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ABSTRACT

Engineering drawings play a very important role in the field of Engineering De-

sign and Production. They provide a graphical means of understanding the in-

formation required for manufacturing a certain component such as dimensions,

tolerance and geometry.

The changing technology is reflected in the change of machinery, infrastruc-

tures and various engineering equipments. One of the basic steps in applying these

changes is by changing the engineering designs. When an engineer makes these

changes, he generally does not document the changes, though it is very much nec-

essary to document the changes in any design from one stage to another. As the

changes are not readily available to the manufacturer, he has to go through all the

dimensioning details in order to manufacture the new product which increases the

time of delivery.

In order to avoid this delay, another intermediate person is involved to doc-

ument the changes from one stage to another. Manually going through each and

every dimension and documenting the changes is a very tedious task and also erro-

neous. This thesis is an attempt at proposing an algorithm to automatically detect

the changes and document the same.
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CHAPTER 1

Introduction

To adapt to changing technology, engineering designs are often modified. In gen-

eral, only few modifications are made in the design to obtain the new design. If

at all these changes are readily available to the manufacturer, he then needs to

just do only few modifications over the previous settings to manufacture the new

product. Otherwise, he will have to go through each and every dimension in order

to manufacture the new product, which will delay the process of manufacturing

by a significant amount of time. Generally the engineer who makes the changes

in the drawing does not document those changes; a checker is the one who man-

ually checks each and every dimension and indicates whether there was a change

or not. This is a very slow, tedious and an error-prone process and also requires

considerable amount of manual involvement.

To avoid all the delay and manual intervention, it necessary to have an auto-

mated system which does the comparison efficiently. Currently, Computer Aided

Drawings (CAD) and Computer Aided Manufacturing (CAM) are used exten-

sively in the process of making engineering drawings and manufacturing the prod-

ucts. Though these automate a lot of processes and help reduce human effort

and intervention, the tools for comparing two drawings efficiently are not readily

available.

A typical engineering drawing is shown in Fig. 1.1. Fig. 1.2 is obtained by

modifying some of the dimensions of the engineering drawing shown in Fig. 1.1

and the dimensions in the green bounding boxes indicate the changed dimensions.



Figure 1.1: A typical engineering drawing.
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Figure 1.2: Engineering drawing obtained by modifying the drawing shown in
Fig. 1.1. The dimensions which are modified are shown in green
bounding boxes.
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Figure 1.3: Result of comparison of the drawings shown in Fig. 1.1 and Fig. 1.2.
Black lines indicate the unchanged regions, red indicates the deleted
regions and the green indicates the added regions.
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There are some image processing tools which are based on image subtraction

currently available to compare such drawings. Fig. 1.3 shows the output when the

drawings shown in Fig. 1.1 and 1.2 are compared using one such tool. From the

Fig. 1.3, it is evident that such tools are not very useful in detecting the changes

since they work only when the two drawings are perfectly aligned which generally

need not be the case. This thesis presents an automated algorithm to compare two

engineering drawings. The goal is to propose an algorithm the will be robust to

alignment differences between the two engineering drawings.

It is to be noted that any change in the dimension is reflected in the corre-

sponding label marked in the drawing. The labels are nothing but the textual

content present in the drawing. Hence, comparison of two drawings can be done

by comparing the labels of the two drawings. The first step here is to separate the

graphics and the textual part in the drawing. Most of the text extraction algorithms

proposed in the literature are based on the texture and color based features. These

algorithms fail in this case as we deal with only binary images. Some algorithms

which are used for text extraction in documents use the knowledge of the layout of

the document, but in this case no such information is available. Fletcher and Kas-

turi [2] proposed an algorithm for text string separation from mixed text/graphics

images. It is based on generation of connected components and application of

Hough Transform to group together the components in logical character strings.

Lai and Kasturi [3] proposed a system for detecting dimensioning sets in engi-

neering drawings. Even this method is based on connected component generation

and later composing them into strings which are associated with dimensioning

lines. Lu [4] presented a rule-based method for text/graphics separation based

on features of text and graphics in engineering drawings. In this thesis, we pro-

pose a method based on connected components generation similar to the method

mentioned in [2].
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Each drawing will have multiple sub drawings corresponding to various views

of the object. Before comparing, the sub-drawings in the two drawings have to

be associated with each other. Since we deal with binary images, texture or in-

tensity information is not available; it is the shape of the drawings that can be

exploited in order to achieve the matching. We propose a method in which match-

ing is achieved by using SIFT-features [5]. Since SIFT fails on binary images, the

engineering drawings are blurred before the SIFT features are obtained.

