue stage. The decoder gets the instructions from the decode
queue and then the decoder puts the data into the issue queue for it to access them. The 32
bit instruction is the input to this unit. Based on the opcode and the extended opcode the
type of instruction is determined and the decoder bundle is formed.

The decoder bundle consists of the following information:

Address of operand 1

Address of operand 2

Address of operand 3

Destination address

Type of instruction

The operand addresses are the location of the registers in the GPR unit, hence the
width of this is 5 bits each. The destination address is also the destination GPR location
and hence it is 5 bit. The type of instruction specifies the instruction to be of arithmetic,

branch , memory, vector etc.

4.5.1 Micro-Architecture

The case statements are built in such a way that no huge muxes are present thus ensuring
the less combinational delay of the module. This division requires finding relation between
the different opcodes , extended opcodes and the instructions. Following method is used

to built the decoder.

e First the two MSB bits are checked i.e, bits [31:30] of the instruction.
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g0

Check instr[31:30]

'b00

Check instr[29:28]

else 'b10 \L

bo1 |

Instruction belongs|

to Arithmetic type

Check if instruction
belongs to any other type
like vector else mark illegal

'b11
Instruction belongs|
to CR type

'b10 b11

Check instr[29:26]

'b1010, 'b1110 l

else

Instruction belongs
to Memory type

Instruction belongs
to Memory type

Check if instruction
belongs to any other type
like vector else mark illegal

t_.

Figure 4.21: Working of decoder

e [f these bits are 2’b10 then the instruction is of memory type and the corresponding

bundle of data is made.

e If these bits are 2°b00 then check the bits [29:28] . If it turns out to be 2°b10 then its
of arithmetic type and else if 2°b11 then its of CR type.

e If these bits are 2°b11 Then check bits [29:26] and if it is 4°’b1010 or 4’b1110 then

its of memory type.

o If the two MSB bits are 2°b01 then further study of opcode needs to be done.
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Check instr[29:28]

500 'b01 'b10 b1

Check instr[27:26]

'b10 'b11 l 'b00, 'b10

|

Check instr[10:6] for compare Instruction helonas ) -
Check if instruction type else ckeck if instruction to Branch typeg I:st{uc!:lotl'l belongs I:st{uc!:lotl'l belongs
belongs to any other type belongs to any other type o Logical type o Logical type

like vector else mark illegal| like vector else mark illegal

Figure 4.22: Working of decoder contd.

— Now if the bits [29:28] are either 2’b01 or 2’b10 then it is logical type of
instruction.

— If bits [29:28] are 2’b00 then in case if bits [27:26] are 2’b00 or 2’b10 then its
branch type else check for the extended opcode region bits [10:6] to check if it
is arithmetic compare instructions.

— If these bits are 2’b11 then the extended opcode [5:1] bits to further determine
the type of instruction.
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Instruction belongs
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Figure 4.23: Working of

4.5.2 Verification

decoder contd.

The verification setup involves development of testbench which will act as fetch unit sup-

plying with instructions and then the result obtained is checked to see the functional cor-

rectness.

e Verified if the correct instruction is been selected for the given opcode. This verifies
the correctness of the case structure designed. Then proceed to individual instruc-

tions.

e Verified each element in the bundle of data produced is correct.
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This bluespec module interaction can be described by the figure 4.24.

STATE

-

Rule Writes State
y

Decode Issue -__
Queue Queue

Rule Reads State

Figure 4.24: Bluespec module interaction

4.5.3 Synthesis Report

To Synthesis the Bluespec System Verilog code it is compiled using ”compiled to verilog”
option upon which the corresponding verilog code is generated. This code along with
library verilog codes which includes the following files, found in ”BlueSpecHome/lib/ver-
ilog”, was given as input to "Xilinx ISE” on Virtex 6 evaluation board (6vIx240tff1156-1):

Table 4.15: Device utilization and Timing summary

Attribute Statistics
No. of Slice LUT’s 201
No. of multiplexers 88
Maximum combinational path delay | 4.702ns
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4.6 Design Challenges

During the implementation of the various execution units and decoder, there were several

challenges to take care of.

