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ABSTRACT

KEYWORDS: Resource Allocation; OFDM; Lyapunov stability; Limited channel

information; LTE

We address the problem of optimal downlink resource allocation in an OFDMA system,

in a scenario where very limited channel quality information (CQI) is available at the

base-station. Our work is particularly applicable in the context of the LTE downlink,

since the feedback mechanism we consider closely resembles one of the CQI reporting

modes in LTE. Specifically, the users only report the indices of their best M sub-bands

and an effective CQI corresponding to these best M bands. Our policy simultaneously

performs optimal sub-band assignment and rate allocation, by taking into account chan-

nel quality as well as the queue backlogs of each user. The technical novelty of our work

lies in exploiting a limit theorem on the best SNRs reported by the users, and combining

it within a Lyapunov stability framework. We show that our policy is throughput max-

imizing among all policies which are constrained to the CQI mechanism considered.

Numerical results indicate that in terms of throughput and average delay, our policy

compares favorably to existing resource allocation policies such as proportional fair.

We also address the problem of resource allocation in a generic single hop network

with a constraint on the deterministic delay of every packet. We tackle this problem by

using Lyapunov optimization technique together with the maximization of a concavely

extended utility function. The policy tracks the delay of the head-of-line data in each

queue and deterministically bound this number. We adopt a stopping rule based ap-

proach to analyse the evolution of the delay of the head-of-line data. We show that our

policy ensures deterministic delay guarantees and yield a thoughput utility that differs

from the optimal value by not more than an amount that is inversely proportional to

the delay bound. Our results hold for any generic single hop network with any random

arrival process and time varying channel rates.
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Î Set of distinct sub-bands reported by at least one UE

M ′ Number of distinct sub-bands reported by at least one UE

P Total power budget at BS during each slot

Ci,j Instantaneous capacity of [i, j]

ri,j Rate of transmission assigned to [i, j]

Pi,j(ri,j) Outage probability for [i, j] when the assigned rate is ri,j

Gi,j(ri,j) Goodput for [i, j] when the assigned rate is ri,j

µi(t) Amount of service for ith queue during slot t

ai,j Fraction of time for which the jth sub-band is assigned to ith UE
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CHAPTER 1

Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is employed in most of the emerg-

ing high data-rate wireless cellular standards such as Long Term Evolution (LTE) [8]

and IEEE 802.16 (WiMAX). In this thesis, we tackle the problem of optimal resource

allocation in downlink of an OFDMA system, in a scenario where very limited channel

quality information (CQI) is available at the base-station (BS). Our work is particularly

applicable in the context of LTE downlink, since the feedback mechanism we consider

closely resembles one of the CQI reporting modes in LTE.

In an OFDM system such as the LTE downlink, the available bandwidth (say 20

MHz) is divided into several hundred sub-carriers (e.g., 512, 1024, or 2048). These sub-

carriers need to be allocated to multiple user equipments (UEs). In practice, a resource

block (RB) pair consisting of 12 contiguous sub-carriers and 14 OFDM symbols in

time is the smallest resource allocation unit [9]. After accounting for unusable tones,

this leaves us with about 50 to 100 RBs to allocate to the UEs.

In order to schedule the UEs opportunistically, the base-station, in principle, needs

to obtain channel quality information from each UE, on each of the resource blocks.

This is highly impractical, since it leads to an enormous amount of control overheads

on the uplink. To overcome this, UEs in an LTE system report CQI to the base-station

in a very sparse manner.

1.1 Related Work

Various reduced feedback mechanisms have been studied in the literature in the context

of resource allocation in OFDM downlink. In [14], the CQI of each UE is fed back

only for those sub-bands1 whose quality is better than a certain threshold. The feedback

overhead is even more reduced in [26], where the UEs report one-bit per sub-band

1A sub-band typically consists of one to three resource blocks.



whenever the channel quality exceeds the threshold. In [7], an opportunistic feedback

strategy is considered wherein only the channel gains of pre-specified number of best

sub-bands are reported. A variation of this policy has been considered in [10, 11]. In

[10], the UEs feedback the average gain of the bestM sub-bands and the corresponding

indices while in [11], each UE reports an Effective Exponential Signal-to-noise ratio

Mapping (EESM) of the bestM sub-bands and their respective indices. In effect, EESM

translates the different SNRs on parallel channels into a single effective flat-fading SNR

[32].

In this thesis, we assume a CQI feedback mechanism similar to [10, 11], since it

closely resembles one of the CQI reporting modes – namely, the UE-selected sub-band

feedback mode – defined in the LTE standards [1]. Specifically, the UEs only report

the indices of their best M sub-bands, where M is a small number (say 2 to 5), and the

EESM corresponding to these best M bands.

Downlink resource allocation for OFDM systems has been studied from various

perspectives in recent years. In [15], resource allocation in downlink OFDM is posed

as a utility maximization problem, which includes proportionally fair resource alloca-

tion [18, 31] as a special case. The optimal power and sub-carrier allocation are then

determined using convex duality techniques. While [15] assumed full CQI availability

except for an estimation error term, [27] takes imperfect CQI into account by factor-

ing for outages due to erroneous CQI at the base-station. In [34], the authors consider

opportunistic resource allocation in OFDM under various fairness constraints, and pro-

pose a Hungarian algorithm based solution. It is worth noting that [15, 27, 34] assume

fully backlogged buffers (i.e., that the base-station always has data to send to the UEs),

and do not consider any queuing dynamics.

There is a vast literature on optimal server allocation to constrained queueing sys-

tems with time-varying connectivities. Most of the literature in this area based on the

landmark papers [30, 29] which introduced Lyapunov techniques for resource alloca-

tion. Subsequently, these Lyapunov methods, which explicitly take queue lengths into

account for making resource allocation decisions, have been applied in various contexts

including high-speed switches [20], satellites [21], wireless [22], and optical networks

[6]. In addition to being inherently throughput maximizing, Lyapunov based resource

allocation policies can also been used to ensure Quality of Service (QoS) metrics such
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as delay guarantees [17, 16] and fairness [24].

In the above Lyapunov based resource allocation policies, the resource allocation

decision is based on the UE’s channel quality as well as queue backlogs, and these are

typically assumed to be available perfectly and instantaneously at the base station. In

contrast, [33] proposes a throughput optimal resource allocation algorithm under de-

layed channel information; their policy utilizes the conditional expectation of the chan-

nel quality, given the delayed measurements. In [19], a cross layer resource allocation

policy which maximizes the throughput under delayed CQI and takes into account the

channel outage event is proposed.

Another important point to note is that the above Lyapunov based resource alloca-

tion policies are optimal with respect to the network throughput but does not guarantee

any QoS requirements such as bounded delay. In [23], a delay based utility maximiza-

tion algorithm for a single hop network is proposed which guarantees a bound on the

deterministic delay of the packets. The policy also ensures that the throughput-utility is

very close to the optimal value. But the author restricts the class of arrival process to

bernauli arrivals which simplifies the analysis substantially. There has also been recent

work on low-complexity dynamic resource allocation for OFDM [3, 4] to ensure low

delay, but these papers do not consider sparse CQI feedback.

1.2 Our Contributions

In the first part of the thesis, we propose a queue-aware resource allocation policy for the

OFDM downlink that is optimized for the specific form of the CQI available at the base-

station. As described earlier, we assume that the UEs only report the indices of their

best M sub-bands, where M is a small number, and the EESM corresponding to these

best M sub-bands. We develop a sub-band assignment and rate allocation algorithm

which is throughput maximizing under this CQI scenario, when the total number of

sub-bands is large. In other words, our algorithm is guaranteed to keep the queueing

system stable for all traffic rates that can be stabilized by any resource allocation policy

which is constrained to this CQI scenario.

One of the technical contributions of the paper lies in obtaining an explicit char-

acterization of the outage probability on each of the M reported sub-bands. In order

3



to obtain the outage probability expression, we exploit a ‘Gumbel’ limit theorem on

the joint distribution of the best M sub-bands, which subsequently leads to an explicit

expression for the conditional density, given the EESM. It is worth commenting that

the Gumbel weak limit is an attractor for the extremal values of a fairly large family

of distributions [2], so that our work does not crucially depend on the assumption that

the sub-band gains are i.i.d. Rayleigh distributed. Another distinguishing feature of our

resource allocation policy is that it naturally decouples for each sub-band, and does not

entail solving any computationally intensive matching problems [3, 34].

In the second part, we propose a delay based resource allocation algorithm based

on Lyapunov optimization technique which ensures deterministic delay guarantees for

every packet in any generic single hop network. We adopt a method which is similar

to [23] where the author uses the objective function as a concavely extended utility

function. The delay bound is guaranteed by tracking the waiting time of the head-of-

line data in all the queue during every slot and making the scheduling decisions based

on those waiting times. We model the evolution of the waiting time of the head-of-line

data using the stopping rule framework. Specifically, for any large enough integer D,

we can construct an algorithm that ensures all non- dropped packets have delay less than

or equal to D slots, with total throughput-utility that differs from optimal by O(1/D).

