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ABSTRACT

KEYWORDS: HDD, SSD, PCI Express, NVM Express, Nand Flash Controller

The use of SSDs with traditional disk-based I/O subsystem causes unnecessary laten-

cies and translations in the Read Write commands. In order to completely utilize the per-

formance of SSDs a Non Volatile Memory Subsystem was designed, based on the NVM

Express Specification. The communication to this I/O subsystem is through PCI Express

interface and the command set is based on NVMe 1.0c Specification. The designed sub-

system typically consists of PCIe Core, PCIe controller , NVMe controller, NAND Flash

Controller and several NAND Chips. The present project deals with the design and imple-

mentation of PCIe controller and the NVMe controller. The PCIe controller was designed

as a generic bridge between any PCIe device and the PCIe Core. The NVMe controller

was designed as a PCIe device which implements the NVMe Specification.
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CHAPTER 1

Introduction

1.1 Overview of Processor Architecture

The overview of the processor architecture is shown in the figure 1.1

Figure 1.1: Overview of Processor Architecture



Overview of Processor

The processor design team in the Reconfigurable and Intelligent Systems Engineering

(RISE) lab has been actively involved in the design of a high-end in-house processor for

defence and security related applications. The figure 1.1 shows an overall view of the tar-

geted processor. The processor system has a quad-core architecture, with a support for two

levels of cache hierarchy and a single on-chip DRAM. It implements cache coherency at

L1 cache level, with coherency bus. The CPU core is based on 64 bit PowerPC Instruc-

tion Set Architecture. It supports “dual-issue” and “out of order execution”. A Memory

Management Unit was designed for an efficient data transfer between the Processor Core

and the Main Memory (DRAM). It supports NVM Express based I/O Subsystem with a

PCI Express interface. This I/O subsystem typically implements the “File System” for the

processor.

My Contribution

In order to store large amounts of data, an NVM Express based I/O subsystem was de-

signed, which functions as a back end for On-chip DRAM.PCI Express has been used as

the interface between the processor and the NVM Subsystem. The highlighted portions in

the figure 1.1 shows my contribution to the NVM Subsystem.

1.2 Overview of contents

Chapter 2 explains the motivation for designing an NVM Express based I/O subsystem,

with a PCIe interface to it. It explains the overall architecture of NVM subsystem

and concludes with a brief description of the language used to code the design.
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Chapter 3 describes the design and implementation of PCIe controller.

Chapter 4 gives a brief introduction to NVM Express 1.0c specification.

Chapter 5 includes the design and implementation of NVM Express controller.

Chapter 6 concludes with a short description of the future prospects of the designed

subsystem.

Appendix A provides little more insight into the proposed modifications to the NVM

Subsystem, with the inclusion of FTL unit.
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CHAPTER 2

Background

2.1 PCIe as an SSD Interface

In the Enterprise and Client Systems, PCIe based SSDs are emerging as a back-end for

DRAMS. The main factors for the wide-spread adoption of PCIe as an interface for SSDs

are given below :

PCIe is High Performance

1. It is a full-duplex system , which can support multiple outstanding requests,
and out of order processing.

2. It has a scalable port width ranging from single lane (x1) to sixteen lane (x16).

3. It also has a scalable link speed. Links speeds include 2.5GTps , 5GTps ,8GTps
.

4. It is a direct attach to CPU subsystem hence, it has no HBA latency.

PCIe is Low Cost

1. It is a high volume commodity interconnect.

2. It has less number of pins. Hence lower area and hence lower cost.

3. It is a direct attach to CPU subsystem hence, it eliminates HBA cost.

PCIe also provides effective Power Management

1. Direct attachment to CPU subsystem eliminates HBA power.

2. It implements power budgeting and Dynamic Power Allocation [1].



2.2 Need For NVM Express

Standardized Interface

• A standardized interface is need for the easy adoption of PCIe based SSDs. NVM
express specification provides this standard interface for PCIe SSDs.

Scalable

• NVM Express is scalable host controller interface standard, which is designed for
Enterprise and Client systems that use PCI express SSDs.

Efficient Command Set

• It provides a simple, streamlined and efficient command set which eliminates the
legacy HDD to SSD command conversion overhead.

Optimized Register Interface

• It provides an optimized register interface, that allows the host software to commu-
nicate with the non volatile memory subsystem.

Industry Support

• It was developed by industry consortium of 80+ members and hence enjoys a very
wide industry support.

5



2.3 Key Attributes of NVM Express Controller

1. It does not require uncacheable/MIMO register reads in the command issue or com-
mand completion path. Each such access would otherwise take 2000 clock cycles.

2. A maximum of one MMIO register write is necessary in the command issue path.

3. Support for up to 64K I/O queues, with each queue supporting up to 64K commands.

4. Simplified command decoding and processing with fixed size(64B) command for-
mat.

5. All information to complete a 4KB read request is included in the 64B command
itself, ensuring efficient small I/O operation.

6. Support for 2k MSI-X interrupts or 32 multiple message MSI.

7. Support for simple and efficient Interrupt Aggregation.

2.4 Non Volatile Memory Sub-system

The present developed Non Volatile Memory Sub-system consists of a PCIe Core , PCIe

controller, NVMe Controller and Nand Flash Controller to access the NAND Flash Chips.

The Sub-system is shown in the figure 2.1

Figure 2.1: NVM Subsystem

The Xilinx 1-lane Integrated Endpoint Block was chosen as the PCI Express Core Archi-

tecture. It provides a user interface of width 32 bits. Link speeds of up to 2.5Gb/s is
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supported. The core provides PCIe Express Base Specification compliant with v1.1 . The

detail es about the core can be found in the Endpoint Block User Guide [2]

A PCIe controller was developed as a generic interface between any PCIe device and the

Core. It also provides a device interface of width 32 bits.

The NVMe controller is implemented as a PCIe device. It provides a 32 bit interface on

both PCIe side and Nand Flash Controller side. The controller is compliant to NVM Ex-

press 1.0c Specification.

An NVMe compliant Nand Flash Controller was developed in order to process the NAND

Flash Commands. It provides a 32 bit interface on NVMe side and supports 16 bit in-

terface to NAND Flash chips. Specifically Micron’s MT29F2G16A Nand Flash chips are

targeted.

2.5 BlueSpec System Verilog Language Background

BlueSpec System Verilog is a Hardware centric language based on industry standard Sys-

temVerilog and Verilog [3]. It uses Rules and interface methods for behavioral description,

which adds a powerful way to express complex concurrency and control :

• Across multiple shared resources.

• Across module boundaries.

Parallelization

• Concurrent behavior is expressed implicitly.

• It has a traditional hardware semantic model of cooperating FSMs.

7



• Rules express concurrent operations by simply describing the conditions under which
the state element(s) are updated.

• Rules are implemented as unsequenced atomic transactions.

• Compiler introduces the scheduling and the muxing for the shared resources.

Level of Abstraction

• BSV provides significantly higher level of abstraction than Verilog, SystemVerilog,
VHDL and SystemC.

• It provides Behavioral description through : Rules and Interface Methods.

• Various attributes for Structural description are:
– High level abstraction types.

– Powerful Static checking.

– Powerful parametrization.

– Powerful Static elaboration.

Standalone Function Libraries

BSV has a large set of function libraries, some of them are provided below.

• It has Data Containers such as FIFO, registers, BRAMs etc ..

• Circuits such LFSR and completion buffer [4].

• Interface types, GET, PUT transactors.

• Multiple Clock domain circuits such as synchronizers.

• Bus interfaces such as common data bus , Z-bus etc ..

8



CHAPTER 3

PCIe Controller Implementation

The PCIe Controller provides a medium for the PCIe Endpoint device (User Application)

to communicate with the PCIe Core. The controller receives Transaction Level Pack-

ets(TLPs) from the Core, decodes them and sends required control and data signals to the

Endpoint device. It receives control and data information from the device, forms TLPs and

then sends to the Core. In this way it forms a bridge between any PCIe device and the

PCIe Core. The Core side interface is designed to suit the interface of Xilinx PCIe Core.

The device side interface is made generic for any endpoint device to use. In the present

context the NVMe Controller is the endpoint device. The controller interfaces and module

partitions are shown as a block diagram in the figure 3.1.

Figure 3.1: PCIe Modules and Interfaces



3.1 Interface Definitions

The controller provides several interfaces on the Core side to connect with the Xilinx

PCIe core. It provides four interfaces on the device side to connect with the endpoint

device. Core side and the device side interfaces are explained in this section.

3.1.1 Receive Interface

This interface provides a means for the controller to Receive TLPs from the Core’s

Transaction Layer. The Request Handler module utilizes this interface to get the TLPs

from the core, process them and send the required data and control signals to the device.

The device can implement as many as “seven” different memory mapped units with the

help of the 7-bit Base Address Register. However, this controller is designed to support

only one Memory unit. Receive interface signals are shown in the table 3.1.

