
APPLICATION OF KRYLOV SUBSPACE METHODS

IN POWER SYSTEMS

A Project Report

submitted by

ARUN L

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2013

CERTIFICATE

This is to certify that the thesis titled APPLICATION OF KRYLOV SUBSPACE

METHODS IN POWER SYSTEMS, submitted by ARUN L, to the Indian Institute

of Technology, Madras, for the award of the degree of Master of Technology, is a bona

fide record of the research work done by him under my supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. S Krishna
(Project Guide)
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 6th May 2013

ACKNOWLEDGEMENTS

It gives me great pleasure in expressing my sincere gratitude to my project guide

Dr. S Krishna for giving me an opportunity to work in this area and for his excellent

guidance, motivation and constant support throughout my project. I would like to ex-

press my gratitude to Prof. Enakshi Bhattacharya, Head of the Department of Electrical

Engineering, IIT Madras.

I would like to express my heartfelt gratitude to research scholars in our lab Mr.

Sunil S. Damodhar, Mr. Tumbali S. S. K. Chaitanya and Mr. Sarojkumar K for their

valuable suggestions and support throughout my work.

With Great pleasure and respect, I express my utmost gratitude to my beloved par-

ents Mr. Louis G and Mrs. Lillykutty P and my brother Anish L for their constant

encouragement and support. Above all, I thank God Almighty for his guidance and

tremendous blessings bestowed throughout my life.

i

ABSTRACT

KEYWORDS: Krylov Subspace; Power Flow; Arnoldi’s Method; Small Signal

Stability.

Solution of large sparse linear system of equations form the core of power system com-

putations, whether it is state estimation or security assessment. Static security assess-

ment of power systems is a time consuming task involving repetitive solution of power

flow equations. There is a need to speed up this process by improved numerical algo-

rithms which can substantially reduce the computational time.

Krylov Subspace Power Flow (KSPF) uses a new approach based on the solution

of large sparse linear system of equations using projection process onto Krylov sub-

spaces. In this work the performance of KSPF is compared with that of the conven-

tional Newton-Raphson power flow method. It includes three different implementation

alternatives and the numerical results are obtained.

The small signal stability assessment of power systems requires evaluation of eigen-

values of a very large unsymmetric matrix. In large interconnected power systems

fast eigenvalue computation is necessary for online oscillatory stability assessment.

Arnoldi’s method can be used to compute the eigenvalues of interest by doing an eigen-

value analysis of an upper Hessenberg matrix of lower dimension. This work discuss

the theory of selective eigenvalue computation using Arnoldi’s method and relevant nu-

merical results obtained. A sparsity oriented implementation is also included, which

avoids the direct computation of state matrix. The performance of Arnoldi’s method is

compared with the QR method and other selective eigenvalue computation techniques.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

NOTATIONS ix

1 Introduction 1

1.1 Online Computation . 1

1.1.1 Static Security Assessment 2

1.1.2 Dynamic Security Assessment 2

1.2 Literature Review . 3

1.3 Motivation and Objectives . 4

1.4 Organization of the Report . 5

2 Krylov Subspace and Arnoldi’s Method 6

2.1 Krylov Subspace . 6

2.1.1 Basis for Krylov Subspace K 6

2.2 Arnoldi’s Method . 7

iii

2.2.1 Arnoldi’s Algorithm . 9

3 Solution of Power Flow Equations Using Krylov Subspace Methodology 10

3.1 General Methodology . 10

3.2 The Power Flow Problem . 16

3.3 Implementation Alternatives . 16

3.3.1 Constant Matrix Alternative (least squares solution) 16

3.3.2 Simplified Solution . 16

3.3.3 The Quasi-Newton Alternative 16

3.4 Numerical Results . 17

3.4.1 Results for IEEE 118 bus system 17

3.4.2 Results for IEEE 300 bus system 23

4 Selective Eigenvalue Computation Techniques 24

4.1 Newton’s Method . 24

4.2 AESOPS Algorithm . 27

4.3 Numerical Results . 28

5 Computation of Eigenvalues Using Arnoldi’s Algorithm 32

5.1 Spectral Transformation . 33

5.2 Application To Power Systems . 34

5.2.1 Power System Modelling 34

5.2.2 Sparsity Oriented Implementation 34

5.2.3 Algorithm for Eigenvalue Computation Using Arnoldi’s

Method . 36

5.2.4 Restarting the Arnoldi’s method with a new starting vector . 37

5.3 Numerical Results . 38

iv

5.3.1 Numerical Results for Sparsity Oriented Implementation . . 43

6 Conclusions 44

6.1 Conclusions . 44

6.2 Future Scope of the Work . 45

v

LIST OF TABLES

3.1 Constant matrix method (least squares solution) for 118 bus system 18

3.2 Constant matrix simplified approach for 118 bus system 20

3.3 Quasi-Newton alternative for 118 bus system 20

3.4 Constant matrix method (least squares solution) for 300 bus system 23

3.5 Quasi-Newton implementation for 300 bus system 23

4.1 Newton’s Method for i = 1 . 29

4.2 AESOPS algorithm with true Jacobian for i = 1 30

4.3 AESOPS algorithm with true Jacobian for i = 26 30

4.4 AESOPS algorithm with true Jacobian for i = 64 30

4.5 AESOPS algorithm with nearly true Jacobian for i = 1 31

4.6 AESOPS algorithm with nearly true Jacobian for i = 26 31

4.7 AESOPS algorithm with nearly true Jacobian for i = 64 31

5.1 Arnoldi’s Method for m = 10 . 38

5.2 Arnoldi’s Method for m = 15 . 39

5.3 Arnoldi’s Method for m = 20 . 40

5.4 Arnoldi’s Method for σ = j4π with Sparsity Oriented Implementation 43

vi

LIST OF FIGURES

3.1 Constant matrix alternative (least squares solution) for m=12 for 118

bus system . 17

3.2 Constant matrix alternative (least squares solution) for m=28 for 118

bus system . 19

3.3 Constant matrix simplified approach for m=15 for 118 bus system . 21

3.4 Constant matrix simplified approach for m=21 for 118 bus system . 21

3.5 Quasi-Newton alternative for m=45 and ε = 0.001 for 118 bus system 22

3.6 Quasi-Newton alternative for m=48 and ε = 0.001 for 118 bus system 22

vii

ABBREVIATIONS

KSPF Krylov Subspace Power Flow

AESOPS Analysis of Essentially Spontaneous Oscillations in Power Systems

viii

NOTATIONS

‖v‖ Euclidean Norm of vector v
〈, 〉 Dot Product
RN N Dimensional Euclidean Space
⊥ Orthogonal
P sp Specified Active Power
Qsp Specified Reactive Power
δ Generator Rotor Angle
ω Generator Rotor Speed
D Damping Coefficient
H Generator Inertia Constant
X
′

d Generator Direct Axis Transient Reactance

ix

CHAPTER 1

Introduction

Secure operation of interconnected power systems has always been a challenging task

because of their intrinsic dynamic nature; load, generation, network topology and key

operating parameters are constantly changing. While security is primarily a function

of the physical system and its current attributes, secure operation is facilitated by avail-

ability of adequate analytical tools for online computation.

1.1 Online Computation

Online computation for power system security can be broken down into three major

functions that are carried out in an operations control center:

1. System monitoring

2. Contingency analysis

3. Security constrained optimal power flow.

System monitoring provides the operators of the power system with pertinent up

to date information on the conditions of the power system. It involves systems for

measurement and data transmission. State estimation is often used in such systems to

combine the collected system data with system models to produce the best estimate of

the current power system conditions or state.

The results of contingency analysis allow systems to be operated defensively. Many

of the problems that occur on a power system can cause serious trouble within such a

quick period that the operator could not take action fast enough. This is often the case

with cascading failures. Contingency programs based on a model of the power system

are used to study outage events and alarm the operators to any potential over loads or

out of limit voltages.

In security constrained optimal power flow, a contingency analysis is combined

with an optimal power flow which seeks to make changes to the optimal dispatch of

generation, as well as other adjustments, so that when a security analysis is run, no

contingencies result in violations.

Online computation for system security can be broadly divided into two,

1. Static Security Assessment

2. Dynamic Security Assessment

which are discussed below.

1.1.1 Static Security Assessment

Static security of a power system is defined as the ability of the system, following a

contingency, to reach an operating state within the specified safety and supply quality.

