Digital Back End Electronics For HEPD

ATHESS

to be submitted by

Satish Kumar R

EE11M061

for the award of the degree

of

MASTER OF TECHNOLOGY

under the guidance of

Prof. Nitin Chandrachoodan

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

CHENNAI-600036



CERTIFICATE

This is to certify that the thesis titletDigital Back End Electronics For HEPD”,
submitted by Mr. Satish Kumar R, to the Indian Institute ofAigology Madras, Chennai
for the award of the degree of Master of Technology, is boeaftord of research work
done by him under my supervision. The contents of the thsshan full or parts, have not

been submitted to any other Institute or University for theual of any degree or diploma.

Dr. Nitin Chandrachoodan
Project Guide
Assistant Professor
Dept. of Electrical Engineering

[IT-Madras, Chennai-600036

Place: Chennai

Date: 29 May 2013



ACKNOWLEDGEMENT

I would like to take this opportunity to express my sinceratigude to my project guide
Dr. Nitin Chandrachoodan, Department of Electrical Engineering Department. He put
a consider amount of time and effort to explain the concegleted to project and helped
me to understand the project clearly. His guidance has bresti my Knowledge and
thinking level. He has been a constant source of motivatmmral support and inspiration
throughout the study which made me more confident.

Furthermore | would also like to acknowledge with much apjat&on the staff of Em-
bedded Systems Lab and IE lab who gave the permission to lusgaired equipment to
complete the task. A special thanks goes to my team matek Sakshay, Nitin, Ankith
and sai Surya Teja for our philosophical debates, exchasfdewwledge and skills. Many
thanks go to my lab mates Vikas, Karthikeyan, Chaitanya antt Apending their time

with me and for all the fun we had in the last year.

Satish Kumar R



Abstract

The main aim of this project is to Design, Implement and faigz a Digital Payload
Block for ITM Student Satellite.

This Payload block has to sample the analog input voltagevaryahigh rate which
is around 278 KHz. Once sampling is done, this sampled veltes to be mapped in to
corresponding energy value using a voltage to energy Igotahle. Create a Histogram
of this energy Vs number of incident particles (say eledrand protons).Histogram rep-
resents the energy spectrum of the particles. Histogram fiad to be send to external
memory or any other subsystems present on the Satelliteegfudar interval of time. On
the other hand it has to interface this block with other sateys present on the satellite in
order to communicate with them and send health data to theemasck of the satellite.

A complete system design, implementation of the algorithohtae interface with other
subsystems is done. Finally design of this block and soméetdst results are given

showing how this subsystem can be used in any future natidsaggstem.
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Chapter 1

Introduction

The IITMSAT project goal is to study the energy spectrum cérgled particles in the
upper ionosphere and understand the effects of solar stighging storms and seismic
activity. The ionosphere starts from a height of about 50kimis the surface of the earth
and extends to more than a 1000km. Electrons are strippédeoffas molecules, resulting
inions, by the ultra-violet radiation of the Sun as well asdient X-rays.The ionosphere is
thus a shell of trapped charged particles such as elecporiens and other charged atoms
and molecules which plays an important part in radio waveggation and influences
many other earthly phenomenon. Changes in the particlescdration can help in weather
prediction and earthquake predictions.

Recent satellite studies indicate an anomalous incredke itharge patrticle flux in the
lower layers of the ionosphere, a few hours before the oenae of an earthquake. The IIT
Madras Student Satellite aims to expand the existing know-¢n this phenomenon, to ul-
timately develop an earthquake prediction model. Contisunonitoring of the ionosphere
using HEPD will allow us to obtain the energy spectrum of aatwmuas charge particle bursts

that may occur in correlation with earthquakes.[10]



1.1 Problem Statement

To design a Digital Payload Block which can be used to prottesslata and to store the
processed data in the external memory. Design of this bloclkides selection of micro-
controller, external memory and other hardware componétd finally to interface this

Digital Payload Block with other Subsystems on the Saeellit

Functions to be implemented[1]

« Sample the input voltage signals from the Front End Eleato (FEE), provided
the coincidence logic is satisfied. Convert the averagegelbf the input signal to

energy (from a given table).

» Check for the particle type (proton, electron, othershfrthe energies associated

with the signals from FEE.

» Generate histograms (of energy vs. particle counts) with (0.1 sec) and coarse

temporal resolution (3 sec) for protons and electrons.
» Detect particle bursts (sudden increase in particle &unt

 Store histograms with fine and coarse temporal resolufiBfEE detects a particle

burst, else store only histograms with coarse temporalugsn.
» Send stored data to the on-board computer of the sateligwequested.
« Control and regulate the power-supply to different el@ait components in HEPD.

* Monitor temperature characteristics of important conga such as PMT, scintil-

lators, Preamplifier etc. through temperature sensors.

« Monitor current and voltage of different components in HHEfarough appropriate

Sensors.



1.2 Detector Configuration

The High Energy Particle Detector is a solid state chargeticta detector, capable of
measuring the energy of charged patrticles that are incmteiit Figure 1.1 is a schematic

describing the basic configuration and working of the Higleigy Particle Detector.

Incident
Protons/
Electrons

Plastic Sintillators Photons —p] Photo-Multiplier Tube

(PMT)

A 4

Transducer System

Current
Signal

) Constant
Satellite On board (g Energy[Spectrum Back-End Electronics  |[€—— Voltage
Computing System levels

Front-End Electronics

High Energy Particle Detector

Figure 1.1: HEPD Schematic [1]

The detector consists of a Transducer System made of p&stittllators which con-
verts incident charged particles to photons. The total rermobphotons produced is pro-
portional to the energy deposited by the charged partictearplastic scintillators. These
photons are then routed to a Photo- multiplier tube (PMT) gnaduces photo-electrons
proportional to the number of photons incident on the PMTe PMT then transmits an
amplified current pulse with the area under the pulse prapwtto the number of photo-
electrons produced. The current pulse is then converteddtiage signal by the analogue
Front-End Electronics (FEE), such that the amplitude of Hoiltage signal is also propor-
tional to the number of photo-electrons. The FEE provideady voltage output to the
digital Back-End Electronics (BEE). The BEE then procesbesnput voltages to calcu-
late the energy and type of the incident particle. The BEHIfiséores the energy spectrum
of protons and electrons incident on the detector, whichbeltransmitted to the ground

station .[10]



Chapter 2

Topology and Hardware

Satellite has 5 subsystems

HEPD

« OBC

ADCS
+ COM
* EPS.
Each subsystem has its own functionalities

« HEPD

— To measure the count rates of high energy protons and ehsctnothe iono-

sphere and to generate the energy spectrum of these particle

« OBC

— It controls all the functions of the Satellite. The contréldata flow between
other subsystems is handled by OBC. Health of the satealiteonitored by this

subsystem.



* ADCS

— ADCS subsystem is to deduce the satellite’s attitude byisgmrvironmental
variables, determine the correction torque to be applietussuitable control

algorithm, and apply the torque using actuators.

« COM

— It consists of tele-command receiver: It is used to receata ¢tom the ground
station at a pre-defined modulation scheme, demodulate ipeovide the data
to on-board computation system.The Telemetry and payle@dal wlansmitter
system: It transmits data collected and processed by péydod on-board
computer respectively.The Ground Segment consists ohkiglind downlink

antennas.
* EPS

— Electrical power subsystem (EPS) is mainly responsiblsdqplying continu-
ous and regulated power to on-board subsystems like ADCESHBommu-

nication, payload, sensors etc.

On a satellite we have 2 kinds of data

* Science Data

* Health Data.

Data rate of Science data is very high when compare to Health d is in the order of

1000 times greater. Now it is very important that how thesekimds of data is transferred
between these five subsystems and finally to the groundst&mwe need a proper topol-
ogy by which these subsystems can talk to each other and garahafficient way of data
transfer between these subsystems. Through out our pregebave been implementing

different topologies, by learning new things at each andyestp.

