
Performance of Large MIMO (Multiple Input Multiple

Output) Systems

A Project Report

submitted by

N AVINASH

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2013



THESIS CERTIFICATE

This is to certify that the thesis titled Performance of Large MIMO (Multiple Input

Multiple Output) Systems, submitted by N Avinash, to the Indian Institute of Tech-

nology, Madras, for the award of the degree of Master of Technology, is a bonafide

record of the research work done by him under our supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Dr. David KoilPillai
Project Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 16th May 2013



ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my parents for their support and encour-

agement without which learning in and becoming a part of such a prestigious institution

would not have been possible. I would like to dedicate this work to them.

I am ever thankful to Dr. David KoilPillai for his continual support and invaluable

advice throughout the duration of my project. I feel honored and encouraged to have

worked under their guidance. I would also like to take this opportunity to thank my

professors at IIT Madras, Dr. Arvind, Prof. Srikrishna Bashyam, Prof. K. Giridhar,

Dr. Arun Pachai who have imparted knowledge and have motivated me to learn the

intricacies of the subjects.

Last but not the least, I would like to thank my friends and labmates Anshuman

Gourav, Sanjay , Jagdish, Kamalakar, Amrit, Venugopal,Jithin and some others about

whom I have not mentioned here for their help and encouragement. A special mention

to Anshuman for his help with Latex although I wanted to go for Lyx initially. I had

fun filled sessions in the lab with my friends and enjoyed through and through my stay

here.

i



ABSTRACT

KEYWORDS: Long term evolution ; Link Reliability;Lattice Reduction; LLL al-

gorithm; Seysen’s algorithm; EBLR ; LAS

Multiple-input multiple-output (MIMO) technology is maturing and is being incorpo-

rated into emerging wireless broadband standards like long-term evolution (LTE). When

number of antennas will be increased, it provides the better performance in terms of data

rate or link reliability and decrease the probability of outage. Not only advantages, we

have face few difficulties like correlation also occur, when we increase number of anten-

nas at both transmitter and receiver. In this thesis, we are using some lattice reduction al-

gorithms like LLL (Lenstra, Lenstra and Lovasz), Seysen’s and EBLR (Element- Based

Lattice Reduction) techniques to increase the orthogonality . These Lattice reduction

techniques are used to increase the orthogonality between the basis of the channel ma-

trices and also get the shortest basis. One more algorithm is used for better detection

at the receiver is LAS (Likelihood Ascent Search) iteration algorithm. In this following

thesis, we are going to detail discussion about these algorithms.
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CHAPTER 1

Introduction

Current wireless standards have adopted multiple-input and multiple-output techniques

to achieve the benefits of transmit diversity and high data rates. But this work limited to

up to some extent like two or four antennas. If we can use large number of antennas like

Large- MIMO systems with tens or hundreds of antennas have great potential for gener-

ating multi- giga bit rate transmission at high spectral efficiency.There are advantages in

using multiple antennas, namely they proved that the capacity of a multiple input multi-

ple output system increases linearly with the minimum number of receive and transmit

antennas. Actually in MIMO system, we can use some detection methods like ZF (Zero

Forcing), MMSE (Minimum Mean Square Error), ZF- SIC (ZF- Successive Interfer-

ence Cancellation), MMSE- SIC and ML (Maximum Likelihood) equalizers. Above all

detection methods, ML detection method gives optimal solution. But the complexity

of the method is increased with increasing number of antennas. In this discuss about

large- MIMO systems. From the above all other techniques will be poorer performance.

Based on those results we are going to introduce new detection methods like lattice re-

duction (LR) techniques have been applied improve the performance of detectors for

MIMO systems but complexity is high. Now the main goal of this thesis is how we

can get better performance at low complexity?. we proposed multistage likelihood as-

cent search (M- LAS) detector will produce better performance at low complexity. In

lattice reduction techniques, the MIMO detection problem translates to closest lattice

point search problem in lattice theory. Lattice reduction methods have proved them-

selves to be powerful tools in solving the closest lattice point problems. There is no

unique definition for lattice reduction, and therefore, there exist many different meth-

ods for lattice reduction. Among the lattice reduction methods, the LLL methods due to

Lenstra, Lenstra, and Lovasz, is the most practical one, due to its efficiency in finding

near orthogonal vectors with short norms. Generally, in most of the recent works , the

complexity of using the LLL algorithm is ignored. This can be justified in a case that,

the channel variations are slow enough, to make it possible to use the result of the LLL

reduction for quite a large number of received signals. Seysen’s algorithm is also one of



the best lattice reduction method compare with the LLL algorithm. This algorithm dif-

fers from the LLL algorithm and its variants in that it considers all vectors in the lattice

simultaneously, and perform operations on those vectors which will reduce the lattice

according to some measure. One more reduction technique, Element based lattice re-

duction (ELR) algorithms that reduce the diagonal elements of the noise co-variance

matrix of the linear detectors and enhance the asymptotic performance of linear detec-

tors. From the above, we just introduced about lattice reduction techniques. Here we

are going to introduce one more algorithm is maximum likelihood ascent search (LAS)

algorithm. We proposed this algorithm by employing a low- complexity multistage

multi-symbol update based strategy.

1.1 THESIS OUTLINE

The rest of the work organized as follows.