1.3 Organization of Thesis

The thesis is organized as follows. The Chapter 2 proposes a throughput optimal re-

source allocation algorithm for the LTE downlink. A delay based resource allocation

policy is proposed in Chapter 3 for any generic single hop network which is near

throughput optimal but guarantees an upper bound for the delay. The expression for

outage probabilities are obtained in Chapter 4 under the weak limit approximation. The

Chapter 5 presents the simulation results and finally the Chapter 6 gives the conclusion

of the work.
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CHAPTER 2

Throughput Optimal Resource Allocation Policy

In this chapter, we propose an algorithm for the throughput optimal resource allocation

in the context of the CQI feed back mechanism to that in LTE. Using Lyapunov stabilty

frame work, we prove that the policy is asymptotically throughput optimal by showing

that the policy can stabilize set of all arrival rates that can be stabilized by any other

policy.

2.1 System Model

Consider a downlink system with one BS and K UEs. The BS maintains a separate

queue corresponding to each UE. Time is slotted, and the queue corresponding to ith UE

receives exogenous arrivals according to a random process. We denote the amount of

data that enters queue i during time slot t by Ai(t), and the queue length corresponding

to the ith UE during slot t by Qi(t). We assume that the arrival process Ai(t) is i.i.d.

from slot to slot, with mean λi and a finite second moment.

We assume that the channel between the BS and ith UE is a frequency selective

Rayleigh fading channel. We remark that this Rayleigh fading assumption is not crucial

to our work, but it makes exposition easier. OFDM transmission with Nc sub-carriers is

used. The SNR for the ith UE on the jth sub-carrier follows an exponential distribution.

The average SNR for the ith UE is denoted as γave,i.

We assume that the downlink channel gains of the UEs are not known to the BS

unless the UEs feedback their CQI to the BS. This corresponds to a scenario where

the uplink and the downlink channels are not reciprocal, or a scenario where the UEs

are not transmitting any data on the uplink, so that reciprocity (even if present) cannot

be exploited. In order to reduce feedback overhead, we assume that the sub-carriers

are grouped into N sub-bands in such a way that the channel can be approximated as

flat-fading in each sub-band. Further, we consider the ‘best M ’ feedback mechanism



similar to [11], where each UE reports (i) the EESM corresponding to its bestM(� N)

sub-bands, and (ii) the indices of those sub-bands.

Let γji (t) be the SNR on the jth sub-band for the ith UE in slot t and γ(1)i (t), . . . , γ
(N)
i (t)

be the ordered sub-band SNRs for ith UE in descending order. The EESM for the best

M sub-bands corresponding to the ith UE in slot t, denoted γeffi , is defined by

γeffi (t) = −η ln

(
1

M

M∑
j=1

e−
γ
(j)
i

(t)

η

)
, (2.1)

where η is a parameter that depends on the modulation and coding scheme (MCS).

Hence, the ith UE reports the following two quantities to the BS during each slot.

(i) The EESM γeffi ,

(ii) The index set Ii = {i1, i2, . . . iM},

where ij is the index of the jth best sub-band of the ith UE.

Since we are considering a downlink problem, the BS is assumed to know the in-

stantaneous queue lengths Qi(t) for all the UEs.

2.2 Problem Formulation

In this section, we develop a mathematical formulation of the optimal resource alloca-

tion problem. As mentioned earlier, the following information is assumed to be avail-

able with the BS during time-slot t (for simplified notation, we omit t):

(i) The EESMs γeff = [γeff1 , γeff2 , . . . , γeffK ]

(ii) The index sets I = [I1, I2, . . . , IK ]

(iii) The queue length vector Q = [Q1, Q2, . . . , QK ].

Given this information, our aim is to come up with a resource allocation policy

which can maximize throughput while keeping all queues at the BS stable. In order to

make this statement precise, we develop some terminology and notation.

A resource allocation policy performs the following two operations in each slot.

6



• Sub-band assignment: For each sub-band j that is reported by at least one UE, the

policy determines a unique UE to assign the sub-band. (Recall that a sub-band

can be allocated to at most one UE due to interference considerations, whereas a

UE can be allocated multiple sub-bands).

• Rate allocation: Given that jth sub-band is assigned to ith UE, determine the rate

ri,j at which data transmission will take place on jth sub-band.

From now on, we use the notation [i, j] for the ith UE - jth sub-band pair. In the

interest of simplicity, we restrict our attention to policies which allocate equal power to

all scheduled sub-bands, although our framework can be modified to include optimal

power allocation for different sub-bands. To be precise, define Î = ∪Ki=1Ii as the set of

all distinct sub-bands reported by at least one UE, and letM ′ = |Î| denote the number of

such distinct sub-bands. Assume that the BS has a power budget of P for transmissions

during each slot. Then, the base station allocates power P/M ′ to each sub-band. Let

Ci,j be the instantaneous capacity of [i, j]. Under the above assumptions, we have

Ci,j = log2

(
1 +

P

M ′γ
j
i

)
. (2.2)

For a reliable communication over a sub-band, the rate assigned to [i, j], ri,j , should

not exceed Ci,j . Given γeff and the index sets I, we say [i, j] is in outage if the rate

allocated to [i, j] is greater than Ci,j. The outage probability for [i, j] when the assigned

rate is ri,j is defined as follows:

Pi,j(ri,j) = P{Ci,j < ri,j|γeffi , Ii} (2.3)

We define a natural metric, namely goodput, as the average successfully transmitted

rate over a sub-band [28]. The goodput for [i, j] when the assigned rate is ri,j is defined

as follows:

Gi,j(ri,j) = ri,j(1− Pi,j(ri,j)). (2.4)

Next, we briefly review the queueing dynamics and stability considerations of the queue-

ing system at the BS.

7



2.2.1 Stability considerations

The queue evolution equation for the ith UE can be written as

Qi(t+ 1) = max{Qi(t)− µi(t), 0}+ Ai(t), (2.5)

where Ai(t) and µi(t) are arrival and service processes of the ith UE queue. Here, µi(t)

is the amount of data served from the ith UE queue during slot t, and can be written as

µi(t) =
N∑
j=1

ai,jri,jHi,j(t).

In the above expression, ai,j denotes the fraction of time the jth sub-band is allocated

to the ith UE during slot t. Clearly

K∑
i=1

ai,j ≤ 1. (2.6)

Later, we will show that our optimal policy allocates a sub-band to at most one UE

during each time-slot. Next, Hi,j(t) is an indicator random variable which takes a value

1 whenever the transmission through [i, j] during slot t is successful and 0 otherwise.

Thus, P{Hi,j(t) = 0} = PN
i,j(ri,j).

In the spirit of [13], we say that the queueing system at the BS is strongly stable if

for each UE i,

lim sup
T→∞

1

T

T∑
t=0

E[Qi(t)] <∞. (2.7)

Denote by P the family of all resource allocation which allocate equal power to all

scheduled sub-bands, and have access only to the parameters γeff , I, and Q in order to

make the resource allocation decisions during each slot. Let Λ be the stability region

of the network, which is defined as (the closure of) the set of all arrival rates λ =

(λ1, λ2, . . . , λK) for which there exists some policy Π ∈ P under which the queueing

system is strongly stable.

Our goal is to find a resource allocation policy in P which is throughput optimal, in

the sense that it keeps the queuing system stable for all arrival rates in the interior of Λ.

We propose the throughput optimal resource allocation algorithm in the next section.

8



2.3 Throughput Optimal Resource Allocation Policy

During each time slot, the scheduler at the BS observes γeff , I, and Q, and implements

the following steps :

1. Determine Î = ∪Ki=1Ii and M ′ = |Î|.

2. for j = 1 to M ′ do

3. Determine Uj = {i|j ∈ Ii}.

4. Calculate an estimate of the outage probability P̂i,j(r) as a function of r for each
i ∈ Uj. (See Chapter 4)

5. Calculate
r∗i,j = arg max

r
{r(1− P̂i,j(r))} ∀ i ∈ Uj.

6. Calculate
i(j) = arg max

i∈Uj
{Qi(t)r

∗
i,j(1− P̂i,j(r∗i,j))}.

7. Assign jth sub-band to i(j)th UE, and transmit at rate r∗i(j),j.

8. end for

2.3.1 Discussion

In the first step, the scheduler determines the set of all distinct sub-bands reported by

the UEs. Then, for each such sub-band j, the scheduler determines the set Uj of all UEs

who report that sub-band as being one of their best M sub-bands. In step 4, the outage

probability on [i, j] is computed, as explained in Section 4. In step 5, the scheduler

computes the rate that ensures the best goodput for each UE i ∈ Uj. Finally, in steps 6

and 7, the scheduler assigns jth sub-band to the ith UE that has the maximum queue-

length goodput product.