5



2.1 Topologies Considered

2.1.1 Topology 1

External Frams

SD grosesssenesssnaneny

OBC HEPD

EPS COM ADCS

Figure 2.1: Topology 1

This topology was proposed by satellite team. The main busiwdonnects all five subsys-
tems uses 12C protocol for communication. The OBC block teaewn external memory
(SD-CARD) which is connected through SPI protocol. SD-CARDsed to store science
data and the health data. HEPD block has two FRAMs. FRAMs sed tor temporary
store of science data before transferring it to external orgrthrough HEPD block and
OBC block. Two FRAMs are there in order to switch the data leetwthese two FRAMs
because the FRAM size is limited to 1MByte so that we can feardata while writing to
one and reading from other.

Disadvantages

» As the data rates for HEPD is very high it keeps on sendingitia to the OBC

through main bus. This makes main bus busy.

» During transmission of data to ground station data trarsdppens through OBC to

6



COM block and makes main bus busy. This time is high enoughsalileely to be 5
-10 minutes. During this time HEPD cannot transfer the smahata to SD-CARD.
And this is serious problem due to limitation of FRAMs sizechuse FRAM cannot

hold that much data.

2.1.2 Topology 2

External Frams

SD P

Dedicated
Science Bus

OBC < HEPD

L T

EPS COM ADCS

Figure 2.2: Topology 2

In order to overcome the problem faced in topology 1 we haweseh this topology. In this
topology we have given a dedicated path to science data. dEgigated path lets you to
write the data to SD-CARD even though main bus is busy.

Disadvantages
» Dedicated path results in more power consumption.

« More the number of paths more the chance of failure.



2.1.3 Topology 3

External Frams

SD PRI

OBC | mux|— HEPD

EPS COM ADCS

Figure 2.3: Topology 3

Since only two blocks OBC and HEPD communicates with extemamory we thought
of sharing the external memory between these two sub systmscontrol bit of mux lies
with OBC.
Disadvantage

During transmission of data to ground station data has tcebd by OBC and then

transferred to COM which creates unwanted delay.



2.1.4 Topology 4

SD

OBC ——p| MUX [&—]

HEPD

EPS COM

ADCS

Figure 2.4: Topology 4

This topology was chosen in order to avoid the extra delagddaa topology 3. Here

SD-CARD is shared between three sub systems HEPD, OBC and. GQNs topology

« HEPD will write science data to SD-CARD

* OBC will write health data to SD-CARD.

* COM will read the data form SD-CARD.

The control of mux lies with OBC.

Disadvantages

Controlling and synchronizing three subsystems becomesdificult. We need to

add extra buffers for this topology.



2.1.5 Topology 5

SD

OBC MUX [¢—— HEPD

EPS COM ADCS

Figure 2.5: Topology 5

This topology was chosen to overcome the complexity of togpH. In this topology
» HEPD will write the science data to SD-CARD.

« COM will write health data as well as it will read the data bat order to send it to

ground station.

2.2 Hardware Selection

Selection of hardware requires to know what type of funcitmbe performed, what are
its requirements and what are its constraints.
Functionalities to be performed is discussed in projedestant of Introduction in

chapter 1.

10



2.2.1 Requirements

« Maximum count rate to be detected: 2.8 ¥ t@unts/sec. => 1 particle in every 3.6

us (considering uniform flux).

« Store the science data in the form of two histograms;

— coarse temporal resolution (3 s)

— fine temporal resolution (0.1 s)

2.2.2 Constraints
» Average power consumed < 750 mW.

» Sample an Analog signal withinfls.

* Maximum clock frequency of low-power industrial grade noicontrollers : 80

MHz.

After knowing these now we have an idea of what type of micnbicaler we need to have.
We should also know the application in which the microcalitgras going to be used. In

our case it is Satellite, so we need to check some of the pyinreguirements like:

» Computational Performance

— Generally microcontroller performance is measured in seoMIPS. This is
the only system which is going to perform all computatiomakss so it should

have high MIPS and higher operating frequency.

» Power Consumption

— To get high power on a satellite is very difficult, so all sufteyns should con-

sume as less power as possible.

* GPIOs and features

11



— On market we get many microcontrollers of similar specifarat but different
features and resolutions. Select a chip that has all tharssatvith the resolu-

tion as per your needs.

Availability of components

— Components used in this design needs to be commercialliabiafor a long

time to come.

Memory

— We should have enough memory in the microcontrollers to qamgt and to

makes any changes in future.

Online support

— Selecting an microcontroller which has good online suppltthelp you with
your ideas and solve most of your problems as the experidnather users is

available for you.

History

— We have to check whether anyone has already used these fylp@sloare in

the space and what are their ratings.

After considering all these we have chosen ARM Cortex-M3HdaStellaris LM3S9B92

microcontroller.

2.2.3 Stellaris LM3S9B92 microcontroller features

* ARM Cortex-M3 Processor Core.
» High Performance: 80-MHz operation; 100 DMIPS performeanc

» 256 KB single-cycle Flash memory.

12



96 KB single-cycle SRAM.

Advanced Communication Interfaces: UART, SSI, 12C, 128N, Ethernet MAC
and PHY, USB.

Analog support: analog and digital comparators, Analmgigital Converters (ADC),

on-chip voltage regulator.

Industrial (-40°C to 85°C) temperature range.[7]

13



Chapter 3

Payload Algorithm Implementation

The main functionalities of payload are
* Collecting the Input Data
* Process the Input data and make Histograms and finally
 Store the Data in to some external memory.

This chapter will we will discuss how can we capture the Inghatta, process the captured
data and finally convert the processed data in to histogrdme. nExt chapter will discuss
about how this data is transferred to external memory. Omgeke functionalities of the
payload, we can clearly observe that things are happenisgnre specific order like, col-
lecting the data , processing the data and storing the ddtar ¥nowing the sequence of

operations and the priorities between these main functiensan have a Flow chart .

14



3.1 Flow Chart

Flow chart showing the sequence of operations involved yihgaa subsystem

gpio

GPIO ISR(Higher Priority)

1)Sample ADC's
2)Generates Histogram

‘ START ’

Y

INITIALIZE

1) GPIO
2) ADC

3) TIMER

4) SD-CARD

GPIO Interrupt for
every 3.6us

Y

Wait for an

INTERRUPT

Timer Interrupt for
every 0.1 sec

Nt Inside an Interrupt

Figure 3.1: Flow Chart

TIMER ISR (Lower Priority)

1) Writing Histogram DATA
in to SD-CARD
2) Resting the Histogram

and how the interrupts comes, and at what rate they come, &adl ave all things

need to be performed by the ISR. First we will start with sangpthe input data and then

generating the histogram and then sending the data to ekteemory.

3.2 Sampling Input Data

One of the important functionality to be performed by BEEasample the Input signal.

Input signal to BEE comes from FEE.

15



FEE 1 (dEdx Chain)

P Charge Sensitive Peak Hold
Photo Multiplier 2 Post
Pre-Amplifier Shaper i Detector
Tube (PMT-1)
(CSPA) Amplifier (PHD1)

FEE 2 (Bulk Chain)

- Charge Sensitive Peak Hold Back End
Photo Multiplier . Post
Pre-Amplifier Shaper i Detector » Electronics
Tube (PMT-2
( ) (CSPA) Amplifier (PHD2)

(BEE)

FEE 3 (VETO Chain)
- Charge Sensitive

Photo Multiplier g e Post L

Tube (PMT-3) Pre(égﬁPpAII)ﬁer Shaper P Amplifier P Discriminator

Figure 3.2: Functional Block diagram of FEE. [1]

iy

The PHD holds the maximum value of the voltage signal frompibet amplifier. This
signal is the output of FEE modules 1 and 2. But FEE module 3ahdsscriminator,
instead of a PHD, that gives a voltage signal if the outputftbe post amplifier is above
a threshold. The output of the FEE modules will then be fed ithé ADC of the BEE for
further processing.BEE receives this signal as input tcAIB€. ADC is a block available
in microcontroller as one of the peripherals which acceptsrdinuous signal as input and
converts to a discrete digital number which can be furthecg@ssed by the micro controller.