The assessment is based on the fact that the fast acting automatic control devices have

restored the generation-load balance, but the slow acting controls and human decisions

have not yet responded.

The static security assessment of a large power system is a computationally de-

manding task. It involves the solution of several nonlinear models (AC power flow)

containing a large number of variables and constraints that define the feasible region

of operation. In addition, the amount of memory required to store the massive data for

different system configurations and contingencies is equally prohibitive. These consid-

erations seriously undermine the application of static security assessment, in real time,

without the support of large computing capability.

1.1.2 Dynamic Security Assessment

Online dynamic security assessment is a major concern in the operation of modern

power systems. With the ever growing demand of elecricity, electrical plants are en-

forced to generate electrical conditions nearer to their security limits. Under these

conditions, any large disturbance could jeopardize the system security and may lead

to cascading outages and a shut down of partial or major portion of the power system.

In order for preventive action to be taken and to alert system operator in case a need

arises, a fast online security tool for analyzing the level of security of power system is

imperative to be developed.

2

Online dynamic security assessment mainly focus on the evaluation of the ability

of a power system to maintain synchronism under severe but plausible contingencies.

A contingency is a large disturbance, which could be a sudden loss of load, significant

changes in the network or a severe fault such as three phase short circuit at the generator

bus.

1.2 Literature Review

A real time dynamic security assessment and early warning system for the purpose

of keeping interconnected power systems operating in security region, monitoring dy-

namic security margin constantly and ensuring system operation reliability is proposed

in [1]. A generation rescheduling method to increase the dynamic security of power

systems based on the idea of coherent behavior of generators is proposed in [2]. An on-

line dynamic security assessment scheme for large scale interconnected power systems

using phasor measurements and decision trees is proposed in [3]. A class of intelligent

algorithms for online dynamic security assessment are proposed in [4].

The Krylov subspace methods [5] have been developed and perfected, starting ap-

proximately in the early 1980’s , for the iterative solution of the linear problem Ax = b

for large sparse non symmetric matrices. GMRES [6] is the most widely known and

used Krylov subspace method.

The evaluation of small signal stability analysis of power systems requires the cal-

culation of the eigenvalues of a very large unsymmetric non-sparse matrix. The conven-

tional QR algorithm calculates all the eigenvalues to determine the small signal stability

of power systems. Poorly damped electromechanical oscillations have become a com-

mon phenomenon in the well developed power systems and this small signal stability

problem as well as the voltage related problems become one of the most important fac-

tors to place a limit on power transfer capability and to jeopardize safe operation [7].

Fast eigenvalue computation in large interconnected power systems is useful for online

oscillatory stability assessment.

Many efficient techniques for the small signal stability analysis of large power sys-

tems have been developed in the last two decades that focus on evaluating a selected

subset of eigenvalues associated with the complete system response. The AESOPS pro-

3

gram computes an electromechanical oscillation mode of interest based on a good initial

guess [8]. Newton’s method can also be used for selecively computing the eigenvalues

of interest. The selective modal analysis approach [9] computes eigenvalues of interest

by constructing a reduced order model that involves variables relevant to the selected

modes .

1.3 Motivation and Objectives

Phenomena that can compromise power systems operation need to be carefully analyzed

in order to evaluate their impact on the security and reliability levels of the electrical

networks. Security analysis of a power system is a time-intensive task. There is a need

to speed up the online computations for real time assessment of security and stability

levels of power systems such that corrective actions can be taken in time.

Solution of large sparse linear system of equations form the core of power system

computations whether it is power flow, state estimation or security assessment [10].

Power flow programs are probably the most fundamental and widely used tools in the

analysis of power systems. Repetitive solution of powerflow equations are necessary

for the static security assessment of a power system. The Krylov subspace methods [5]

have been developed and perfected, starting approximately in the early 1980’s , for the

iterative solution of the linear problemAx = b for large sparse non symmetric matrices.

The power flow problem is however nonlinear and this work evaluates the performance

of Krylov subspace methods when extended to the solution of nonlinear equations [11].

The evaluation of small signal stability analysis of power systems requires the cal-

culation of the eigenvalues of a very large unsymmetric non-sparse matrix. The conven-

tional QR algorithm calculates all the eigenvalues to determine the small signal stability

of power systems. Arnoldi’s method can be used to compute the eigenvalues close to

a complex shift point [12]. The present work compares the performance of Arnoldi’s

method in selectively computing the eigenvalues of interest with other existing methods.

4

Objectives of this work can be enlisted as follows

1. To Evaluate the performance of KSPF in comparison with conventional Newton-
Raphson power flow, when applied to standard test systems.

2. To compare the performance of Arnoldi’s method in selectively computing the
eigenvalues of a large power system with other existing methods.

1.4 Organization of the Report

Chapter 2 introduces the basic definitions and concepts of Krylov subspaces and Arnoldi’s

method.

In chapter 3 the application of Krylov subspace methods in the solution of power flow

problem and the numerical results obtained for standard test systems are presented.

Chapter 4 deals with the existing selective eigenvalue computation techniques in the

literature such as Newton’s method and AESOPS method and associated numerical re-

sults obtained on a 493 bus power system.

Chapter 5 presents the application of Arnoldi’s method in selective computation of

eigenvalues for the small signal stability analysis of a large power system. It also in-

cludes the numerical results obtained on a 493 bus power system.

The report is concluded in chapter 6 with a summary of the work done and suggestions

for future work.

5

CHAPTER 2

Krylov Subspace and Arnoldi’s Method

Large sparse linear systems of equations or large sparse eigenvalue problems appear

in most applications of scientific computing. In case the original problem is nonlin-

ear, linearization by Newton’s method or a Newton-type method again leads to a linear

problem. Sparse linear systems of equations can be solved by either so-called direct

solvers, which are clever variations of Gaussian elimination, or iterative methods [13].

Krylov subspace methods are a class of subspace iteration methods based on the projec-

tion to a Krylov subpace. Basic definitions associated with the Krylov subpace method

are given below.

2.1 Krylov Subspace

Krylov subspace generated by anN×N matrixA and anN×1 vector b is the subspace

spanned by the vectors of the Krylov sequence represented as

K = span{b, Ab,A2b, . . . , Am−1b}

where m is a positive integer less than or equal to N .

From the above definition it directly follows that Krylov subspace is the subspace

of all vectors x in RN which can be written as x = p(A)b, where p is a polynomial of

degree not exceeding m− 1.

2.1.1 Basis for Krylov Subspace K

In any inner product space it is free to choose the basis in which to work. It often

greatly simplifies the calculations to work in an orthogonal basis. For example if S =

{v1, v2, v3, . . . , vN} is an orthogonal basis for V then it is easy to express any vector

w ∈ V as a linear combination of vectors in S.

w =
〈w, v1〉
‖v1‖2

v1 +
〈w, v2〉
‖v2‖2

v2 + · · ·+ 〈w, vN〉
‖vN‖2

vN

If r0 = b − Ax is proportional to an eigenvector of A, the vectors in the Krylov

sequence [r0, Ar0, A
2r0,A

m−1r0] may be linearly dependent since Akr0 approaches

the dominant eigenvector of A as k increases. Hence an orthogonal basis is needed.

In KSPF method, Arnoldi’s algorithm is used to generate an orthonormal basis for the

Krylov subspace. Arnoldi’s method uses a modified Gram-Schmidt method to generate

an orthonormal basis.

Given an arbitrary basis {u1, u2, u3 . . . , uN} for an N dimensional inner product

space V , Gram-Schmidt algorithm constructs an orthogonal basis {v1, v2, . . . , vN}. To

get an orthonormal basis normalize each vector in the orthogonal basis.

2.2 Arnoldi’s Method

If K=span{v, Av,A2v . . . , Am−1v} is the given Krylov subspace and Km is a matrix

with columns v, Av,A2v, . . . , Am−1v, then the Arnoldi’s algorithm [14] computes an

orthonormal basis using modified Gram-Schmidt process. Modified Gram-Schmidt

method need only the starting vector v1 and the matrix-vector product evaluations, with-

out explicitly using other vectors in the given basis.