In chapter 2, the system model for MIMO detection scenario is explained, different

algorithms for MIMO detection are explored along with their advantages and disad-

vantages and provide the simulation results. In chapter 3, Introducing Large- MIMO

systems, followed by briefly studied about need of lattice reduction techniques then

Detail explanation about lattice reduction techniques and Simulation results, compare

those results. In Chapter 4, Here we used system model model is some what different

compare with previous methods. So firstly, we give the system mode, followed by de-

tail discussion about likelihood search algorithm (LAS) for one- symbol update and M-

symbols update and provide Simulation results. In chapter 5, the reader can find the

conclusion and future work.
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CHAPTER 2

MIMO Detection System Model

In this chapter, we discuss some of the important concepts regarding MIMO systems

(Telatar (1999)) as well as discuss about some linear detection techniques and non- lin-

ear detection techniques. But, in this chapter we have maximum 4 antennas at both

transmitter and receiver side. In MIMO system is that the transmitted signals from

distinct antennas must be decorrelated, and hence, the antenna elements must be suffi-

ciently separated. It has been shown in the literature that the spacing between antenna

elements must exceed half the wavelength of the transmitted signals. In this work,

we consider a multiple input multiple output (MIMO) system with M transmit, and

N ≥ M receive antennas. If we consider xc = [xc1, x
c
2, ..., x

c
M ]T , yc = [yc1, y

c
2, ..., y

c
M ]T ,

wc = [wc1, w
c
2, ..., w

c
M ]T and theN×M matrixHc respectively as the transmitted signal,

the received signal, the noise vector and the channel matrix, it will lead to the popular

base-band model

yc = Hcxc + wc (2.1)

The channel is assumed to be Rayleigh, and the noise is Gaussian, i.e., the elements

of H , namely hci,j , are independent and identically distributed (i.i.d), with zero mean

and unit variance complex Gaussian distribution. The complex input signal xc is com-

posed of components, cci , chosen from a M2 − QAM constellation with energy ρ
M

,in

which ρ can be interpreted as the signal-to-noise ratio (SNR) observed at any receive

Figure 2.1: Block Diagram of System Model
.



antenna. We can convert the whole system to its real counterpart using the following

transformations defined for vectors and matrices,

xc = xI + j xQ yc = yI + j yQ (2.2)

wc = wI + j wQ Hc = HI + j HQ (2.3)

Further, we define

x = [xTI x
T
Q]T , y = [yTI yTQ]T (2.4)

w = [wTI wTQ]T , H = [HT
I HT

Q]T (2.5)

Using the aforementioned transformations, the resulting real model is given by

y = Hx+ w (2.6)

From the above equation, y denotes the input at the receiver. Now we have to decode the

x by using some detection techniques. We already told that, Maximum Likelihood (ML)

produce optical performance. Following we will discuss about all detection techniques

used in MIMO systems (Larsson (2009)).

2.1 Detection Methods

2.1.1 Maximum Likelihood (ML) Receiver

Our intuition correctly suggests that an optimal detector should return x̂ = x , the

symbol vector whose (posterior) probability of having been sent, given the observed

signal vector y, is the largest (Mow (1994)):
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x̂ , argmaxxεcc P (xwas sent | y is observed)

x̂ , argmaxxεcc
P (y is observed |xwas sent)P (xwas sent)

P (y is observed)
(2.7)

Equation (2.7) is known as the Maximum A Posterior Probability (MAP) decision

rule. If all symbol vectors are equiprobable, i.e.,that P(s was sent) is constant, the

optimal MAP detection rule can be written as:

x̂ , argmaxxεcc P (y is observed |xwas sent) (2.8)

A detector that always returns an optimal solution satisfying (2.8) is called a Maximum

Likelihood (ML) detector. If we further assume that the additive noise n is white and

Gaussian, then we can express the ML detection problem of Fig. 2.1 as the minimization

of the squared Euclidean distance metric to a target vector y over an M -dimensional

finite discrete search set:

x̂ = argminxεcc ||y −Hx||2 (2.9)

2.1.2 ZF (Zero Forcing) Equalizer

To solve for x, we need to find the matrix Q which satisfies QH = I . The zero forcing

linear detector for this constraint is given by,

Q = (HHH)−1HH (2.10)

This matrix known as the pseudo matrix for a general M ×N matrix. Note that the off-

diagonal terms in the matrix HHH are not zero. Because the off diagonal terms are not

zero, the zero forcing equalizer tries to null out the interfering terms when performing

the equalization, i.e when solving for the interference from is tried to be nullified and

vice verse. While doing so, there can be amplification of noise. Hence Zero Forcing

equalizer is not the best possible equalizer to do the job. However, it is simple and

reasonably easy to implement.

5



2.1.3 MMSE (Minimum Mean Square Error) Equalizer

MMSE Aims at minimizing the variance of the difference between the transmitted data

and the signal at the equalizer output. The MMSE approach tries to find a coefficient Q

which minimizes the criterion, E
{

[Qy − x] [Qy − x]H
}

, solving this equation

Q =
[
HHH +N0I

]−1
HH (2.11)

By using the above equation we can multiply receiver input with this equation, then the

receiver estimate of the transmitted symbols.
x̂1

x̂2

.

x̂n

 =
[
HHH +N0I

]−1
HH


y1

y2

.

yn

 (2.12)

When comparing to the equation in ZF equalizer, MMSE will not let infinite noise as ZF

does when the channel spectral null. When N0 is zero, it will be same as ZF equalizer.

When N0 is not equal to zero, residual ISI (Inter Symbol Interference) and noise will

be observed at the output of the MMSE equalizer.

2.1.4 ZF- SIC (Successive Interference Cancellation)

To solve for x, we need to find the matrix Q which satisfies QH = I . The zero forcing

linear detector for this constraint is given by, Q = (HHH)−1HH To do the succes-

sive interference cancellation (SIC), the receiver needs to perform the following steps:

Using ZF equalization, the receiver can obtain an estimate of the transmitted symbols.

Suppose we can take 2 symbols and Take one of the estimated symbols and subtract the

effect from the receiver vector y − 1 and y2 i.e r1

r2

 =

 y1 − h1,2x̂2
y2 − h2,2x̂2

 =

 h1,1x1 + n1

h2,1x1 + n2

 (2.13)

 r1

r2

 =

 h1,1

h2,1

x1 +

 n1

n2

 (2.14)
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The above equation can be written as

r = hx1 + n (2.15)

The above equation is same as equation obtained for receive diversity case. Optimal

way of combining the information from multiple copies of the received symbols in re-

ceive diversity case is to apply Maximal Ratio Combining(MRC). The equalized sym-

bol is,

x̂1 =
hHr

hHh
(2.16)

This forms the simple explanation for Zero Forcing Equalizer with Successive Inter-

ference Cancellation (ZF-SIC) approach. MMSE- SIC also we can follow the same

procedure instead of ZF equalization we can do MMSE equalization in the first step.