The ADC available in Stellaris offers you with following Reges
1. 10-Bit conversion Resolution.

2. 16 shared analog input channels.

3. Single-ended and Differential-input configurations.

4. Maximum sample rate of one million samples/second.

5. Four programmable sample conversion sequencers witbspmnding conversion

result FIFOs.

6. Efficient transfers using Micro Direct Memory Access Goher (UDMA). [7]

16



3.3 Block Diagram of ADC

The Stellaris Micro controller have two identical AnalagHDigital Converter modules
called ADCO and ADC1. These two ADC s module share the sam@d®@input chan-
nels.

Each ADC module can

1. Operate Independently.

2. Execute different sample sequences.

3. Any time they can sample any of the analog input channels.
4. Can generate different interrupts and triggers &

5. Can have independepnDMA channels.

X Input
Triggers > ADCO Channels

Interrupts/
Triggers

ADC1

Interrupts/ |
Triggers

Figure 3.3: Implementation of Two ADC Blocks.[7]

ADC s which are available in Stellaris collects sample dataubing a programmable
sequence-based approach. ADC module has four samplingrsegps of depth 1,4,8 which

allows you to sample different analog sources with a sitgégrer event.

3.3.1 Sample Sequencers

We have four sample sequencers which are completely indepénf each other. Each

sample sequencer has its own set of configuration registesisaavn below.

17



Sample Sequencer 0 Sample Sequencer 1

Sample Sequencer 2 Sample Sequencer 3

-Single -ended or Differential Sampling

-End of Sequence

Step 0 Step 0 Step 0 Step 0
Step 1 Step 1 Step 1
Step 2 Step 2 Step 2
Step 3 Step 3 Step 3
Step 4
Step 5
Step 6 Each Step can Configure
Step 7 -Analog Source.
-Interrupt Generation

Figure 3.4: Sample Sequencer Structure.[11]

We can see from the above figure all the steps in the sampleseguare configurable
allowing you to select different analog sources like terapge sensor or the signal itself.

Each sampler sequence has its own FIFO depth and can cdltesg thany number of

samples.

Sequencer

Number of Samples

Depth of FIFO

SS3

1

1

SS2

4

4

SS1

4

SSO

8

Figure 3.5: Samples and FIFO Depth Sequencers.[7]

The above figure shows the maximum no of samples that eaclersegjucan capture
and its corresponding FIFO depth. The number of samples a@ A&an capture from
each sample sequencer is also programmable by having an ENBtbIt also give you
flexibility to handle multiple sample sequencers which arggered simultaneously by
giving them configurable priority.

How it Operates

18



When a sample sequencer is triggered

* It samples the signal at the programmed sampling rates 5i¢, 500K, 1M sam-

ples/sec.

» Sampling continues till it encounters the END (END bit candet for any step in

sequence) bit set, indicating end of the sequencer.
 Collect the converted result in the sampler sequencer FIFO

Each FIFO entry is a 32-bit word, with the lower 10-bits camitzg the conversion result.

3.4 Sampling the Data

In space we don’t know the rate at which the particles comescapture the particle and
to convert it in to signal by the FEE it takes some time and lied®EAD Time.

DEAD Time

let us say at t=0 we have a particle incident on the payloadiBators and to convert
this particle in to an signal it takes 3 sec, now this 3 secesdibad time which means to
say if we have an another particle coming at t=2 sec thenlinetlget detected by the FEE
because it takes some time to process the signal and in thetimesit is not able to detect

the another patrticle.

3.4.1 Interface between FEE and BEE

The output of peak hold detectors of FEE are connected tofhe bf ADC of BEE. FEE
has some DEAD time and BEE has to sample that data within tE2Dtime and send
an reset signal to the FEE saying that sampling of data is.dAfter receiving the reset
signal from BEE the FEE peak hold detector output goes lows iBhdone to to have an
indication that for every new particle comes there will beiaimg edge at the output of the

peak hold detector.
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Reset

PHDl———3{ADCO
BEE
FEE MICRO CONTROLLER
PHD}——————|aDC1
Interrupt 3

Figure 3.6: Interface of FEE and BEE

.In order to achieve this we are choosing an interrupt bassttiod. Every time FEE
detects the particle and generates new signal we get anuptéo the BEE indicating that
a new particle has been detected. So whenever an interropscto the BEE we have
chosen an ISR to sample the incoming data and store in a tamydocation which can be
used for further processing.

Now the Dead time for our system is g6 which means for every 3.6 we will have

a new data. So the output of Peak Hold detector looks like this

lus 2.6us

> <

A

Figure 3.7: Peak Hold Detector Output

if we observe the time at which we are getting the input sigineatry small i.e frequency

of the input signal is

1

———— =277.777 KHz.
3.6us
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which is at a very high rate. The microcontroller which is séo has a clock speed of
80 MHz.
If the input comes at every 3.6us & If the micro controller cgges at 80 MHz.

The no of clock cycles we can get to perform every ISR is

time x frequencyof operation = clockcycles

3.6 us x 80MHz=288

so we have 288 clock cycles which is quite good amount of ctyckes to perform an

ISR.

3.5 Method Adopted to Sample Input Data

For our experiment we need to sample the input data, probestata and then we need to
send the data to an external memory in a given interval of.ti8@mpling the input data
we have planned to do in an ISR. Now how much time you spendeiiSR depends on
the approach you have chosen. Smallest the time to do an i8R st approach and we
need this so that we can save the time and clock cycles so theamwdo other things. So

the methods we adopted to do this task are
« DMA

» Direct Hardware Register method.

3.5.1 DMA Approach
3.5.1.1 Why DMA

Transferring of data can be done using DMA without procegsgervention. In a general
computing system when data has to be transferred betweemeapry and interfaces,

CPU reads the data and then it transfers. Problem with tipgagh is if we have a large
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amount of data to be transferred then CPU does all the tnaastkit gets stuck over there
for long time and meanwhile it can’t do any other processifrgnsferring of data doesn’t
require any processing or computing so instead of CPU wisatapable of doing some
computing if any other device can do this task it will be vefficeent way of transferring the
data and usage of CPU. DMA does this work it takes over the QRCbatroller and does
this transferring when ever CPU is not using the memory aniglperals. In th meanwhile
CPU can do other tasks like handling interrupts and carrgurtgnternal operations which
doesn’t require memory.
3.5.1.2 Features of DMA in Stellaris
The uDMA provides following features
» 32-Channel configurablgDMA controller.
e Supports
— Memory-to-Memory,
— Memory-to-Peripheral, and
— Peripheral-to-Memory in multiple transfer modes.
 Basic for simple transfer scenarios.
» Ping-pong for continuous data flow
» Highly flexible and configurable channel operation.
— Independently configured and operated channels

— Dedicated channels for supported on-chip modules

— Primary and secondary channel assignments

* Data sizes of 8, 16, and 32 bits.
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» Transfer size is programmable in binary steps from 1 to 1024

» Source and destination address increment size of bytewleatl, word, or no incre-

ment.

» Maskable peripheral requests.[7]

3.5.1.3 Ping-Pong Method

This method is used for continuous data flow.

Memory 1

Micro
Controller

Memory 2

Figure 3.8: Popping method

By this approach if the data becomes full in memory locatigheln micro controller
starts transferring the data to second memory location anmdile we can collect he data
from location 1 and by this way transfer of data can be dondémmaously.