Let v1 be the first vector in the given basis and is chosen with a norm 1. The

second vector in the given basis, Av1 has to be orthogonalized against v1. Let w1 be the

component of Av1 orthogonal to v1, which is obtained by subtracting the projection of

Av1 in the direction of v1 from Av1.

w1 = Av1 −
〈Av1, v1〉
‖v1‖2

v1

= Av1 − 〈Av1, v1〉v1 (∵ ‖v1‖ = 1)

= Av1 − h11v1, where h11 = 〈Av1, v1〉

7

Normalizing this vector gives the second vector in the orthonormal basis as

v2 =
w1

‖w1‖
=

w1

h21
, where h21 = ‖w1‖

Based on modified Gram-Schmidt method Av2 is taken as the new vector to be or-

thogonalized against the previous two vectors v1 and v2. Component of Av2 orthogonal

to both v1 and v2 is ,

w2 = Av2 −
〈Av2, v1〉
‖v1‖2

v1 −
〈Av2, v2〉
‖v2‖2

v2

= Av2 − 〈Av2, v1〉v1 − 〈Av2, v2〉v2

= Av2 − h12v1 − h22v2

Normalizing this vector gives the third vector in the orthonormal basis as

v3 =
w2

‖w2‖
=

w2

h32

Repeating the above procedure, the mth step will be

wm = Avm −
〈Avm, v1〉
‖v1‖2

v1 −
〈Avm, v2〉
‖v2‖2

v2 . . .−
〈Avm, vm〉
‖vm‖2

vm

= Avm − hm1v1 − hm2v2 − . . .− hmmvm

vm+1 =
wm
‖wm‖

=
wm

hm+1,m

The above procedure can be formulated as an algorithm as given below.

8

2.2.1 Arnoldi’s Algorithm

Arnoldi’s algorithm consists of the following steps.

1. Choose a vector v1 of norm 1

2. For j = 1, 2 . . . ,m Do:

3. Compute hij = 〈Avj, vi〉 for i = 1, 2 . . . , j

4. Compute wj = Avj −
∑j

i=1 hijvi

5. hj+1,j = ‖wj‖2
6. If hj+1,j = 0 then stop

7. vj+1 = wj/hj+1,j

8. End Do

At each step, the Arnoldi’s algorithm multiplies the previous Arnoldi vector vj by

A and then orthonormalizes the resulting vector wj against all the previous vectors, vi’s

by a modified Gram-Schmidt procedure. The special feature of Arnoldi’s method is that

the new vector to be orthogonalized is not taken from the columns of matrix Km, but is

expressed as Avj , in terms of the last vector, vj brought into the basis.

9

CHAPTER 3

Solution of Power Flow Equations Using Krylov

Subspace Methodology

3.1 General Methodology

The power flow equations can be written in the general form

f(x) = 0 (3.1)

where x ∈ RN is the vector of voltage magnitudes and phase angles. f(.) is the dif-

ference between the specified and calculated powers, both real and reactive. At kth

iteration the residual vector is given by

rk = f(x(k)) (3.2)

where,

f(x(k)) =


f1(x

(k))

f2(x
(k))

...

fN(x(k))

 , x
(k) =


x
(k)
1

x
(k)
2

. . .

x
(k)
N


The linearized form of (3.2) is given by

rk = f(x(k))

= f(x(k−1) + h)

= f(x(k−1)) + J(x(k−1))h

= f(x(k−1)) + J(x(k−1))(x(k) − x(k−1))

= f(x(k−1))− J(x(k−1))x(k−1) + J(x(k−1))x(k)

(3.3)

where,

J(x(k−1)) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xN

...
...

∂fN
∂x1

∂fN
∂x2

. . . ∂fN
∂xN

∣∣∣
x=x(k−1)

In general form,

rk = bk − Akx(k) (3.4)

Comparing (3.3) and (3.4) gives

Ak = −J(xk−1)

Here −J(xk−1) is equal to the load flow Jacobian matrix in Newton-Raphson power

flow method. Both (3.2) and (3.3) are used to obtain the minimal residual solution of

the problem (3.1). Equation (3.3) is used to obtain a Krylov subspace update ∆xk for xk

and (3.2) to get a new minimum residual vector so that xk is driven to the true solution.

Let x(0) be the initial guess to the solution of (3.1), then (3.4) gives r0 = b− Ax(0)

Let

x(k+1) = x(k) + ∆x(k) (3.5)

be the new value of the vector of unknowns.

From (3.4),

rk+1 = bk+1 − Ak+1x
(k+1)

= bk+1 − Ak+1(x
(k) + ∆x(k))

= bk+1 − Ak+1x
(k) − Ak+1∆x

(k)

≈ bk − Akx(k) − Ak+1∆x
(k)

= rk − Ak+1∆x
(k)

where it is assumed that, rk ≈ bk+1 − Ak+1x
(k).

∴ rk − Ak+1∆x
(k) = rk+1 (3.6)

11

Equation (3.6) represents a minimization problem, where the norm of the new residual

vector rk+1 has to be minimized.

Ak+1∆x
(k) ≈ rk (3.7)

∆x(k) = A−1k+1rk (3.8)

∆x(k) should be chosen such that the norm of the new residual vector is minimum. The

matrix A−1k+1 can be expressed as a polynomial of degree N − 1 in Ak+1 using Cayley-

Hamilton therom.

Proof:

Consider a matrix A of size N ×N . Its characteristic equation can be written as

| λI − A |= λN + a1λ
N−1 + a2λ

N−2 + . . .+ aN−1λ+ aN = 0

where λ is an eigenvalue of A and I is an identity matrix of size N ×N .

The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic

equation.

∴ 0 = AN + a1A
N−1 + . . .+ aN−1A+ aNI

I = − 1

aN
(AN + a1A

N−1 + a2A
N−2 + . . .+ aN−1A)

A−1 = − 1

aN
(AN−1 + a1A

N−2 + . . .+ aN−1I)

∴ A−1 can be expressed as a polynomial of degree N − 1 in A.

From the above proof, it follows that A−1k+1rk can be expressed as a linear combi-

nation of column vectors Ajk+1rk, where j = 0, 1, 2 . . . , N − 1. These column vectors

are arranged in a matrix to form the Krylov matrix KN of order N × N . If rk is pro-

portional to an eigen vector of Ak+1, then KN has only one independent column, since

all the vectors, rk, Ak+1rk, A
2
k+1rk, . . . , A

N−1
k+1 rk, are linearly related. If rk is close to

an eigenvector of Ak+1, then the columns of KN are linearly related, only the first few

columns are essential in the solution. This is of course only an approximation but it

leads to computational efficiency. Thus if only the first m << N columns are used, the

Krylov matrix becomes Km = [rk, Ak+1rk, A
2
k+1rk,, A

m−1
k+1 rk] of order N × m. If

12

the rank of Km is m, the columns of Km spans a subspace of order m. Now ∆x(k) can

be expressed as a linear combination of columns of Km.

∆x(k) = Kmy (3.9)

where y is a column vector of size m× 1. Since columns of Km does not span the full

space RN , (3.9) can be only approximately satisfied. This is based on the assumption

that ∆x(k) is confined to the Krylov subspace spanned by the columns of Km.

Substitution of ∆x(k) from (3.9) into (3.6) yields the minimization problem

rk − Ak+1Kmy = rk+1 (3.10)

where norm of rk+1 has to be minimized. Arnoldi’s method can be used to orthogonalize

the Krylov matrix Km to get an orthonormal matrix V . Hence ∆x(k) can be expressed

as a linear combination of columns of V . Then Equations (3.9) and (3.10) take the form

∆x(k) = V z (3.11)

rk − Ak+1V z = rk+1 (3.12)

where z is a column vector of size m× 1. The norm of rk+1 has to be minimized. Least

Squares Solution of (3.12) is given below. Choose

v1 = rk/‖rk‖ (3.13)

as the first vector in V . The other vectors are obtained using Arnoldi’s algorithm.

For j = 1, 2 . . . ,m Do:

hij = 〈Ak+1vj, vi〉 for i = 1, 2, . . . , j

wj = Ak+1vj −
∑j

i=1 hijvi

hj+1,j = ‖wj‖

vj+1 = wj/hj+1,j

End Do

The above algorithm implies

Ak+1vj =

j+1∑
i=1

hi,jvi for j = 1, 2, . . . ,m (3.14)

13

In matrix form,

Ak+1V = Vm+1H (3.15)

where Vm+1 is the matrix V augmented by the new column vm+1, and H is an upper

Hessenberg matrix of dimension (m+ 1)×m with elements hij . Substituting (3.15) in

(3.12) gives

rk − Vm+1Hz = rk+1 (3.16)

To minimize the new residual it must be orthogonal to the span of Vm+1H .