2.1.5 Lattice Reduction Aided Detector for 2× 2 MIMO System

This algorithm (Yao and Wornell (2002)) works only for 2 × 2 MIMO case. If you

increase the number of antennas, it will not work. We are going to discuss the lattice

reduction methods for Large- MIMO systems detail in the next chapter. But her we are

giving brief material about lattice reduction (LR) techniques. Lattice reduction means

to change basis of channel matrix to get better performance. But every time when we

change the basis, we did not achieve optimal performance but sometimes we will get

optimal performance. In particular, changing lattice basis to be more orthogonal and

shorter. If channel matrix have more correlated columns, then by using this procedure

significant improvements occurred.

For any lattice L there are many possible bases. Indeed, if H = [h1, h2, ....., hM ] is

a matrix whose columns are basis vectors for the lattice.If H is a basis, so is H ′ = HP

for any matrix P such that both P and P−1 have integer entries. Specifically, a points

represented by x in the basis H is represented by z = P−1x in the basis H ′, i.e.,

s = Hx = (HP )(P−1x) = H ′z.

The basic idea behind using lattice reduction in conjunction with traditional low-

complexity detectors is to operate in a chosen lattice basis that is optimized for those

detectors, as shown in fig

7
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Figure 2.2: Traditional Detector
.

Figure 2.3: Using lattice reduction in conjuction with traditional detectors
.

In the traditional system, the detector compensates for the original channel H to

produce x̂. In the new system, we perform a basis change via a matrix P , specifically

y = Hx+ w = (HP )(P−1x) + w = H ′z + w (2.17)

Reduction algorithm:

Given an original set of basis vectors (hl, h2) for a lattice with ||h1|| ≤ ||h2||, we

develop an iterative algorithm to progressively reduce their correlation and converge to

the desired basis vectors (u, v). One intuitive way to reduce the correlation between two

lattice basis vectors is to subtract integer copies of one vector out of the other. Since the

rounding errors for real and imaginary parts are each not more than 1
2
.

Step 1: Reduce the correlation between the basis Check the correlation, Re{<

h1 h2 >} ≤ 1
2
||h1||2 and Im{< h1 h2 >} ≤ 1

2
||h1||2 ,stop. Otherwise replace h2

with h12 = (h2−nh1) where n is replaced by n =
⌈
<h1 h2>
||h1||2

⌋
. Here d c it represents the

rounding operation.

Step 2: Check h12 is shorter than h1,then swap go to step (1)

8



After change the basis we apply ZF or MMSE equalization employed, then (H
′
)−1y

is quantized to get ẑ. After that we can multiply ẑ with P then we can get x̂ = P ẑ.

We presented an iterative lattice reduction algorithm for optimal decoding and studied

its complexity. We showed that the number of iterations needed is typically low and it

is increasingly unlikely to need more. We also showed that, relative to optimal MLD,

LR techniques is sub-optimal by no more than 3dB in terms of SNR for any Gaussian

channel, and allows us to achieve the same diversity on the Rayleigh fading channel,

assuming sufficiently large constellations are used.

2.2 Simulation Results

In the section performance and complexity of the lattice reduction methods are studied

and compare those reduction algorithm methods with linear detection methods also. We

consider the MIMO channel with NT = NR, transmit and receive antennas. Channel

is assumed to be Rayleigh fading channel. Here we consider less number of antennas.

The Zero Forcing equalizer is not the best possible way to equalize the received sym-

bol. The zero forcing equalizer helps us to achieve the data rate gain, but NOT take

advantage of diversity gain.In this case, channels are correlated so it might not able to

solve unknown transmitted symbols at receiver. It is claimed that there can be receiver

structures which enables us to have both diversity gain and data rate gain. If we con-

sider MMSE equalization, we get better performance in terms of 3dB improvement.

Compared to ZF equalization alone case, addition of successive interference cancella-

tion (SIC) results in around 2.2dB of improvement for BER of 10−3. In the same way,

MMSE- SIC gives better results compare with above all methods. The results for 2x2

MIMO with Maximum Likelihood (ML) equalization helped us to achieve a perfor-

mance closely matching the 1 transmit 2 receive antenna Maximal Ratio Combining

(MRC). But if we can increase the order of constellation, then computing of ML equal-

ization is very complex. So normally we can’t use this equalization. See fig (2.4), that

figure shows comparison of all detection techniques discussed in 2 × 2 MIMO system

detection techniques.

Here we consider one of lattice reduction technique, it will be worked only for 2×2

MIMO system. The incremental complexity inherent in the use of lattice reduction is

9



Figure 2.4: Comparision of BER Vs SNR plots for different detection techniques

Figure 2.5: Comparision between MMSE-LD and LR-MMSE

determined by the number of iterations required to reduce the basis. In the 2 x 2 case,

lattice reduction improves the diversity achieved by ICD and BLAST detection to that

of MLD (see in fig 2.5).
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CHAPTER 3

Large- MIMO Systems

Large Multiple-Input Multiple-Output (MIMO) systems (Rusek et al. (2013)) with tens

or hundreds of antennas have shown great potential for next generation of wireless

communications to support high spectral efficiencies. The more number of antennas

equipped with transmitter/receiver, and the more degrees of freedom that the propaga-

tion channel can provide, the better performance in terms of data rate or link reliability.

Such large-number of antennas can be employed in large/medium sized communication

terminals like set top boxes, laptops and TVs for spectral efficient wireless delivery of

high data rate applications. The gains in multiuser systems are even more impressive,

because such systems offer the possibility to transmit simultaneously to several users as

well the flexibility to select what users to schedule for reception at any given point in

time.