e First and foremost the design of decoder and also the selection of various instructions
within the execution units, required to understand the encoding of the opcodes and
extended opcodes in depth and come up with strategy to split the opcode to check
the type of instruction. The strategy followed was to check the 6 bit opcode, 2 bit
at a time and checking the extended opcodes by splitting them into group of 5 bits
to reduce width of muxes thus increasing the frequency of operation. This building
up of mux can be done in other ways to see if there is any further improvement in
operating frequency.

e During the implementation of execution unit for branch conditional instruction, the
type of conditional branch is decided by the 5 bit BO field. The distinction of par-
ticular type was done based on the pattern found in encoding of BO fields. Then the
conditional equations were formed. But this can also be done in different way.

e For the implementation of compare instructions (signed as well as unsigned) a com-
pact structure needed for identifying the type of comparison and also then updating
the exact CR field, was done using Mux-De mux combination which made the logic
compact.

e In order to have a better performance of load instructions finished state buffers were
used.

e Further to increase the frequency of operation a 3 stage pipelined implementation of
rotate/shift operation is also implemented and this can be used based on necessity.
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CHAPTER 5

Conclusion and Future Work

The Power ISA was chosen and various fixed-point scalar execution units were designed
as per the PowerISA 2.06 requirement to provide support for these instructions. The de-
coder stage for the processor was also designed as part of the project. The aim of reduced
hardware and good operating frequency was achieved with careful implementation of each
modules, by efficient use of functions and using neat hardware techniques wherever neces-
sary. All the execution units and decoder unit were verified individually for their functional

correctness.

In future all the execution stages and other stages of the pipelined architecture can be
integrated and verified for the overall functioning of the CPU core. Also slight modifica-
tions of certain structures described in each modules can be done to further improve its

performance.



APPENDIX A

PowerISA Instructions Implemented

The fixed-point scalar instructions that have been implemented are described in this
appendix[7]. Here the AA bit and LK bit values are determined by the mnemonic option
of [a] and [1] respectively, the RC bit and OE bit values are determined by the mnemonic
option of [.] and [o] respectively.

Table A.1: Branch Instructions

Mnemonics | Opcode | Extendedopcode | Instruction
b[l1][a] 18 / Branch
be[l][a] 16 / Branch Conditional
becetr[l1] 19 528 Branch Conditional to Count Register
belr([1] 19 16 Branch Conditional to Link Register
Table A.2: Compare Instructions
Mnemonics | Opcode | Extendedopcode | Instruction
cmpb 31 508 Compare Bytes
cmpi 11 / Compare Immediate
cmp 31 0 Compare
cmpl 31 32 Compare Logical
cmpli 10 / Compare Logical Immediate




Table A.3: Conditional Logical Instructions

Mmnemonics | Opcode | Extendedopcode | Instruction
crand 19 257 Condition Register AND
crandc 19 129 Condition Register AND with complement
creqv 19 289 Condition Register Equivalent
crnand 19 225 Condition Register NAND
crnor 19 33 Condition Register NOR
cror 19 449 Condition Register OR
crorc 19 417 Condition Register OR with complement
crxor 19 193 Condition Register XOR

Table A.4: Logical Instructions

Mnemonics | Opcode | Extendedopcode | Instruction
andi. 28 / AND Immediate
ori 24 / OR Immediate
andis. 29 / AND Immediate Shifted
oris 25 / OR Immediate Shifted
xori 26 / XOR Immediate
XOris 27 / XOR Immediate Shifted
and[.] 31 28 AND
orl[.] 31 444 OR
xor].] 31 316 XOR
nand].] 31 476 NAND
norf.] 31 124 NOR
eqv(.] 31 284 Equivalent
andc|[.] 31 60 AND with Complement
orcl.] 31 412 OR with Complement
extsbl.] 31 954 Extend sign byte
extsh].] 31 922 Extend sign halfword
extswl.] 31 986 Extend sign word
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Table A.5: Rotate and shift, Arithmetic Instructions