Once the sub-drawing associations are known, the labels of two corresponding

sub-drawings are compared with each other to find the difference between the

two drawings. Every label of a sub-drawing is matched with every label in the

corresponding sub-drawing of the other drawing. If a label does not have any

match, then it is reported as a change. Initially, the number of characters in the

label, Euler number [6] and dimensional similarity are used to reduce the search

space for matching. The labels are finally matched using a Hausdorff Distance [7]

based measure. Flowchart for the proposed method is shown in the Fig. 1.4 and

the detailed explanation is provided in the further chapters.

1.1 Organization of Thesis

Chapter 2 deals with text and graphics separation using connected component

generation and characteristics of the textual information in engineering drawings

to classify the components into text and graphics.

Chapter 3 explains a procedure followed to segment the given drawing into

sub-drawings corresponding to various views of the component. It also explains

how to obtain SIFT descriptors and use the same to match binary images.
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Separate the text and
the graphics part

Segment the graphics
part into sub-drawings

Match the segments
in two drawings

Associate the labels to the graph-
ics part of the sub-drawings

Compare the corresponding
sub-drawings to get matching labels

Highlight all the labels
which do not have a match

Figure 1.4: Flowchart of the proposed method.

Chapter 4 discusses about grouping the dimensioning information to the re-

spective segments. It deals with grouping of text logically to form labels and then

assigning the labels and the dimensioning lines to the corresponding segments

based on distance transform [8].

Chapter 5 deals with the comparison of the labels of the corresponding sub

drawings, thereby performing the comparison of engineering drawings. A series

of parameters like number of characters in the label, Euler number and dimensions

of the characters in the label reduce the space for searching the possible match-

ing labels for each label. Finally, Hausdorff distance-based measures are used to

compare the labels.

7



Chapter 6 presents some experimental results and discusses the issues in-

volved.

Chapter 7 concludes the thesis.
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CHAPTER 2

Text and Graphics

Any engineering drawing will consist of a lot of dimensioning information related

to the drawing in the form of labels and the corresponding labeling lines. Fig. 1.1

is a typical engineering drawing shown at a scale of 0.15. In order to efficiently

interpret such drawings, it is necessary to separate the text and the graphics. This

chapter explains the technique to separate the dimensioning information from the

given drawing.

2.1 Text Extraction

Text extraction is a crucial step in separating the text and graphics as most of

the dimensioning information present in the drawing is textual. Once this textual

part is removed from the drawing, only the labeling lines have to be eliminated

to obtain the graphics part. Connected component based algorithm is used for

extracting the text. Often the size of characters is much smaller compared to that

of graphics. This property can be used as a classifier to distinguish the text and

graphics.

Firstly, the connected components are to be generated. They are obtained by

grouping all the 8-connected black pixels against the white background. These

connected components are analyzed to know the characteristics of the text in the

drawing. From the histogram of length and width of connected components, the



(a) (b)

Figure 2.1: (a) Indicates the histogram of width of the connected components and,
(b) indicates the histogram of length of the connected components.

average range in which the characters occur is evident. Figs. 2.1a and 2.1b in-

dicate the histogram of width and length of the connected components extracted

from the drawing shown in Fig. 1.1. From these histograms it is evident that all

the characters have length and width less than 35 pixels. Based on this range,

all the characters can be extracted from the drawing to obtain an image which

contains only the text. Using only this constraint will group even dashed lines as

characters, since the dashed lines generally are thin and are shorter than charac-

ters. Hence, an additional constraint such as length of the line if the the width is

too small can be included accordingly to eliminate the dashed lines. Also, when

the characters are logically grouped to form labels, if many characters with similar

characters get grouped they can be eliminated as they will belong to dashed lines.

2.2 Elimination of Dimensioning Lines

After all the text is extracted from the drawing, all that remains is the graphics part

and the labeling lines as shown in Fig. 2.3. In general, the thickness used to draw
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Figure 2.2: Result of text extraction on the drawing shown in Fig. 1.1.
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labeling lines is less than that used for the drawing itself. Thus, morphological

operations can be used to eliminate the labeling lines from the drawing.

2.2.1 Dilation and erosion

Dilation and erosion [9] are two basic morphological operations. These operations

take two inputs; the first is the image to be operated upon and the second is the

structuring element also known as a kernel.

Dilation gradually enlarges the boundary region of the foreground image.

Mathematically, dilation is performed by laying the structuring element B on the

image A and sliding it across in a manner similar to convolution. The steps in-

volved include:

• If the origin of the structuring element coincides with a white pixel in the

image then there is no change and we move on to the next pixel.

• If the origin of the structuring element coincides with a black pixel in the

image, then we make all the pixels covered by the structuring element black.

Erosion is the dual of dilation. It gradually erodes away the boundary region

of the foreground image. The process of erosion is similar to that of dilation, but

the pixel turns to white instead of black. As before, the structuring element is

made to slide across the image and the following steps are performed.

• If the origin of the structuring element coincides with a white pixel in the

image, there is no change and we move on to the next pixel.