Problems with this approach

» Because the interrupt rate of input data was too high fillipgdhe memory locations
was at a faster rate when compared to retrieving the dataftokmemory locations

and processing it for Energy conversion and other procgg9in

» Every time the transfer of specified number of bytes is daegu.DMA the channel
gets disable and we have to enable it again for next trandfeshwakes approxi-

mately 80 clock cycles which is very high in an interrupt lthapproaches.
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3.5.2 Direct Hardware Register method

In this method we used directly the hardware registers. imapproach number of clock

cycles to execute an instruction reduced very much say rhare30 %.

3.6 Results and conclusion of ADC

Earlier we have used API functions provided by the SteNdare to trigger ADC but it was
taking 20 clock cycles and when we used direct hardwaretesdr triggering the ADC
it took only 10 clock cycles.

By using hardware register method we can reduce the numlmoak cycles to more
than half or at least half for many API functions provided bg StellarisWare.

The output of an ADC for a Sine wave as a input with frequenc§ K6iz and the

sampling frequency of 1MHz is shown below ,

Figure 3.9: Time Domian
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Figure 3.10: Frequency Domain

from the above figure we can observe that the peak occurs &H@0vhich is nothing
but the frequency of the given input signal.

From the above experiment conducted we found no errors iAEH operation.

3.7 Histogram Generation

First we initialize the required peripherals and differemictional blocks like ADCs, Timers
and Power-ON SD-Card. The time required to initialize thieleeks and the peripheral,
let say “tnitialize”- NOW we wait for an interrupt to occur. There are two intgrsiin the

system

* GPIO

* TIMER

3.7.1 GPIO Interrupt

This is an external GPIO interrupt. The input of this GPIO esnfrom FEE for every

3.6us and for a microcontroller operating at 80 MHz the corresjiom
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CLOCK CYCLES =288

so for every 3.fis our system receives an interrupt from an FEE. This is Inpthé
system so itis very important and in any case we have to reljadhis interrupt by halting
others. Because of this requirement we made this intersihisaHighest priority interrupt.

Functions to be Performed by GPIO Interrupt
* Whenever an GPIO interrupt comes it has to trigger the AD@ksample the data.
» Convert the voltage in to Energy by using an LOOK-UP table.

» Generate histograms (of energy vs. particle counts) with (0.1 sec) and coarse

temporal resolution (3 sec).

3.7.1.1 LOOK-UP Table

We are using an 1-D array as a look-up table where each addgon of an array is
an output of an ADC. Stellaris offers you a 10-bit ADC so thépow of ADC range from
0-1023 values. For easy calculation and to have one to on@intagre have chosen the
1024 energy values ranging from 0-25. Finally we have chasearray of size 1024 to
have this 1024 energy values. Now this array address repsedee ADC output and the
corresponding value at that address represents the eratgyfer a particular voltage.
Now the energy look-up table (which is nothing but 1-D arr&t@24 values) is filled

in this manner,
15t 25 |ocations are filled with Zeros,

2nd 25 |ocations are filled with Ones,

24 25 |ocations are filled with a value 23,
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and rest are filled with with a value 24.

Now the if the ADC output voltage

is in the range of 0-24 it gives an energy value of Zero,

and if the range is 25-49 it gives an energy value of One,

and if the range is 999-1023 it gives an energy value of 24.

Having this energy table the output of ADC is given as an askite the array

to get the corresponding energy value.

3.7.1.2 Histogram

Generating histograms (of energy vs. particle counts) isethuce the data size. The
data rates are so high because we are sampling the input tdataaanpling frequency

of IMSPS. So in one second 1MBytes of data is getting gerteiate to handle such

large data is very difficult. Such large data are difficult tore and process on the micro-
controllers.Microcontrollers doesn’t have enough ins&memory to store that much data.
Our requirement is only to know how many particles of a patéicenergy has incident, so
itis not needed to store the actual data but the particletafyparticular energy is enough,

below figure shows how an histogram in created,
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COLUMN (ENERGY VALUES >

ROW (TIMER)
0-24 24-49 50-74 75-99 999-1023

0.1s COUNT 0 COUNT 1 COUNT 2 COUNT 3 [ COUNT N
0.2s COUNT 0 COUNT 1 COUNT 2 COUNT 3 [ e COUNT N
0.3s COUNT 0 COUNT 1 COUNT 2 COUNT 3 | ccererreenens COUNT N
0.4s COUNT 0 COUNT 1 COUNT 2 COUNT 3 | ermerreens COUNT N

3s COUNT 0 COUNT 1 COUNT 2 COUNT 3 [ COUNT N

Figure 3.11: Histogram

.Here we create an histogram for every 0.1s and this 0.19slatdled FINE FRAME
and for every 3s we have an another histogram running in Iparahich is nothing but
the COARSE FRAME data. Once FINE FRAME data histogram isteckd is stored in
a SD-CARD. For every 0.1s we store the FINE FRAME data and Verye3s COARSE
FRAME data is stored in a SD-CARD.

3.7.1.3 Time required to serve an GPIO ISR

As mentioned earlier GPIO has to perform three functions
* Whenever an GPIO interrupt comes it has to trigger the AD@kssample the data.
» Convert the voltage in to Energy by using an LOOK-UP table.

» Generate histograms (of energy vs. particle counts) with (0.1 sec) and coarse

temporal resolution (3 sec).

we have two ADCs sampling two signals and two FRAMES one iEHRRAME and other
is COARSE FRAME. FINE FRAME and COARSE FRAME has to be updatemever an
ADC samples a new data.

So we have

ADCO updating one FINE FRAME and one COARSE FRAME and
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ADCL1 also once again updating the same FINE FRAME and the CREARRAME.

| Functions | Number of Clock Cycles |

Clr the Interrupt 4
Trigger ADCO 10
Count Fine Frame for ADCO 33
Count Coarse Frame for ADCO 33
Trigger ADC1 10
Count Fine Frame for ADC1 33
Count Coarse Frame for ADC1 33

push+pop 4+13

Total No of Clock Cycles 177

Table 3.1: Total Number of Clock Cycles

.Total number of Clock Cycles = 177.

time x frequency =ClockCycles

. ClockCycles
sotime=————
frequency
177
~ 80us

=2.21250s.
so to finish one GPIO interruptyfi, ) we require 2.212fs.

Remainingtimetoget nextinterrupt =3.6 — 2.2125

=1.3875us
and

Noof Clockcyclesremaining =288— 177

=111ClockCyl ces.

These remaining time is used to serve any other process.
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3.7.2 Timer Interrupt

This is an internal interrupt caused by using some of therSmpeesent in the microcon-
troller. Timer interrupt occurs for every 0.1 s or for eve0Ims. In this interrupt service
routine we are handling histogram data transfer which iegaed in the GPIO interrupt

to external devices like SD-Card or any other microcongroll

3.7.2.1 Time required to serve a Timer Interrupt

Functions to be performed by timer interrupt
» Histogram data has to be transfer to SD-CARD.
» Reseting the FINE FRAMEs and COARSE FRAMEs.

Time required to send the Histogram data which is 50Bytes t8[2-CARD is 0.8 ms best
and the worst case is 3 ms.

Total number of clock cycles required to service this ISR £358.

time x frequency =ClockCyl ces.

. ClockCycles
sotime=————
frequency
161558
~ 80us

=2.02ms.

In order to finish Timer interrupt{t.er) we require 2.02ms time and we have 100 ms of

time to get back to this interrupt.

Remainingtime =100—2.02

=97.98
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which is very good amount of time to do any processing on tlstddram data.

The number of times the GPIO interrupt occurred in this 2.@82sn

_ TimeRequiredtoservethisinterrupt

" rateatwhichGPI Ointerrupt occurs

Number of clock cycl esrequiredtoservethisinterrupt
rateat whichGPI Ointerrupt occurs

or intermsof clockcycle=

161558
~ 288

=560

so these many times an GPIO interruptis being served whihglir@the timer interrupt.

3.7.2.2 Justification of time required to serve an Timer Interupt

Time required to send the Histogram Data to SD-CARD is 0.8 ms.