Notice that the above algorithm assigns every reported sub-band to a unique UE.

Also, no power is assigned to sub-bands that are not reported by any UE.

2.3.2 Lyapunov Analysis

In this section, we derive the optimal resource allocation policy as a Lyapunov drift

minimizing policy, and prove that it is throughput optimal. We define the quadratic

9



Lyapunov function

L(Q(t)) =
K∑
i=1

(Qi(t))
2,

and consider the conditional Lyapunov drift

∆(Q(t)) = E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}
.

We obtain the following inequality by squaring the both sides of (2.5).

(Qi(t+ 1))2 ≤(Qi(t))
2 +

(
N∑
j=1

ai,jri,jHi,j(t)

)2

+ (Ai(t))
2

− 2Qi(t)

(
N∑
j=1

ai,jri,jHi,j(t)− Ai(t)

)
.

Taking the sum over all the UEs and using the fact that the sum of squares of non-

negative variables is less than or equal to the square of the sum, we get the following

inequality.

L(Q(t+ 1))−L(Q(t)) ≤
K∑
i=1

(Ai(t))
2 + 2

K∑
i=1

Ai(t)Qi(t)

(
N∑
j=1

K∑
i=1

ai,jri,jHi,j(t)

)2

− 2
K∑
i=1

Qi(t)
N∑
j=1

ai,jri,jHi,j(t). (2.8)

Using (2.6), we get the following upper bound

K∑
i=1

ai,jri,jHi,j(t) ≤ max
i
{Ci,j} <∞, ∀ j.

Thus, taking conditional expectations and exploiting the independence of Ai(t) and

Qi(t), we get

∆(Q(t)) ≤ B + 2
K∑
i=1

Qi(t)λi − 2
K∑
i=1

N∑
j=1

Qi(t)ai,jri,j(1− Pi,j(ri,j)), (2.9)

where

B =

(
N∑
j=1

max
i
{Ci,j}

)2

+
K∑
i=1

E
[
Ai(t)

2
]
<∞.
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We know from [13, Lemma 4.1] that the Lyapunov drift becoming negative for large

queue backlogs is a sufficient condition for the strong stability of the queueing system.

With this in mind, we seek the policy that maximizes the negative term on the right

hand side of (2.9). We therefore formulate the optimal resource allocation problem as

follows.

max
{ai,j},{ri,j}

K∑
i=1

N∑
j=1

Qi(t)ai,jGi,j(ri,j), (2.10)

subject to

K∑
i=1

ai,j ≤ 1, ∀ j, (C1)

ai,j ≥ 0, ∀ i, j, (C2)

ri,j ≥ 0, ∀ i, j. (C3)

We assume that it is possible to come up with modulation and coding schemes for any

desired rate ri,j. Then, the above problem is a convex optimization problem and the

solution can be obtained easily by using Karush-Kuhn-Tucker (KKT) conditions [5].

The solution is discussed next.

2.3.3 Minimizing the Lyapunov Drift

We now solve the convex optimization problem (2.10) and arrive at our resource allo-

cation policy. Introducing the non-negative Lagrange multipliers {αj},{βi,j},{δi,j} for

constraints (C1)-(C3) respectively, the following conditions also must be satisfied at

the optimal solution (superscript (·)∗ denotes optimal values).

Qi(t)Gi,j(r
∗
i,j) + β∗i,j − α∗j = 0, ∀ i, j. (2.11)

Qi(t)a
∗
i,j

∂Gi,j(r
∗
i,j)

∂r∗i,j
+ δ∗i,j = 0, ∀ i, j. (2.12)

11



α∗j

(
K∑
i=1

a∗i,j − 1

)
= 0, ∀ j. (2.13)

β∗i,ja
∗
i,j = 0, ∀ i, j. (2.14)

δ∗i,jr
∗
i,j = 0, ∀ i, j. (2.15)

Proposition 1. The optimal sub-band allocation for problem (2.10) assigns a sub-band

exclusively to the UE with the largest corresponding queue-length goodput product.

Proof. It follows from (2.15) and (2.12) that if r∗i,j > 0, then δ∗i,j = 0, i.e.,
∂Gi,j(r

∗
i,j)

∂r∗i,j
= 0.

Thus, r∗i,j is obtained by maximizing goodput of ith UE on jth sub-band (Step 5 of our

policy in Section ??). Similarly, it follows from (2.14) and (2.11) that if a∗i,j > 0, then

β∗i,j = 0, i.e., Qi(t)Gi,j(r
∗
i,j) = α∗j . If a∗i,j = 0, then β∗i,j ≥ 0, i.e., Qi(t)Gi,j(r

∗
i,j) ≤

α∗j . Hence, the jth sub-band is assigned to the UE with largest queue-length goodput

product Qi(t)Gi,j(r
∗
i,j). If multiple UEs have the same queue-length goodput product

for the same sub-band j, the sub-band can be shared in any arbitrary manner among

these users without affecting optimality in terms of the objective function in (2.10).

Proposition 1 shows that the optimal sub-band allocation assigns each reported sub-

band j to the UE which has the maximum queue-length goodput product on the jth

sub-band. This establishes that the policy in the Section 2.3 minimizes the Lyapunov

drift.

Since the proposed policy ensures the “most negative” Lyapunov drift among the

class P , it seems plausible that our policy should be able to stabilize the queueing

system, whenever some policy in P can do so. The following theorem asserts that this

is indeed true.
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Theorem 1. The resource allocation policy proposed in Section 2.3 is asymptotically

throughput optimal, when the number of sub-bands is large.

Proof. If the arrival rate vector λ is stabilizable by some policy Π ∈ P then ∃ε =

(ε1, ε2, . . . , εK) with εi > 0 ∀ i such that

λi ≤
N∑
j=1

bi,jri,j(1− Pi,j(ri,j))− εi, ∀ i,

where bi,j is the fraction of jth sub-band allocated to ith UE and ri,j is the rate assigned

to [i, j] by policy Π. Next, we invoke Scheffé’s Lemma [25], which asserts the uniform

convergence of |Pi,j(r)− P̂i,j(r)| to zero. Thus, for large N ,

|Pi,j(r)− P̂i,j(r)| ≤ δNi,j, ∀ r, i, j,

where δNi,j is a small positive number independent of r.. Hence, for large N ,

1− Pi,j(r)− δNi,j ≤ 1− P̂i,j(r) ≤ 1− Pi,j(r) + δNi,j (2.16)

Since for every sub-band, our policy assigns a∗i,j and r∗i,j such that
∑K

i=1Qi(t)a
∗
i,jr
∗
i,j(1−

P̂i,j(r
∗
i,j)) is maximized, the following inequality holds good ∀ j, {bi,j}, {ri,j}.

K∑
i=1

Qi(t)bi,jri,j(1− P̂i,j(ri,j)) ≤
K∑
i=1

Qi(t)a
∗
i,jr
∗
i,j(1− P̂i,j(r∗i,j)).

Using (2.16) we get,

K∑
i=1

Qi(t)bi,jri,j(1− Pi,j(ri,j)− δNi,j) ≤
K∑
i=1

Qi(t)a
∗
i,jr
∗
i,j(1− Pi,j(r∗i,j) + δNi,j).

Therefore, for our policy, the Lyapunov drift can be upper bounded as

∆(Q(t)) ≤ B −
K∑
i=1

Qi(t)

(
εi −

N∑
j=1

(a∗i,jr
∗
i,j + bi,jri,j)δ

N
i,j

)
.

Note that at most M of the a∗i,j and bi,j are non-zero for each user i which ensures that

the summation is finite even if N is large. Thus, for any ε, there exists a large enough
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N for which

εi −
N∑
j=1

(a∗i,jr
∗
i,j + bi,jri,j)δ

N
i,j > 0, ∀ i,

which ensures that the Lyapunov drift becomes negative as queues grow. i.e., the pro-

posed policy stabilizes all the arrival rates which can be stabilized by any other policy

for large enough N . Hence it is asymptotically throughput optimal.
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CHAPTER 3

Delay Based Resource Allocation Policy

In this chapter, we develop a resource allocation policy for a generic single hop network

based on the Lyapunov optimization technique described in [13]. Since we impose an

additional constraint that the delay of the data should be deterministically bounded it

is intuitive to expect that certain arrivals have to be dropped from the buffer inorder

to ensure stability for all arrival rates inside the stablizable region of the system. We

adopt a method which is similar to [23] where the author uses the objective function as

a concavely extended utility function. The delay bound is guaranteed by tracking the

waiting time of the head-of-line data in all the queues in every slot and by making the

scheduling decisions based on those waiting times.

3.1 Network model

Consider a time slotted generic single hop network withK links numbered as {1, 2, . . . , K}.