• If the origin of the structuring element coincides with a black pixel in the

image, and atleast one of the black pixels in the structuring element falls

12



over a white pixel in the image, then we change the black pixel correspond-

ing to the origin of the structuring element to white.

2.2.2 Thinning

Thinning is yet another morphological operation which is similar to erosion. Through

thinning, binary regions can be reduced to their center lines also called skeletons

[10]. This is a composition of morphological operations and works as follows:

• Perform erosion with the mask given below
0 1 0

1 1 1

0 1 0


• Remove pixels such that it does not split the region. The following masks

can be used for this purpose.
0 0 0

1 1 1

0 0 0

 ,


0 1 0

0 1 0

0 1 0


• Remove pixels such that endpoints are retained using the following masks.

0 0 0

0 1 1

0 0 0

 ,


0 1 0

0 1 0

0 0 0

 ,


0 0 0

1 1 0

0 0 0

 ,


0 0 0

0 1 0

0 1 0


• The above steps are performed iteratively till there are no changes in the

image.

In the previous section, the method to extract the text was mentioned. After

removing the the textual part from the drawing, all that remains is the labeling
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Figure 2.3: Image after the removal of textual information from the drawing
shown in Fig. 1.1.
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Figure 2.4: Effect of thinning on the drawing shown in Fig. 2.3.
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lines and graphics. Fig. 2.3 shows the residue after removing the text content from

the drawing shown in Fig. 1.1. From Fig. 2.3, it can be clearly seen that labeling

lines are much thinner compared to the lines used for the drawing. We perform

thinning operation on the residue image shown in Fig. 2.3 to get the skeleton of

the image in Fig. 2.4. The lines in the drawing can be thinned down even by

eroding the residue image shown in Fig. 2.3. When a small structuring element

is used for erosion, only the label lines will become single pixel wide. Hence, on

subtracting the skeleton image from this, label lines can be completely eliminated

and the resulting image can be dilated to get better results. Fig. 2.5 shows the

graphics part of the drawing shown in Fig. 1.1. Due to image subtraction, the

resulting image will not be clean but this can be taken care of during the process

of segmentation.

This algorithm fails if the labeling lines and the graphics part of the drawing

are both of the same thickness. When the graphics part is thin, the algorithm

classifies it as labeling line and eliminates it completely and when the labeling

lines are thick the algorithm classifies them into graphics part. Though the second

case is acceptable, the first case is not desirable. Hence, for good results the

graphics part of the drawing should be thick compared to the labeling lines.

16



Figure 2.5: Graphics part of the drawing shown in Fig. 1.1.
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CHAPTER 3

Segmentation and Matching

3.1 Segmentation

In an engineering drawing, there will generally be several sub drawings. These can

be either drawings of various views of the same part or can be of different parts or

a combination of both. In order to analyze the engineering drawing, segmentation

is an essential step.

Consider the three sub-drawings in the engineering drawing shown in Fig. 1.1,

the outer boundary of the graphics part of each of the sub drawings is a closed con-

tour. This is valid for all the sub drawings in any engineering drawing. Thus all

the outermost contours should be extracted to get all the sub drawings. To begin

with, we extract all the connected components. This includes all the contours,

even the ones which are inside the outermost contour. Outermost contours are al-

ways bigger than the inner ones. Choosing the contour with the largest number of

pixels will give the outermost contour of the largest sub-drawing. The components

within this outermost contour can be grouped together to get the first sub-drawing.

To get the components within the contour, binary morphological operation called

filling [11] can be used. The same procedure can be followed multiple times to

extract all the sub-drawings.

Engineering drawings also contain section labels and symbols which are part

of labels of the sub-drawings and which might be present outside the contour.

These should not be classified as a sub-drawing. Hence, a threshold on the number



(a)

(b) (c)

Figure 3.1: (a), (b) and (c) shows the graphics part of the three sub drawings ex-
tracted from the drawing shown in Fig. 1.1.

of pixels in the contour can be used to eliminate such outliers. During this process,

even the noise which was present in the graphics part of the drawing will get

eliminated. The result of segmentation of the graphics part in Fig. 1.1 is shown in

Fig. 3.1.

3.2 SIFT

SIFT (Scale Invariant Feature Transform) is an image descriptor for image-based

matching developed by David Lowe [5]. The SIFT descriptor is invariant to trans-
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lations, rotations and scaling in the image domain and robust to moderate perspec-

tive transformation and illumination variations. It has been very useful in the field

of object recognition, image stitching, gesture recognition, video tracking and im-

age matching, under real world conditions. The algorithm by David Lowe [5]

was designed for gray scale images, and it has been extended to color images by

Bosch and Zisserman [12]. Other related image feature descriptors which are in-

spired from SIFT are Histogram of Gradients (HoG) [13], Gradient Location and

Orientation Histogram (GLOH) [14] and Speeded Up Robust Features (SURF)

[15].