' iui i - 177
TimeregiuiredtoserveanGPI Ointerrupt 560ti m:%

=1.24ms.

Time requires to reset the Histogram data will be in sqreeso the major part of the time

will be sum of SD-CARD time and the GPIO Interrupt Time

D — CARDtime+ GPIOInterrupttime=0.8+ 1.24

=2.04ms

which is approximately equal to 2.02 ms.
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Chapter 4

Communication Interface

In order to communicate between two devices microcont®téfers you with a variety of

protocols like
e [2C
* SPI

each of them are suitable for different applications witmecadvantages and disadvan-

tages.

4.1 12C

Developed by Phillips Semiconductors in 1980’s for prongleasy way of communicating
between IC’'s. The name itself says it is an Inter-Integra@@duit. It is a simple bi-

directional 2-wire bus.

4.1.1 12C Features

« Only two bus lines are required namely
— Serial Data Line (SDA)

— Serial Clock Line (SCL)
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Each device connected to the bus is software addressable@whnique address.

Simple Master and Slave relation, master can act as Masagsmit or as a Master-

Receive.

True Multi-Master bus including collision detection andbigration to prevent data

corruption.

Serial 8-bit oriented bidirectional data transfers camlbee at different rates like

— 100 Kbits/s in Standard-mode

— 400 Kbits/s in Fast-mode

— 1M bits/s in Fast-mode Plus

— 3.4 Mbits/sec in High-Speed mode

 Serial, 8-bit oriented, unidirectional data transfersap Mbit/s in Ultra Fast-mode.

« The number of IC’s connected to bus is limited by Maximum Blapacitance 400

pF.[2]

4.1.2 12C Communication

» Simple procedure to have communication between two IC’s.

» Each IC connected to bus has it's own ID called address diGhe

» Master IC starts the communication by sending or initgtime clock.
These are the steps in which 12C communication happens,

* When SDA and SCL are both high. The bus is 'free’.

» Master IC puts the message on the bus saying | have STARTEBetthe bus. All
other ICs then LISTEN to the bus data and checks their owresddn order to know

that master wants to talk to them or with someone else.

33



* Provide on the CLOCK (SCL) wire a clock signal. It will be asky all the ICs as
the reference time at which each bit of DATA on the data (SDA®wvill be correct
(valid) and can be used. The data on the data wire (SDA) musgalxkat the time

the clock wire (SCL) switches from ’low’ to ’high’ voltage.

« Master sends out a unique binary 'address’ (hame) of th@aCit wants to commu-

nicate with in serial form.

» Master keeps a message (one bit) on the bus telling whetkents to SEND or
RECEIVE data from the other chip.

» Master waits for the other IC to ACKNOWLEDGE (using one biitat it recognized

its address and is ready to communicate.

« If the other IC acknowledges all is OK, data can be transteaise communication

will be stopped or master resends the address again.

» Every time master sends an 8-bit words of data and aftely&#bit data word the

master IC expects the receiving IC to acknowledge the teamnsfyoing OK.

* When all the data is finished the master chip must free upubehd it does that by

a special message called 'STOP".

Every transaction on the 12C bus is nine bit long, having at 8dita and one bit acknowl-
edge bit. Each byte has to have its acknowledge bit, and dagale transferred MSB first.

Below figure shows how an 12C bus look
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Figure 4.1: 12C BUS.[2]

4.1.2.1 VALID DATA

During transmission of data or the address on the SDA line sladuld be stable when the
SCL have a HIGH value. The change of data line from HIGH to LOW.OW to HIGH

can happen only when the clock signal is LOW.Below figure shthe validity of data

o [ \

SCL | \
| | |
| data line | change |
| stable; | of data |
| data valid | allowed | MBCE21

Figure 4.2: Bit Transfer on 12C Bus.[2]

4.1.2.2 START and STOP conditions

To know when the communication to begin and when to end thed@€ protocol has

START and STOP special conditions.

« Start condition
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— A change in data value from HIGH to LOW while SCL is HIGH is indted as
START condition.

» Stop Condition

— A change in data value from LOW to HIGH while SCL is HIGH is indted as
STOP condition.

below figure shows how the STOP and START conditions are gésar

|

. S N Vg

[ [

)

SCL

START condition STOP condition wBCo22

Figure 4.3: Start and Stop conditions.[2]

Note:-If data changes when SCL is HIGH it represents START or STORUitions.
Between START and STOP data should not change when SCL is lolGétwise it con-
sidered as a unnecessary START or STOP condition.

START and STOP conditions are always generated by mastder START condi-
tion is generated bus is considered as busy and after STQRtioons generated bus is
considered as free. Master can send repeated START carglftio continuous transfer of

data.

4.1.2.3 DATA TRANSFER

Every time you put the data on the SDA line it should be 8-bigloThere is no restriction
of how many such bytes you put. Every byte should be followedrbacknowledgement
bit. While transferring data MSB bit should be transfereditfitfSlave can hold the clock

line LOW and keep the master in to wait state until it receiesdata.
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4.1.2.4 Acknowledge

After every byte master generates an acknowledge cloclecyauring acknowledge the
Transmitter releases the SDA line and receiver must pullndtve SDA line during ac-

knowledge clock cycle. The acknowledge bit has to satiséydita validity condition.

N L Ll
| MSB acknowledgement acknowledgement | Sr

signal from slave signal from receiver |

||

| | ~byte complete,
| | interrupt within slave
I

|

|

(.

clock line held low while I
interrupts are serviced I

A 3l 1 2 sz f 7 8 9 l 1 2 3_:3 9 -4
LsrJ ACK ACK Lerd
START or STOP or
repeated START repeated START
condition condition
MScCe08
Figure 4.4: Data Transfer on the 12C Bus.[2]
.
DATA OUTPUT | \ | / X >< o >< /
BY TRANSMITTER | I .
| | not acknowledge N\
DATA OUTPUT 1 o
BY RECEIVER | I
| | acknowledge
SCL FROM

MASTER (. 1 2 . M

S
L-J clock pulse for

START
condition acknowledge ment
MBC602

Figure 4.5: Acknowledge on the 12C Bus.[2]

4.1.2.5 Data Transfers using 7-bit Addresses

After generation of START condition Slave addresses oftleigpit is transferred fallowed
by an data direction bit R/S bit.

If R/S =0, it says master will send data i.e master transmderand

if R/S =1, it says master will receive data i.e master receioee.

Data transfer is always terminated by a STOP condition wisigfenerated by master.
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START ADDRESS RW AC DATA AC DATA ACK STOP
condition condition
MBC604

Figure 4.6: Complete Data Transfer.[2]

4.1.3 12C for HEPD

In order to transfer the data from one microcontroller tceotlve need to have some kind
of protocol to communicate between two devices. So in omeend the health data from
the HEPD to the OBC we have chosen the I2C communicationeSimchealth data is not
much and is served for every few seconds I2C is the best apipro@nd another reason
of choosing the 12C is I12C is the Main Bus which communicatthwiach and every other

microcontroller. For the main bus OBC is the master and ewtrgr device is slave.

4.1.3.1 Experiments Performed

We have chosen

OBC microcontroller which is MSP430 as the Master &

HEPD microcontroller which is Stellaris LM3S9B92 as thev8la
HEPD as a SLAVE

HEPD is a Stellaris microcontroller which has two 12C modul2C0 and 12C1. We
have used 12C1 to communicate with master which is MSP430.

In this setup master will send 100 bytes of data to he slavesjtead of 100KHz.
The correctness of the communication is checked using thBTUéonnection which is
connected to slave. UART setup is done in slave device swtdhevery time you send

data to slave it will display the same on the monitor.
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Computer monitor Displaying Sent data

Received Data =10
Received Data =20
Received Data =30
Received Data =40
Received Data =50

UART

Master 12¢ BUS\ Slave
MSP430 g Stellaris

\4

Figure 4.7: 12C Setup

Results and Observations

ClockSpeed =100KHz

Noof Bytestobetransferred =100Bytes.