Table 3.1: Receive Interface Signals

Signal Direction Description

wr rx tlast In Signals the end of packet. Valid only if rx tvalid
is also asserted.

wr rx tdata[31:0] In Packet data being received.
Valid only if rx tvalid

wr rx tvalid In Indicates that the core is presenting valid data on
the rx tdata[31:0]

rg rx tready Out Indicates that the device is ready to accept data
on rx tdata[31:0].

wr bar hit[6:0] In Indicates BAR(s) targeted by the current receive trans-
action. The designed controller supports only

a single BAR. Hence, the valid value for this field
is zero.
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3.1.2 Transmit Interface

This interface provides a means for the controller to send the TLPs to the Core. The

Completer-Requester module utilizes this interface to send the device requested Read

Write or Completion TLPs to the core. The detailed description of the various signals

in the interface is provided in the table 3.2.

Table 3.2: Transmit Interface Signals

Signal Direction Description

rg tx tdata[31:0] Out Packet data to be transmitted

rg tx tvalid Out Indicates that the controller is presenting
Valid data on tx tdata[31:0]

wr tx tready In Indicates that the core is ready to accept
data. The simultaneous assertion of valid

and ready, marks the successful transfer of
one data beat on tdata[31:0].

rg tx tlast Out Signals the end of a packet. Valid only
along with assertion of rg tx tvalid.

rg src dsc Out Source Discontinue
Indicates that the device has discontinued

the transaction

wr tx buf av[5:0] In Indicates the number of transmit buffers
available in the core. Each free transmit

buffer can accommodate up to the supported Max
Payload Size.

wr tx cfg req In Configuration Request
Asserted when the core is ready to transmit a
Configuration Completion or other internally

generated TLP.

rg tx cfg gnt Out Configuration Grant
Asserted by the device (controller) in respo-

se to tx cfg req, to allow the core to
transmit an internally generated TLP.

11



3.1.3 Configuration Interface

The PCIe controller uses the Configuration interface to inspect the state of the PCIe

Configuration space. The controller provides a 10-bit configuration address, which selects

one of the 1024 configuration space DWORD registers. The various signals used in this

interface are defined in the table 3.3

Table 3.3: Configuration Interface Signals

Signal Direction Description

wr cfg do[31:0] In A 32-bit data output port used to obtain read data
from the configuration space inside the core.

wr rd wt done In Indicates a successful completion of the user
configuration register access.

rg cfg dwaddr[9:0] Out Address port used to provide a configuration reg-
ister DWord address during its access

rg cfg rd en Read enable for configuration register access

wr cfg bus number In Provides assigned bus number for the device.
b[7:0] Used in bus number field of out going TLPs.

wr cfg device number In Provides assigned device number for the device.
b[7:0] Used in device number field of out going TLPs.

wr cfg function number In Provides assigned function number for the device.
b[7:0] Used in function number field of out going TLPs.

3.1.4 Interrupt Interface - Core Side

The interface is used to access the core’s interrupt related attributes. This interface

is also a part of the Configuration interface, however, it has been separated from it for

abstracting out the interrupt functionality. This interface also accesses the configuration

space of the core. The interface signals are provided in the table 3.4.
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Table 3.4: Interrupt Interface Signals - Core Side

Signal Direction Description

rg cfg interrupt Out Interrupt request signal to the Core. The
controller asserts this to cause the selected
interrupt mssg type to be transmitted by

the core.

wr cfg interrupt rdy In Interrupt grant signal from the Core.

rg cfg interrupt do Out Lower five bits of the this data bus is used to
b[7:0] transmit the interrupt vector number.

wr cfg interrupt mmenable In Multiple Message Enable Signal. This indicates
b[7:0] the number of messages the core can send as a

part of multiple message MSI.

wr cfg msienable In Indicates that Message Signalling Interrupt
(MSI) is enabled.

3.1.5 Completion data-to-device Interface

The TLPs received from the core are decoded by the Request-Handler module and the

Completion-data payload is transmitted to the device through this interface. The descrip-

tion of the signals involved in the interface are provided in the table 3.5.

Table 3.5: Completion data-to-device Interface Signals

Signal Direction Description

rg data valid Out Indicates that the data transmitted on the data lines
is valid

rg data out[31:0] Out Completion data received as payload is sent
over this data bus

rg last DWord Out Indicates that this is the last Dword for the entire
transaction. No more data with same tag

rg tag to device[6:0] Out Tag value for this transaction

13



3.1.6 Memory Interface

The Memory interface provides a set of signals, for the Controller to access the Device

Memory Space. The device typically implements its Register File (or Controller Registers)

on this interface. The description of the signals involved in the interface are provided in

the table 3.6

Table 3.6: Memory Interface Signals

Signal Direction Description

rg address[31:0] Out Address of a Register in the Memory

rg data out[63:0] Out Data to be written into the Memory
Can be used to access 32 bit register

or a 64 bit register.

rg byte enable[3:0] Out 4’b1111 indicates that all 64 bits on
rg data out are valid

4’b0011 indicates that lower 32 bits on
rg data out are valid

rg read Out Memory Read operation

rg write Out Memory Write Operation

3.1.7 Device-Request Interface

The Device-Request interface notifies the controller about the requests that are being

made by the device. These requests trigger the Completer-Requester module in the con-

troller to send Read, Write or Completion TLPs to the core. The interface also provides a

32-bit data bus for the device to send its data payload associated with the Write-TLP and

Completion-TLP operation. The description of the signals involved in the interface are

provided in the table 3.7.
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Table 3.7: Device-Request Interface Signals

Signal Direction Description

wr data from device[31:0] In Data bus to send data payload
to pcie controller

wr address from device[63:0] In Address bus to send address
of the main memory location

wr requested tag[1:0] In Tag value requested for the
Transaction

wr payload length[9:0] In Indicates the amount of payload
being sent during write and completion

and indicates the amount of payload
requested during read operation

wr send completion tlp In Request to send completion TLP

wr send write tlp In Request to send write TLP

wr send read tlp In Request to send read TLP

wr 64bit address In If set it Indicates that all the 64 bits
of the address lines are valid, else

32 bits are valid

wr send valid data Out Indicates the device to send
valid data payload. The device should
send valid data on the data lines only if

this signal is high

wr data valid In Indicates that the data on data lines is
valid

wr device wait In Wait signalled by the device.
Indicates the PCIe controller to wait

rg wait Out Indicates the Device to wait. Device
waits as long as this is asserted.

3.1.8 Interrupt Interface - Device Side

This interface enables the device to send MSI interrupt related information to the con-

troller. The Interrupt Handler module then takes care of packing the messages (vector

numbers) and sends them to Core. The description of the signals involved in the interface

15



are provided in the table 3.8.

Table 3.8: Interrupt Interface Signals - Device Side

Signal Direction Description

wr interrupt ready In Indicates that the interrupt vector number is
Valid

wr vector number[4:0] In The value of the vector number for which the
the interrupt is generated

wr MSI number[4:0] In Indicates the Device’s request for
number of messages in MSI interrupt

3.2 Modules Description

The complete functionality of the controller has been divided into three modules. The

Request Handler takes care of the incoming requests from the Host-PCIe controller. The

Completer-Requester takes the requests and completions from the device and sends them to

the Host-PCIe controller. Interrupt Handler sends interrupt messages to core. The detailed

implementation of each module is given in the following sub-sections.

3.2.1 Completer-Requester

This module takes the Read, Write, or Completion TLP requests from the device. It

forms the required TLP and sends them over the transmit interface to the PCIe Core. Com-

pletion TLP and the Write TLP use the data supplied from the device to form the data

payload, after the TLP headers. The details of how each request is handled is described

below.
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Completion TLP Request

The completion TLPs have three Dwords in header. The third DW is used to uniquely

identifies the “Requester” of this transaction. As it was mentioned earlier, the Requester

ID and the TAG are used to identify the “Requester”. The Request Handler provides the

information of the Requester by triggering an update signal to this module. This causes

the DW 3 to get updated. The other two DWords are updated when the device requests for

completion TLP. After updating the DWords, they are sent along with the data payload just

as write TLPs. This process is shown as a flow diagram in the figure 3.2.

Figure 3.2: Completion TLP Flow

Read TLP Request

The controller starts to process the read TLP request, if it is not busy with any other TLP

request processing. It first makes the DWord 1 and DWord 2 of the Read TLP header. The

DWord 1 contains the information about the header type, and the requested payload size.

The DWord 2 contains the Requester ID and the TAG value. Requester ID is obtained by

combining the bus number, device number, and function number from the configuration
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interface. The Requester ID and the TAG value are used to uniquely define the particular

transaction. After forming the DW 1 and DW 2, they are set to send along with the 32 bit

lower order bits of the address through the transmit interface, each in different clock cycle.

If the address is 64 bits then, the higher order bits of address are sent in the next cycle. The

process is shown as a flow diagram in the figure 3.3.