In this thesis we discuss only the SIFT-descriptor in some detail. The first

stage identifies the key locations in the scale space by looking for locations that are

extrema of a Difference of Gaussian (DoG) function [16]. Each point is then used

to generate a feature vector that describes the local image region. The detailed

algorithm for obtaining the SIFT descriptor is explained below:

3.2.1 Detection of scale-space extrema

This is the first step of the algorithm. It is efficiently implemented by using Dif-

ference of Gaussians [16, 17] to identify potential interest points that are invariant

to scale and orientation.

Octaves and Scales

Several octaves of the image are generated. Each octave’s image size is half of the

previous one. The number of octaves and scales depend on the size of the original

image. It is to be noted that in David Lowe’s algorithm [5], the number of octaves

is restricted to 3.
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Blurring

Blurring is nothing but convolution with a Gaussian kernel,i.e.,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.1)

where,

• L is the blurred image

• G is the Gaussian kernel

• I is the input image

• σ is the scale factor which decides the amount of blur.

Difference of Gaussians (DoG)

Two consecutive images in the octave are picked up and one is subtracted from

the other. Then the next consecutive pair is taken and the process repeats. This is

done for all octaves. This is a scale invariant version of Laplacian of Gaussians.

The results are minima and maxima which are very good key features. Fig. 3.2

shows a pictorial representation of DoG.

3.2.2 Keypoint Localization

Locate extrema in DoG images

The first step here is to coarsely locate the extrema. This is a simple procedure.

At every pixel, check for all the neighboring pixels and check if that location was

21



Figure 3.2: For each octave scale, the initial image is convolved with Gaussian to
produce a set of scale space shown on the left. Adjacent Gausssians
are subtracted to produce the Difference of Gaussians shown on right.
Image source: [1].

an extrema or not. X is marked as a keypoint if it is greatest or smallest of all its

26 neighbors in the current scale, the scale above and below as shown in Fig. 3.3.

Locating sub-pixel extrema

The extrema points obtained previously are only approximate locations. The ac-

tual extrema points will generally be between pixel locations. Hence, mathemati-

cally the sub-pixel extrema points should be obtained.

22



Figure 3.3: The points around the X mark in the current and adjacent 3 × 3 re-
gions, indicates the 26 neighbors amongst which the extrema points
are found.
Image source: [1].

The Taylor series expansion of the scale-space function, D(x,y,σ)T , shifted so

that the origin is at a sample pixel can be expanded as below:

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (3.2)

where D and its derivatives are evaluated at the sample pixel and x = (x, y, σ)T

is the offset from this point. The location of the extremum x̂ is obtained by taking

the derivative of the above equation with respect to x and equating it to zero,

which gives

x̂ = −∂
2D−1

∂x2

∂D

∂x
(3.3)

These sub-pixel locations increase the chances of matching and stability. The

same procedure is followed over all octaves.
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3.2.3 Removing edges and low contrast regions

The keypoints obtained from the previous step are too many. Some of them lie

along the edge and some of them do not have enough contrast. These are are not

very useful and hence must be eliminated.

Eliminating low contrast features

Low contrast feature is equivalent to low intensity pixel in a DoG image. If the

magnitude of intensity at the extrema points is lower than a certain threshold, then

they are discarded.

Removing edges

At every keypoint, two gradients are calculated, both being perpendicular to each

other. If the keypoint is in a flat region, then both the gradients are small; else

if it is in an edge region one of the gradients will be small and the other will

be large. Only if the keypoint lies in the corner region will both the gradients

be high; only such points are to be extracted [18]. This can be mathematically

achieved by analyzing the Hessian matrix in a manner similar to Harris corner

detection [19]. Here, ratio of the two eigenvalues are used instead of gradients to

determine whether the point is a corner or not.

3.2.4 Assigning keypoint orientation

In this step, orientation is assigned to each keypoint. This orientation ensures

rotation invariance. In order to assign the orientation, gradient magnitudes and

direction are collected around each key point. The most prominent direction is
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later assigned as the orientation for that keypoint. For each Gaussian smoothed

image L, gradient magnitudes and directions are calculated as,

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

(3.4)

θ(x, y) = tan−1
[
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

]
(3.5)

where m(x, y) is the gradient magnitude and θ(x, y) is the direction at any key-

point (x, y).

The orientation histogram is formed from the gradients of sample points around

each keypoint. This histogram contains 30 bins covering 360 degrees range. Each

sample added to the histogram is weighted according to its gradient magnitude

and the Gaussian-weighted circular window with a σ that is 1.5 times that of the

scale of the keypoint.

The highest peak in the histogram is detected and any other local peak with

magnitude atleast 80% of the highest peak is used to create another keypoint with

that orientation.