The data arrive randomly every slot and are put into separate queues for different

links. Let Ai(t) be the amount of data arrived into queue i during slot. The ar-

rivals to the network are assumed to be i.i.d. over slots and independent over different

queues. We assume that the amount of data that can be arrived to a queue in one slot

is bounded above by Amax. Let λ = (λ1, λ2, . . . λK) be the arrival rate vector. Let

Q(t) = (Q1(t), Q2(t), . . . , QK(t)) be the queue-length vector for the network in the

beginning of slot t. The data in the queue are marked with their integer arrival times

which is used to determine the waiting time in the system. The queue evolution is given

by the following equation.

Qi(t+ 1) = max{Qi(t)− µi(t)−Di(t), 0}+ Ai(t)

where µi(t) is the service given to queue i during slot t and Di(t) is the amount of data

dropped from the ith queue during slot t. The link capacities are assumed to be time



varying and are denoted by C(t) = (C1(t), C2(t), . . . CK(t)) for the K links during

slot t. We assume that the capacity of the link is upper bounded by Cmax. Let Ic(t)

denote the link quality information available at the controller during slot t. Due to

the limited link state information at the controller, the transmission can become failure

whenever the rate exceeds the capacity of the link. Let x(t) = (x1(t), x2(t), . . . xK(t))

be the transmission rate vetor during slot t. Let P out
i (xi) be the probability that the

trasmission rate xi exceeds the capacity of the link i given the link state information

Ic(t) at the controller. The service rate µi(t) is given as follows.

µi(t) = xi(t)1i(t)

where 1i(t) is an indicator random variable that takes 1 when the transmission through

link i is successful. Thus

1i(t) =

 1 with probability 1− P out
i (xi)

0 with probability P out
i (xi)

(3.1)

For each queue i, define Yi(t) = λi − Di(t). Let y be the time average expectation of

Yi(t)

y = λ− lim
t→∞

1

t

t∑
τ=0

E{D(τ)}.

The vector y is the difference between the rate of arrivals and the rate of droppings, and

hence it represents the throughtput vector provided the queues are stable.

3.2 The Optimization Objective

The goal is to propose a delay-based transmission scheme with data dropping that the

solves the following problem :

max g(y), (3.2)
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subject to

y ∈ Λ,

0 ≤ yi ≤ λi, ∀ i,

where g(y) is a continuous and concave utility function of the K-dimensional vector.

The function is assumed to be defined over the hyper-cube Y = {y | 0 ≤ yi ≤ Amax∀i}.

We make the following additional assumption.

Assumption 1 : For each queue i, for any vectors y and w such that y ∈ Y , w ∈ Y

and y + w ∈ Y we have :

g(y + w) ≤ g(y) +
K∑
i=1

νiwi, (3.3)

where νi ≥ 0 ∀ i. Note that the assumption is equivalent to say that for each i, the ith

partial derivative of g() is bounded above by a finite constant νi.

Let g∗ be the maximum value of the objective in the problem (3.2). Our aim is

to find a policy which achieve a utility close to g∗ and simultaneously guarantees a

deterministic delay bound for the non dropped data. In the following sections, we define

the required machinery to obtain the solution easily.

3.3 Concave Extension of Utility Function

Suppose that g(y) satisfies Assumption 1, and define the concave extension of g(y) as

the function ĝ(y) defined over the extended hyper-cube Ŷ = {y | − Amax ≤ yi ≤

Amax ∀ i} given by,

ĝ(y) = g(max{y, 0}) +
K∑
i=1

νi min{yi, 0},

where max{y, 0} = (max{y1, 0},max{y2, 0}, . . . ,max{yK , 0}). Since (3.3) holds, we

have the following inequality.

ĝ(y) ≤ ĝ(y
i
) + νi(yi + Amax), (3.4)

17



where y
i

is formed from y by replacing yi by −Amax. This method of concavely ex-

tending the utility function is crucial to control the delay to be bounded.

3.4 Equivalent Problem with Virtual Queues

The optimization problem (3.2) can be easily transformed to the following problem

using an auxillary vector φ(t).

max ĝ(φ), (3.5)

subject to

yi ≥ φi ∀ i,

−Amax ≤ φi ≤ Amax, ∀ i,

Q < ∞,

where Q and y are achievable on the network and Q = limt→∞
1
t

∑t
τ=0 E{Q(τ)}.

We solve the above problem by using the Lyapunov optimization technique for sta-

bilizing a set of virtual queues Z(t) = (Z1(t), Z2(t), . . . , ZK(t)) with the update equa-

tion as follows. For the ith queue,

Zi(t+ 1) = max{Zi(t)− λi +Di(t) + φi(t), 0}. (3.6)

Stabilizing this virtual queues ensures that the first constraint in problem (3.5) is satis-

fied. Note that the virtual queue updation equation needs the knowledge of the actual

arrival rate vector λ. In-order to incorporate the delay into the resource allocation pol-

icy, we define Wi(t) as the waiting time of the head-of-line data in the ith queue on slot

t. LetWi(t) = 0 if the queue i is empty. Let Ni(t) be the amount of head-of-line data in

the ith queue. Define 1Qi(t) as an indicator variable that is 1 if Qi(t) > 0, and is zero if

the queue is empty. Define 1Di(t) as an indicator random variable which takes a value

1 whenever Di(t) > 0 and zero otherwise. Let 1Ni(t) be an indicator variable which

takes a value 1 if Ni(t) ≥ µi(t) and zero otherwise. We observe that Wi(t) satisfies the
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following update equation.

Wi(t+ 1) = 1Qi(t) max{Wi(t) + 1− ρ(1Di(t), Ji(t), 1Ni(t)), 0}+ (1− 1Qi(t))1Ai(t)

(3.7)

where ρ(1Di(t), Ji(t), 1Ni(t)) represents the time after which the data at the head-of-

line at the end of slot t (after the service during slot t) have arrived with respect to

the arrival epoch of the head-of-line data in the beginning of the slot and 1Ai(t) is an

indicator variable which takes 1 if Ai(t) > 0 and zero otherwise. We have,

ρ(1Di(t), Ji(t), 1Ni(t)) =


0, 1Di(t) = 0 & 1Ni(t) = 1

Ti(t), 1Di(t) = 1 & 1Ni(t) = 1

Ji(t), 1Ni(t) = 0

where

Ji(t) = min{ω |
ω∑
τ=1

Ai(t−Wi(t) + τ) > µi(t)−Ni(t)}. (3.8)

and

Ti(t) = min{ω |Ai(t−Wi(t) + ω) > 0, ω > 0}.

The update equation of the waiting time of the head-of-line data given by (3.7) can be

understood as follows: If the queue is empty, the value of Wi(t + 1) is 1 if and only

if there is a new arrival in the current slot t. Alternatively if the queue is non empty,

µi(t) amount of data is served from the queue. Now if µi(t) is less than the amount of

head-of-line data in the queue (i.e., 1Ni(t) = 1), then the remaining packets are either

dropped or retained in the queue. Hence Wi(t + 1) can become Wi(t) + 1 − Ti(t)

or Wi(t) + 1 depending on the value of Di(t). Here, Ti(t) represent the interarrival

time between the head-of-line data and the subsequent arrivals. On the other hand, if

1Ni(t) = 0, the data which arrived Ji(t) slots after the head-of-line data will become

the new head-of-line in the next slot which makes Wi(t+ 1) to be Wi(t) + 1− Ji(t).

Claim 1. For any queue i in every slot t,

ρ(1Di(t), Ji(t), 1Ni(t)) ≥ Ji(t)− 1 (3.9)

Proof. Note that Ji(t) becomes 1 whenever 1Ni(t) = 1. Hence, whenever 1Ni(t) = 1,

irrespective of whether data are dropped or not, ρ(1Di(t), Ji(t), 1) ≥ Ji(t) − 1 = 0.
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Now if 1Ni(t) = 0, then ρ(1Di(t), Ji(t), 1) = Ji(t) ≥ Ji(t)− 1.

Without loss of generality, assume that λi > 0 for all the queues (else, just re-

move the queues that have no arrivals). Define Θ(t) = [Z(t);W (t);N(t)] where

W (t) = (W1(t),W2(t), . . .WK(t)) and N(t) = (N1(t), N2(t), . . . NK(t)) . We use

the following non-negative Lyapunov function:

L(Θ(t)) =
1

2

K∑
i=1

Zi(t)
2 +

1

2

K∑
i=1

λiWi(t)
2. (3.10)

3.5 Minimizing the Drift-Minus-Utility

Define ∆(Θ(t)) as the conditinal Lyapunov drift given by,

∆(Θ(t)) = E {L(Θ(t+ 1))− L(Θ(t))|Θ(t)} .

Now using the Lyapunov optimization frame work in [13], our strategy is to make

transmission and dropping decisions to minimize a bound on the following drift-minus-

utility expression every slot:

ζ = ∆(Θ(t))− V E{ĝ(φ(t))|Θ(t)},

where V is a non-negative control parameter. We have the following preliminary lem-

mas.