Write TLP Request

The controller processes the write TLP similar to Read TLP request. The only addi-

tional operation is to send the data received from the device, at the end of address. The

controller does not buffer any data. All the buffering is done in the device implementation

only. The “valid” data sent from the device is just transferred to the Core through transmit

interface. Write TLP process is shown as a flow diagram in the figure 3.3.

Figure 3.3: Read Write TLP Flow
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Special issues while transmitting TLPs

Source Throttling

The controller can throttle back if it has no “valid” data present on the tx tdata[31:0].

When this condition occurs, the the controller deasserts tx tvalid, which instructs the core

to disregard the data present on tx tdata[31:0].

Destination Throttling

The core can throttle the controller if there is no space left for new TLP in the transmit

pool buffer.

Transaction Discontinue

The controller can discontinue the transaction at any point of time. This is done by si-

multaneous assertion of valid, last and src dsc lines. The core then discards the present

transaction completely.

3.2.2 Interrupt Handler

The interrupt handler module takes the “valid” interrupt numbers from the Device, ac-

cumulates them and then sends them as a whole to the PCIe core. PCIe core sends these

vectors as message TLPs to the Host - PCIe Core. The device requested number of inter-

rupt messages and the Core’s supported maximum number of messages are compared and

the minimum of the two is chosen as the threshold limit for the number of vectors to accu-

mulated. On every valid vector number, the vectors are accumulated. When the number of

vectors equal the threshold value, then the module initiates messages to the Core.

This module functions only if MSI interrupts are enabled. This is notified by the core

through the signal cfg interrupt msienable. The number of messages that the core supports

is given by signal cfg interrupt mmenable.Two raised to the power of the value of the sig-
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nal gives the maximum number of interrupts the Core can take at a time. For instance, if

this signal value is zero, then it functions as a Single Message MSI interrupt.

3.2.3 Request Handler

This module receives the TLPs from the Core, through the Receive interface. It decodes

the TLP, as per the PCI Express 1.0 spec [5]. The decoding of the TLP and the subsequent

actions taken by the module are tabulated in the table 3.9

Table 3.9: TLP Decoding and Actions by the Request Handler Module

Fmt Field Typ Field Description Action taken
(data[30:29]) (data[28:24])

2’b00 5’b00000 3 DWord 1. Updates the Completer-Requester
Memory

Read by supplying the Requester Tag value.
2. Sends read signal and read addrs
through memory interface to device.

2’b01 5’b00000 4 Dword Same as 3DW Memory Read
Memory

Read

2’b10 5’b00000 3 Dword 1. Sends write signal to device memory.
Memory

Write 2. Sets the byte enable to ’1111 if it
receives 2 Dword payload. Sets it to

’0011 if it receives 1 DWord payload.
3. Puts the data on data bus.

2’b11 5’b00000 4 DWord Same as 3 Dword Memory write.
Memory

Write

2’b00 5’b01010 Completion Not Applicable
with No data

2’b10 5’b01010 Completion Sends the data payload on the
with data Completion data-to-device interface
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3.3 Verification

The verification of the PCIe Controller is carried out in QuestaSim simulator. Testbench

was written for various test cases and the test bench was integrated to the actual module.

The setup was translated to a verilog code and was simulated in QuestaSim. Controller

was tested with the following test cases :

1. Test case for Transmitting Read, Write, Completion TLPs under normal conditions.

2. Test case for Transmitting Read, Write, Completion TLPs with “destination Throt-
tling”, Source Throttling, Transaction discontinue.

3. Test case for Receiving Read, Write, Completion TLPs under normal conditions.

4. Test case for Receiving Read, Write, Completion TLPs with “destination Throt-
tling”, Source Throttling, Transaction discontinue.

5. Receive Incomplete Payload.

6. Transmit Interrupt Vectors as Single Message MSI and Multiple Message MSI.
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3.4 Simulation Results

The Simulation Results for some of the mentioned test cases are shown in the following

figures.

Normal Write Operation

The simulation result for normal write operation is shown in figure 3.4

Figure 3.4: Normal-Write TLP waveform

Write Operation with Destination Throttling

The simulation result for write operation with destination throttle is shown in figure 3.5

Figure 3.5: Write TLP - with Destination Throttle waveform
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Write Operation with Source Throttling

The simulation result for write operation with source throttle is shown in figure 3.6

Figure 3.6: Write TLP - with Source Throttle waveform

Write Operation with Transaction Discontinue

The simulation result for write transaction discontinue is shown in figure 3.7

Figure 3.7: Write TLP Transaction Discontinue waveform
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Normal Completion TLP Operation

The simulation result for normal write operation is shown in figure 3.8

Figure 3.8: Normal-Completion TLP waveform

Read Operation with Incomplete Payload

The simulation result for read operation receiving payload as two transactions is shown in

figure 3.9

Figure 3.9: Read Incomplete Payload
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Interrupt Mechanism with multiple MSI

The simulation result for normal write operation is shown in figure 3.10

Figure 3.10: Multiple Message MSI waveform

3.5 Synthesis Report

The PCIe Controller was synthesized on the device XC6VLX240T-FF1156. The Slice

utilization and timing summary has been provided below.

Number of Slice Registers used : 720

Number of Slice LUTs used : 626

Number of LUT-FF Pairs used : 432

Maximum Frequency of operation : 295 MHz
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CHAPTER 4

NVM Express Controller

This chapter explains the entire working of the NVM Express controller. It explains

the basic steps involved in Controller Initialization, Controller Shutdown,and Command

Processing. It introduces the Command Structure, Command Set, and Command Comple-

tion Structure. All the steps and structures mentioned here are as per the NVM Express

1.0c Specification [6].

4.1 Command Processing

This section describes the steps involved in issuing and completing a command. Figure

4.1 shows the steps. The steps are:

• Step 1 : The host creates a command for execution within the appropriate Submis-
sion Queue in the host memory.

• Step 2 : The host updates the Submission Queue Tail Doorbell register with the new
value of the Submission Queue Tail entry pointer. This indicates to the controller
that a new command(s) is ready for processing.

• Step 3 : The controller arbitrates for the command queue and fetches it. Round
Robin arbitration is used.

• Step 4 : Controller executes the command, which has been fetched.

• Step 5 : After the command has completed execution, the controller writes a com-
pletion queue entry to the associated Completion Queue.

• Step 6 : The controller optionally generates an interrupt to the host to indicate that
there is a completion queue entry to process. Here, multiple message MSI interrupt
is used as interrupt mechanism.



• Step 7 : The host processes the completion queue entry in the Completion Queue.

• Step 8 : The host writes the Completion Queue Head Doorbell register to indicate
that the completion queue entry has been processed. The host may process many
entries before updating the associated CQHDBL register.

Figure 4.1: Command Processing

4.2 Command Structure

Each command is 64 bytes in size. The 64 byte command format for the Admin

Command Set and NVM Command Set is defined in the figure 4.2.

Command Dword 0, Namespace Identifier, Metadata Pointer, PRP Entry 1, and PRP

Entry 2 have common definitions for all Admin commands and NVM commands. Com-

mand DWord 10 to 15 have definitions that are specific to a command.
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Figure 4.2: Command Format - Admin and NVM Command Set

Figure 4.3: Command DWord 0

4.3 Command Set

The NVMe controller defines two sets of commands namely Admin Command Set and

the NVM Command Set. The Admin Command Set takes care of all the administrative

tasks related to the controller. This includes setting up the controller, creating or deleting

Queues, aborting commands etc. The NVM Command set is responsible for the actual

data transfer between the Host and the Nand Flash Device. The list of Admin Commands

and NVM commands supported by the designed controller is shown in the figure 4.4
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Figure 4.4: Command Set - Admin and NVM

4.4 Controller Registers

Controller registers are memory mapped to the Host memory. The amount of memory

required for these registers is advertised to the Host during PCIexpress link setup. Once

the link is setup, the controller registers can be accessed by the Host by simple Load-

Store operations to its memory. These operations are eventually transformed into PCIe

Transactions for Read and Write to the Controller Registers( or Register File). All the

registers are to be accessed in their native width. Unaligned register accesses are not

supported and are handled at the PCI Express layer. The following figure describes the

register map for the controller.
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Figure 4.5: Register map for the controller

4.5 Controller Initialization

This section describes the procedure for initializing the controller. The following ac-

tions are performed by the host, in sequence, to initialize the controller and begin executing

commands : The steps are:

• Step 1 : The PCI Express registers are set appropriately based on the system config-
uration.

• Step 2 : The Admin Queue is configured. This is done by setting the Admin Queue
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Attributes (AQA), Admin Submission Queue Base Address (ASQ), Admin Comple-
tion Queue Base Address (ACQ) to appropriate values.

• Step 3 : The controller settings should be configured. Specifically :
– The controller arbitration should be selected in CC.AMS.

– The memory page size should be initialized in CC.MPS.

– The IO command set that is to be used should be selected in CC.CSS.

• Step 4 : Controller is enabled by setting CC.EN to 1.

• Step 5 : The host waits for the controller to indicate it is ready to process commands.
the controller is ready to process the commands when CSTS.RDY is set to 1.