Proof:

Let the linear system of equations to be solved be

Ax = b (3.17)

Let xk be the solution at kth iteration and rk be the corresponding residual vector.

rk = b− Axk (3.18)

Let x = xk + z be any vector in xk + K, where z ∈ K and K is the Krylov subspace

spanned by the vectors rk, Ark, A2rk,, A
m−1rk. Let x be the approximate solution,

such that x = xk + z , where x ∈ xk +K and z ∈ K.

The approximate solution for equation (3.17) is chosen from xk +K. The condition

to be satisfied to get the minimum possible residual norm can be derived as follows.

‖b− Ax‖2 = ‖b− A[(x− x) + x]‖2

= ‖b− Ax− A(x− x)‖2

= 〈b− Ax− A(x− x) , b− Ax− A(x− x)〉

= 〈b− Ax, b− Ax〉 − 2〈b− Ax,A(x− x)〉+ 〈A(x− x), A(x− x)〉

= ‖b− Ax‖2 − 2〈b− Ax,A(x− x)〉+ ‖A(x− x)‖2

‖b− Ax‖2 = ‖b− Ax‖2 − 2〈b− Ax,A(x− x)〉+ ‖A(x− x)‖2 (3.19)

x = xk + z and x = xk + z

∴ x− x = z − z

14

Since both z and z are elements of K,

z − z ∈ K

∴ x− x ∈ K

and A(x− x) ∈ AK

If

〈b− Ax,A(x− x)〉 = 0, (3.20)

then (3.19) becomes

‖b− Ax‖2 = ‖b− Ax‖2 + ‖A(x− x)‖2 (3.21)

∴ ‖b− Ax‖ ≤ ‖b− Ax‖ (3.22)

∴ x gives the minimum possible residual norm. It means, to get the minimum residual

norm, x should be chosen such that (3.20) is satisfied.

⇒ b− Ax ⊥ AK

If b− Ax = rk+1, rk+1 ⊥ AK

Since K is orthonormalized to get V by a modified Gram-Schmidt process in the

Arnoldi’s algorithm, rk+1 ⊥ Ak+1V

From Arnoldi’s algorithm Ak+1V = Vm+1H ∴ rk+1 ⊥ Vm+1H

Premultiplying (3.16) by (Vm+1H)T and using (Vm+1H)T rk+1 = 0 by the above proof

gives,

HTHz = HTVm+1
T rk (3.23)

Equation (3.23) is equivalent to the least squares problem

Hz = Vm+1
T rk (3.24)

Hz = b (3.25)

where b = [β, 0, 0, . . . , 0]T is an (m + 1) × 1 vector and β = ‖rk‖. Solving this least

squares problem gives z. Substitution of this z in (3.11) gives ∆x(k). Subsequently

(3.5) yields x(k+1) and from (3.2) rk+1 is obtained.

15

3.2 The Power Flow Problem

For an n bus system if bus 1 is the slack bus, buses 2, 3, . . . , g are the PV buses and

buses g + 1, . . . , n are PQ buses then the power flow equations are

∆Pi = P sp
i −

n∑
k=1

ViVkYik cos(θik − δi + δk) = 0 for i=2,3,. . . ,n (3.26)

∆Qi = Qsp
i +

n∑
k=1

ViVkYik sin(θik − δi + δk) = 0 for i=g+1,. . . ,n (3.27)

3.3 Implementation Alternatives

3.3.1 Constant Matrix Alternative (least squares solution)

In this method matrixA is replaced by the Jacobian matrix used in Fast Decoupled Load

Flow. Solving the least squares problem (3.24) gives z.

3.3.2 Simplified Solution

Since H is an upper Hessenberg matrix the last row contains only one nonzero element.

If the last element ofH is set equal to zero then it becomes a regularm×m Hessenberg

matrix and then Vm+1 becomes V and b will have length m. Then (3.24) becomes a set

of linear equations.

3.3.3 The Quasi-Newton Alternative

In Arnoldi’s algorithm A is not needed explicitly since it is used only as an operator to

obtain the vector Avj . This can be calculated directly as the directional derivative of

f(x) .

f(x) = psp − p(x) (3.28)

where psp represents specified active and reactive powers and p represents the calculated

active and reactive powers. Thus linearizing p(x) at xk + εvj , around xk gives

p(xk + εvj) = p(xk) + Jkεvj (3.29)

16

10-8

10-6

10-4

10-2

100

102

0 20 40 60 80 100

re
si

du
al

 n
or

m

iteration number

m=12

Figure 3.1: Constant matrix alternative (least squares solution) for m=12 for 118 bus
system

This implies, with Jacobian Jk replaced by A,

Avj =
p(xk + εvj)− p(xk)

ε
(3.30)

3.4 Numerical Results

3.4.1 Results for IEEE 118 bus system

The number of iterations taken for the residual norm to be less than 10−6 and cor-

responding time taken for the execution of the program for different values of m for

constant matrix alternative (least squares solution) are given in Table 3.1.

Figures 3.1 and 3.2 show the variation of residual norm (Euclidean norm of the

residual vector) with iteration number for m = 12 and 28 respectively. It can be seen

that as the value of m increases from 10 to 28 the number of iterations required for

convergence decreases but further increase in the value of m results in an increase in

the time required for the execution of the program.

Table 3.2 shows the number of iterations taken for the residual norm to be less than

17

Table 3.1: Constant matrix method (least squares solution) for 118 bus system

Value of m No.of iterations required
for the residue to be less
than 10−6

Time taken for the exe-
cution of the program (in
seconds)

10 137 133.51
12 82 80.699
14 55 54.756
15 43 43.056
16 40 40.529
17 35 35.599
18 28 28.876
19 27 28.002
20 25 26.099
21 24 24.835
22 23 24.024
23 22 23.182
24 21 22.308
25 21 22.370
26 19 20.592
27 19 20.514
28 17 18.502
29 17 18.595
30 17 18.767
31 17 18.720
32 17 18.736
33 17 18.798
34 17 18.923
35 17 18.970
36 17 19.001
37 17 19.048
38 17 19.204
39 21 23.462
40 28 31.060
41 30 33.275

18

10-8

10-6

10-4

10-2

100

102

0 5 10 15 20

re
si

du
al

 n
or

m

iteration number

m=28

Figure 3.2: Constant matrix alternative (least squares solution) for m=28 for 118 bus
system

10−6 for different values of m and the corresponding time taken for the execution of

the program for the constant matrix simplified approach. Figures 3.3 and 3.4 show the

variation of norm of the residue with iteration number for m=15 and 21 respectively.

In this approach also, the number of iterations required for convergence decreases with

increase in the value of m, till m = 21. Further increase in m results in an increase in

the number of iterations and time required for execution. Table 3.3 shows the number

of iterations for the norm of residue to be less than 10−6 and time taken for the execution

of the program for Quasi-Newton method. Figures 3.5 and 3.6 depict the convergence

pattern for Quasi-Newton method for m=45 and 48 respectively.

The results show that in Quassi-Newton alternative, convergence is obtained in less

number of iterations compared to the other two methods. Since it is based on a variable

A matrix, the time required per iteration is more.

The conventional Newton-Raphson power flow method takes only 13.12 seconds

for the residual norm to be less than 10−12, whereas the time required for all the three

alternatives of KSPF are relatively more.