Lemma 1. During every slot t, for queue i

E{Ji(t)2|Θ(t)} <∞

Proof. We have,

{Ji(t) = n} = {An−1 < µi(t)−Ni(t)} ∩ {An > µi(t)−Ni(t)}

where An =
∑n

τ=1Ai(t −Wi(t) + τ). Define Pn = P(Ji(t) = n|Θ(t), µi(t) = µ).
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Now, Conditioning on µi(t) = µ, we have,

Pn ≤ P{An−1 < µ−Ni(t)}

≤ P{An−1 < Cmax}

Let m be the number of slots between t − Wi(t) and t − Wi(t) + n (excluding the

boundaries) in which there are no arrivals. Now, if n ≥ bCmaxc+ 1, then

m ≥ n− 1− bCmaxc

Hence, for n ≥ bCmaxc+ 1

Pn ≤ k1an−1−bCmaxc0

≤ k2an0

where a0 = P(Ai(t) = 0) and k1 and k2 are finite constants. Now,

E{Ji(t)2|Θ(t), µi(t)} =
∞∑
n=1

n2Pn

≤ k3 + k2

∞∑
n=bCmaxc+1

n2an0 <∞

where k3 is a finite positive constant. Hence E{Ji(t)2|Θ(t)} <∞.
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Lemma 2. Every slot t, the Lyapunov drift satisfies:

∆(Θ(t)) ≤ B −
K∑
i=1

Zi(t)E{Yi(t)− φi(t)|Θ(t)} −
K∑
i=1

λiWi(t)E{Ji(t)− 2|Θ(t)},

where B is a finite positive constant.

Proof. We get the following inequality by squaring (3.6).

Zi(t+ 1)2 ≤ Zi(t)
2 + φi(t)

2 + Yi(t)
2 − 2Zi(t)(Yi(t)− φi(t))− 2Yi(t)φi(t)

Summing over all the queues and taking conditional expection we get,

E{
K∑
i=1

(Zi(t+ 1)2 − Zi(t)2)|Θ(t)} ≤ B1 − 2
K∑
i=1

E{Zi(t)(Yi(t)− φi(t))|Θ(t)}

whereB1 is a finite positive constant. Now using (3.7) and Claim 1, we get the following

bound.

Wi(t+ 1)2 ≤ Wi(t)
2 + 4 + Ji(t)

2 − 2Wi(t)(Ji(t)− 2)

Summing over all the queues, taking conditional expectation and using Lemma 1,

E{
K∑
i=1

λi(Wi(t+ 1)2 −Wi(t)
2)|Θ(t)} ≤ B2 − 2

K∑
i=1

λiE{Wi(t)(Ji(t)− 2)|Θ(t)}

where B2 is a finite positive constant. Adding the above bounds, the Lemma follows

directly.
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Lemma 3. Every slot t, the drift-minus-utility satisfies :

ζ ≤ B3 +
K∑
i=1

(2λi +Ni(t))Wi(t)− E{V ĝ(φ(t))−
K∑
i=1

Zi(t)φi(t)|Θ(t)}

−
K∑
i=1

Zi(t)E{Yi(t)|Θ(t)} −
K∑
i=1

Wi(t)E{µi(t)|Θ(t)},

where B3 is a finite constant.

Proof. Every slot t, conditioning on the service µi(t), the random variable Ji(t) can be

viewed as a stopping rule which depends on the set of independent arrivals to the ith

queue. Applying Wald’s equality we get,

E{AJi(t)|µi(t),Θ(t)} = λiE{Ji(t)|µi(t),Θ(t)}. (3.11)

where AJi(t) =
∑Ji(t)

τ=1 Ai(t − Wi(t) + τ). Clearly, by definition of Ji(t), AJi(t) >

µi(t)−Ni(t). Thus,

E{Ji(t)|µi(t),Θ(t)} > µi(t)−Ni(t)

λi
. (3.12)

Now taking expectation over µi(t) we get,

E{Ji(t)|Θ(t)} > E{µi(t)|Θ(t)} −Ni(t)

λi
. (3.13)

From Lemma 2 and (3.13), the lemma follows directly.

Our delay based resource allocation policy in the next section makes control deci-

sion for φ(t), D(t) and the also the transmission rate allocation.
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3.6 Delay Based Resource Allocation Policy

During slot t, the BS observes Θ(t), Ic(t), and perform the following operations.

1. Congestion control step:

Choose φ(t) as the solution to the following problem:

max V ĝ(φ(t))−
K∑
i=1

Zi(t)φi(t) (3.14)

subject to

−Amax ≤ φi(t) ≤ Amax, ∀ i,

2. Transmission rate allocation:

Choose {xi} as the solution to the following:

max
K∑
i=1

(Wi(t) +mi(t)Zi(t))xi(1− P out
i (xi)) (3.15)

where mi(t) = 1 if Wi(t) ≥ Zi(t) and zero otherwise. Transmit µi(t) =

xi(t)1i(t) data from the ith queue.

3. Dropping decision:

If mi(t) = 1 and Ni(t) > µi(t), then drop the remaining head-of-line data in the

ith queue.
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The following lemma is useful to prove that the delay is deterministically bounded.

Lemma 4. If Zi(t) > V νi for a particular slot and queue i, then the congestion control

step in the above policy chooses φi(t) = −Amax for that slot.

Proof. The value of φi(t) is determined by maximizing V ĝ(φ(t))|Θ(t)−
∑K

i=1 Zi(t)φi(t)

over −Amax ≤ φi(t) ≤ Amax. By (3.4) we know that for any vector φ(t) such that

−Amax ≤ φi(t) ≤ Amax,

V ĝ(φ(t))−
K∑
m=1

Zm(t)φm(t) ≤ V ĝ(φ
i
(t)) + V νi(φi(t) + Amax)−

K∑
m=1

Zm(t)φm(t)

Because V νi < Zi(t), the upper bound is maximized at φi(t) = −Amax and equality

holds if and only if φi(t) = −Amax. Hence the lemma.

Theorem 2. The delay based resource allocation policy given above minimizes the

upper bound for the drift-minus-utiltiy given in Lemma 3. i.e., the following quantity is

maximized:

E{V ĝ(φ(t))−
K∑
i=1

Zi(t)φi(t)|Θ(t)}+
K∑
i=1

Zi(t)E{Yi(t)|Θ(t)}+
K∑
i=1

Wi(t)E{µi(t)|Θ(t)}

Proof. Note that the φi(t) terms appear separably in the expression, and hence they can

be optimally chosen by maximizing the following quantity:

V ĝ(φ(t))−
K∑
i=1

Zi(t)φi(t)

subject to −Amax ≤ φi(t) ≤ Amax for all queues i. This is precisely the congestion

control step of the policy.

Next, we have to maximize the following quantity by optimally allocating the re-

sources to the users:

K∑
i=1

Wi(t)E{µi(t)|Θ(t)} −
K∑
i=1

Zi(t)E{Di(t)|Θ(t)}

The amount of data dropped from the queue i in slot t, Di(t) is given by,

Di(t) = mi(t) max{Ni(t)− µi(t), 0}
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The above equation can be understood as follows. When mi(t) = 1 i.e., Wi(t) ≥ Zi(t),

and also if there are more data in the head-of-line of queue i than the service in slot t,

then the remaining data are dropped. In any other case, no data are dropped from the

queue. This is exactly the dropping strategy given in the policy. Now,

E{Di(t)|Θ(t)} = mi(t)P(µi(t) < Ni(t))(Ni(t)− E{µi(t)|Θ(t)}),

≤ mi(t)(Ni(t)− E{µi(t)|Θ(t)})

Now, maximizing (3.6) is equivalent to maximize the following:

K∑
i=1

(Wi(t) +mi(t)Zi(t))E{µi(t)|Θ(t)}.

This is precisely the transmission rate allocation step in the proposed policy.

Theorem 3. The proposed resource allocation policy ensures a deterministic bound on

both the virtual queue size and the delay of the head-of-line data in every queue in every

slot. More precisely, for any queue i,

Zi(t) ≤ dV νie+ 2Amax and Wi(t) ≤ dV νie+ 2Amax. (3.16)

Proof. Consider the ith queue. At t = 0, when the queues are empty, clearly, Zi(0) ≤

dV νie + 2Amax and Wi(0) ≤ dV νie + 2Amax. Hence the theorem holds for t = 0. We

use this as the basis for the following proof by induction. We assume that (3.16) holds

for given t. From (3.6) we have,

Zi(t+ 1) ≤ Zi(t) +Di(t) + φi(t) ≤ Zi(t) + 2Amax.