The price to pay for MIMO is increased complexity of the hardware and energy con-

sumption of the signal processing at both ends. when number of antennas increased,the

complexity of signal detection is also increased.Based on the complexity at the transmit-

ter, some advanced coding schemes are used to transmit the information simultaneously

more than one transmitter with inter symbol interference to be controlled manner. Large

number of terminals can always be accommodated by combining very large MIMO

technology with conventional time and frequency- division multiplexing via orthogonal

frequency division multiplexing (OFDM). When we are using large-MIMO, each an-

tenna allotted to extremely low power because we know tha power of each antenna is

inversely proportional to number of transmit antennas.Very- large MIMO system made

extremely robust because any failure occur in any one of the antenna that won’t affect

much on system performance.

When number of antennas increased, the area of the aperture is also increased. If

the aperture of the array grows, the resolution of the array also increased. Increasing the

number of antenna elements implies that antenna separation decreased.It results spatial

correlation increased between the antennas, that results more inter symbol interference



Figure 3.1: Reduction Effect, Solid line: Original basis, Dashed Line: Reduced basis

(ISI) causes degrade the performance of the system. If we consider line of sight (LOS)

propagation,we can get the disappointing performance can occur so we always consider

independent and identical distributed (iid) Rayleigh fading channel for the propagation.

If the channel is not asymptotically orthogonal i.e. coupling and correlation is present.

So by using some lattice reduction methods we can decrease the correlation between the

antennas and get better performance. Now following topics in this chapter discuss about

the lattice reduction algorithms and how performance affect regarding those algorithms.

3.0.1 Lattice Reduction Algorithms

Any latticeLmay be described by many different lattice bases. LetB1, B2..... be distinct

set of vectors, all of which from the bases of lattice L. We can imagine that there exists

some ordering or ranking of the bases Bi, and thus one or more of the Bi might be con-

sidered good lattice bases of L. Mainly lattice reduction theory deals with identifying

good lattice bases for a particular lattice.

In the next following sections, we will discuss about the various reduction tech-

niques like Lenstra,Lenstra,Lovasz (LLL) algorithm, Seysen’s algorithm and Element

Based Lattice Reduction (ELR) algorithms.

12



3.1 The LLL Algorithm

In Wubben et al. (2004) LLL- reduction-algorithm is discussed. It was originally meant

to find "short" vectors in lattices, i.e. to determine a so called reduced Basis for a

given lattice.The following pages we will describe the LLL-Algorithm and derive all its

steps. We will then determine the relation between lattice reduction and the problem

of factoring polynomials, and the relation between lattice reduction and finding integer

relations.

Before proceeding further, we will define some expressions and recall the Gram-

Schmidt orthogonalization process since it is crucial in the algorithm.

Lattices, Gram- Schmidt and some properties:

Definition 3.1:

subsetL of the real vector spaceRn is called a lattice if there exist a basis b1, b2...., bn

of Rn such that

L =

{
n∑
i=1

ribi | riεZ for iε{1, 2, ..., n}

}
(3.1)

We call b1, b2...., bn a basis for L and n is the rank of L. Moreover we define d(L) :=|

det(b1, b2...., bn) | to be the determinant of the lattice.

Gram-Schmidt orthogonalization process:

Let b1, b2...., bn be some independent vectors in Rn. We define inductively

b∗1 = b1 (3.2)

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j for 1 ≤ i ≤ n (3.3)

µi,j =

(
bi, b

∗
j

)
|b∗j |2

for 1 ≤ i ≤ n (3.4)

This process produces vectors b∗1, b
∗
2...., b

∗
n that form an orthogonal basis of Rn.

Definition 3.2

13



We call a basis b1, b2...., bn of a lattice L if

| µi,j |≤
1

2
for 1 ≤ i ≤ n (3.5)

and

| b∗i + µi,i−1b
∗
i−1 |2≥

3

4
| b∗i−1 |2 for 1 ≤ i ≤ n (3.6)

The second condition can be rewritten as | b∗i |≥
(
3
4
− µ2

i,i−1
)
| b∗i−1 |2, which is

known as the Lovasz’s condition. Note that the constant 3
4

in the definition is arbitrary

chosen. Indeed, we could take any other constant between 1
4

and 1 . In the original

LLL algorithm, to check if a basis is LLL reduced, only adjacent columns are checked

against each other. One can argue that this condition can be strengthened, to take into

account the earlier columns too. This leads to a non polynomial algorithm both in theory

and practice. Obviously this was one of the reasons that the authors of LLL chose the

relaxed condition.

The following we give the full LLL- algorithm:

—————————————————————————————————-

Table 3.1: LLL Algorithm details

—————————————————————————————————–

Step 1: Initialization

Set k = 2, kmax = 1, b∗1 = b1, B1 =< b1, b1 >,H = In

Step 2: Incremental Gram- Schmidt

If k < kmax go to Step 3

else k < kmax, b
∗
k = bk

for j = 1, ......, k − 1

µi,j =
(bi,b∗j)
Bj

, b∗k = b∗k − µk,jb∗j Bk =< b∗k, b
∗
k >

Step 3: Test for LLL Condition Run RED (k, k − 1)

If Bk < (0.75− µ2
k,k−1)Bk−1 Run SWAP (k) k = max (k − 1, 2) Go to Step 3

else for l = k − 2, k − 3, ....., 1 Run RED (k, l) k = k + 1

14



Step 4: Test for termination If k ≤ m go to Step 2

Terminate the program and Output bi ’s and the transformation matrix H

—————————————————————————————————–

Table 3.2: RED(k, l) sub- algorithm

—————————————————————————————————–

If | µk,l |≤ 0.5 exit the sub algorithm

else q = bmuk,le; bk = bk − qbl, Hk = Hk − qHl, µk,l = µk,l − q

for i = 1, 2, ...., i− 1 µk,i = µk,i − qµl,i

Terminate the sub-algorithm

—————————————————————————————————–

Table 3.3: SWAP (k) sub-algorithm

—————————————————————————————————–

Swap vectors bk and bk−1

If k > 2 for j = 1, 2, ...., k − 2, exchange µk,j and µk−1,j µ = µk,k−1, B = Bk +