19

Table 3.2: Constant matrix simplified approach for 118 bus system

Value of m No.of iterations required
for the residue to be less
than 10−6

Time taken for the exe-
cution of the program(in
seconds)

10 135 134.25
12 71 69.826
13 55 54.803
14 47 46.831
15 41 41.215
16 39 39.406
17 32 32.542
18 28 28.891
19 24 24.960
20 22 22.994
21 18 19.157
22 21 22.183
23 19 20.186
24 21 22.292
25 20 21.372
26 18 19.422
27 20 21.512
28 18 19.406
29 18 19.547
30 18 19.578
31 20 21.762
32 22 23.915
33 21 23.026
34 27 29.385
35 29 31.606

Table 3.3: Quasi-Newton alternative for 118 bus system

Value of m No.of iterations required
for the norm of residue to
be less than 10−6

Time taken for the exe-
cution of the program(in
seconds)

20 35 694.53
25 22 539.40
35 12 410.25
40 9 349.74
45 8 348.16
48 7 325.48
50 7 339.25

20

10-8

10-6

10-4

10-2

100

102

0 10 20 30 40 50

re
si

du
al

 n
or

m

iteration number

m=15

Figure 3.3: Constant matrix simplified approach for m=15 for 118 bus system

10-8

10-6

10-4

10-2

100

102

0 5 10 15 20

re
si

du
al

 n
or

m

iteration number

m=21

Figure 3.4: Constant matrix simplified approach for m=21 for 118 bus system

21

10-8

10-6

10-4

10-2

100

102

1 2 3 4 5 6 7 8

re
si

du
al

 n
or

m

iteration number

m=45

Figure 3.5: Quasi-Newton alternative for m=45 and ε = 0.001 for 118 bus system

10-8

10-6

10-4

10-2

100

102

1 2 3 4 5 6 7

re
si

du
al

 n
or

m

iteration number

m=48

Figure 3.6: Quasi-Newton alternative for m=48 and ε = 0.001 for 118 bus system

22

3.4.2 Results for IEEE 300 bus system

Table 3.4: Constant matrix method (least squares solution) for 300 bus system

Value of m Number of
iterations
performed

Norm of
residue at
the end of
iterations

Time taken
for the exe-
cution of the
program(in
seconds)

23 31 4.6517 232.75
25 31 0.60052 232.77
26 31 0.55901 233.11

Table 3.5: Quasi-Newton implementation for 300 bus system

Value of m Number of
iterations
performed

Norm of
residue at
the end of
iterations

Time taken
for the exe-
cution of the
program

8 5 4.8326 321.44
25 3 1.112 786.02
40 3 0.85899 895.33

Constant matrix implementation alternatives failed to converge in 300 bus test sys-

tem. Quasi-Newton alternative was slow and norm of the residue was almost constant

after initial iterations. Results are given in table 3.4 and 3.5. The conventional Newton-

Raphson power flow method takes 1.96 minutes for the norm of the residue to be less

than 10−6.

23

CHAPTER 4

Selective Eigenvalue Computation Techniques

4.1 Newton’s Method

The linearized power system model for small signal stability analysis can be represented

as

ẋ
0

 =

A B

C D

x
V

 (4.1)

The state vector x can be partitioned as

x1
x2

, where x1 is of size m1 × 1 and x2 is of

size m2 × 1.

x1 will be the retained vector and the eigenvalues associated with x1 will be of interest

and x2 can be eliminated. The partitioned form of (4.1) will be


ẋ1

ẋ2

0

 =


Ag1 A12 B1

A21 Ag2 B2

C1 C2 D1



x1

x2

V

 (4.2)

Taking Lapalace Transform of (4.2) gives


sX1(s)

sX2(s)

0

 =


Ag1 A12 B1

A21 Ag2 B2

C1 C2 D1



X1(s)

X2(s)

V

 (4.3)

The system of equations (4.3) can be rewritten as


sX1(s)

0

0

 =


Ag1 A12 B1

A21 Ag2 − sI B2

C1 C2 D1



X1(s)

X2(s)

V (s)

 (4.4)

⇒ sX1 = (Ag1 −BD−1(s)C)X1(s) (4.5)

where,

B =
[
A12 B1

]
C =

A21

C1


D(s) =

Ag2 − sI B2

C2 D1


Let,

G(s) = D−1(s)C (4.6)

∴ D(s)G(s) = C (4.7)

Differentiating the above expression gives

dD(s)

ds
G(s) +D(s)

dG(s)

ds
= 0 (4.8)

Since

D(s) =

Ag2 − sI B2

C2 D1


dD(s)

ds
=

−I 0

0 0

 , −I0

(4.8) becomes

− I0G(s) +D(s)
dG(s)

ds
= 0 (4.9)

∴
dG(s)

ds
= D−1(s)I0G(s) (4.10)

Expanding G(s) as a Taylor series,

G(s) = G(sk) +
dG(s)

ds

∣∣∣∣∣
s=sk

+ higher order terms (4.11)

25

Substituting for G(s), G(sk) and
dG(s)

ds
and neglecting higher order terms lead to

G(s) = D−1(s)C = D−1(sk)C +D−1(sk)I0D
−1(sk)C(s− sk) (4.12)

(4.5) becomes,

sX1 =
(
Ag1 −BD−1(sk)C −BD−1(sk)I0D−1(sk)C(s− sk)

)
X1

=
(
Ag1 −BD1(sk)C +BD−1(sk)I0D

−1(sk)Csk

)
X1 − sBD−1(sk)I0D−1(sk)CX1

s
(
I +BD−1(sk)I0D

−1(sk)C
)
X1 =

(
Ag1 −BD−1(sk)C +BD−1(sk)I0D

−1(sk)Csk

)
X1

(4.13)

Define,

I +BD−1(sk)I0D
−1(sk)C = J(sk)

(4.13) becomes

J(sk)sX1 =
(
Ag1 −BD−1(sk)C + (J(sk)− I)sk

)
X1 (4.14)

sX1 = J(sk)
−1
(
Ag1 −BD−1(sk)C + (J(sk)− I)sk)

)
X1 (4.15)

The improved guesses for eigenvalues associated with the vector x1 are obtained by

iterative solution of the equation given by

∣∣∣sI − J(sk)
−1[Ag1 −BD−1(sk)C + (J(sk)− I)sk)]X1

∣∣∣ = 0 (4.16)

If x1 is a scalar i.e., m1 = 1

sk+1 = J(sk)
−1
(
Ag1 −BD−1(sk)C + (J(sk)− 1)sk

)
X1 (4.17)

The iteration proceeds till sk converges to one of the eigenvalues.

26

4.2 AESOPS Algorithm

In AESOPS algorithm (Analysis of Essentially Spontaneous Oscillations in Power Sys-

tems), the system matrix is organized as follows, retaining only ∆ωi(s).


s∆ωi(s)

s∆δi(s)

sX2(s)

0

 =


ai1 ai2 Bi

1 0 0 0

C11 C12 A22 B2

C2 D1




∆ωi(s)

∆δi(s)

∆X2(s)

∆Y(s)

 (4.18)

Where Bi is a row vector and C11 ans C12 are column vectors, and

ai1 = −Diωs
2Hi

, ai2 = − ωsEiVi
2HiX

′
di

cos(δi − φi)

Since

∆δi(s) =
∆ωi(s)

s

(4.18) becomes

s∆ωi(s) =
(
ai1 +

ai2
s

)
∆ωi(s) +Bi

∆X2(s)

∆Y (s)

 (4.19)

0 =

(
C11 +

C12

s

)
∆ωi(s) +

A22 − sI B2

C2 D1

∆X2(s)

∆Y (s)

 (4.20)

Eliminating ∆X2(s) and ∆Y (s) between these two equations gives

s∆ωi(s) =

(
ai1 +

ai2
s
−BiD

−1(s)

(
C11 +

C12

s

))
∆ωi(s) (4.21)

where,

D(s) =

A22 − sI B2

C2 D1


The eigenvalue of this problem is obtained by solving the scalar equation

s+

(
−ai1 −

ai2
s

+BiD
−1(s)

(
C11 +

C12

s

))
= 0 (4.22)

27

Let

J(s) = s+

(
−ai1 −

ai2
s

+BiD
−1(s)

(
C11 +

C12

s

))
Using Newton-Raphson method for the iterative solution of a nonlinear equation,

sk+1 = sk −
J(sk)

J ′(sk)
(4.23)

From equation (4.6)

G(s) = D−1(s)C

dG(s)

ds
=

d

ds
(D−1(s))C

Using (4.10),

D−1(s)I0G(s) =
d

ds
(D−1(s))C (4.24)

∴ D−1(s)I0D
−1(s)C =

d

ds
(D−1(s))C (4.25)

∴
d

ds
(D−1(s)) = D−1(s)I0D

−1(s) (4.26)

Using (4.26) the Jacobian J ′(sk) of J(sk) is given by

J ′(sk) =
∂J(s)

∂s

∣∣∣∣∣
s=sk

=1 +
ai2
s2k
−BiD

−1(sk)
C12

s2k
+BiD

−1(sk)I0D
−1(sk)

(
C11 +

C12

sk

) (4.27)

J ′(sk) can be approximated as

J ′(sk) ≈ 1 +
ai2
s2k
−BiD

−1(sk)
C12

s2k
(4.28)

4.3 Numerical Results

The western regional grid of Indian power system consisting of 493 buses and 193

generators is used for eigenvalue analysis. Generators are represented using classical

model. So that δ and ω are the state variables and the total number of state variables

28

were 386. Damping coefficient is assumed to be zero for all generators.