• Step 6 : Host determines the configuration of the controller by issuing the Identify
Command, specifying the controller data structure. The host then determines the
configuration of each namespace by issuing the identify command for each names-
pace, specifying the Namespace data structure.

• Step 7 : Host then determines the number of I/O Submission Queues and I/O Com-
pletion Queues supported using the Set Features command with the Number of
Queues feature identifier. After determining the number of I/O Queues, the MSI
registers are configured.

• Step 8 : The host allocates the appropriate number of I/O Completion Queues based
on the number required for the system configuration and the number supported by
the controller. The I/O Completion Queues are allocated using the Create I/O Com-
pletion Queue command.

• Step 9 : The host allocates the appropriate number of I/O Submission Queues based
on the number required for the system configuration and the number supported by
the controller. The I/O Submission Queues are allocated using the Create I/O Sub-
mission Queue command.

4.6 Controller Shutdown

This section describes how the controller is shutdown. The controller can be shutdown

down in one of the two ways, namely Normal shutdown or abrupt shutdown.

The host performs the following actions in sequence for normal shutdown:

• Step 1 : The host stops issuing any new I/O commands to the controller and allow
any outstanding commands to complete.
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• Step 2 : The host then deletes all I/O Submission Queues. A result of successful
completion of the Delete I/O Submission Queue command is that any remaining
commands outstanding are aborted.

• Step 3 : The host deletes all I/O Completion Queues.

• Step 4 : The host sets the Shutdown Notification (CC.SHN) field to 01b to indicate
a normal shutdown.

• Step 5 : The Controller indicates when shutdown processing is complete by updating
the Shutdown Status (CSTS.SHST) field to 10b .

The host performs the following actions in sequence for abrupt shutdown:

• Step 1 : The host stops issuing any new I/O commands to the controller and allow
any outstanding commands to complete.

• Step 2 : The host sets the Shutdown Notification (CC.SHN) field to 10b to indicate
a abrupt shutdown.

• Step 3 : The Controller indicates when shutdown processing is complete by updating
the Shutdown Status (CSTS.SHST) field to 10b .
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CHAPTER 5

Implementation of NVM Express

This chapter explains how the NVM express controller is implemented in hardware. The

controller is designed according to the NVMe Spec 1.0c [6]. Controller interface signals

and their brief description is provided along with the detailed description of all the logical

modules involved in the design. The chapter also provides various test cases that are used

to verify the functionality of the design. Synthesis results for the controller are provided

at the end. The controller interfaces and logical module partitions are shown as a block

diagram in the figure 5.1.

Figure 5.1: NVMe Modules and Interfaces



5.1 Controller Interfaces

The controller has five interfaces to connect PCIe controller on one side and Nand

Flash Controller on the other. The description of the interfaces and the signals involved in

each interface are given in the following sub-sections.

5.1.1 Completion Data Interface

This interface is used to connect the controller to the PCIe controller. It provides

interface signals necessary to receive the incoming data from the PCI express. This data is

received as a completion data payload by the PCIe Controller and then transferred to the

NVMe controller. In the context of NVMe, the data could either be a 4KB data page or a

64B command. The interface signals are shown in the table 5.1

Table 5.1: Completion Data Interface Signals

Signal Direction Description

wr data valid In Indicates that the data received on the
data lines is valid

wr data in[31:0] In Completion data received from
the PCIe controller

wr last DWord In Indicates that this is the last Dword
for the entire transaction

No more data will be received with the
same tag value.

wr tag[6:0] In Tag value for this transaction
The details of how the controller
uses the tag is given in table 5.6
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5.1.2 Interrupt Interface

This interface provides signals necessary to send interrupt vector information to the

PCIe controller. This vector information is eventually sent as multiple message MSI over

the PCIe channel, by the PCIe controller. The interface signals are shown in the table 5.2

Table 5.2: Interrupt Interface Signals

Signal Direction Description

rg interrupt ready Out Indicates that the interrupt vector number is
Valid

rg vector number[4:0] Out The value of the vector number for which the
the interrupt is generated

rg MSI number[4:0] Out Indicates the NVMe controller’s request for
number of messages in MSI interrupt

5.1.3 Request Interface

This interface is also a part of the connection between the NVMe controller and PCIe

controller. It provides interface signals necessary to Request the PCIe controller to transmit

Read, Write or Completion TLPs over the PCIe channel. This interface also helps the

NVMe controller to transmit the data, as a payload to Write and Completion TLPs. This

data could be 4KB data page or 16 byte command completion or 64 bit registers. Data

page and command completions are sent as Write TLP payloads and the registers are sent

as Completion TLP payload. The interface signals are shown in the table 5.3
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Table 5.3: Request Interface Signals

Signal Direction Description

rg data to pcie[31:0] Out Data bus to send data payload
to pcie controller

rg address to pcie[63:0] Out Address bus to send address
of the main memory location

rg requested tag[1:0] Out Tag value requested for the
Transaction

rg payload length[9:0] Out Indicates the amount of payload
being sent during write and completion

and indicates the amount of payload
requested during read operation

rg send completion tlp Out Request to send completion TLP

rg send write tlp Out Request to send write TLP

rg send read tlp Out Request to send read TLP

rg 64bit address Out If set it Indicates that all the 64 bits
of the address lines are valid, else

32 bits are valid

wr send valid data In Indicates the NVMe controller to send
valid data payload. The controller sends

valid data on the data lines only if
this signal is high

rg data valid Out Indicates that the data on data lines is
valid

rg nvm wait Out Indicates the PCIe controller to wait

wr wait In Indicates the NVMe controller to wait
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5.1.4 Register File Interface

This interface provides a Read Write access to the Controller Registers. PCIe con-

troller can write into registers through this interface. However it can only request to read

through this interface. The read data from the register file is sent as completions through

the NVMe Request interface. The interface signals are shown in the table 5.4

Table 5.4: Register File Interface Signals

Signal Direction Description

wr regFile address in[31:0] In Register File Address

wr regFile data in[63:0] In Data bus for writing into
Register File

wr byte enable[3:0] In 4’b1111 indicates 64 bit register access
4’b0011 indicates 32 bit register access

wr read In Register File Read operation

wr write In Register File Write operation

5.1.5 Nand Flash Controller Interface

This interface is used to connect the controller to the Nand Flash Controller. It provides

necessary signals to access the memory mapped register file of the Nand Flash Controller.

It has a 32-bit data bus to transfer the data to or from Nand Flash Controller buffers. Nand

Flash Chips in general support either a 16 bit bus or a 8 bit bus. However, the data bus

to NFC is made 32 bits in order to transfer the data at a much faster rate and hence the

controller will ready to process other commands. The interface signals are shown in the

table 5.5
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Table 5.5: Nand Flash Controller Interface Signals

Signal Direction Description
rg address to nand[11:0] Out Address to NAND’s memory mapped

register file and buffers

rg data to nand[31:0] Out Data to NAND’s memory mapped
register file and buffers

wr data from nand[31:0] In Data from NAND

rg chip enable Out Active low signal to indicate
Chip Enable to NAND

rg write enable Out Active low signal to indicate
Write Enable to NAND

rg output enable Out Active low signal to indicate
Output Enable to NAND

wr interrupt In Interrupt from NAND indicating
Read data Ready in buffers

wr ready busy In Indicate NFC is Ready or Busy

5.2 Modules Description

The entire design of the controller is divided into seven logical modules as shown in

figure 5.1. Six state machines are defined to assist the modules in deriving their respective

functionality. Detailed block diagram showing the modules and state machines is shown

in the figure 5.2. State machines are highlighted in italics.

5.2.1 Read-Write Engine

This module is designed to facilitate data transfer between PCIe controller and NVMe

controller, and also between NVMe controller and Nand Flash controller. Five buffers are

used in this module. A brief description of each buffer is given below.
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Figure 5.2: NVMe Modules and State Machines

• Data Buffer : This buffer is 4K Byte in size. This is used to store the data page that
is received from the Host main memory. Hence the data page that is to be written to
the Nand Flash, is first stored in this intermediate buffer and then a write operation is
initiated to the Nand Flash. However, the data page transferred from the Nand Flash
to the Host memory, as a part of Read operation, is not stored in this buffer. The
Data-Transfer State machine helps in getting access to the PCIe Controller, through
the PCIe request - State Machine , to fill the buffer with data page and to notify the
controller about the same.

• Controller Data Structure Buffer : This buffer is 4K Bytes in size. This buffer is
used to store the controller data structure. This is a Read-Only data structure, which
is initialized on controller reset. The data structure defines the entire functionality of
the controller. PCIe Request - State Machine helps to gain access to PCIe controller
and transfer the data from NVMe to PCIe.

• Name Space Data Structure Buffer : This buffer is 4K Bytes in size. This buffer is
used to store the namespace data structure. This is a Read-Only data structure, which
is initialized on controller reset. The data structure defines the name space related
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attributes. PCIe Request - State Machine helps to gain access to PCIe controller and
transfer the data from NVMe to PCIe.