µ2Bk−1,muk,k−1 = µBk−1

B
, b = b∗k−1, b

∗
k−1 = b∗k + µb

b∗k = −µk,k−1b∗k +
(
Bk

B

)
b, Bk = Bk−1Bk

B
, Bk−1 = B

for i = k + 1, k + 2, ........., kmax t = µi,k, µi,k = µi,k−1 − µt,mui,k−1 = t +

µk,k−1µi,k

Terminate the sub-program

—————————————————————————————————–

At high SNR the performance is dominated by the minimum distance in the decision

region. The decision region of ZF decoder is a fundamental parallelogram centered at

the transmitted code-word. This decision region can be specified by the Gram-Schmidt

orthogonal vectors. The size reduction of a vector which is done by sub-algorithm

RED(k; l) in Table 3.3, does not affect the size reduction of the other vectors. By

studying the LLL algorithm it is not hard to see that, the size reduction does not affect

the Gram-Schmidt orthogonal vectors.
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As the decision region of the ZF decoder is determined by Gram-Schmidt orthogo-

nal vectors bi, and the size reduction does not affect these vectors, therefore a version

of the LLL algorithm can be used in the MIMO detection applications.

3.2 Seysen’s Algorithm

Seethaler et al. (2007) proposed a new method for performing lattice basis reduction.

This algorithm differs from the LLL algorithm and its variants in that it considers all

vectors in the lattice simultaneously , and performs on those vectors which will reduce

the lattice according to some measure. This measure is called seysen’s measure. We

define a lattice L(H) whose basis vectors are h1, h2, ....., hn. The dual of this lattice

L(H) is L(H)∗ = (L(H)−1)T , then whose basis vectors are h∗1, h
∗
2, ....., h

∗
n. Here hi is

ith column of the channel matrix. Before proceeding further each bases in the lattice

follow these properties:

(hi, h
∗
j) = 1, for i = j

(hi, h
∗
j) = 0, otherwise (3.7)

Here (a, b) indicates the dot product between two vectors a and b. Now we are going to

define two matrices A and A∗. Let aij is the element in the matrix A similarly a∗ij is the

element in the matrix A∗.

A = [aij] = [(hi, hj)]

A∗ =
[
a∗ij
]

=
[
(h∗i , h

∗
j)
]

for 1 ≤ i, j ≤ 2NT (3.8)

After change the basis in the lattice, the actual channel H is transformed in H̃ in the

lattice L(H). It can be written as

H̃ = HT (3.9)

Here T is called uni modular matrix whose determinant is always ±1. Now the main

aim in this algorithm is after finding matrix A we will get non zero diagonal elements

λij . Based on the diagonal elements we follow the below algorithm to find out the

unimodular matrix T . Once if you find the matrix T , we can get the transformation
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channel matrix H̃ from the above equation. After finding new channel matrix

—————————————————————————————————–

Table 3.4 Seysen’s algorithm details

—————————————————————————————————–

Step 1: T = eye(2NT ), S(A) =

2NT∑
i=1

aiia
∗
ii =

2NT∑
i=1

‖ hi ‖2‖ h∗i ‖2

While λij 6= 0 for all (i, j)

Select (i, j) for i 6= j that minimize ∆

Calculate λij = round
{

1
2

(
a∗i,j
a∗j,j
− ai,j

aj,j

)}
∆(i, j, λ) = S

((
T
λij
ij

)T
AT

λij
ij

)
− S(A)

Update

A′ =

((
T
λij
ij

)T
AT

λij
ij

)
A∗
′

=

((
T
λij
ij

)−1
A
(
T
λij−1
ij

)T)
Calculate only for the chosen (i, j)

λij = round
{

1
2

(
a∗i,j
a∗j,j
− ai,j

aj,j

)}
T = T × T λijij End

Return Transformation matrix T

—————————————————————————————————–

After finding new transformation matrix H̃ instead of using normal precoding method,

we will change small modifications in the way of pumping data into the transmit an-

tennas. The block diagram of the LRA precoding is shown : fig (3.1) Linear MMSE

precoding is a well-known linear precoding technique An et al. (2009) that pre-filters

the transmitted symbols using the pseudo-inverse of the channel matrix. The precoded

vector is defined as x =Ws , where W is defined as following

W = αH−1, where α =

√
NT

trace(HT .H)−1
(3.10)
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Figure 3.2: LRA Precoding

the scaling factor α is used to restrict the total transmit power to the predefined limit

NT . At the receiver side, the symbols are recovered by dividing the received vector

by α. In case of Large-MIMO systems, inter-user interference can be therefore totally

canceled by using this approach. Nonetheless, if the channel is ill-conditioned, serious

noise amplification arises. The application of LR before the linear MMSE precoding

leads to tremendous reduction in α, which consequently reduces the noise amplification.

Since that SA makes more orthogonal lattice basis compared to LLL algorithm, a better

performance can be obtained.

3.3 Element Based Lattice Reduction

Compared to the existing LLL methods and SAs, the proposed ELR algorithm (Zhou

and Ma (2013)) has a different designing goal: to minimize the diagonal elements in

noise co-variance matrix. First, we show the relationship between the diagonal elements

in noise co-variance matrix with symbol-wise asymptotic pairwise error probability

(PEP) and develop two LRs to minimize the asymptotic PEP, which are called "shortest

longest vector (SLV) reduction" and a stronger version, "shortest longest basis (SLB)

reduction",âĂİ respectively.