If Zi(t) ≤ dV νie, then Zi(t+1) ≤ dV νie+2Amax.Now if Zi(t) > dV νie, by Lemma 4,

φi(t) = −Amax and henceZi(t+1) ≤ Zi(t) ≤ dV νie+2Amax. Therefore, by induction,

Zi(t) is bounded above as in (3.16). Similarly from (3.7) we have,

Wi(t+ 1) ≤ Wi(t) + 1.

If Wi(t) ≤ dV νie + 2Amax − 1, then Wi(t + 1) ≤ dV νie + 2Amax. Now if Wi(t) >

dV νie + 2Amax − 1, then Wi(t) = dV νie + 2Amax (since Wi(t) must be an integer)

which makes Wi(t) ≥ Zi(t) and hence the head-of-line data will be completely drained
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off (either by successful transmission or if not by dropping). Therefore, Wi(t + 1) ≤

Wi(t) ≤ dV νie+ 2Amax and hence by induction, the theorem holds for all t.

Theorem 4. The delay based resource allocation policy ensures the delay of all non-

dropped data to be less than or equal toD slots, with total throughput-utility that differs

from optimal by O(1/D).

Proof. Clearly Theorem 3 asserts that the delay of any non-dropped data in the ith

queue is bounded by dV νie + 2Amax slots. Hence by choosing V such that, D =

dV νmaxe+ 2Amax where νmax = maxi νi, the delay of any non-dropped packet can be

deterministically bounded by D slots.

Now by Theorem 2, the proposed policy minimizes the drift-minus-utility. The Lya-

punov Optimization given in [13, Theorem 5.4] says that the policy which minimizes

the drift-minus-utility gives a lower bound for the throughput-utility as follows.

lim inf
t→∞

g(y(t)) ≥ g∗ −B/V, (3.17)

where y(t) = λ− 1
t

∑t−1
τ=0 E{D(τ)}. Hence the throughput differs from the optimal by

O(1/D).
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CHAPTER 4

Derivation of Outage Probability

In this section, we describe how the BS estimates the outage probability on [i, j] in Step

4 of our algorithm, using only the parameters γeff and I. We utilize a limit theorem

on the order statistics of the SNRs to derive an expression for the conditional joint

distribution of the SNRs on the best M sub-bands for each UE, given the EESM and

the sub-band indices. For ease of exposition, we assume that the SNRs on the sub-

bands of a given UE are i.i.d. exponentially distributed. This assumption will hold well

in the case of Rayleigh fading in a rich multi-path environment, with number of paths

comparable to the number of sub-bands. However, we remark that the limit theorem

we are about to exploit holds for a fairly large class of distributions – namely, those

which lie within the Gumbel domain of attraction [2]. Therefore, our policy remains

asymptotically throughput optimal for this class of sub-band SNR distributions.

We first state a result which follows from [12, Theorem 15] regarding the order

statistics of M extremal values, drawn from N i.i.d. exponential random variables .

Theorem 5. Let Z1, Z2, . . . , ZN be a sequence of i.i.d. unit exponential random vari-

ables, and Z(1), Z(2), . . . , Z(N) be the corresponding order statistics in descending or-

der. Then

(e−Z̃(1) , e−Z̃(2) , . . . , e−Z̃(M))
D−→ (Y1, Y2, . . . YM),

asN →∞, where Z̃(i) = Z(i)−lnN , Yi =
∑i

j=1Xj andXjs are i.i.d. unit exponential

random variables.

Proof. Note that 1−e−Z1 , 1−e−Z2 , . . . , 1−e−ZN is a sequence of i.i.d. standard uniform

random variables. Now directly applying the [12, Theorem 15], the result follows.

Lemma 5. Let Y (n) = (Y1, Y2, . . . , Yn) with the entries Yi =
∑i

j=1Xj,∀ i = 1, . . . , n,

where Xjs are i.i.d. unit exponential random variables. The joint pdf of Y (n) is given

by

fY (n)(y1, y2, . . . , yn) = e−yn , 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn. (4.1)



Proof. Let fXi(xi) and fYi(yi) denote the pdf of Xi and Yi respectively. Thus,

fXi(x) = e−x, x ≥ 0, ∀i.

Consider n = 2.

fY (2)(y1, y2) = fY1(y1)fY2|Y1=y1(y2), 0 ≤ y1 ≤ y2,

= fX1(y1)fX2(y2 − y1),

= e−y2 , 0 ≤ y1 ≤ y2.

Hence the lemma holds for n = 2. We use this as the basis for the following proof by

induction. We assume that the (4.1) holds for given n. Then,

fY (n+1)(y1, y2, . . . , yn+1) = fY (n)(y1, y2, . . . , yn)fYn+1|Y (n)=(y1,y2,...,yn)
(yn+1),

= e−ynfXn+1(yn+1 − yn),

= e−yn+1 , 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn+1.

So by induction, the lemma holds for all n ≥ 2.

Consider the ith UE. Let Sji = e−(γ
ij
i −lnN) for j = 1, . . . ,M. Assuming that the

number of sub-bands N is large, we can use Theorem 5 and Lemma 5 , to approximate

the unconditional joint pdf of S(M)
i = (S1

i , S
2
i , . . . , S

M
i ) as

f
S
(M)
i

(s1, s2, . . . , sM) = e−sM , 0 ≤ s1 ≤ s2 ≤ . . . ≤ sM .

Numerical results indicate that this approximation is good even for moderate values of

N. Next, define Seffi = e−(γ
eff
i −lnN). Choosing the parameter η in (2.1) as unity for

simplicity, we have

Seffi =
1

M

M∑
j=1

Sji .

Note that Seffi is known to the BS. Next, conditioned on Seffi = s and Ii = I , S(M)
i

takes values only on the hyperplane 1
M

∑M
j=1 S

j
i = s. Hence, we ignore the M th best
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SNR and calculate the joint CDF 1 of (S1
i , . . . S

M−1
i , Seffi ) as follows.

FS1
i ,...S

M−1
i ,Seffi

(s1, . . . sM−1, s) = P(S1
i ≤ s1, . . . , S

M−1
i ≤ sM−1, S

eff
i ≤ s),

= P(S1
i ≤ s1, . . . , S

M−1
i ≤ sM−1, S

M
i ≤Ms−

M−1∑
j=1

sj),

= F
S
(M)
i

(s1, . . . sM−1,Ms−
M−1∑
j=1

sj).

Now taking the partial derivatives with respect to s1, . . . , sM−1, s, we get,

fS1
i ,...S

M−1
i ,Seffi

(s1, . . . sM−1, s) = Mf
S
(M)
i

(s1, . . . sM−1,Ms−
M−1∑
j=1

sj),

= Me−(Ms−
∑M−1
j=1 sj), 0 ≤ s1 ≤ s2 ≤ . . . ≤Ms−

M−1∑
j=1

sj.

Next we calculate the conditional joint pdf of the best M − 1 sub-bands.

f
S
(M−1)
i |Seffi =s,Ii=I

(s1, s2, . . . , sM−1) =
fS1

i ,...S
M−1
i ,Seffi

(s1, . . . sM−1, s)

fSeffi
(s)

,

=
Me−(Ms−

∑M−1
j=1 sj)

fSeffi
(s)

, 0 ≤ s1 ≤ s2 ≤ . . . ≤Ms−
M−1∑
j=1

sj.

Now, we can find the conditional marginal density fSji |Seffi =s,Ii=I
(sj) for j = 1, . . . ,M−

1 by integrating out the other variables in the above expression. Similarly, the fSMi j|Seffi =s,Ii=I
(sM)

can be obtained by ignoring the best sub-band SNR. The outage probability can thus be

determined as

P̂i,ij(r) = P(Ci,ij ≤ r|γeffi = γ, Ii = I),

= P(log2(1 +
P

M ′γ
ij
i ) ≤ r|γeffi = γ, Ii = I),

= P(Sji ≥ Ne
− 2r−1

P
M′ |Seffi = Ne−γ, Ii = I),

=

∫ N

y

fSji |S
eff
i =Ne−γ ,Ii=I

(sj)dsj.

(4.2)

where y = Ne
−
(

2r−1
P
M′

)
. Closed form expressions for the outage probabilities (4.2) can

be obtained through some tedious computations.We provide explicit expressions for the

1F(.) denotes Cumulative Distribution Function (CDF).
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cases M = 3 and M = 4 in Appendix A. The outage probabilities computed in (4.2)

are used in Step 4 of the resource allocation algorithm.
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CHAPTER 5

Simulation Results

In this section, we present simulation results that demonstrate the throughput gains

achieved by the proposed policy over other existing policies. We also demonstrate that

the limiting approximation we use to obtain closed form outage probability expressions

is a good approximation.