• Controller Features Buffer : This buffer is 4K Bytes in size. This buffer is used
to store the features supported by the controller. This is a Read-Only data structure,
which is initialized on controller reset. PCIe Request - State Machine helps to gain
access to PCIe controller and transfer the data from NVMe to PCIe.

• Error logs : This buffer is 64 bytes in size. There are five such buffers. These buffers
are used to update error logs for as many as five commands at a time. Any errors in
the incoming commands are reported to the host by updating the status information
in the command completions. However, if it is desired to notify the host more about
the error in the command then the error logs can be used.

5.2.2 Queue management

This module maintains the Tail and Head Pointers of the Submission Queues and Com-

pletion Queues. It also signals Queue-Empty and Queue-Full conditions. The generic

structure of the queue and its Empty and Full conditions are shown in the figure 5.3.

Figure 5.3: Queue Empty and Full Conditions

Queue-Full :

The queue full condition is alerted to the controller when the Head pointer equals one more
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than the Tail pointer. The total number of entries in a queue when full is one less than the

queue size.

Queue-Empty :

The queue empty condition is alerted to the controller when the Head pointer equals the

Tail pointer.

Queue-Wrap :

Whenever the pointers (Tail or Head) reach the end of the Queue (i.e. Max queue size) ,

then the pointers are brought to top of the queue. In essence it is a circular-queue.

Submission Queue :

For the submission queue, the Host is the producer and controller is the consumer. Hence,

the Tail pointer is updated by the host by writing into SQ Tail Pointer Register in the Reg-

ister File. Whenever a new command is fetched by the controller, the corresponding SQ

Head Pointer is incremented by one.

Completion Queue :

For the completion queue, the Controller is the producer and the Host is the consumer.

Hence, the Tail pointer is updated by the controller and the head pointer is updated by the

Host by writing into the CQ Head Pointer Register in the Register File. Tail pointer in the

controller is updated whenever a new completion is sent to the host.

Queue Size :

The minimum size for any queue ( upon creation ) is two. The maximum size for I/O SQ or

I/O CQ is 64K entries. However, the CAP.MQES field in the controller registers limits the

maximum limit. The maximum size for the Admin SQ and CQs is defines as 4K entries.

Queue Identifier :

Admin SQ Identifier and CQ Identifier value is zero. I/O SQ and CQ are identified through

a 16-bit ID value that is assigned to the queue when it is created.
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5.2.3 Command Arbitration

A simple Round-Robin arbitration mechanism is used to decide the Queue from which

to Fetch the command. Bluespec’s predefined functional block “Arbiter” has been used to

implement the design. The Arbiter functions on a Client Request-Grant mechanism. Each

Submission Queue is given a client number. Admin SQ has a client number 0, I/O SQ 0

has a client number 1 and similarly I/O SQ x has a client number x+1. Any number of

clients can request the Arbiter at a time. Access is granted on a round robin priority basis.

The priority order is Client 0 , Client 1 , Client 2 .. so on i.e. Admin SQ , ISQ 0 , ISQ 1 ,

so on .

Eligibility to request :

A Submission Queue gains the eligibility to request under the following conditions :

• The controller is enabled.

• The corresponding queue is created .

• The queue is not empty . This is signalled by the queue-management rule.

• The queue is not full . This is also signalled by the queue-management rule.

Grant :

After completing the requests from the highest priority client, the next highest client,which

is requesting, is given the grant.

Hold :

The Submission Queue holds the request until all the commands in its queue are completely

fetched by the controller. Once the SQ gets empty, it looses the eligibility to request and

hence the next SQ is granted.
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Figure 5.4: Round Robin Arbiter

5.2.4 Command Fetch

This logical module fetches the commands from the Submission Queue that has got the

grant from the Arbiter. This module is implemented as a state machine, named Command-

Fetch State Machine. The state machine is shown in the figure 5.5.

Figure 5.5: Command Fetch State Machine
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Command Fetch State Machine Description :

FETCH IDLE STATE :

This is the idle state for the State machine, where it waits for new submission queue

to be granted. Once the SQ is granted, the next grant signal is lowered to indicate to

the Arbiter not to grant to any other queue until, the present command is fetched. This

lowering of the signal triggers the state machine to transition to next state to start fetching

the command.

NEW COMMAND INFO STATE :

This is an intermediate state, where the required information to fetch the command is

gathered. This information regarding the command includes : Base Address of the SQ,

Offset in the Queue, and also the SQ ID for the command. The SQ ID for the command

is actually en-queued into a FIFO sqID fifo. This sq ID is used during the command

execution state. Base Address plus the Offset gives the actual address from where the com-

mand has to be fetched from the Main Memory.

Obtaining Base Address and Offset :

Case 1 : SQ is Contiguous in the Main Memory

This condition is indicated by the host, by setting the cd11.pc bit to 1, while creating

the SQ. In this case the base address is directly indicated by the PRP1 value in the com-

mand structure. The value of the offset is incremented on each command fetch, and is

wrapped around to zero when it reaches the size of the queue.

Case 2 : SQ is Not Contiguous in the Main Memory

This condition is indicated by the host, by setting the cd11.pc bit to 0, while creating

the SQ. In this case, the PRP1 value points to a list of page addresses. The list contains
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base addresses for the pages which contain the SQ. Each base address points to a 4KB

page containing 64 commands of the SQ. Hence, upon fetching the 64 Commands in the

Queue, the Base address needs to be changed to next value in the List. The offset value

increments on each command fetch and wraps to zero if its value is 64. Upon reaching the

end of queue condition, the offset is made zero and base address points to first value in the

list.

FETCHING COMMAND STATE :

This is the state where the controller fetches the command. In order to fetch the com-

mand the controller has to request the PCIe controller to send Read TLP, with the address

obtained from the previous state. The access to the PCIe controller is obtained by request-

ing the PCIe Request State Machine, by raising the wire wr req read command high.

PCIe Request State Machine acknowledges the Fetch State Machine by raising the regis-

ter rg req read command accepted high for one clock cycle. The controller then

sends the Read TLP request to the PCIe controller and waits for the command to be ob-

tained from the PCIe controller. The wire wr CommandEn is raised high to indicate that

the command fetched is ready in the wire wr Command In.

COMMAND EN-QUEUE STATE :

In this state, the command obtained in the wire wr Command In is en-queued into

the internal fifo internal exeQ fifo. The wire next grant is raised high to indi-

cate the Arbiter that it can start issuing grants to eligible queues. State then transitions to

IDLE state.
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5.2.5 Command Execution

This module executes the Admin and NVM Commands present in the internal exe-

cution queue . When the queue is not Empty, the command is fetched and is executed.

The SQ ID for the command to be executed is taken from the fifo sqID fifo. The com-

mand is identified as Admin SQ command or NVM Command on the basis of this SQ ID

information. Admin SQ will have SQ ID to be zero. Admin Command Execution State

Machine is started if it SQ ID is zero else , NVM Command Execution State Machine is

started. Both the state machines have the same idle state however, they are explained as

two different state machines for the ease of explanation.

Command Execution State Machine :

IDLE STATE :

The command execution state machine is in idle state as long as the internal command

execution queue is empty. Whenever it is not empty, the state machine jumps to either

Admin Command Execution States or NVM Command Execution States on the basis of

SQ ID value.

Admin Command Execution States :

This is a part of the Command Execution State Machine , that executes Admin Com-

mands. Admin Commands are executed if the Submission Queue ID value associated with

the command is zero. If the Submission Queue ID value is non-zero, then they are exe-

cuted by the NVM Command Execution states. The Admin Command States are shown in

the figure 5.6.
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Figure 5.6: Admin Command Execution States

ASQ COMMAND EXECUTE STATE :

This state performs both the decode and execution of the command. Depending upon

the opcode, the command execution is performed. “The get features“ command and the

”identify” commands need the controller to access the data-structure buffers. Hence these

commands cause the controller to transition to another state called Read Data Structure

State. All the other commands are executed in this state itself.

Support for Non-Contiguous allocation of Queues in the Main Memory

The execution of Create I/O CQ Command and Create I/O SQ Command depends on

weather the host has allocated the Queues Contiguously or Non-Contiguously in the Main

Memory.
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Case 1: Contiguous allocation

This is indicated by setting the CD11.PC bit to 1. Under this condition, the controller

just enables the particular queue and the PRP1 field is treated as the Base Address of the

queue.

Case 2 : Non-Contiguous allocation

This is indicated by setting the CD11.PC bit to 0. Under, this condition, the controller

performs the following steps, before enabling the particular queue:

1. Requests the PCIe Request State Machine to fetch the PRP list by specifying the tag
value associated with this queue.

2. Waits for the PRP List to be fetched. The rule rl prp list acquire fetches the
PRP List and notifies about its completion.