The pairwise error probability (PEP) of the ZF-LD (Linear Detection) is if we trans-

mit the ith symbol is si, the error is detected as ŝi 6= si given channel matrix H is

P (si → ŝi | H) = Q

(√
| esi |2
2σ2

wCi,i

)
(3.11)

Here esi = si − ŝi, Q(x) = (2π)−
1
2

∫∞
x
exp(−t2/2)dt, C = (HHH)−1 is scaled

covariance matrix after equalization, and Ci,i denotes the ith diagonal element of C.
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After Lattice reduction algorithms applied, the channel matrix transformed in to

H̃ = HT . The noise covariance matrix after the lattice reduction methods is C̃ =(
H̃HH̃

)−1
= T−1C (T−1)

H . The PEP of LR-ZF is if we transmit the ith symbol is zi,

the error is detected as ẑi 6= zi given channel matrix H̃ is

P
(
zi → ẑi | H̃

)
= Q

(√
| ezi |2

2σ2
wC̃i,i

)
(3.12)

From the above equation, we understand that PEP is depends upon the noise covariance

matrix. So here we update the unimodular matrix T as well as noise covariance ma-

trix C̃.Mathematically, we formulate the optimization problem as finding a unimodular

matrix T by minimizing the largest diagonal element of C̃ as

min max1i

(
C̃i,i

)
s.t.C̃ = T−1C

(
T−1

)H
,

T εN (Z[j]) (3.13)

the above optimization is equivalent to minimizing the longest basis vector in the

dual basis. Here, we refer to the optimization as the "dual shortest longest vector (D-

SLV) reduction".But the optimal solution is not unique i.e. there exists two or more

bases of lattice L that satisfy the reduction. To improve the PEP performance by mini-

mizing the second largest diagonal element of C̃ with respect to T as

min max2i

(
C̃i,i

)
s.t.C̃ = T−1C

(
T−1

)H (3.14)

maxi

(
C̃i,i

)
= C̃(0)

T εGLN (Z[j]) (3.15)

After solving optimization problem , we can further optimize the third largest diagonal

element, the fourth one, and so on. This procedure continues until all the diagonal

elements of C̃ are minimized. In this paper, we call this process the "dual shortest

longest basis (D-SLB) reduction".

—————————————————————————————————–
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Table 3.5: The Element- Based Lattice Algorithm

—————————————————————————————————–

Input: H , Output: H̃, T

(1) C̃ = (HHH)−1, T
′
= IN

(2) DO

(3) λi,j = −
⌊
C̃i,k

C̃i,i

⌋
, ∀i 6= k

(4a) For the D-ELR-SLV: If the largest element of C̃ is irreducible, go to 11

(4b) For the D-ELR-SLB: If all λi,k = 0, ∀i 6= k, go to 11

(5) Find the largest reducible C̃k,k

(6) Choose i = arg maxN
ĩ=1,̃i 6=k4ĩ,k

(7) t′k = t
′

k + λi,k t
′
i

(8) c̃′k = c̃
′

k + λi,k c̃
′
i

(9) c̃(k) = c̃(k) + λi,kc̃
(i)

(10) While (true)

(11) T = (T ′−1)H , H̃ = HT

—————————————————————————————————–

Here given the initial matrix C̃ = (HHH)−1, for each iteration, the algorithm selects

a reducible C̃k,k and i such that4i,k > 0. Then we can update the C̃. For next iteration,

the algorithm just picks up another reducible C̃n,n from the update C̃. This procedure

continues until the termination condition satisfied.

D-ELR-SLV algorithm requires, at most,O(N) iterations requires to find the largest

C̃k,k and i = arg maxN
ĩ=1,̃i 6=k4ĩ,k. While, the D-ELB-SLB algorithm requires O(N2)

iterations to find the index pair (i, k) at the worst case. But finally, D-ELB-SLB al-

gorithm yields better error performance than the D-ELB-SLV algorithm at the cost of

higher complexity.
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3.4 Simulation Results

In the section performance and complexity of the lattice reduction methods are stud-

ied and compare those reduction algorithm methods with linear detection methods also.

We consider the MIMO channel with NT = NR, transmit and receive antennas. Chan-

nel is assumed to be Rayleigh fading channel. Here i work out on high order QAM

constellation is used to investigate error performance of the proposed methods. In this

simulations, the following proposed algorithms are used LLL algorithm, Seysen’s algo-

rithm and Element Based Reduction techniques.

We can see fig (3.2 3.3), we can increase the number of antennas from ten to hun-

dreds. Her fig (3.2) displays the error performance of the LR- aided detection with

4QAM, SNR at 20dB. If we can see the figure, ZF- LD gives worst performance com-

pare with the other with other techniques. If we consider, MMSE and LLL- aided

MMSE- LD, upto NT ≤ 20, LLL- aided MMSE gives good performance compare with

MMSE but after the MMSE gives good performance. SA- aided MMSE- LD exhibit

better performance compare with MMSE and LLL- aided MMSE. The proposed D-

ELR-SLB-aided MMSE-LD show significant improvement over the other existing LR-

aided MMSE-LD for large MIMO systems. If we can see in fig (3.3), demonstrates the

error performance of the LR- aided detectors with 64QAM, SNR at 30dB.

We can see fig (3.4), If number of antennas 64×64 then the SNRs varies, we can see

the the how performance varies for different LR- aided detectors. Here we can get good

performance from D-ELR-SLB aided MMSE- LD, but the complexity of this method

is very high. When we are going to increase more number of antennas, the complexity

also increases with respect to that.
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Figure 3.3: Performance of LR-aided LD for MIMO systems with 4QAM, SNR = 20dB

Figure 3.4: Performance of LR-aided LD for MIMO systems with 64QAM, SNR =
30dB
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Figure 3.5: Performance comparison with different detection methods,NT = NR = 64,
and 256QAM
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CHAPTER 4

High- Rate Space Time Coded Large- MIMO Systems

In the previous chapter, we learn many lattice reduction algorithms when number of

antennas increases. But if we observe those algorithms, they give good performance

but complexity is very high. So, In this chapter we are going to discuss about low

complexity detection algorithm (Mohammed et al. (2008)) for detection of high data

rate, non- orthogonal. space-time block coded (STBC), large- MIMO systems that

achieve high spectral efficiency. Here we present a training based iterative detection/

channel estimation scheme for such large STBC MIMO systems. That algorithm is

Multistage- Likelihood Ascent Search (M- LAS) algorithm.

This chapter is organized as follows. We present the STBC MIMO system model

considered. Later discuss about the detection algorithm proposed.