The proposed policy (labeled as “optimal” in the plots) is throughput optimal among

all policies that use the limited channel feedback scheme described in Section ??. Three

important components of our policy are: (1) evaluation of the conditional expected

CQI for each sub-band from the EESM, (2) evaluation of goodput while accounting

for outage probability, and (3) optimal utilization of queue length information. To

illustrate the importance of each component of our proposed policy, we compare the

proposed policy with the following policies (each of the heuristic policies ignores at

least one component of our proposed policy): (1) a throughput optimal policy with

perfect CQI (labelled “Perfect CQI”), (2) a policy that uses queue length information

but assumes that the reported EESM is the CQI for all the best M reported sub-bands

(labelled “Heuristic 1”), (3) a policy that uses queue length information and evaluates

the conditional expected CQI for the best M reported sub-bands without accounting for

outage probability (labelled “Heuristic 2”), and (4) a proportionally fair rate allocation

policy that uses the conditional expected CQI and goodput evaluation without using

queue length information (labelled “PF”).

A single-cell OFDM downlink with K = 100 UEs is simulated. The number of

subcarriers is 512 and there are 12 subcarriers in each sub-band. Two channel models

are considered: (1) IID sub-bands, and (2) Correlated sub-bands resulting from a 6-

path channel with an uniform power-delay profile where each path is Rayleigh fading.

The arrival traffic for the ith UE is assumed to be Poisson with with parameter λi. The

channel feedback from each UE is assumed to be the best M sub-bands and EESM for

these sub-bands.

Figures 5.1 and 5.2 show the average queue length (averaged across UEs and time
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Figure 5.1: IID sub-bands case: M = 3, N = 43, η = 1, γave,i = 1 ∀ i.
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Figure 5.2: Correlated sub-bands case: M = 3, N = 43, η = 1, γave,i = 1 ∀ i.

slots) versus the aggregate arrival rate (i.e., sum of λi’s) for the IID and correlated sub-

band cases respectively. λi is chosen as iλ, i.e., each UE has a different arrival traffic

rate, and λ is varied to change the arrival traffic load. Also, M = 3 and the number

of sub-bands N = 43. It is clear that the proposed policy can support significantly

higher arrival traffic for the same average queue length than the heuristic policies. The

Perfect CQI policy is also shown to quantify the loss due to limited feedback. It is also
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Figure 5.3: IID sub-bands case: M = 4, N = 43, η = 1, γave,i = 1 ∀ i.
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Figure 5.4: Correlated sub-bands case: M = 4, N = 43, η = 1, γave,i = 1 ∀ i.

clear that the proposed policy provides similar performance gains even in the correlated

sub-band case. Similar results have been observed for M = 4 (figures 5.3 and 5.4).

Figure 5.5 shows the conditional CDF of the CQI of the best sub-band given a

particular EESM for the best M sub-bands. Four cases of N (the total number of sub-

bands) are shown. Note that the number of subcarriers is 12N . It can be observed that:

(1) the weak limit approximation is very good for N = 22 and N = 43, and (2) the IID
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Figure 5.5: Conditional CDF of best sub-band given γeff = −1.5 + logN , M = 3,
η = 1.

and correlated sub-band cases are not very different.
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CHAPTER 6

Conclusion

We proposed two queue-aware policies for allocating sub-bands in the LTE downlink

when each UE reports the best M sub-band indices and a single effective CQI for these

bands. The throughput optimality of the first policy was shown using the Lyapunov

stability framework. The policy assigns each sub-band to the UE with the best queue-

length goodput product for that sub-band. The goodput was obtained by deriving an-

alytical expressions for the conditional outage probability of each sub-band given the

effective CQI. The conditional outage probability was derived by exploiting a limit the-

orem on the joint distribution of the SNR of the best sub-bands. The proposed policy

supports signifcantly higher arrival traffic than existing policies like: (1) proportional

fair allocation based on CQI that does not consider queue information, (2) queue-aware

policies that use the effective CQI as the CQI of each sub-band, and (3) queue-aware

policies that do not account for outage in the estimation of goodput. The second policy

ensures a bound on deterministc delay, sayD slots, for all the UEs provided the through-

put is not less than the optimal value by O(1/D). The policy is obtained using Lya-

punov optimization technique which involves minimization of drift-minus-utility. The

concavely extended utility function is used in the analysis which is crucial in bounding

the delay.



APPENDIX A

Expressions for Outage Probability for special cases

Case 1. No of sub-bands reported, M = 3.

The region for which the conditional joint pdf of S1
i and S2

i is non-zero is shown by

the shaded area in Figure A.1

↑s2

→
s1

3s
2

3s

(s,s)

Figure A.1: Region for which the conditional joint pdf of S1
i and S2

i given Seffi = s is
non-zero

We can find the marginal density as follows. Note that conditional pdfs are non-zero

only for the specified region.

(i) Pdf of Seffi .

– For 0 ≤ s ≤ ∞,

fSeffi
(s) =

∫ s

0

∫ 3s−s1
2

s1

3e−(3s−s1−s2)ds2ds1,

=
9

2
e−s +

3

2
e−3s − 6e−

3s
2 .

(ii) Best sub-band SNR.
– For 0 ≤ s1 ≤ s,

fS1
i |S

eff
i =s(s1) =

∫ 3s−s1
2

s1

3e−(3s−s1−s2)

fSeffi
(s)

ds2,

=
6e(−

3s
2
+
s1
2 ) − 6e2s1

3− 12e
3s
2 + 9e2s

.



(iii) Second best sub-band SNR.
– For 0 ≤ s2 ≤ s,

fS2
i |S

eff
i =s(s2) =

∫ s2

0

3e−(3s−s1−s2)

fSeffi
(s)

ds1,

=
6es2(−1 + es2)

3− 12e
3s
2 + 9e2s

.

– For s ≤ s2 ≤ 3s
2

,

fS2
i |S

eff
i =s(s2) =

∫ 3s−2s2

0

3e−(3s−s1−s2)

fSeffi
(s)

ds1,

=
6e3s(e−s2 − e−3s+s2)

3− 12e
3s
2 + 9e2s

.

(iv) Third best sub-band SNR.

↑s3

→
s23s

2

3s

(3s,0)

(s,s)

(3s
2

,3s
2

)

Figure A.2: Region for which the conditional joint pdf of S2
i and S3

i given Seffi = s is
non-zero

In-order to find the expression for fS3
i |S

eff
i =s(s3), we follow a similar procedure

but by ignoring the best sub-band SNR. The joint pdf of (Seffi , S2
i , . . . , S

3
i ) is

given by

fSeffi ,S2
i ,...,S

3
i
(s, s1, . . . , sM) = Mf

S
(3)
i

(3s− s2 − s3, s2, s3),

= 3e−s3 , 0 ≤ 3s− s2 − s3 ≤ s2 ≤ s3.

The conditional joint pdf can is given by

fS2
i ,S

3
i |S

eff
i =s,Ii=I

(s2, s3) =
3e−s3

fSeffi
(s)

, 0 ≤ 3s− s2 − s3 ≤ s2 ≤ s3. (A.1)

The region specified in (A.1) is shown in Figure A.2. The conditional marginal
pdf is obtained as follows.
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– For s ≤ s3 ≤ 3s
2

,

fS3
i |S

eff
i =s(s3) =

∫ s3

3s−s3
2

3e−s3

fSeffi
(s)

ds2,

=
9e−s3(s3 − s)

3e−3s − 12e−
3s
2 + 9e−s

.

– For 3s
2
≤ s3 ≤ 3s,

fS3
i |S

eff
i =s(s3) =

∫ 3s−s3

3s−s3
2

3e−s3

fSeffi
(s)

ds2,

=
3e−s3(3s− s3)

3e−3s − 12e−
3s
2 + 9e−s

.

The outage probabilities P̂i,ij(r) for j = 1, . . . , 3 can be obtained as follows. let

y = Ne
−
(

2r−1
P
M′

)
.

(i) Best sub-band.
– For 0 ≤ y ≤ s,

P̂i,i1(r) =
3e2s + e2y − 4e(

3s
2
+ y

2 )

1− 4e
3s
2 + 3e2s

.

(ii) Second best sub-band.
– For 0 ≤ y ≤ s,

P̂i,i2(r) =
2es

1 + 2e
s
2 + 3es

+
(es − ey)(es + ey − 2)

1− 4e
3s
2 + 3e2s

.

– For s ≤ y ≤ 3s
2

,

P̂i,i2(r) =
2e−y(e

3s
2 − ey)2

1− 4e
3s
2 + 3e2s

.

(iii) Third best sub-band.
– For s ≤ y ≤ 3s

2
,

P̂i,i3(r) =
3e−3s − 12e−

3s
2 − 9se−y + 9ye−y + 9e−y

3e−3s − 12e−
3s
2 + 9e−s

.

– For 3s
2
≤ y ≤ 3s,

P̂i,i3(r) =
3e−3s − 3e−y + 9se−y − 3ye−y

3e−3s − 12e−
3s
2 + 9e−s

.
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Case 2. Number of sub-bands reported, M = 4.