In 12C communication for every byte you transfer you will bde send an acknowledge
bit.

So totally we have 100 bytes + one bit for every byte you tramsf

Sonumber of bitstransf erred =900bits

900
sotheTransfer rate_ﬁ)

=9ms.

[2C communication between MSP430 and Stellaris is perfdrarl it is successfully

done. No errors were found in data transfer.

4.2 SPI

Serial Peripheral interface is developed by Motorola andls® called four-wire serial

bus. Used for communicating the microprocessor/micraotiet to the peripheral devices.
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Operates in full Duplex mode and communication happens stenglave mode where the
master device initiates the data frame. SPI is also calleslyashronous Serial Interface
(SSI).

Stellaris microcontroller has two SSI modules with follogifeatures:
* Programmable interface operation .
» Master or Slave Operation.
* Programmable bit rate.

» Two separate FIFO’s one for Transmit and one for receivé éécbits wide and 8

locations deep.
« Data size is programmable and it can vary from 4 to 16 bitewid
» Standard FIFO-based interrupts and End-of-Transmissterrupt .

« Efficient way of transferring data usingdMA.[3]

4.2.1 Basic Connection

SPI have 4 signal wires

« Master Out Slave In (MOSI)

— Signal gets generated from master and slave acts as a receive

e Master In Slave Out (MISO)

— Signal gets generated from slave and master acts as a receive

 Serial Clock (SCLK or SCK)

— Signal is generated by master to synchronize data transferelen master and

slave.
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» Slave Select or Chip Select

— Signal is generated by master and is used to select the staveed It is an

active low signal.

MOs| —>| spI

SPI Master ~ MISO[€ SDO spislave
SCLK —>| sck
ss > Cs

Figure 4.8: SPI basic connection

Among the four wires two wires MOSI & MISO are considered todaga line signal and

the other two are called control signals.

4.2.2 Single Master and Single Slave

In this type of configuration one device acts as master andttiex acts as a slave. Master
device controls the data flow by generating the clock signdlselecting the slave.

4.2.2.1 How do they Communicate

Master device first generates the clock. The master thectséihe slave for communicating
by pulling the chip select signal low. In a multi master couafation all other slaves will

be tri-stated and a single slave whose address is matchedngcted to the master.
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MASTER SLAVE
cs

Y

MOSI

MISO

SCLK
— — — >

Figure 4.9: Communication using two Shift Registers.[3]

This is a simple shift register configuration. Full-duplestaltransmission is possible
here during each clock cycle. Master sends on bit of data®Wi@SI line and slave reads
that bit and it transmits one bit of data simultaneously aNHSO line and master reads
that data. First MSB bit from the master shifts out and siamgbusly in LSB bit it receives
the new data. After say 8-bits of data has been transferesthile say a byte has transfered
from master to slave and from slave to master. If user wantedu communication i.e
more data to be transferred the user loads the new data ie shift register. Data size is

not limited to 8-bits.

4.2.3 Other Configurations

If the microcontroller wants to talk to multiple periphesahere are two ways to setup this

» Cascaded slaves or daisy-chained slaves.

 Independent slaves or parallel configuration.

Daisy-chained slave configuration:
In this configuration all the clock lines and chip select avarected together. Data

flow out from master microcontroller and through all perigie connected to the chain
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and comes to master microcontroller. The data out of firstes@evice is connected to

second slave device and the data out of second slave devioangcted to third and this

continues and finally the last slave device data out is cdedédo the master device. Thus

forming a wide shift register. Only one chip select is enoungtiis configuration.

SCLK »| sck
MOs! sl
MISO sbo

SS cs

SPI MASTER

SCK

A4

SDI

SDO

cs

SDI

SDO

cs

SCK

A4

SDI

SDO

cs

SPI
SLAVE - 1

SPI
SLAVE - 2

SPI
SLAVE - 3

SPI
SLAVE - 4

Figure 4.10: Daisy-Chain Configuration.[3]

Independent slaves :

All the clock lines (SCLK) are connected together.
 All the MISO data lines are connected together.

» All the MOSI data lines are connected together.

» But the Chip Select (CS) pin from each peripheral must beneoted to a separate

Slave Select (SS) pin on the master-microcontroller.
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SCLK »| SCK

MOsI SDI
SPI
MISO SDO SLAVE - 1
SS1 cs

SS2
SS3
Ss4

SPI MASTER SCK
SDI
SPI
SLAVE - 2
SDO

cs

SCK

SPI
SLAVE - 3
sle)

cs

SCK

5DI SPI
SLAVE - 4

SDO

cs

Figure 4.11: Independent Slave Configuration.[3]

4.2.4 SPIfor HEPD

In order to communicate with external memory (SD-CARD) weéhahosen simple one

master and one slave SPI interface.

4.2.4.1 SD-Card Pin Configuration

Micro SD-CARD has 8 pins and the following figure gives theadlstof the micro SD-

CARD pin configuration and how are they used.
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Q

Figure 4.12: Micro SD-Card Pin Diagram

| Micro SD-pin| Name] 1/O | Description |
1 NC - Unused
2 nCS | | | SD-Card chip select (active LOW)
3 DI I SPI Serial Data in (MOSI)
4 VDD | S Power
5 CLK | 1 SPI Serial Clock (SCLK)
6 VSS | S Ground
7 DO | O SPI Serial Data Out (MISO)
8 NC - Unused

Table 4.1: Pin Description

4.2.4.2 Interface between Microcontroller and the SD-CARD

Stellaris has port A which can be used for SPI communicatielovb figure shows the

interface between stellaris microcontroller and the SDRDA

+3.3V +3.3V

10K 10K

NC

cs

DI
MICROCONTROLLER VoD micro SD
CLK

VSS

DO

RSV

Y.V

Y

A

10K

Figure 4.13: Interface between Stellaris and the SD-CARD
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4.2.4.3 Fat-File System

A file system defines the structure and the rules used to rega,\and maintain infor-
mation stored on a disk. One of the serious drawback in thanwites are deleted and
new files written to the media, directory fragments tend tcopee scattered over the en-
tire media, making reading and writing a slow process. dtitiwe thought of writing the
Histogram data in to SD-CARD using Fat-File System. Sineedéta rates for writing is
too high so we thought of going for RAW data only. Another mgafor this is the data was
of same type like the HEPD data and the health data so we thetgban maintain it by
using some extra bits to get the details like time stampirththa type of data.[5]

Timings in Fat-File System

Timerequiredtocreateanewfile=25ms.
Timerequiredtowrite50Bytesof data =20ms
TimerequiredtowritelKByteof data =20ms

Timerequiredtowrite54MBytesof data =180ms

we ca see the difference when file size increases seek timeas®es and the speed
decreases.
Timing for writing RAW data

Time required to write 50 Bytes of data = 0.8 ms best and thestwase is 3 ms.

4.3 Results and Observations

By interfacing the microcontroller and the SD-CARD and wgt some data on to it we

found no errors and the SPI communication was successful.
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WRITING TIME on SD Card:

Figure 4.14: Writing to SD-Card

Observations Operating Stellaris at 80 MHz for RAW Data

» Time to write 500 Bytes is 0.8 ms (typical) and 3.5 ms (worst)
» Response time for write command is 3,08 (typical).

» Data response from micro SD is 1.43 (typical).

READING TIME from SD Card:

M
'
'
'
'
:
:
’
’
:
'
'
i

Figure 4.15: Reading From SD-CARD

» Time to Read 500 Bytes = 1 ms (typical).

* Response time for Read command is 4488 typical).
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Chapter 5

FRAM

5.1 Introduction

We thought of going for FRAM because the read and write timeFIRAM is very less
when compared to SD-CARD.