4.1 System Model

Consider a STBC MIMO system with multiple transmit and multiple receive anten-

nas. An (n, p, k) STBC is represented by a matrix XcεCNt×p, where as Nt denotes the

number of transmit antennas and p number of time slots, respectively, and k denotes

the number of complex data symbols sent in one STBC matrix. The (i, j)th entry in

XcεCNt×p represents the complex number transmitted from the ith transmit antenna in

the jth time slot. The rate of an STBC is given by r , k
p
. Let HcεCNr×Nt denotes the

channel gain matrix, where the (i, j)th entry inHc is the complex channel gain from the

jth transmit antenna to the ith receive antenna. The receive space- time signal matrix

YcεCNr×p can be written as

Yc = HcXc +Nc (4.1)

where YcεCNr×p is the noise matrix at the receiver and its entries are modeled as i.i.d

CN (0, σ2 = (NtEs)/(γ)), where Es be the average energy of the transmitted symbols,

γ is the average received SNR per receive antenna. In a linear dispersion (LD) STBC,



where Xc can be written in the form

Xc =
k∑
i=1

x(i)c A
(i)
c (4.2)

From above two equations, applying the vec(.) operation then we have

vec (Yc) =
k∑
i=1

x(i)c vec
(
HcA

(i)
c

)
+ vec (Nc) (4.3)

If U, V,W,D are matrices such that D = UWV , then vec(D) =
(
V T ⊗ U

)
vec(W ), ⊗

denotes tensor product of matrices. So we can be written as

vec (Yc) =
k∑
i=1

x(i)c (I ⊗Hc) vec
(
A(i)
c

)
+ vec (Nc) (4.4)

yc = vec (Yc) εCNrp×1, Ĥc , I ⊗HcεCNrp×Ntp

a(i)c , vec
(
A(i)
c

)
εCNtp×1, nc , vec (Nc) εCNtp×1, xcεCk×1

From above these definitions, we can write as

yc ,
k∑
i=1

x(i)c

(
Ĥca

(i)
c

)
+ nc = H̃cxc + nc (4.5)

we can decomposed into real and imaginary parts as

yc = yI + jyQ, xc = xI + jxQ

nc = nI + jnQ, H̃c = H̃I + jH̃Q (4.6)

Further, we define x εR2k×1, y εR2Nrp×1, H εR2Nrp×2k, and nεR2Nrp×1 as

x =
[
xTI x

T
Q

]T
, y =

[
yTI yTQ

]T
H =

 H̃I −H̃Q

H̃Q H̃I

 , n =
[
nTI n

T
Q

]T
(4.7)
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Hence we work with the real-valued system can be written as

y = Hx+ n (4.8)

The ML solution is given by

dML = argmindεS ‖ y −Hd ‖2

dML = argmindεS d
THTHd− 2yTHd (4.9)

whose complexity exponential in k.

When δ = e
√
5j and t = ej , the STBC in achieves full transmit diversity (under ML

decoding) as well as information-losslessness. When δ = t = 1, the code ceases to

be of full-diversity (FD), but continues to be information-lossless (ILL). High spectral

efficiency with large n can be achieved using this code construction.

4.2 LAS Algorithm

The M-LAS algorithm starts with an initial solution d(0), given by d(0) = By, where

B is the initial solution filter, which can be a matched filter (MF) or zero-forcing (ZF)

filter or MMSE filter. The index m in d(m) denotes the iteration number in a substage

of a given search stage. The ML cost function after the kth iteration in a given search

stage is

C(k) = d(k)
T

HTHd(k) − 2yTHd(k) (4.10)

4.2.1 One- Symbol Update

In this algorithm (Vishnu Vardhan et al. (2008)), we can update each symbol every

time. According to that updating vector, we can find the cost function. Later, we can

find the cost difference between previous vector and update vector. If that difference

is less than zero, then we can update that symbol according to that. Otherwise keep it

previous symbol in that vector as it is. We can write the total algorithm with equations
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as follows:

The update rule can be written as

d(k+1) = d(k) + λ(k)p ep (4.11)

Here ep denotes the unit vector with its pth entry is only one, and all other entries as

zero. λ
(k)
p can take only certain integer values. For example, in case of 4-PAM or

16-QAM , take λ(k)p can take value only from {−6,−4,−2, 0, 2, 4, 6}.

We can write the cost difference as

4Ck+1
p , C(k+1) − C(k)

4Ck+1
p = λ(k)

2

p (G)p,p − 2λ(k)p z(k)p (4.12)

Here G , HTH , z(k) = HT
(
y −Hd(k)

)
, where zp is the pth entry of the z and

(G)p,p is the (p, p)th entry of the G matrix.

The ML cost difference can be rewritten as

F
(
l(k)p

)
, 4Ck+1

p = l(k)
2

p ap − 2l(k)p

∣∣z(k)p

∣∣ (4.13)

Here ap = (G)p,p, l
(k)
p =

∣∣∣λ(k)p ∣∣∣
However, for the case of one-symbol update, we could obtain a closed-form expression

for the optimum l
(k)
p that minimizes F

(
l
(k)
p

)
, which is given by

l
(k)
p,opt = 2


∣∣∣z(k)p

∣∣∣
2ap

 (4.14)

The new value of the symbol would be given by

d̄(k+1)
p = d(k)p + l(k)p sgn

(
z(k)p

)
(4.15)

If the values in d̄(k+1)
p , be greater than (M−1) then the adjusted value of l(k)p is (M−1).
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In the same way, If the update symbol value is less than −(M− 1), then the value is

adjusted value of l(k)p is −(M− 1).

Finally if F
(
l
(k)
p

)
< 0, the update for the (k + 1)th iteration is

d(k+1) = d(k) + l
(k)
p,optsgn

(
z(k)s

)
e(s) (4.16)

z(k+1) = z(k) − l(k)p,optsgn
(
z(k)s

)
e(s) (4.17)

If F
(
l
(k)
p

)
≥ 0, then the one-symbol update search terminates. The data vector at this

point is referred to as "one-symbol update local minima".