3. Enables the Queue after fetching the List.

The tag values associated with various operations inside the controller is shown in the

table 5.6

Table 5.6: Tag values for various transactions

tag tag tag Description Txn Initiating Txn Receiving
[1:0] [2] [6:3] Unit Unit
00 X XXXX Not Used None None

01 X XXXX Acquire Command Fetch Unit Command-Data Acquire
State Machine

10 X XXXX Acquire Data Data transfer Command-Data Acquire
Unit State-Machine

11 0 0000 Acquire CQ 0 Execution Unit PRP-List Acquire
to to CQ 15 Rule

1111 PRP List rl prp list acquire

11 1 0000 Acquire SQ 0 Execution Unit PRP-List Acquire
to to SQ 15 Rule

1111 PRP List rl prp list acquire
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READ DATA STRUCTURE STATE :

This state writes one of the requested data structure into the required memory location.

This state requests the PCIe Request State Machine to get access to the PCIe Controller.

This is done by raising the wire wr req write data high. The PCIe Request State Ma-

chine asserts the signal rg req write data accepted to acknowledge the execution

unit. The controller then sends Write TLP request to the PCIe controller. The PCIe con-

troller later acknowledges by raising the wire wr send valid data high. As long as

this wire is logic high, the controller keeps sending the data from the datastructure buffer

in units of 32bits every cycle. After sending the 4KB data the wr send valid data

is lowered. Later the command execution machine jumps to Admin command completion

state.

ADMIN COMMAND COMPLETION STATE :

This state sends the completions to the main memory in the form of Write TLPs. As

soon as the command is executed, the controller updates the status of the command either

it is a success or a failure with some error. If there is any error in the command, then it

also specified as a part of the command completion. The details of command completion

are specified in the logical module Command Completion . Refer to section 2.2.6

NVM Command Execution States :

This is a part of the Command Execution State Machine , that executes the two NVM

Commands, namely Read from NAND and Write to NAND. This set of states are executed

if the Submission Queue ID for the command to be executed is not zero. The states are

shown in the figure 5.7.
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Figure 5.7: I/O Command Execution States

ISQ COMMAND CHECK ABORT STATE :

This state checks if the command is to be aborted or not. The Abort command in

the Admin Command set decides which command is to be aborted. The command to be

aborted is uniquely specified by the command ID and the Submission Queue ID. There is

an “Abort Command List”, with five entries to enable as many as five outstanding com-

mands to be aborted. A sample list is shown on the table below.

If the “Valid bit” is marked Valid, then the corresponding command ID and Submission

Queue IDs are compared with that of the present commands command ID and SQ ID re-

spectively. If they match then the Command is aborted and the Valid-bit is marked InValid.

Later the controller directly transitions to ISQ Completion State and sends the Completion
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with status indicating that the command is Aborted. This check is performed with each

of the entries which are marked Valid. If none of the entries match then the Command is

ready to be executed and the controller transitions to ISQ Command Execution State.

Table 5.7: Sample Abort Command List for Check Abort State

Valid-bit Command ID SQ ID
Valid 20 1

In-Valid 18 3
In-Valid 45 1

Valid 57 5
Valid 59 4

ISQ COMMAND EXECUTION STATE :

This State executes the NVM Commands, namely Read and Write. If it is a read

command then it immediately transitions to Initiate Read State. However, if it is a Wirte

command then the controller raises the wire wr req read data. The PCIe request State

Machine acknowledges by raising the signal rg read data accepted. The controller

send request to send read TLP to the PCIe controller, and waits for the data to be filled in

the data buffer. Once, the data buffer is filled, execute state machine transitions to Initiate

Write State Machine.

INITIATE WRITE STATE

This state initiates the write operation to the Nand Flash Controller. The controller

starts the Write operation in the Nand Flash Control State Machine by asserting the signal

rg initiate write. Nand Flash Control state machine acknowledges the execution

machine after sending the data in the NVMe buffer to the Nand Flash Controller buffer.

Later the controller transitions to ISQ Command Completion State.
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INITIATE READ STATE

This state initiates the read operation to the Nand Flash Controller. The controller

asserts the signal rg initiate read, to start the Read operation in the Nand Flash

Control State Machine. Nand Flash Control State Machine sends the read command to

NFC and then comes to its default or idle state. When the NFC is ready with the data to

be Read in its Data buffers, then it generates an interrupt to the controller. Upon reception

of the interrupt, the Data Transfer State Machine is triggered to transfer the data from the

NFC buffers to the Host Memory in the form of Write TLP payload. Controller then tran-

sitions to ISQ Completion State.

ISQ COMMAND COMPLETION

This state sends ISQ Command Specific Completions to the Host memory. The de-

tailed explanation for command completion is provided in the next section.

5.2.6 Command Completion

Command Completions are a means by which the controller notifies the host about the

status of each of the commands that it has issued. This logical module takes the status for

every command, forms the command completion structure and then sends it to the host.

There are four DWords in the completion structure.

• Completion DWord 0 is used only by Asynchronous Event Request Command to
return asynchronous event information, and used by GetFeatures to return Feature
information. This Dword is not used by any other command.

• Completion Dword 1 is reserved.

• Completion Dword 2 contains the Submission Queue ID and Submission Queue
Head pointer value.
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• Completion Dword 3 contains the command specific status value. This is tabulated
in the table 5.8.

Table 5.8: Command Completion DWord 3 for each command

Command DWord 3
Abort success , Abort limit exceed

Asynchronous Event Request NA
Create I/O CQ success, invalid Q ID, Invalid Interrupt Vector,

Max Q Size exceeded
Create I/O SQ success, invalid CQ ID, Invalid Q ID,

Max Q Size exceeded
Delete I/O CQ success, invalid Q ID
Delete I/O SQ success, invalid Q ID
Get Features success, invalid Feature ID
Get Log Page success, invalid LOG Page

Identify success Invalid attributes
Set Features success, invalid Feature ID

Read success, Invalid attributes
Write success, Invalid attributes

After sending the Completion the host is interrupted by sending a MSI interrupt. The

details about the interrupt mechanism is explained in the next section.

5.2.7 Interrupts

The present adopted interrupt architecture allows for efficient reporting of interrupts

such that the host may service the interrupts through the least amount of overhead.

According to the NVMe Specification, the controller can be choose one of the four ways

to report interrupts. They are : pin-based interrupt, single message MSI, multiple message

MSI, and MSI-X. The present controller implements multiple message MSI architecture.

Multiple message MSI is a PCie feature, where a set of interrupt vectors (not more than

32) can be sent in a single message TLP to the Host. The details of MSI are given in the
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PCIe controller implementation.

Interrupt aggregation is a means to mitigate host interrupt overhead by reducing the

rate at which interrupts are generated by the controller. This reduced host overhead typi-

cally comes at the expense of increased latency.

INTERRUPT ARCHITECTURE

The architecture basically consists of a set of registers to facilitate the detection of an

interrupt. It can generate up to 32 different interrupt vectors as per MSI. It also implements

interrupt aggregation on a per vector basis.

Interrupt Registers

Interrupt Mask Register (IM) :

It is a 32 bit register. Each bit corresponds to one interrupt vector. If a bit is set high

then that particular interrupt vector is “masked”, else it is unmasked. Interrupt Mask Set

(INTMS) and Interrupt Mask Clear (INTMC) registers in the controller register file are

used by the host to Set or Clear a particular bit in the Interrupt Mask Register. For instance

if the 29th bit in the INTMC register is set high then the 29th bit in the Interrupt Mask

Register is cleared to zero.

Interrupt Status Register (IS) :

It is a 32 bit register and each bit corresponds to one interrupt vector. A particular bit

in the register is set under the following conditions :

• There is one or more unacknowledged completion queue entries in a Completion
Queue that utilizes this vector.

• The CQ has interrupts “enabled” in the “Create I/O Completion Queue” command.

• Corresponding interrupt vector is unmasked. If it is masked then there is no need to
interrupt.
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Interrupt Event

It is the mechanism which causes the controller to send an interrupt vector to the PCIe

controller. A positive edge transition on the status register bit is in essence detected as an

event, if the particular interrupt is unmasked. The situations where an interrupt event is

detected is shown in the table 5.9.

Table 5.9: Interrupt Event

Mask register bit Status Register bit Event Description
Steady 1 Will be steady 0 No Event Interrupt Masked
Steady 0 Steady 0 No Event No Interrupt

Transition from Will be steady 0 No Event No interrupt
1 to 0

Steady 0 Transition from Event Interrupt Sent
0 to 1

Interrupt Aggregation

The controller generates interrupt for every command completion. However, it can re-

duce the host overhead by aggregating a set of command completions onto a single vector.

The host decides the number of completions to aggregate on a per vector basis, by indi-

cating in the “Aggregation Threshold field”. This is implemented by counting the number

Figure 5.8: Interrupt Mechanism

55



of events on a single vector, and sends the interrupt when the count equals the aggrega-

tion threshold for that vector. Interrupt Aggregation is not applied to Admin Completion

Queues and to those I/O Queues that complete in error. The figure 5.8 shows interrupt

mechanism for a single vector.