The QR method computes all the 386 eigenvalues in 0.4386 seconds. The results

obtained on 493 bus system on applying Newton’s method and AESOPS algorithm are

tabulated below.

The results obtained on applying Newton’s method, to find out an eigenvalue asso-

ciated with the rotor angle of the first generator for different initial values, are given in

Table 4.1. It can be seen that the number of iterations required for convergence depends

on the initial guess. Based on the initial guess, Newton’s method converges to a particu-

lar eigenvalue, among the different eigenvalues associated with the state variable under

coonsideration.

Table 4.1: Newton’s Method for i = 1

s0 Number of

iterations

Eigenvalue(s) Time taken

(in seconds)

jπ 13 j8.496246 67.44

j1.6π 9 j8.496246 47.03

j1.8π 8 j8.496246 41.81

j2π 7 j6.290521 36.53

j2.2π 5 j7.817677 26.09

j2.4π 6 j7.537722 31.31

j2.6π 8 j8.814284 41.79

j2.8π 5 j8.814284 26.07

j3π 6 j9.225411 31.37

j3.2π 5 j9.225411 26.18

j3.4π 6 j9.225411 31.26

j3.6π 6 j9.225411 31.29

j3.8π 6 j9.225411 31.42

j4π 5 j9.950887 26.08

j5π 6 j9.225411 31.18

j5.6π 7 j9.225411 36.33

j6π 6 j9.225411 31.34

29

The AESOPS program computes an elecromechanical oscillation mode of interest

based on a good initial guess. The results obtained on using the true Jacobian (equa-

tion (4.27)) and a nearly true Jacobian (equation (4.28)) for three different states are

tabulated below.

Table 4.2: AESOPS algorithm with true Jacobian for i = 1

s0 Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

jπ 15 j9.225412 91.49
j2π 16 j9.225412 97.73
j2.8π 15 j9.225412 91.43
j3π 13 j9.225412 79.29
j3.6π 14 j9.225412 85.24
j3.8π 14 j9.225412 84.59
j4π 15 j9.225412 90.79

Table 4.3: AESOPS algorithm with true Jacobian for i = 26

s0 Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

jπ 22 j11.00080 134.7
j2π 23 j11.00080 140.2
j2.4π 20 j11.00080 121.9
j3π 22 j11.00080 134.1
j3.2π 19 j11.00080 114.72
j3.4π 17 j11.00080 103.44
j3.6π 20 j11.00080 120.94

Table 4.4: AESOPS algorithm with true Jacobian for i = 64

s0 Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

jπ 25 j10.966854 152.08
j2π 25 j10.966854 151.17
j3π 24 j10.966854 145.15
j3.2π 23 j10.966854 139.85
j3.4π 21 j10.966854 127.85
j3.6π 20 j10.966854 120.86
j3.8π 21 j10.966854 126.95

The number of iterations and the time required for convergence for both true Ja-

cobian and nearly true Jacobian implementations decreases as the initial guess moves

30

Table 4.5: AESOPS algorithm with nearly true Jacobian for i = 1

s0 Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

jπ 15 j9.225411 27.83
j2π 16 j9.225411 29.75
j2.8π 14 j9.225411 26.18
j3π 10 j9.225411 18.72
j3.6π 12 j9.225411 22.47
j3.8π 17 j9.225411 31.81

Table 4.6: AESOPS algorithm with nearly true Jacobian for i = 26

s0 Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

jπ 23 j11.00080 43.00
j2π 23 j11.00080 43.02
j2.4π 20 j11.00080 37.43
j3π 17 j11.00080 31.78
j3.2π 18 j11.00080 33.46
j3.4π 20 j11.00080 37.42
j3.6π 22 j11.00080 41.14

Table 4.7: AESOPS algorithm with nearly true Jacobian for i = 64

s0 Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

jπ 40 j10.966855 74.86
j2π 25 j10.966855 46.70
j3π 24 j10.966855 44.82
j3.2π 22 j10.966855 41.16
j3.4π 21 j10.966855 39.02
j3.6π 20 j10.966855 37.44
j3.8π 21 j10.966855 39.28

close to the desired eigenvalue. The nearly true Jacobian alternative is faster compared

to the true Jaciobian alternative because of the reduction in computation.

31

CHAPTER 5

Computation of Eigenvalues Using Arnoldi’s Algorithm

Let A be an n× n matrix whose eigenvalues are to be determined. Choose a vector v1

of norm 1. Use of A and v1 in m−step Arnoldi’s algorithm results in

AVm = Vm+1H (5.1)

= VmHm + hm+1,mvm+1e
T
m (5.2)

where,

Vm+1 is an n× (m+ 1) matrix with v1, v2, ...vm+1 as its columns.

Vm is a matrix of size n×m obtained from Vm+1 by deleting the last column of Vm+1.

H is an upper Hessenberg matrix of size (m+ 1)×m.

Hm is an m×m matrix obtained from H by deleting the last row of H .

em is the mthcolumn of m×m identity matrix.

hm+1,m is the (m+ 1)th row, mth column element of H .

Since columns of Vm form an orthonormal basis,

V T
mVm = I (5.3)

V T
m vm+1 = 0 (5.4)

Multiplying (5.2) by V T
m and using (5.3) and (5.4) results in

V T
mAVm = Hm (5.5)

Let y(m)
i be a right eigenvector of Hm associated with an eigenvalue λ(m)

i .

∴ Hmy
(m)
i = λ

(m)
i y

(m)
i (5.6)

Multiplying equation (5.2) by y(m)
i gives,

AVmy
(m)
i = VmHmy

(m)
i + hm+1,mvm+1e

T
my

(m)
i (5.7)

Using equation (5.6), (5.7) becomes

AVmy
(m)
i = λ

(m)
i Vmy

(m)
i + hm+1,mvm+1e

T
my

(m)
i (5.8)

⇒ (A− λ(m)
i I)Vmy

(m)
i = hm+1,mvm+1e

T
my

(m)
i (5.9)

where I is an identity matrix of size n× n.

If hm+1,mvm+1e
T
my

(m)
i → a zero vector, then λ(m)

i is an approximate eigenvalue of A

and Vmy
(m)
i is the corresponding approximate right eigenvector of A. λ(m)

i is known

as Ritz value or Arnoldi eigenvalue estimate. Vmy
(m)
i is called the corresponding Ritz

vector of A.

5.1 Spectral Transformation

Arnoldi’s algorithm converges to eigenvalues of largest modulus first, so to get eigenval-

ues close to a particular point in the complex plane, shift and invert concept is used [12].

Consider a matrix A of size n× n. Let λi be the ith eigenvalue of A and vi be the cor-

responding right eigenvector.

Avi = λivi (5.10)

Let σ be a complex number,

(A− σI)vi = Avi − σvi

= λivi − σvi

= (λi − σ)vi

(A− σI)−1vi =
1

λi − σ
vi (5.11)

∴ Eigenvalues of (A− σI)−1 are 1
λ1−σ ,

1
λ2−σ ,

1
λn−σ .

Hence eigenvalue of (A− σI)−1 with largest modulus is the one which is closest to σ.

Therefore (A−σI)−1 is used instead ofA in the Arnoldi’s algorithm so that eigenvalues

close to σ will converge first.

∴ If µi is the ith eigenvalue of (A − σI)−1, then the corresponding eigenvalue of A is

obtained as λi = 1/µi + σ.

33

5.2 Application To Power Systems

5.2.1 Power System Modelling

The linearized power system model for small signal stability analysis can be represented

as ẋ
0

 =

JA JB

JC JD

x
V

 (5.12)

where x is the vector of state variables and V is the vector of algebraic variables.

JA, JB, JC and JD are sparse matrices which depend on system parameters and op-

erating point. From equation (5.12) it can be shown that,

ẋ = (JA − JBJ−1D JC)x (5.13)

From equation (5.13), state matrix of the system is given by

A = JA − JBJ−1D JC (5.14)

where A ∈ Rn×n and is in general a dense matrix. Hence direct computation and use of

A can be avoided in the algorithm by using only the augmented system of equations in

(5.12) as discussed below.