3.2.5 SIFT-Descriptor

Around every keypoint a 16× 16 window is considered, each of which is divided

into 16 windows of 4 × 4 each. Fig. 3.4 shows a case where 8 × 8 window is

considered. Within each 4× 4 window, gradient magnitudes and orientations are

calculated. These orientations are put into 8-bin histogram. Unlike the previous

histogram, the amount added here depends on the distance from the keypoint. This

can be done using a Gaussian weighing function.

Thus, for every keypoint there will be 16 histograms, each with 8 bins, thus
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Figure 3.4: 2× 2 Descriptor obtained from a 8× 8 window around a keypoint.
Image source: [1].

giving a 128-dimensional descriptor.

3.3 Matching Segments

In section 3.1, segmentation of an engineering drawing was explained. Given

two such drawings, the sub-drawings in one has to be matched with the other.

In order to achieve this, the matching points across the two drawings have to be

determined. A SIFT-based matching algorithm [5] is adopted to do the same.

3.3.1 Finding matched keypoints

This is a very simple algorithm. First the feature vectors for both the engineer-

ing drawings are obtained. For every descriptor in the first image, its Euclidean

distance from every other descriptor in the second image is calculated. A match

is accepted only if its distance from the descriptor is less than certain fraction of
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the distance to the second closest match. Thus a match is accepted when the ratio

of its distance to the distance with the second closest match is less than a certain

threshold. David Lowe suggested a threshold of 0.6, which gives a fair amount of

matching keypoints. This is iterated for every descriptor of the first image.

For efficiency in Matlab, dot products between the descriptors is computed

instead of finding the Euclidean distances. Ratio of the angle between the de-

scriptors is close to the ratio of the Euclidean distances for smaller angles. The

angle between the descriptors is calculated by taking the inverse cosine of the dot

product between the descriptors.

3.3.2 SIFT for binary images

Since engineering drawings are all binary images, the gradient information in

these images is not good enough for the SIFT algorithm to work. To get good

descriptors for these drawings, they have to be converted into gray scale images

so that there is considerable amount of gradient information. We apply Gaussian

blur to these drawings and the intensities are scaled accordingly to get gray scale

images. Experimentally, a Gaussian kernel with standard deviation 0.3 gives the

best results.

To match the corresponding segments of one drawing with the other, only the

graphics part of the drawing has to be considered. Hence the text and graphics

are separated out from the engineering drawings shown in the Figs. 1.1 and 1.2.

The graphics part of the drawings are blurred as mentioned previously. These

drawings are generally very large in size, of the order of 8000 × 6000. It is com-

putationally very expensive to find descriptors for such large images. Hence, the

blurred drawings are scaled down by a factor of 4. The SIFT feature descriptors
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Figure 3.5: Result of SIFT on the graphics part of the drawings shown in Figs. 1.1
and 1.2.

are now obtained for these scaled and blurred drawings. Fig. 3.5 shows the result

of finding the match between the graphics part of the drawings shown in Figs. 1.1

and 1.2.

3.3.3 Finding the match matrix

Once the SIFT-descriptors are available for an image pair, we need some measure

across the segments of two drawings to find an appropriate match for each of

the segments. Hence, we construct a match matrix which gives a measure of

how much each segment matches with the other. For every segment of the first

drawing, the number of matched keypoints with each of the other segment of the

second drawing is calculated. Thus, every sub-drawing of the first drawing will

have a vector of numbers indicating the number of matched keypoints with every
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Figure 3.6: The regions in the two drawings corresponding to the same colour
indicate the matched segments.

sub-drawing of the second drawing. All these vectors are stacked to get the Match

matrix.

3.3.4 Finding the matched segment

If the number of segments in the first drawing is N1 and the number of segments

in the second is N2, then the size of the Match matrix will be N1 ×N2. From

the maximum value in this matrix, we get the indices corresponding to the best

matched segments. The row index corresponds to the segment in the first drawing

and the column index corresponds to its matched segment in the second drawing.

For every segment in a drawing there can be only one matched segment in the

other. This implies that once the first matched pair is obtained, then those seg-

ments cannot be matched with other segments. Hence, the values in the row of

the Match matrix corresponding to the row index and the column corresponding
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to the column index are made zero and then the next maximum is found. This

procedure is iterated till all the elements in the matrix become zero.

For the image pair shown in Figs. 1.1 and 1.2, the Match matrix was found to

be


8 0 0

0 10 2

0 0 9

. Since there are 3 segments in each of the drawing the match

matrix is of the size 3 × 3. From this match matrix, the segments matched are

shown in Fig. 3.6 at a scale of 0.45.

At the end of this procedure, the matched segment for every segment is known

(if there are any). The rows and the columns which never got selected as matched

indices correspond to the segments which do not have a match. This happens

when a sub-drawing is either added or deleted from the drawing.
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CHAPTER 4

Association of Labels with Segments

During segmentation only the graphics part of the engineering drawing was con-

sidered. Hence the segments obtained contain only the graphics part. The labels

and the labeling lines have to be reassigned to their corresponding segments in

order to obtain the complete sub-drawing.