5.2.8 Register File

The Register File implements the Controller registers as defined in the section 4.4. It

provides read-write interface to the controller registers. All the Registers are accessed in

their native widths. A 64 bit register is written as a 64 bit value. And when it is read, it

sends 64 bits in two cycles with 32 bits in each cycle.

Register File Write

The Register File Interface provides control signals, address(32 bit) and data bus (64

bit wide) for write operation. To access a 64 bit register, all the 64 bits on the data bus

should carry valid data. While writing a 32 bit register only 32 bits of the data bus are

used by the controller, the other higher order bits are ignored. When the wire wr write

is high, the controller expects the address and data to be valid on the wries wr address

and wr data in.

Register File Read

The Register File Interface provides only the control signals and address (32 bit) for

read operation. When the wire wr read is set high, the controller sends the required

register value through a Completion TLP. The completions are sent through the Request

Interface.
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5.2.9 Supporting State Machines

This subsection explains all the state machines that are necessary to support the

logical modules that are described in the previous sections. These state machines primarily

facilitate data transfer amongst PCIe, NVMe and the Nand Flash Controller.

1. Data Transfer State machine:

This state machine has the following functionality :

• Requests the PCIe Controller through the PCIe Request State Machine, to get the
data page into the data buffers. This data is read into the data buffer as a part of write
operation to the Nand Flash.

• The data received from the Nand Flash Controller is sent to the PCIe controller as
Write TLP.

Various states that are involved in the State Machine are described below.

IDLE STATE:

As long as the send data request and receive data request as lowered

the State Machine remains in the IDLE state. If send data request signal is asserted

then, it transitions to REQ DATA FROM PCIe state. If receive data request sig-

nal is asserted then, it transitions to REQ PCIe To RECEIVE DATA State.

REQ PCIe To RECEIVE DATA STATE

This state raises the signal wr req write data high and waits for the acknowl-

edgement from the PCIe Request State machine. PCIe Request State Machine acknowl-

edges by raising the signal rg req write data accepted high. The state machine

then transitions to WRITE DATA TO PCIe State.
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Figure 5.9: Data Transfer State Machine

WRITE DATA TO PCIe STATE

The controller fetches the data from the NFC buffer on every cycle and sends it to

the PCIe controller. This is done as long as the signal wr send valid data from the PCIe

Controller is high. The State machine transitions to IDLE State after sending the 4KB data.

REQ DATA FROM PCIe STATE

This state raises the signal wr req read data high and waits for the acknowledge-

ment from the PCIe Request State machine. PCIe Request State Machine acknowledges

by raising the signal rg req read data accepted high. The state machine then tran-

sitions to READ DATA FROM PCIe State.
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READ DATA FROM PCIe STATE

This state keeps track of the status of the data buffer. The state machine remains

in this state as long as the data buffer is not full. As soon as the data buffer is filled,

rg buffer full is raised and the state machine transitions to IDLE State.

2. Pcie Request State Machine

The controller generates various requests to the PCIe Controller. They include Read

Data request, Write data request, Read Command Request, Write Completion and Send

Completion TLP request. Any number of requests can be raised at a time by the controller.

To arbitrate amongst the various requests, this state machine is implemented. The state ma-

chine takes various requests and acknowledges one of the requesting state machine based

on the assigned priority.

IDLE STATE

This state waits for the requests, from within the controller, to access the PCIe con-

troller. When multiple requests arise then the following priority is assigned :

“write completion > send completion tlp > write data > read data > read command

> read prp“.

The next state is WRITE COMPLETION INFO if write completion request is ac-

cepted. State transition to WRITE DATA INFO state occurs if write data request is ac-

cepted. State transition to READ DATA INFO state occurs if read data request is ac-

cepted. State transition to READ COMMAND INFO state occurs if read command re-

quest is high. State transition to SEND COMPLETION TLP INFO state occurs if send-

cmpltn request is accepted. State transitions to READ PRP INFO state if read prp list

request is high.

59



READ COMMAND INFO STATE

This state sends a read TLP request to the PCIe controller, with the following infor-

mation : read tlp is set high, requested tag is set to 1 indicating it is expecting a

command, payload length is set to 16 as the command has 16 Dwords. It expects the

state machine that has initiated this request to send the address information, from where

to fetch the command, in this cycle. The state machine then jumps to wait state to give an

extra cycle to send the request to the PCIe controller.

READ DATA INFO STATE

This state sends a read TLP request to the PCIe controller, with the following informa-

tion : read tlp is set high, requested tag is set to 2 indicating it is expecting data ,

payload length is set to 1024 as the data has 1024 Dwords (4KB). It expects the state

machine that has initiated this request to send the address information, from where to fetch

the data, in this cycle. The state machine then jumps to wait state to give an extra cycle to

send the request to the PCIe controller.

WRITE COMPLETION INFO STATE

This state sends a write TLP request to the PCIe controller, with the following infor-

mation : write tlp is set high, requested tag is set to 0 (not applicable for write),

payload length is set to 4 as the command completion is 4 Dwords. It expects the

state machine that has initiated this request to send the address information, where to send

the completion to, in this cycle. State transition to WRITE COMPLETION state occurs.

WRITE DATA INFO STATE

This state sends a write TLP request to the PCIe controller, with the following infor-
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mation : write tlp is set high, requested tag is set to 0 (not applicable for write),

payload length is set to 1024 as the data is 1024 Dwords (4KB). It expects the state

machine that has initiated this request to send the address information, which points to the

data-buffer location in the Main Memory. The state machine then jumps to WRITE DATA

state.

WRITE DATA STATE

During this state the state machine which has requested to write data is expected to

send the data to the PCIe controller. Upon sending the data, send data done signal is

asserted and the state machine transitions to PCIe REQ IDLE state.

WRITE COMPLETION STATE

During this state the state machine which has requested to write completion is expected

to send the data to the PCIe controller. Upon sending the data, send completion done

signal is asserted and the state machine transitions to PCIe REQ IDLE state.

SEND COMPLETION TLP INFO

This state sends completion TLP request to the PCIe controller with following infor-

mation : completion tlp is set high, no tag information, payload length is as

specified by the register file (1 or 2). This is an intermediate state between IDLE and

SEND COMPLETION TLP state and is not shown in the figure.

READ PRP INFO STATE

This state sends a read TLP request to the PCIe controller, with requested tag ,

payload length and address as specified by the execution unit.
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SEND COMPLETION TLP

During this state the Register File send the completion data i.e. the register informa-

tion. If register is 32 bit it sends in one cycle and if it is 64 bits it sends in two cycles. The

assertion of the signal cmpltn tlp sent causes a state transition to IDLE state.

Figure 5.10: PCIe Request State Machine

3. Data and Command Acquire State Machine :

PCIe controller may not send the data (or command) completely in one transaction. It

may take several transactions before the data is completely received. This state machine

keeps a track of weather the data is completely received or not. This is the state machine

that actually fills the “data buffer” and “command buffer” . The state machine is shown in

the figure 5.11.
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Figure 5.11: Data and Command Acquire State Machine

IDLE STATE

This states waits for the completions to be received from the PCIe controller. As long

as the signal wr tag is zero, it indicates that there are is no data from the PCIe controller.

If wr tag is 1 then it indicates that command is being sent by the PCIe, else if it is 2 then

it indicates that data is being sent.

ACQUIRING COMMAND STATE

This state is reached when wr tag is 1. During this state the controller keeps buffer-

ing the command dword received, into the command buffer. The assertion of the signal

lastDWord indicates that the transaction is complete and the command is completely

received, the machine jumps to COMMAND ACQUIRED state. If the lastDword is
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not asserted and the wr tag is changed to 2, then the state machine jumps to ACQUIR-

ING DATA state as the tag value 2 indicates data.

COMMAND ACQUIRED STATE

During this state, the controller is notified that the command has been completely re-

ceived and is present in wr Command in. The wire wr CommandEn is raised high. State

transition to IDLE state occurs.

ACQUIRING DATA STATE

This state is reached when wr tag is 2. During this state the controller keeps buffering

the data dwords received, into the data buffer. The assertion of the signal lastDWord

indicates that the transaction is complete and the data is completely received, and the

machine jumps to DATA ACQUIRED state. If the lastDword is not asserted and the

wr tag is changed to 1, then the state machine jumps to ACQUIRING COMMAND state

as the tag value 1 indicates command.

DATA ACQUIRED STATE

During this state, the controller is notified that the data has been completely received

and is present in the data buffer. The register rg buffer full is raised high.And the

State transition to IDLE state occurs.

4. Nand Control State Machine

This state machine generates control and address signals to access the Nand Flash

Controller. It writes read/write commands to the memory mapped controller registers of

the Nand Flash Controller to initiate read/write operations respectively.
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Figure 5.12: Nand Control State Machine

IDLE STATE

The state machine waits for the signals read frm nand or write to nand to be

asserted . When one of the signals is asserted, state transition to OPCODE1 state occurs.

There is no possibility for both the signals to be asserted at the same time.