Ferroelectric memory, FRAM (Ferroelectric RAM) is a nonlatde memory offers
* high-speed writing.
* low power consumption and

* long rewriting endurance.

It is a nonvolatile but operates in other respects as a RAM.réad and write timings are
almost same. The FRAM we have chosen is a product of RAMTRQN@FRAM IC is
FM18WO08.

This FRAM has

¢ 15-Adress lines
+ 8 data lines and

* 3 control lines.

The three control lines are active low and are
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« OE (Output Enable)
* WE (Write Enable
* CE (Chip Enable).

OE is used for reading the data and WE is used for writing daha after CE is active.

Below shows the difference between conventional SRAM ard-RAM signaling[4]

Valid Strobing of /CE

CE X / X /
FRAM
Signaling ~ Address < At > <I>—
“a “a
s GEECID S GRNCI o
Invalid Strobing of /CE
CE \ /
SRAM
Signaling Address_( - X = >_
N a

Data 4< X D1 X D2 >_

Figure 5.1: Chip enable and memory address relationship.[4

5.2 Memory Operations

* Read

* Write

5.2.1 Read Operation

* First thing we have to do is to load the address on to the addirges.

* Second we have to make the CE bit active and this makes thmesxlid latched.After

the address has been latched, the address value may be d¢hgagesatisfying the
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hold time parameter. Unlike an SRAM, changing address galik have no effect

on the memory operation after the address is latched.

* Now third step make OE bit active, and the data for the cpoeding address you

can read now.

5.2.2 Write Operation

* First thing we have to do is to load the data on to the datsline

* FM18WO08 supports both CE active and WE active controlletiensycles. In both

cases, the address is latched on the falling edge of CE.
CE Controlled

In a CE controlled write, the WE signal is made active pridoéginning the memory
cycle. That is, WE is low when CE falls. In this case, the pagibhs the memory
cycle as a write.

WE Controlled

In a WE controlled write, the memory cycle begins on the figiledge of CE. The
WE signal falls after the falling edge of CE. Therefore, themmory cycle begins as

aread.
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Read Cycle Timing

lCA "R:
CE ¥
" = Ly |<—
Ly -
aoas | | X X X |
tog
OE
lCMZ
DQO-7
[ 1
Write Cycle Timing - /CE Controlled Timing
(% -
B L ———_— r
_— —
E 1/ / N
= |-
o Wl "]
A0-14 X X 74 |
. tyus| - =l
WE
OE AT
Write Cycle Timing - /WE Controlled Timing
fos -

-——————— t  —————————

CE o
.‘ - Ly |4
lg e
Ao-1a | X X |
= | lys !4- - et
VV—E M\ ft——— lyyp————ml
of  \\\ Wi
- -ty - by
DQO-7 l:—\
out
DQO-7
in

Figure 5.

2: Write Cycles.[4]
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5.3 Interface Between Stellaris and FRAM

FM18WO08 is a parallel FRAM. While interfacing we need 15 addrlines and 8 data lines

and 3 control line to connect the FRAM, below figure shows yow lthe interface looks

like

FM18W08

Stellaris OF

Figure 5.3: Interface between stellaris and FRAM

5.4 Topology Considered

For this setup we thought of new topology and is shown below

FRAM 1

SD-CARD

A
Y

MICROCONTROLLER 1 MICROCONTROLLER 2 [«

FRAM 2

Figure 5.4: FRAM based Topology

.In this setup while microcontroller 1 sends data to FRAM 1¢rotontroller 2 will

read the data from FRAM 2 and store it in SD-CARD and vice versa
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Problems with this topology

In this topology we need to have buffers for address,datacanttol lines and that

makes it complex.

5.5 Results and Conclusion

The writing speed and th reading speed are as quick as SRAM.diiference is before
writing and reading we need to make CE active. FRAM is notuldef our design because
of complexity caused by the buffers and the limited memorg $n the markets (max 1

MByte).
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Chapter 6

Test Case to Check this Algorithm

In order to check this algorithm we have used two approaches
* FPGA

* MATLAB

6.1 FPGA

In this method we have used SPARTAN-3e FPGA board havingitlRAC [6]. In order

to test this algorithm we have generated a test case as sheom bsing FPGA DAC

e 1o

Figure 6.1: FPGA DAC Output
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to generate this output we have considered only last MSB Sebthe output ranges
from 0-31 viots.Why only last 5-bits because the outputagdtresolution of DAC was too

close enough to be recognized by the stellaris ADC whichtsasan resolution.

Vmax=Vmin
1024
3

~1024

=2.9mv

Resolutionof thestellarisADC =

So Resolution of this ADC is 2.9 mv that means any signal iiri@s below this voltage
| cannot predict correct output Digital data.

Now assume that we have an energy conversion table for tha€edntput values,
that is from 0-31. So we have an energy table i.e 1-D array adr&#gy values, and for

simplicity we have loaded these 32 locations form 0-31 a& 0+8y.

e.g-

the zero address value have the energy value O

one address value have the energy value 1

31%taddress value have the energy value 31.

Now with this setup it is very easy to test the correctnessiefalgorithm. Now if we
apply this signal as an input to the ADC of stellaris then dudd get the output from 0-31

and it should continue.
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Results and Conclusion for this Approach

| ADC Output| ADC Output| ADC Output| ADC Output| ADC Output]|

0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 6 6
7 7 7 7 7
8 8 8 8 8
9 9 9 9 9
10 10 10 10 10
11 11 11 11 11
12 12 12 12 12
13 13 13 13 13
14 14 14 14 14
15 15 15 15 15
17 17 17 17 17
18 18 18 18 18
19 19 19 19 19
20 20 20 20 20
21 21 21 21 21
22 22 22 22 22
23 23 23 23 23
24 24 24 24 24
25 25 25 25 25
26 26 26 26 26
28 28 28 28 28
29 29 29 29 29
30 30 30 30 30
31 31 31 31 31
31 31 31 31 31

Table 6.1: ADC output for this input Signal

from above table we can see the outputs are not continuotesathsve should get 0-
31 continuously. But this is acceptable in any real systenthvis having some Non-
Linearities in the system.

Problem with this approach was the FPGA DAC output rise tiras t@o high and is in
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us. So we could not able to check it for Higher frequencies.

Figure 6.2:

and this experimental setup was made for only 12.08 KHz wisiet a very less from

the operating frequency of an real PAYLOAD system.

6.2 Matlab

We have mimic this algorithm in matlab. We have run this athan in matlab and in the
Stellaris microcontroller, and we got the results, and lmbtthem were almost same when

driven by a particular frequency of a sinusoidal signal.

Stellaris

Matlab
e v
2
2 e
2 ‘
2
|
I el Il mnmnnuserenl R —
NIRRT TRA TR LRI RTIRTTHLTLT L o (I HNIRININIRIEEIR] (HIN R MR R IR il
B R U UV OO N NP O W W Woa e e N N U W R RV RS N W O
PG\POPOI—Q'P‘OPG“O‘ P‘U\POPU\V’OHU‘PDP‘C‘POPO‘Z
] a =]
Stellaris Matlab
» -
g 2
o
[
|
| | |
w | =] w
2| 2 |
| |
— - ” —gtad ¥ — e ~ " - " - ot ¥
o =, R, 4 ALVAAAA' A L] vV W V
o P e W N oW » w o ® B T
vereERRREsuSSS I ER R} PREREEEEVE $ Ry

Figure 6.3: Comparison of outputs
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Chapter 7

Conclusion and Future Work

7.0.1 Conclusion

Different topologies has been considered for transferoihgata between subsystems and
an efficient topology has been chosen in terms of data tressifel the hardware. Function-

alities such as sampling the input data, generating thegtia and storing the histogram

data in the external memory has been implemented sucdgssf2C interface between

Stellaris and MSP430 has been done.