5.2.2 Sparsity Oriented Implementation

Arnoldi’s algorithm requires the computation of a matrix-vector product Av or (A −

σI)−1v, if a spectral transformation is performed to get eigenvalues close to σ. The

matrix-vector product (A− σI)−1v, where A = JA − JBJ−1D JC is equal to u which is

obtained by solving the following augmented system of equations.JA − σI JB

JC JD

u
w

 =

v
0

 (5.15)

where I is an identity matrix of size same as that of JA .

34

Proof

From (5.15),

JCu+ JDw = 0

∴ w = −J−1D JCu

and (5.15) also gives

(JA − σI)u+ JBw = v

∴ (JA − σI − JBJ−1D JC)u = v

(A− σI)u = v (∵ using(5.14))

u = (A− σI)−1v (5.16)

Hence u is the required matrix-vector product.

Solution of the equation (5.15) is given below.

(JA − σI)u+ JBw = v (5.17)

∴ u = −(JA − σI)−1JBw + (JA − σI)−1v (5.18)

JCu+ JDw = 0 (5.19)

Substituting (5.18) in (5.19) gives

JC(JA − σI)−1JBw + JC(JA − σI)−1v + JDw = 0 (5.20)

∴ (JD − JC(JA − σI)−1JB)w = −JC(JA − σI)−1v (5.21)

Calculate,

JDeq = JD − JC(JA − σI)−1JB (5.22)

Equation (5.21) becomes

JDeqw = −JC(JA − σI)−1v (5.23)

35

Solve for w and substitute that in (5.18) to find out u.

5.2.3 Algorithm for Eigenvalue Computation Using Arnoldi’s

Method

1. Choose a value for m and fix the complex shift point σ.

2. Choose the starting vector v1 of size n× 1 and norm equal to 1, which is the first
column of matrix V of size n×m.

3. For j = 1, 2, ...m Do:
Calculate the matrix-vector product, uj = (A− σI)−1vj
Calculate hi,j = 〈uj, vi〉 for i = 1, 2,j
wj = uj −

∑j
i=1 hi,jvi

hj+1,j = ‖wj‖
vj+1 = wj/hj+1,j

End Do
Step 3 implies

Atvj =

j+1∑
i=1

hi,jvi for j = 1, 2, ...m (5.24)

where At = (A− σI)−1.
Equation (5.24) in matrix form can be written as,

AtVm = Vm+1H (5.25)

where Vm+1 is the matrix Vm augmented by the column vector vm+1 and H is an
upper Hessenberg matrix of size (m+ 1)×m with elements hi,j .

4. Calculate the eigenvalues of the matrix Hm of size m ×m obtained from H by
removing the last row.

5. Accept the eigenvalues for which the norm of the vector hm+1,mvm+1e
T
my

(m)
i is

less than the tolerance level. Where y(m)
i is the ith eigenvector of Hm.

6. If all required eigenvalues are obtained, exit; otherwise restart the Arnoldi’s method
with a new starting vector v1.

36

5.2.4 Restarting the Arnoldi’s method with a new starting vector

The starting vector is chosen as a weighted linear combination of the eigenvectors of

A obtained in the previous iteration. The following expression is used to update the

starting vector before each iteration [12].

v1 = α
m∑
i=1

‖(A− λiI)Vmyi‖Vmyi (5.26)

where α is a normalizing scalar. It can be shown that (5.25) is equal to

v1 = α
′
VmPp (5.27)

where, P = [y
(m)
1 y

(m)
2y

(m)
m] is an m×m matrix whose columns are right eigenvec-

tors of Hm and p = [|ym1| |ym2|....|ymm|]T .

Here ymi is the last element of y(m)
i and α′ is a normalizing scalar.

Proof

By definition,

Hmy
(m)
i = λ

(m)
i y

(m)
i and (5.28)

eTmy
(m)
i = ymi (5.29)

where em is the mth column of an identity matrix of size m×m.

‖(A− λiI)Vmy
(m)
i ‖ = ‖(AVm − λ(m)

i Vm)y
(m)
i ‖ (5.30)

= ‖(VmHm + hm+1,mvm+1e
T
m − λ

(m)
i Vm)ymi ‖ (5.31)

= ‖hm+1,m‖|ymi| (∵ using (5.28) and (5.29)) (5.32)

Let α′ = α/|hm+1,m|. Substituting (5.32) in (5.26) gives

v1 = α
′
m∑
i=1

|ymi|Vmy(m)
i = α

′
VmPp (5.33)

37

5.3 Numerical Results

The western regional grid of Indian power system consisting of 493 buses and 193

generators is used for eigenvalue analysis. Generators are represented using classical

model. So that δ and ω are the state variables and the total number of state variables

were 386. Damping coefficient is assumed to be zero for all generators.

The QR method computes all the 386 eigenvalues in 0.4386 seconds. The results

obtained on implementing Arnoldi’s algorithm for selective eigenvalue computation on

493 bus system are tabulated below.

Table 5.1: Arnoldi’s Method for m = 10

σ Number of
iterations

Number of
converged

eigenvalues

Eigenvlaue(s) Time taken
(in seconds)

j1.2π 1 1 j4.067029 0.3744
j1.6π 1 1 j5.106918 0.3744
j2π 1 1 j6.290521 0.3744
j2.4π 1 1 j7.537722 0.3744
j2.8π 1 2 j8.814284

j8.772989
0.3900

j3.4π 1 1 j10.689248 0.3744
j4π 1 1 j12.558579 0.3744
j4.4π 1 1 j13.826015 0.3744
j4.8π 1 1 j15.123944 0.3900
j5.4π 1 1 j17.100873 0.3744
j6π 1 1 j18.822872 0.3744

38

Table 5.2: Arnoldi’s Method for m = 15

σ Number of

iterations

Number of

converged

eigenvalues

Eigenvlaue(s) Time taken

(in seconds)

j1.2π 1 2 j4.067029

j4.369100

0.3900

j1.6π 1 3 j4.857289

j5.1069185

j5.6907018

0.3900

j2π 1 3 j5.974755

j6.290521

j6.566507

0.3900

j2.4π 1 2 j7.431196

j7.537722

0.4056

j2.8π 1 2 j8.772989

j8.814284

0.3900

j3.2π 1 2 j9.950888

j9.963008

0.4056

j3.6π 1 1 j11.254755 0.4056

j4π 1 2 j12.549964

j12.558579

0.4056

j4.4π 1 3 j13.761314

j13.826015

j13.858209

0.4056

j4.8π 1 2 j14.939408

j15.123944

0.4056

j5.2π 1 2 j16.478479

j16.507418

0.4056

39

Table 5.2 – Arnoldi’s Method for m = 15 (continued)

σ Number of

iterations

Number of

converged

eigenvalues

Eigenvlaue(s) Time taken

(in seconds)

j5.6π 1 2 j17.546579

j17.777433

0.4056

j6π 1 3 j18.480451

j18.693528

j18.822872

0.4056

Table 5.3: Arnoldi’s Method for m = 20

σ Number of

iterations

Number of

converged

eigenvalues

Eigenvlaue(s) Time taken

(in seconds)

j1.2π 1 3 j4.067029

j4.369100

j4.857289

0.4212

j1.6π 1 6 j4.067029

j4.369100

j4.857289

j5.106919

j5.426447

j5.442811

0.4212

j2π 1 4 j5.97455

j6.290521

j6.566507

j6.690413

0.4368

40

Table 5.3 – Arnoldi’s Method for m = 20 (continued)

σ Number of

iterations

Number of

converged

eigenvalues

Eigenvlaue(s) Time taken

(in seconds)

j2.4π 1 3 j7.240610

j7.431196

j7.537722

0.4212

j2.8π 1 4 j8.814284

j8.772989

j8.882649

j8.898034

0.4212

j3.2π 1 5 j9.872296

j9.950887

j9.963008

j10.233450

j10.273171

0.4368

j3.6π 1 4 j11.141174

j11.254755

j11.474732

j11.670321

0.4212

j4π 1 3 j12.549964

j12.558579

j12.610222

0.4212

j4.4π 1 3 j13.761314

j13.826015

j13.858209

0.4212

41

Table 5.3 – Arnoldi’s Method for m = 20 (continued)

σ Number of

iterations

Number of

converged

eigenvalues

Eigenvlaue(s) Time taken

(in seconds)

j4.8π 1 5 j14.895063

j14.939408

j15.123944

j15.199654

j15.320045

0.4368

j5.2π 1 3 j16.478479

j16.507418

j17.100872

0.4212

j5.6π 1 6 j17.100873

j17.546579

j17.774336

j17.831468

j18.012268

0.4212

j6π 1 7 j18.012268

j18.480451

j18.693528

j18.822872

j19.577572

j19.743098

j20.585525

0.4368

The Arnoldi’s algorithm converges to one or more eigenvalues close to the complex

shift point σ. In all the cases considered, in the first iteration itself convergence is

obtained. As the value of m increases the number of eigenvalues converged icreases.