Mmnemonics | Opcode | Extendedopcode | Instruction
rlwinm].] 21 / Rotate Left Word Immediate then AND with Mask
rlwnm].] 23 / Rotate Left Word then AND with Mask
rlwimif.] 20 / Rotate Left Word Immediate and then Mask Insert
ridicl[.] 30 0 Rotate Left Doubleword Immediate then Clear Left
rldicr][.] 30 1 Rotate Left Doubleword Immediate then Clear Right
ridic[.] 30 2 Rotate Left Doubleword Immediate then Clear
ridcl[.] 30 8 Rotate Left Doubleword then Clear Left
ridcr].] 30 9 Rotate Left Doubleword then Clear right
rldimil.] 30 3 Rotate Left Doubleword Immediate Mask Insert
slw].] 31 24 Shift Left Word
srw|.] 31 536 Shift right Word
srawi.] 31 824 Shift Right Algebraic Word Immediate
sraw|.] 31 792 Shift Right Algebraic Word
sid[.] 31 27 Shift Left Doubleword
srd[.] 31 539 Shift Right Doubleword
sradi].] 31 413 Shift Right Algebraic Doubleword Immediate
srad].] 31 794 Shift Right Algebraic Doubleword
mtspr 31 467 Move To Special Purpose Register
mfspr 31 339 Move From Special Purpose Register
mtocrf 31 144 Move To One Condition Register Field
mfocrf 31 19 Move From One Condition Register Field
MCrxr 31 512 Move To Condition Register from XER
addi 14 / ADD Immediate
addis 15 / ADD Immediate Shifted
add[o][.] 31 266 ADD
subf[o][.] 31 40 Subtract From
addic 12 / ADD Immediate Carrying
addic. 13 / ADD Immediate Carrying and Record
subfic 8 / Subtract From Immediate Carrying
addc[o][.] 31 10 ADD Carrying
subfc[o][.] 31 8 Subtract From Carrying
adde[o][.] 31 138 ADD extended
subfe[o][.] 31 136 Subtract From extended
addme]o]][.] 31 234 ADD to Minus one extended
subfme[o]][.] 31 232 Subtract From Minus one extended
addze[o][.] 31 202 ADD to Zero extended
subfze[o][.] 31 200 Subtract From Zero extended
neg[o][.] 31 104 Negate
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Table A.6: Load Store Instructions

Mmnemonics | Opcode | Extendedopcode | Instruction
bz 34 / Load byte and zero
Ibzx 31 87 Load byte and zero Indexed
Ibzu 35 / Load byte and zero with update
Ibzux 31 119 Load byte and zero with update indexed
lhz 40 / Load Halfword and zero
lhzx 31 279 Load Halfword and zero Indexed
lhzu 41 / Load Halfword and zero with update
lhzux 31 311 Load Halfword and zero with update indexed
lha 40 / Load Halfword Algebraic
lhax 31 279 Load Halfword Algebraic Indexed
lhau 41 / Load Halfword Algebraic with update
lhaux 31 311 Load Halfword Algebraic with update indexed
lwz 32 / Load word and zero
lwzx 31 23 Load word and zero Indexed
Iwzu 33 / Load word and zero with update
lwzux 31 55 Load word and zero with update indexed
Iwa 58 2 Load word Algebraic
Iwax 31 341 Load word Algebraic Indexed
lwaux 31 373 Load word Algebraic with update indexed
1dz 58 0 Load Doubleword and zero
ldzx 31 21 Load Doubleword and zero Indexed
ldzu 58 1 Load Doubleword and zero with update
ldzux 31 53 Load Doubleword and zero with update indexed
stb 38 / Store byte
stbx 31 215 Store byte Indexed
stbu 39 / Store byte with update
stbux 31 247 Store byte with update indexed
sth 44 / Store Halfword
sthx 31 407 Store Halfword Indexed
sthu 45 / Store Halfword with update
sthux 31 439 Store Halfword with update indexed
stw 36 / Store Word
stwx 31 151 Store Word Indexed
stwu 37 / Store Word with update
stwux 31 183 Store Word with update indexed
std 62 0 Store Doubleword
stdx 31 149 Store Doubleword Indexed
stdu 62 1 Store Doubleword with update
stdux 31 181 Store Doubleword with update indexed
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Table A.7: Load Store Instructions

Mmnemonics | Opcode | Extendedopcode | Instruction

lhbrx 31 790 Load halfword Byte-Reverse Indexed

sthbrx 31 918 Store halfword Byte-Reverse Indexed
lwbrx 31 534 Load word Byte-Reverse Indexed

stwbrx 31 662 Store word Byte-Reverse Indexed

1dbrx 31 532 Load Doubleword Byte-Reverse Indexed

stdbrx 31 660 Store Doubleword Byte-Reverse Indexed
Imw 46 Load Multiple Word

stmw 47 Store Multiple Word
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