OPCODE 1 STATE

The nand flash controller needs a start command and end command to initiate either

read or write operation. Nand Chip enable and Write Enable are asserted and the opcode

is written into the nand control register by supplying address of the “command register” in
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the address lines and opcode in the data lines.

ADDRESS 1 STATE

Nand Flash requires the “page address” to be sent in three clock cycles. This state

provides the first part of the page address.

ADDRESS 2 STATE

This state provides the second part of the page address.

ADDRESS 3 STATE

This state provides the third part of the page address. In the sequence of read opera-

tions the next state is OPCODE 2, to supply the End Command which initiates the read

operations in the Nand Flash Controller. NVMe controller should then wait until the Nand

Flash Controller gets the required data into its Data Buffers. Nand Flash Controller inter-

rupts the NVMe controller indicating that it is ready with the requested page in its buffers.

In the sequence in of Write operations, the state machine directly jumps to IDLE state after

supplying the third part of address. The controller should then send the data to be written to

the NFC buffers in the subsequent cycles, followed by the second opcode or end-command.

OPCODE 2

This state provides the End Command for read and write operations.
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5.3 Design Challenges

Some of the challenges faced design decisions taken during the design are explained

below. This section will be very helpful while improving the features of the present con-

troller for future use.

Multiple Requests to PCIe controller from within the NVMe controller :

Because of the parallel execution of the Fetch, Command Execution and Register

File units, there is a possibility for simultaneous requests for read-write data,read

command, write completion and send completion TLP. In order to resolve this issue

a PCIe Request State Machine was developed which responds to one of the requests

on the basis of assigned priority. The decision to assign the following priority was

taken with a view to provide more priority to complete existing commands than to

acquire new commands for execution. The order is as follows : write completion >

completion tlp > write data > read data > read command.

Sequence of operations for Command Fetch and Command Arbitration :

Commands can be fetched and then arbitrated or first arbitrated and then fetched.

If the commands are fetched into a buffer and then arbitrated, then we require ad-

ditional buffers to store the fetched commands. However, if they are arbitrated and

fetched, then the number of additional buffer spaces for storing the commands are

minimized. Hence this option was chosen.

Abort Command Limits :

Every NVM Command has to be checked if it is to be aborted or not. This compari-

son adds a lot of hardware and hence limits the number of outstanding commands to

be aborted. A decision to support five outstanding commands is taken.
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5.4 Verification

The entire verification of the controller was carried out in the “BlueSim ” simulator.

The NVMexpress controller was integrated with Nand Flash Controller, which is also de-

veloped in BlueSpec, and the whole system was verified. The test setup used and the

verified test cases are described in the following sub-sections.

5.4.1 Verification Setup

The verification setup for verifying the NVMe controller is shown in the figure 5.13.

Figure 5.13: Verification Setup

NVM EXPRESS CONTROLLER

This is the present controller, which is the Design Under Verification (DUV).

NAND FLASH CONTROLLER

The NVMe controller was integrated with the Nand Flash Controller, in order to verify

NVMe Controller’s functionality. The Nand Flash Controller is a fully developed system

with the source code in BlueSpec System Verilog.
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NAND FLASH TARGET :

This is a functional model written in BSV to simulate the functionality of “NAND

FLASH CHIPS” , with ONFI Interface.

PCIe MODEL :

This is a functional model written in BSV to abstract the functionality of the PCIe

Controller and the PCIe Core in the form of Interface level Transactions . It has write data

buffers which are used to store the data coming from the NVMe. This is used to verify

the correctness of write operation. It also has a read buffer, which is initialized with some

random data at the reset of the system. This can be used to verify the correctness of the

Read command.

TEST CASE COMMANDS :

This is the memory model in BSV, which stores the required commands for NVM

Express. This is accessed just as the Host Main Memory is accessed for commands from

the submission queues.

5.4.2 Verification Test Cases

The controller has been verified for the following test cases :

1. Test cases for the I/O command set, that includes Write and Read commands.

2. Test cases for all the commands in the Admin Command set.

3. Test case to verify the Controller Initialization responses.
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4. Test case to verify the Controller Shutdown responses. This includes both “Abrupt

Shutdown” and “Normal Shutdown” .

5. Test case to verify the Read-Write operation to the Register File.

6. Test case to verify the “Arbitration Mechanism”.

7. Test cases to verify interrupt mechanism. This includes verification for Interrupt Ag-

gregation for Successful I/O Commands.

8. Test cases to verify that the Aggregation is not applied to Admin Commands and to

I/O commands that complete in error.

9. Test case for abort command with “Abort Command Limit Exceeded” error.

10. Creation of I/O CQ with :

1. Invalid Q ID.

2. Queue size greater than Max Queue size exceeded.

3. Invalid Interrupt vector.

11. Creation of I/O CQ with :

1. Invalid Q ID.

2. Non-existent associated CQ.

3. Max Queue size exceed.

12. Delete a CQ that does not exist.

13. Delete a SQ that does not exist.
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5.5 Synthesis Report

The design was synthesized for the device Virtex 6 XC6VLX240T-FF1156. The slice uti-

lization and timing summary is provided below.

Number of Slice Registers used : 4773

Number of Slice LUTs used : 6803

Number of LUT Flip Flop Pairs used : 2851

Number of Block RAMs used : 13

Max Frequency of operation : 204 MHz.
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CHAPTER 6

Conclusions and Future Work

The NVM Express 1.0c Specification compliant controller was designed with all the

basic functionality and mandatory command sets. As it was stated earlier that the NVMe

Controller is designed as a PCIe device, hence a PCIe core and PCIe controller were also

implemented. The PCIe controller was designed as a bridge between the Xilinx PCIe

Endpoint Block and the NVMe controller. Both the controllers were individually verified

for their functionality. PCIe controller was verified as a standalone controller between any

PCIe device and Core. NVMe controller was verified with the implemented Nand Flash

controller and the Transactional model of PCIe core and controller. Finally all the three

controllers were integrated. The core and the three controllers form a basic working Non

Volatile Memory system.

The NVM subsystem can be improved in the following ways :

1. NVMe command set can be enriched with some optional commands, if required.

2. An FTL(Flash Translation Layer) processor can be added to the subsystem to carry-
out Flash Management activities at software level [7]. A brief detail about FTL and
its necessity is provided in the appendix.



APPENDIX A

NVM Subsystem with FTL Processor

Flash Translation Layer is a very essential part of any SSD based Non Volatile Memory

subsystem. There are three fundamental limitations for any SSD based system [7]. FTL

helps in overcoming these limitations. The three limitations and the steps taken by FTL to

overcome it or to hide it from the host are detailed below.

Limitation 1 : Erase-before-write

One of the limitations of the Flash memories is their “Erase before write” for re-writ

ting into an already written location. This means that a page data can be written only into a

location which is in erased state. FTL is primarily used to manage these activities by hiding

them to the Host processor. The typical steps performed by the FTL while performing an

over-write operation is shown below :

1. Takes the incoming logical page address, checks if the location pointed by the ad-
dress in Nand Chip is in “erase” state or “written” state.

2. If it is in erase state then the page is written to that location.

3. If it is in “written” state then, it looks for a “new” location in the same block which
is in “erased” state and maps its address to the present logical address. This new
address is the actual physical address of the page. The incoming data page is written
to this physical page address. There are various algorithms to perform this mapping
operation.

4. Whenever the host gives a read command with the previous logical page address, the
FTL fetches the page from its “mapped physical page address”. In this way the host
is unaware of the address translation.



Limitation 2 : Flash can be written in pages but can only be erased as a Block of pages

Flash memories can be written in units of pages, but they can be erased only in larger

units called “blocks” of pages. If a particular set of pages are no longer required and are

to be erased then the FTL performs a sequence of steps called “Garbage Collection”. The

steps are detailed below.

1. If a set of pages in a block are no longer needed (stale pages) , then the FTL first
reads the other “valid“ pages in that block.

2. Re-writes these valid pages into another ”erased“ block .

3. Then erases the previous block completely.

This is also implemented by the FTL unit, and there are various algorithms to perform

it.

Limitation 3 : Flash can be ”Read“ or ”Written” only for a certain number of times

If a particular block were erased and programmed repeatedly without writing to any

other blocks, the one block would wear out before all the other blocks, thereby prematurely

ending the life of the SSD. For this reason, FTL implements a technique called “wear

leveling“ to distribute writes as evenly as possible across all the flash blocks in the SSD.
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Suggested Modifications to the present NVM Subsystem

The modified NVM Subsystem with the inclusion of the FTL processor is shown in the

figure A.1

Figure A.1: Future Work on NVM Subsystem

The modifications that could be made are :

1. AXI wrappers could be put around the NVMe controller and Nand Flash Controller,
so as to communicate with the FTL processor.

2. FTL processor takes the Logical Address from the NVMe controller and performs
the Flash Management operations and sends the ”Control signals“ to the Nand Flash
Controller and then initiate the required data transfer between NVMe controller and
Nand Flash Controller.
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