4.1 Grouping Labeling Lines

Labeling lines are used to get the correspondence between the sub-drawing and

its label. These lines can be either connected to the sub-drawing, or can just be

close to the sub-drawing indicating that they belong to that sub drawing.

4.1.1 Obtaining segment masks

In the section 3.1, a method to obtain the segments was discussed. These seg-

ments always had a closed contour as their boundary. By using the morphological

operation ‘filling’, a basic mask for the segments can be obtained. Since all the

holes are filled during the process of filling, the region within the outermost con-

tour also gets filled, thereby providing the mask corresponding to the segments.

Fig. 4.1 shows the segment masks corresponding to the drawing shown in Fig.

1.1.



Figure 4.1: Segment mask corresponding to the drawing shown in Fig. 1.1.

4.1.2 Grouping labeling lines using dilation

One of the simplest methods to combine some of the labeling lines with the seg-

ment is by dilation. The mask obtained in the previous step can be dilated with

a structuring element of size about 60 × 60 to get a dilated mask. When we re-

move both the text and the graphics part from the drawing, only the labeling lines

remain. These can be combined with the dilated mask using the binary ‘OR’ op-

eration to connect the labeling lines to the segments. As the masks were dilated,

the labeling lines which were closer to the segments earlier will now get attached

to the segments. Fig. 4.2 shows the dilated mask combined with the labeling lines

from the drawing in Fig. 1.1.
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Figure 4.2: Dilated mask combined with labeling lines for the drawing shown in
Fig. 1.1.

4.1.3 Grouping labels

The labels in the engineering drawings are a group of characters. In section, 2.1

the method to extract all the characters from the drawing was discussed. These

extracted characters have to grouped logically to obtain the labels.
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String extraction

The spacing between the characters of a label are considerably small. Hence,

these can be grouped using the dilation method.

In order to combine the characters, all the characters are extracted from the

drawing. Then a bounding box is formed for each of these characters. The region

within these bounding boxes are filled using the binary morphological operation

‘filling’ to obtain the text mask. The text mask can be dilated with a small struc-

turing element, so that the bounding boxes of the neighboring characters merge. A

new set of connected components are extracted from the resulting image. All the

characters in each of the connected components are grouped as one. This provides

a group of characters which are close to each other. Now, a common bounding

box is inserted into these group of characters and the boxes are filled to get a new

mask which has all the closer characters grouped.

The grouped characters need not necessarily be a part of the same label. The

previous procedure only results in grouping of strings which are close to each

other. There can be cases where the two labels are in very close vicinity. In such

cases, the characters of both the labels are grouped into one. Hence, the next step

would be to split these groups so that only characters belonging to the same label

are grouped.

In general, the height of the characters is more than its width. The orientation

of the grouped characters are decided based on this. All the characters within a

label will have same orientation and will belong to the same line. Hence, a group

of characters in each of the connected component can be analyzed to split them

accordingly into labels. The mean height and width of all the characters in a group

is calculated. If the mean height is higher than the mean width, then they are hori-
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Figure 4.3: Label mask for the drawing shown in Fig. 1.1.
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zontally oriented, else they are vertically oriented. Once the orientation is known,

a similar grouping procedure is followed as mentioned in the previous step. The

bounding boxes of the characters are dilated along the direction of the orientation.

If the strings are horizontally oriented, bounding boxes are dilated horizontally, so

that only the characters in that row are combined. Similarly if the characters are

vertically oriented, bounding boxes are dilated vertically, so that only the charac-

ters in the same column are combined. Thus, the previously grouped characters

are split according to their orientation and a new set of bounding boxes is inserted

to the split set of groups. From these bounding boxes, the mask for the labels can

be obtained. The label mask for the drawing shown in Fig. 1.1 is shown in Fig.

4.3.

Assigning Labels to Segments

From the previous step, all the characters are grouped to form labels. These la-

bels now have to be assigned to the corresponding segments. We use distance

transform [20] to achieve the same.

Distance Transform

This operation transforms a binary image into a gray scale image. It gives a mea-

sure of distance from the foreground to the background. Farther the pixels are

from boundaries, higher will be the value of their distance measure. Across the

boundary, the value will be one and the value increases as we move away from the

boundary. The standard distance measure used is the Euclidean distance.

Label masks are combined with the dilated masks using the binary ‘OR’ op-

eration. We then take the distance transform of the resulting image. Based on the
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(a)

(b) (c)

Figure 4.4: (a), (b) and (c) shows the segments after the assignment of label for
the segments shown in Fig. 3.1.
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values of the distance transform in each of the label mask, the labels are assigned

to the segments. For every label, the minimum value of distance transform is taken

and the segment which is at that distance from the label is the one to which it be-

longs. The same procedure is iterated for all the labels. The results of assigning

label to the segments in Fig. 3.1 are shown in Fig. 4.4.