7.0.2 Future Work

Service
connector

A

SPI

12C

A\ 4

ADCS

Memory

SPI

CcoMM <

SPI

>

¢ Y

Memory
SD-CARD

HS Downlink

Y

HEPD Data

EPS + Memory
Management

SPI T

Beacon Downlink

(Analog)

A
SPI

SPI

HX TX (CMX)

RX (ADF)

1200 bps

RX (ADF)
backup 300 bps

Figure 7.1: New Topology
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This topology is has to be tested on a PCB. SPI communicatiwden HEPD and
MSP430 has to be done. Integration and interfacing of diffesensors like current, volt-

age and temperature has to be done.
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Appendix A

ADC

These are some of the API functions used for ADC in order tdigare it.
/I Enable the clock to the ADC module
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC);

//Configure the ADC to sample at 500KSps
SysCtIADCSpeedSet(SYSCTL_SETO_ADCSPEED_500KSPS);
// Disable sample sequences
ADCSequenceDisable(unsigned lon@ase unsigned longilSequenceNun
Parameters:
ulBaseis the base address of the ADC module.
ulSequenceNums the sample sequence number.
/I Configure sample sequence
ADCSequenceConfigure(unsigned laniBase
unsigned longilSequenceNum
unsigned lon@ilTrigger,
unsigned longilPriority );
Parameters:
ulBaseis the base address of the ADC module.

ulSequenceNumis the sample sequence number.
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ulTrigger is the trigger source that initiates the sample
sequence; must be one of the ADC_TRIGGERalues.
ulPriority is the relative priority of the sample sequence
with respect to the other sample sequences.
/I Configure sample sequence
ADCSequenceStepConfigure (unsigned lafigase
unsigned longilSequenceNum
unsigned lon@ilStep,
unsigned longilConfig) ;
Parameters:
ulBaseis the base address of the ADC module.
ulSequenceNumis the sample sequence number.
ulStepis the step to be configured.
ulConfig is the configuration of this step; must be a logical OR of
ADC_CTL_TS, ADC_CTL_IE, ADC_CTL_END, ADC_CTL_D,
one of the input channel selects (ADC_CTL_CHO through
ADC_CTL_CH23), and one of the digital comparator selects
(ADC_CTL_CMPO through ADC_CTL_CMP7).
// Enable the interrupt
ADClIntEnable(unsigned longiBase
unsigned longulSequenceNun;
Parameters:
ulBaseis the base address of the ADC module.
ulSequenceNums the sample sequence number.
/I Retrieve data from sample sequence
ADCSequenceDataGet(unsigned laniBase,
unsigned longilSequenceNum,

unsigned longpulBuffer );
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Parameters:
ulBaseis the base address of the ADC module.
ulSequenceNums the sample sequence number.

pulBuffer is the address where the data is stored.
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Appendix B

LDMA

These are some of the API functions usedd@MA in order to configure it.
// Enable the uDMA controller peripheral.
SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);

//Enable the uDMA controller.
uDMAEnNable();
//Set the base address for the channel control table.
uDMAControlBaseSet(voidgControlTable) ;
Parameters:

pControlTable is a pointer to the 1024-byte-aligned base

address of the uDMA channel con- trol table.
//Enable attributes of a uDMA channel.
uDMAChannelAttributeEnable(unsigned loatChannelNum,
unsigned longilAttr );

Parameters:

ulChannelNum is the channel to configure.

ulAttr is a combination of attributes for the channel.
TheulAttr parameter is the logical OR of any of the following:

UDMA ATTR_USEBURST is used to restrict transfers to use
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only burst mode.

UDMA ATTR_ALTSELECT is used to select the alternate control
structure for this channel (it is very unlikely
that this flag should be used).

UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.

UDMA_ATTR_REQMASK is used to mask the hardware request signal

from the peripheral for this channel.

Il Configure control parameters for DMA channel

uDMAChannelControlSet(unsigned longChannelStructindex,

unsigned longilControl );
Parameters:
ulChannelStructindex is the logical OR of the uDMA channel
number with UDMA_PRI_SELECT or
UDMA_ALT_SELECT.
ulControl is logical OR of several control values to set the
control parameters for the channel.
/I Set the transfer parameters for a uDMA channel contratstre
uDMAChannelTransferSet(unsigned long€hannelStructindex,
unsigned longilMode,
void *pvSrcAddr,
void *pvDstAddr,
unsigned longil TransferSize);
Parameters:
ulChannelStructindex is the logical OR of the uDMA channel
number with UDMA_PRI_SELECT or
UDMA_ALT_SELECT.
ulMode is the type of uDMA transfer.

pvSrcAddr is the source address for the transfer.
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pvDstAddr is the destination address for the transfer.
ulTransferSize is the number of data items to transfer.
// Enable a uDMA channel for operation.
uDMAChannelEnable(unsigned lom¢ChannelNum);
Parameters:

ulChannelNum is the channel number to enable.
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Appendix C

GPIO

These are some of the API functions used@®t1O in order to configure it.
// Enable the peripherals .
SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);

//Configures pin(s) for use as GPIO inputs.
GPIOPiInTypeGPIOInput(unsigned longort,
unsigned chaucPins);
Parameters:
ulPort is the base address of the GPIO port.
ucPinsis the bit-packed representation of the pin(s).
/I Set the interrupt type for the specified pin(s).
GPIOIntTypeSet(unsigned longPort,
unsigned chaucPins,
unsigned longilintType);
Parameters:
ulPort is the base address of the GPIO port.
ucPinsis the bit-packed representation of the pin(s).
ullntType specifies the type of interrupt trigger mechanism.

ullntType can be one of the following values:
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GPIO_FALLING_EDGE
GPIO_RISING_EDGE
GPIO_BOTH_EDGES
GPIO_LOW_LEVEL
GPIO_HIGH_LEVEL.
// Enable interrupts for the specified pin(s).
GPIOPinIntEnable(unsigned londPort, unsigned chancPins);
Parameters:
ulPort is the base address of the GPIO port.
ucPinsis the bit-packed representation of the pin(s).
// Enable the Port interrupts
IntEnable(INT_GPIOB);
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Appendix D

Timer

These are some of the API functions usedTner in order to configure it.
// Enable the peripherals used by this example.
SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMERO);

/I Configure the timer(s).
TimerConfigure(unsigned longBase unsigned longilConfig);
Parameters:
ulBaseis the base address of the timer module.
ulConfig is the configuration for the timer.
/I Set the timer load value.

TimerLoadSet(unsigned londBase unsigned longilTimer, unsigned longilValue)

Parameters:
ulBaseis the base address of the timer module.
ulTimer specifies the timer(s) to adjust; must be one of
TIMER_A, TIMER_B, or TIMER_BOTH. Only TIMER_A should
be used when the timer is configured for full-width operation
ulValue is the load value.

// Enable individual timer interrupt sources.
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TimerIntEnable(unsigned longBase unsigned longillintFlags)

ulBaseis the base address of the timer module.

ullntFlags is the bit mask of the interrupt sources to be enabled.
ulintFlags parameter must be the logical OR of any combination of theviehg:
TIMER_CAPB_EVENT - Capture B event interrupt
TIMER_CAPB_MATCH - Capture B match interrupt
TIMER_TIMB_TIMEOUT - Timer B timeout interrupt
TIMER_RTC_MATCH - RTC interrupt mask
TIMER_CAPA_EVENT - Capture A event interrupt
TIMER_CAPA_MATCH - Capture A match interrupt
TIMER_TIMA_TIMEOUT - Timer A timeout interrupt.
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Appendix E

1I2C communication

Figure E.1: 12C Communication

The above figure configuration is made to check the 12C comeatinon between Stellaris

and the MSP430.
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Appendix F

Experimental Setup for Algorithm

Figure F.1: FPGA DAC to Stellaris ADC

The above setup is made in order to check the correctnesg @figlorithm. In this setup

the output FPGA DAC is connected to the input of stellaris ADC
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