4.2.2 Multistage LAS (Likelihood Ascent Search) Algorithm

The proposed M-LAS algorithm consists of a sequence of likelihood-ascent search

stages, where the likelihood increases monotonically with every search stage. Each

search stage consists of several substages.In the first substage, the algorithm updates

one symbol per iteration such that the likelihood monotonically increases from one iter-

ation to the next until a local minima is reached. Upon reaching this local minima, the

algorithm initiates the second substage. In the second substage, a two-symbol update is

tried to further increase the likelihood. If the algorithm succeeds in increasing the like-

lihood by two-symbol update, it starts the next search stage. If the algorithm does not

succeed in the second substage, it goes to the third substage where a three-symbol up-

date is tried to further increase the likelihood. The following steps we can write whole

M- LAS algorithm with equations. The following block diagram clearly shows how the

algorithm executes.

The update rule can be written as d(k+1) = d(k) +
K∑
j=1

λ
(k)
i,j ei,j . Here also we can take

specific integers λ(k)p . For example, for 16- QAM,Ai,j = {−3,−1, 1, 3} we can take the

λi,j values as {−6,−4,−2, 0, 2, 4, 6}.

we can write the cost difference function as

4Ck+1
u

(
λ
(k)
i1
, λ

(k)
i2
, ...., λ

(k)
iK

)
, Ck+1 − Ck
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Figure 4.1: LAS Algorithm

Ck+1 − Ck =
K∑
j=1

λ
(k)2

ij
(G)ij ,ij + 2

K∑
q=1

K∑
p=q+1

λ
(k)
ip
λ
(k)
iq

(G)ipiq −
K∑
j=1

λ
(k)
ij
z
(k)
ij

(4.18)

Approximate methods can be adopted to solve this problem using lesser complexity.

One method based on zero-forcing is as follows. The cost difference function in can be

rewritten as

4Ck+1
u

(
λ
(k)
i1
, λ

(k)
i2
, ...., λ

(k)
iK

)
= Λ(k)T

u FuΛ
(k)
u − 2Λ(k)T

u z(k)u (4.19)

Here Λ
(k)
u ,

[
λ
(k)
i1
, λ

(k)
i2
, ...., λ

(k)
iK

]T
, z

(k)
u ,

[
z
(k)
i1
, z

(k)
i2
, ...., z

(k)
iK

]T
, where (Fu)p,q =

(G)ip,ip ,and p, q ε {1, 2, ..., K}

The final update rule for the z(k) and d(k) vectors are given by

z(k+1) = z(k) −
K∑
j=1

λ̂
(k)

îj
gîj (4.20)

d(k+1) = d(k) +
K∑
j=1

λ̂
(k)

îj
eîj (4.21)
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Figure 4.2: Uncoded BER of the proposed 1-LAS, 2-LAS detector for ILL only STBCs

4.3 Simulation Results

It can be seen that MMSE-only performance does not improve with increasing STBC

size (i.e., increasing Nt = Nr). However, it is interesting to see that, when the pro-

posed search using LAS is performed following the MMSE operation, the performance

improves for increasing Nt = Nr. If we can see the results, we understand that 2-LAS

performs better than 1-LAS. In ILL-only STBCs can be taken advantage of without

incurring much performance loss compared to FD-ILL STBCs.

The complexity of the proposed LAS algorithm comprises of three components,

namely, 1) computation of the initial vector d(0), 2) computation of HTH , and 3) the

search operation.Two good properties of the STBCs from CDA are useful in achieving

low orders of complexity for the computation of d(0) andHTH . They are: 1) the weight

matrices A(i)
c ’s are permutation type, and 2) the matrix N2

t × N2
t formed with N2

t × 1

sized vectors a(i)c as columns is a scaled unitary matrix. These properties allow the

computation of MMSE/ZF initial solution in O (N3
t Nr) complexity, i.e., in O (NtNr)

per-symbol complexity since there are N2
t symbols in one STBC matrix. Likewise,

the computation of HTH can be done in O (N3
t ) per-symbol complexity. The average

per-symbol complexities of the 1-LAS and 2-LAS search operations are O (N2
t ) and

O (N2
t logNr), respectively, which can be explained as follows. The average search

complexity is the complexity of one search stage times the mean number of search

stages till the algorithm terminates.
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Figure 4.3: Uncoded BER comparision between FD-ILL and ILL- only
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CHAPTER 5

Conclusion and future work

5.1 Conclusion

In this work different methods used in MIMO detection scenario were studied. Most

of the efficient decoding techniques require a preprocessing stage that involves lattice

reduction. In a Rayleigh fading channel that the channel realizations are correlated in

time, it was shown that it is possible to take advantage of this temporal correlation, and

reduce the complexity of the lattice reduction, and therefore the preprocessing stage.

This helps the decoding systems to be practical to be used in today’s communication

devices that have a constraint on energy and processing power.

The lattice reduction algorithms in a Rayleigh fading channel MIMO system, with-

out any loss in error performance. This makes the proposed algorithm to be quite prac-

tical and appealing to be used in any MIMO scenario that needs lattice reduction.Each

lattice reduction algorithm has its own identity. But final conclusion of each algorithm

is common i.e. to get the orthogonal and shortest basis. When we are using LLL algo-

rithm we need not worry about complexity much but it gives good performance. From

Seysen’s algorithm , we are getting lattice reduction basis for that matrix as well as

dual. Element reduction techniques are following different approach but we are getting

better performance but complexity is more compare with the other techniques.

Further, we discussed about the high-data space- time coded large- MIMO systems.

Here we concentrate not only on the performance but also decrease in the complexity.

According to the results, we are getting satisfied response from this algorithm. But this

is not only breaking point of the research. We have many more methods to get better

performance compare with the this algorithm.



5.2 Future Work

We are discussed very few algorithms in this thesis. They are many more algorithm

are used to get the good performance like reactive tabu search, layered tabu search

algorithms etc. Now a days to transmit data through the antennas we are using many

types of advanced codes like LDPC and TURBO codes. In this thesis, we discussed only

STBC codes. If work on further we can use different codes and different algorithms to

improve system performance.
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