Thus, using the methodology described above, dimensioning information re-

lated to a segment is grouped and all such segments are separated out and analyzed

independently in the further course of the work.
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CHAPTER 5

Image Comparison

When a change is made in any drawing, the change is reflected in its corresponding

dimensions. These changes can hence be tracked by tracking the labels. Since we

now have the segments and the corresponding labels, instead of comparing the

drawings directly, we can compare the labels corresponding to the segments to

get the difference between the two drawings. The changes in the drawings can

also include addition or deletion of segments. These changes have to be detected

before we compare the matched segments using the labels.

Finding addition/deletion of Segments

In section 3.3, we discussed a method to match the segments of two engineering

drawings. The output of this algorithm is a vector V . The number corresponding

to the index of vector V represents the matching segment corresponding to the

index. If the number corresponding to the certain index is zero, then it implies

that the segment does not have any matching segment in the second drawing.

Thus any segment which has been deleted in the second drawing can be detected.

Along similar lines, the indicies which are not present in the vector V are the

segments in the second drawing which do not have any matching segment in the

first. From this, any new segments which got added into the second drawing can

be detected.



5.1 Comparison of Labels

The changes in the labels reflect the changes in the drawing. Thus comparison

of labels helps in understanding the changes in the drawing. Since label to label

association is not known, every label in each of the sub-drawing is compared with

every other label in the corresponding sub-drawing of the other drawing. The

comparison is done using Hausdorff distance [7]. The search space for compari-

son using the labels is reduced based on various parameters which are discussed

further in this chapter. When a label does not get any matches, it is reported as a

change.

Length

One of the simplest ways of finding the labels which do not have any match is by

using the number of characters in the label. By using the method of connected

components, the number of characters present in a label can be calculated. For

every label of a sub drawing, all those labels of the corresponding sub-drawing

which have the same length is made note of. This array of indices corresponds to

the labels which match in length.

Euler number

Label is nothing but a series of characters. The properties of these characters can

be made use of as another parameter to find the differences between the labels.

Euler number [6] is one such property. Euler number is defined as the differ-

ence between the number of connected components and the total number of holes.

Since we already have the list of labels which have already been matched accord-
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ing to their lengths, we can also distinguish based on the number of holes in the

label. Finding the number of holes in a character is very simple. Firstly, all the

holes in the character can be filled using the binary morphological operation called

‘filling’. From this, the original character can be subtracted to get the image which

has only those regions where the holes were present. The number of connected

components in the resultant image gives the number of holes in the character. For

every label, only those labels which have the same number of holes in the corre-

sponding characters are retained for further comparison, thus reducing the search

space.

Dimensions of the characters

Generally all the labels in the drawing are written using the same font style and

size. Hence, two labels can be same only if the corresponding characters in both

the labels are same. Thus for every label, the search space is further reduced by

considering only those labels whose characters do not vary much in their dimen-

sions.

Hausdorff Distance

For two point sets A and B, the Hausdorff distance between them is defined as

H(A,B) = max(h((A,B), h(B,A)) (5.1)

where,

h(A,B) = max
a∈A

min
b∈B
‖ a− b ‖ (5.2)

and ‖.‖ denotes a norm on the points of A and B [7]. The function h(A,B) is
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(a) (b)

(c) (d)

Figure 5.1: Point sets (a) A and (b) B. (c) Directed Hausdorff distance d. (d)
Translation when distance is minimized.

called the directed Hausdorff distance from point set A to set B. It identifies the

point a ∈ A that is farthest from any point of B and measures the distance from a

to its nearest neighbor in B. If h(A,B) = d, then each point of A will be within

distance d of some point of B. In Figs. 5.1 (a) and (b) we see point sets denoting

set A and B, respectively. The directed Hausdorff distance from set A to set B

denoted by d is shown in Fig. 5.1 (c). When we translate the points of set A,

as shown in Fig. 5.1 (d), the distance h (A,B) is minimized. At this translation,

all the points of set A coincide with some points of set B thereby minimizing the

value of h (A,B).

Matching labels

For the two labels to be same, all the characters in the label should be same.

The Hausdorff distance between the corresponding characters is calculated. Two

labels are said to be matched only if the all the Hausdorff distances between the
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characters are less than a threshold. A threshold of 4 gives good results for the

case of characters in engineering drawings. At the end of all comparisons, we

know which labels are matched. Sometimes, a single label can have multiple

labels which are matched to it. In such cases, the match is decided based on the

location of the label. The centroids of all the matched labels are found and the

label which is at a minimum distance from the centroid of the label is chosen as

the match.