For values of m less than or equal to 20, the time taken for the execution of Arnoldi’s

method is less than that of QR method.

42

5.3.1 Numerical Results for Sparsity Oriented Implementation

The numerical results obtained for a sparsity oriented implementation as discussed in

section 4.2.2 with a shift point of σ = j4π are given in Table 4.4. The results show

that the sparsity oriented implementation takes more time compared to QR method

and Arnoldi’s method without sparse implementation for the 493 bus system with 386

eigenvalues.

Table 5.4: Arnoldi’s Method for σ = j4π with Sparsity Oriented Implementation

m Number of
iterations

Eigenvalue(s) Time taken
(in seconds)

10 1 j12.555700 0.62
12 1 j12.555700 0.80
15 1 j12.555700

j12.619608
1.15

18 1 j12.555700
j12.619608
j12.463132

1.62

20 1 j12.555700
j12.619608
j12.463132

2.00

25 1 j12.555700
j12.619608
j12.463132
j12.655800

3.07

30 1 j12.555700
j12.619608
j12.463132
j12.655800
j12.370909
j12.366881

4.34

43

CHAPTER 6

Conclusions

6.1 Conclusions

In this work Arnoldi’s algorithm is applied to power flow and small signal stability

analysis of power systems. Based on the numerical results presented in the previous

chapters, the following conclusions can be made.

The first part of this work evaluated the performance of KSPF in large systems com-

pared to conventional Newton Raphson power flow. The KSPF method takes more time

for convergence compared to Newton Raphson method. This is because, in constant ma-

trix alternative, a truncated part of approximate Jacobian is used which requires more

number of iterations for convergence. In the Quassi-Newton alternative direct evalua-

tion of the Jacobian is avoided but the number of computations are more and takes more

time per iteration. Another disadvantage of KSPF is that convergence depends on the

eigenspectrum of the Jacobian and hence its success cannot be assured.

The second part of this work evaluated the performance of Arnoldi’s method in se-

lectively computing the eigenvalues of a larger system. The results show that Arnoldi’s

method gives the desired eigenvalues in less time compared to QR method which evalu-

ates all the eigenvalues. Arnoldi’s method is found to be less time consuming compared

to other selective computation techniques in the literature such as Newton’s method

and AESOPS method. One more advantage of Arnoldi’s method is that it can com-

pute eigenvalues using the augmented system of equations and hence sparsity oriented

implementation is possible unlike QR method.

From the numerical results obtained for KSPF, it can be concluded that Quasi-

Newton method requires some matrix preconditioning techniques to accelerate the con-

vergence.

The numerical results obtained show that the spectral transformation and Arnoldi’s

method, when applied directly on the system matrix can give selected eigenvalues in

less time than the other selective computation techniques and the QR method. Using the

augmented system of equations, for sparsity oriented implementation, takes relatively

more time than the direct use of system matrix.

6.2 Future Scope of the Work

1. In each iteration of the Newton Raphson power flow a set of linear equations
has to be solved. Instead of using Gaussian elimination method, solution using
GMRES method has to be checked for very large systems.

2. The performance of Arnoldi’s method in eigenvalue computation has to be eval-
uated for very large systems represented with detailed models.

45

REFERENCES

[1] L. Shi, N. Chang, D. Zhao, H. Zhao, H. Zhou, P. T. Tam, Y. Ni, and F. F. Wu,

“Implementation of a power system dynamic security assessment and early warn-

ing system,” in Power Engineering Society General Meeting, 2007. IEEE. IEEE,

2007, pp. 1–6.

[2] D.-H. Kuo and A. Bose, “A generation rescheduling method to increase the dy-

namic security of power systems,” Power Systems, IEEE Transactions on, vol. 10,

no. 1, pp. 68–76, 1995.

[3] K. Sun, S. Likhate, V. Vittal, V. S. Kolluri, and S. Mandal, “An online dynamic se-

curity assessment scheme using phasor measurements and decision trees,” Power

Systems, IEEE Transactions on, vol. 22, no. 4, pp. 1935–1943, 2007.

[4] R. Tiako, D. Jayaweera, and S. Islam, “A class of intelligent algorithms for on-line

dynamic security assessment of power systems,” in Universities Power Engineer-

ing Conference (AUPEC), 2010 20th Australasian. IEEE, 2010, pp. 1–6.

[5] Y. Saad, “Krylov subspace methods for solving large unsymmetric linear sys-

tems,” Mathematics of computation, vol. 37, no. 155, pp. 105–126, 1981.

[6] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems,” SIAM Journal on scientific and statistical

computing, vol. 7, no. 3, pp. 856–869, 1986.

[7] H. Nam, S. Song, K. Shim, D. Kim, Y. Moon, and C. Moon, “Hessenberg method

for small signal stability analysis of large scale power systems,” in Power Engi-

neering Society Winter Meeting, 2000. IEEE, vol. 2. IEEE, 2000, pp. 872–876.

[8] M. Pai, D. S. Gupta, and K. Padiyar, Small signal analysis of power systems.

Alpha Science Int’l Ltd., 2004.

46

[9] I. J. Pérez-Arriaga, G. C. Verghese, and F. C. Schweppe, “Selective modal analysis

with applications to electric power systems, part i: Heuristic introduction,” Power

Apparatus and Systems, IEEE Transactions on, no. 9, pp. 3117–3125, 1982.

[10] M. Pai and H. Dag, “Iterative solver techniques in large scale power system com-

putation,” in Decision and Control, 1997., Proceedings of the 36th IEEE Confer-

ence on, vol. 4. IEEE, 1997, pp. 3861–3866.

[11] A. Semlyen, “Fundamental concepts of a krylov subspace power flow methodol-

ogy,” Power Systems, IEEE Transactions on, vol. 11, no. 3, pp. 1528–1537, 1996.

[12] L. Wang and A. Semlyen, “Application of sparse eigenvalue techniques to the

small signal stability analysis of large power systems,” Power Systems, IEEE

Transactions on, vol. 5, no. 2, pp. 635–642, 1990.

[13] M. H. Gutknecht, “A brief introduction to krylov space methods for solving linear

systems,” in Frontiers of Computational Science. Springer, 2007, pp. 53–62.

[14] W. E. Arnoldi, “The principle of minimized iterations in the solution of the matrix

eigenvalue problem,” Quart. Appl. Math, vol. 9, no. 1, pp. 17–29, 1951.

47

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATIONS
	Introduction
	Online Computation
	Static Security Assessment
	Dynamic Security Assessment

	Literature Review
	Motivation and Objectives
	Organization of the Report

	Krylov Subspace and Arnoldi's Method
	Krylov Subspace
	Basis for Krylov Subspace K

	Arnoldi's Method
	Arnoldi's Algorithm

	Solution of Power Flow Equations Using Krylov Subspace Methodology
	General Methodology
	The Power Flow Problem
	Implementation Alternatives
	Constant Matrix Alternative (least squares solution)
	Simplified Solution
	The Quasi-Newton Alternative

	Numerical Results
	Results for IEEE 118 bus system
	Results for IEEE 300 bus system

	Selective Eigenvalue Computation Techniques
	Newton's Method
	AESOPS Algorithm
	Numerical Results

	Computation of Eigenvalues Using Arnoldi's Algorithm
	Spectral Transformation
	Application To Power Systems
	Power System Modelling
	Sparsity Oriented Implementation
	Algorithm for Eigenvalue Computation Using Arnoldi'sMethod
	Restarting the Arnoldi's method with a new starting vector

	Numerical Results
	Numerical Results for Sparsity Oriented Implementation

	Conclusions
	Conclusions
	Future Scope of the Work