Finally, all those labels which do not have any matches are the ones which

have changed. These labels are highlighted to indicate the difference between

the two drawings. Figs. 5.2 and 5.3 show the final result of comparison of the

drawings in Figs. 1.1 and 1.2.
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Figure 5.2: Result of comparison of the drawings in Figs. 1.1 and 1.2.
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Figure 5.3: Result of comparison of the drawings in Figs. 1.1 and 1.2.
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CHAPTER 6

Experimental Results

In addition to the example which was used in previous chapters to explain the

method to compare engineering drawings, we considered 9 pairs of engineering

drawings with different amounts of complexities and sizes provided by Caterpil-

lar India Private Ltd to evaluate our method. Out of the 9 pairs considered, we

illustrate segmentation, matching and comparison results for 2 pairs of example

drawings shown in Figs. 6.1, 6.2, 6.3 and 6.4. We can see that example 2 (Figs.

6.1 and 6.2) is a simple engineering drawing pair whereas example 3(Figs. 6.3

and 6.4) shows a more complicated one. Also, the number of changes in example

3 are much more than the changes in example 2.

The result of segmentation and matching for these example drawings are shown

in Figs. 6.5 and 6.6, wherein we observe that our method has successfully seg-

mented and matched all the sub-drawings in both the examples. Final results of

comparison for example 2 are shown in Figs. 6.7 and 6.8 and Figs. 6.9 and 6.10

show the results for example 3. The changes detected are marked in red. As the

size of the labels are too small, a red dot also has been marked wherever there was

a change. In example 2, only modifications of dimensions are present whereas

in example 3, we can see that the changes include both modification of certain

dimensions as well as deletion of certain regions. The results indicate that both

kind of changes were detected by our method.

Through example 3, a possible case where a change is not detected is illus-

trated. Here, the dimension of the line which was 24 (marked with in green color)



in Fig. 6.3 was changed to 26 in Fig. 6.4 and the dimension of the arc which was

22 in Fig. 6.3 was changed to 24 (marked in green color) in Fig. 6.4. Our method

has reported the changes about the dimensions 26 and 22 whereas dimension 24

was not recognized as a change because there was match with the same dimen-

sion in the modified drawing, though it belonged to a different part. This can be

avoided by associating the labels with each other based on what specific parts they

correspond to, before they are compared with each other.

We also illustrate the case of false detection through example 3. The labels

marked in blue in Figs. 6.9 and 6.10 are reported as changes though they are ex-

actly the same. This is because, the labels are grouped differently as the thickness

of the characters are different in the two drawings. This can be avoided by making

the thickness of all the characters uniform before grouping them to form labels.

The consolidated results for all the 9 pairs are drawings are tabulated below:

Drawing 1 2 3 4 5 6 7 8 9
No. of labels in the
original drawing 25 28 119 112 28 21 15 82 101
No. of labels in the
modified drawing 25 27 118 101 27 23 15 82 88
No.of changes
Additions / dele-
tions / modifica-
tions

0/0/4 2/0/2 1/0/1 0/10/14 1/0/7 0/13/2 0/0/4 1/2/4 0/16/3

No. of changes
detected 4 4 2 23 8 15 4 5 18
No. of false
detections 0 0 0 2 1 1 0 0 1

Table 6.1: Performance on 9 pairs of drawings from Caterpillar dataset.

From the results, it is clear that our method detected 95.4% of the changes

with a false detection of 0.4%.
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Figure 6.1: Original drawing of Example 2.
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Figure 6.2: Modified drawing of Example 2.
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Figure 6.3: Original drawing of Example 3.
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Figure 6.4: Modified drawing of Example 3.
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Figure 6.5: Result of segmentation and matching for Example 2. The segments
shown in same color are matched.

Figure 6.6: Result of segmentation and matching for Example 3. The segments
shown in same color are matched.
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Figure 6.7: Result of image comparison for Example 2.
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Figure 6.8: Result of image comparison for Example 2.
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Figure 6.9: Result of image comparison for Example 3.
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Figure 6.10: Result of image comparison for Example 3.
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CHAPTER 7

Conclusions

In this thesis, we have proposed a method to separate the text and the graphics

part in engineering drawings. We analyze the connected components based on

the characteristics of text and graphics in these drawings to extract the text. An

algorithm to segment into sub-drawings has also been proposed.

A SIFT-based algorithm was discussed to perform the matching of segments

across the drawings using match matrix. This algorithm is robust to any misalign-

ments in the two drawings and works without the need for registration.

We have presented a method to compare any two engineering drawings by

means of finding matching labels. Various properties of the labels such as length,

Euler number and dimensions were exploited in order to eliminate the labels

which do not match. The labels were then matched using a Hausdorff distance

based measure and the location of the labels. All those labels which do not have a

match are highlighted to indicate the changes.

The entire implementation was done in MATLAB. The proposed method was

tested on drawings with different amounts of complexities and sizes.
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