We can find the marginal densities as follows. Let s4 = 4s− s1 − s2 − s3.

(i) Pdf of Seffi .
– For 0 ≤ s ≤ ∞,

fSeffi
(s) =

∫ s

0

∫ 4s−s1
3

s1

∫ 4s−s1−s2
2

s2

4e−s4ds3ds2ds1,

=
32

3
e−s + 8e−2s − 2

3
e−4s − 18e−

4s
3 .

(ii) Best sub-band SNR.
– For 0 ≤ s1 ≤ s,

↑s3

→
s24s-s1

4s−s1
2

(s1, s1)

Figure A.3: Region for which the conditional joint pdf of S(3)
i given Seffi = s is non-

zero for 0 ≤ s1 ≤ s.

fS1
i |S

eff
i =s(s1) =

∫ 4s−s1
3

s1

∫ 4s−s1−s2
2

s2

4e−s4

fSeffi
(s)

ds3ds2,

=
e
s1
2
−4s
(

2e
5s1
2 − 8e2s+

s1
2 + 6e

16s−s1
6

)
fSeffi

(s)
.
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(iii) Second best sub-band SNR.

– For 0 ≤ s2 ≤ s,

↑s3

→
s14s-s2

4s−s2
2

(s2, s2)

Figure A.4: Region for which the conditional joint pdf of S(3)
i given Seffi = s is non-

zero for 0 ≤ s2 ≤ s.
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fSeffi
(s)

.

– For s ≤ s2 ≤ 4s
3

,

↑s3

→
s14s-s2

4s−s2
2s2

Figure A.5: Region for which the conditional joint pdf of S(3)
i given Seffi = s is non-

zero for s ≤ s2 ≤ 4s
3

.
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(iv) Third best sub-band SNR.

– For 0 ≤ s3 ≤ s,

↑s2

→
s1

(s3, s3)

Figure A.6: Region for which the conditional joint pdf of S(3)
i given Seffi = s is non-

zero for 0 ≤ s3 ≤ s.
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– For s ≤ s3 ≤ 4s
3

,

↑s2

→
s14s-2s3

4s-2s3
s3

Figure A.7: Region for which the conditional joint pdf of S(3)
i given Seffi = s is non-

zero for s ≤ s3 ≤ 4s
3

.
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– For 4s
3
≤ s3 ≤ 2s,

↑s2

→
s14s-2s3

4s-2s3

Figure A.8: Region for which the conditional joint pdf of S(3)
i given Seffi = s is non-

zero for 4s
3
≤ s3 ≤ 2s.
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(iv) Fourth best sub-band SNR.

– For s ≤ s4 ≤ 4s
3

,

↑s3

→
s24s−s4

2

4s-s4

4s-s4

s4 (s4, s4)

Figure A.9: Region for which the conditional joint pdf of (S2
i , S

3
i , S

4
i ) given Seffi = s

is non-zero for s ≤ s4 ≤ 4s
3
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– For 4s
3
≤ s4 ≤ 2s,

↑s3

→
s24s−s4

2

4s-s4

4s-s4

s4

Figure A.10: Region for which the conditional joint pdf of (S2
i , S

3
i , S

4
i ) given Seffi = s

is non-zero for 4s
3
≤ s4 ≤ 2s.
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– For 2s ≤ s4 ≤ 4s,

↑s3

→
s24s−s4

2

4s-s4

4s-s4

s4

Figure A.11: Region for which the conditional joint pdf of (S2
i , S

3
i , S

4
i ) given Seffi = s

is non-zero for 2s ≤ s4 ≤ 4s.
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The expressions for outage probabilities are evaluated in Mathematica and are omit-

ted here.

44



REFERENCES

[1] (2009). Evolved universal terrestrial radio access (E-UTRA); physical layer proce-
dures (release 8). Technical report, TS 36.213 (v8.8.0), 3rd Generation Partnership
Project (3GPP).

[2] Bertin, E. and M. Clusel (2006). Generalised extreme value statistics and sum of
correlated variables. Journal of Physics A.

[3] Bodas, S., S. Shakkottai, L. Ying, and R. Srikant, Low-complexity scheduling
algorithms for multi-channel downlink wireless networks. In INFOCOM. 2010.

[4] Bodas, S., S. Shakkottai, L. Ying, and R. Srikant, Scheduling for small delay in
multi-rate multi-channel wireless networks. In INFOCOM. 2011.

[5] Boyd, S. and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[6] Brzezinski, A. and E. Modiano (2005). Dynamic reconfiguration and routing al-
gorithms for IP-over-WDM networks with stochastic traffic. Journal of Lightwave
Technology, 23(10), 3188.

[7] Choi, Y.-J. and S. Bahk, Selective channel feedback mechanisms for wireless
multichannel scheduling. In Proceedings of the 2006 International Symposium on
on World of Wireless, Mobile and Multimedia Networks. IEEE Computer Society,
2006.

[8] Cox, C., An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Com-
munications. Wiley, 2012.

[9] Dahlman, E., S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPA and
LTE for Mobile Broadband. Academic Press, 2008, second edition.

[10] Donthi, S. and N. Mehta (2011). An accurate model for eesm and its application
to analysis of cqi feedback schemes and scheduling in lte. Wireless Communica-
tions, IEEE Transactions on, 10(10), 3436 –3448. ISSN 1536-1276.

[11] Donthi, S. and N. Mehta (2011). Joint performance analysis of channel quality
indicator feedback schemes and frequency-domain scheduling for lte. Vehicular
Technology, IEEE Transactions on, 60(7), 3096 –3109. ISSN 0018-9545.

[12] Ferguson, T., A Course in Large Sample Theory: Texts in Statistical Science,
volume 38. Chapman & Hall/CRC, 1996.

[13] Georgiadis, L., M. Neely, and L. Tassiulas, Resource allocation and cross-layer
control in wireless networks. Now Pub, 2006.

[14] Gesbert, D. and M. S. Alouini, How much feedback is multi-user diversity really
worth? In Proc. IEEE ICC, volume 4. 2004.

45



[15] Huang, J., V. G. Subramanian, R. Agrawal, and R. A. Berry (2009). Downlink
scheduling and resource allocation for ofdm systems. Wireless Communications,
IEEE Transactions on, 8(1), 288–296.

[16] Jaramillo, J. J., R. Srikant, and L. Ying (2011). Scheduling for optimal rate al-
location in ad hoc networks with heterogeneous delay constraints. Selected Areas
in Communications, IEEE Journal on, 29(5), 979–987.

[17] Kittipiyakul, S. and T. Javidi (2009). Delay-optimal server allocation in multi-
queue multiserver systems with time-varying connectivities. Information Theory,
IEEE Transactions on, 55(5), 2319 –2333. ISSN 0018-9448.

[18] Kushner, H. J. and P. A. Whiting (2004). Convergence of proportional-fair shar-
ing algorithms under general conditions. Wireless Communications, IEEE Trans-
actions on, 3(4), 1250–1259.

[19] Manikandan, C., S. Bhashyam, and R. Sundaresan (2009). Cross-layer
scheduling with infrequent channel and queue measurements. Wireless Commu-
nications, IEEE Transactions on, 8(12), 5737 –5742. ISSN 1536-1276.

[20] McKeown, N., A. Mekkittikul, V. Anantharam, and J. Walrand (1999).
Achieving 100% throughput in an input-queued switch. IEEE Transactions on
Communications, 47(8), 1260–1267.

[21] Neely, M., E. Modiano, and C. Rohrs, Power and server allocation in a multi-
beam satellite with time varying channels. In IEEE INFOCOM, volume 3. 2002.

[22] Neely, M., E. Modiano, and C. Rohrs, Dynamic power allocation and routing for
time varying wireless networks. In IEEE INFOCOM, volume 1. 2003.

[23] Neely, M. J., Delay-based network utility maximization. In INFOCOM, 2010
Proceedings IEEE. IEEE, 2010.

[24] Neely, M. J., E. Modiano, and C.-P. Li (2008). Fairness and optimal stochastic
control for heterogeneous networks. Networking, IEEE/ACM Transactions on,
16(2), 396–409.

[25] Pollard, D., A user’s guide to measure theoretic probability, volume 8. Cambridge
University Press, 2001, 57.

[26] Sanayei, S. and A. Nosratinia (2007). Opportunistic downlink transmission with
limited feedback. Information Theory, IEEE Transactions on, 53(11), 4363 –4372.
ISSN 0018-9448.

[27] Stefanatos, S. and N. Dimitriou, Downlink ofdma resource allocation under par-
tial channel state information. In Communications, 2009. ICC’09. IEEE Interna-
tional Conference on. IEEE, 2009.

[28] Stefanatos, S. and N. Dimitriou, Downlink ofdma resource allocation under par-
tial channel state information. In Communications, 2009. ICC ’09. IEEE Interna-
tional Conference on. 2009. ISSN 1938-1883.

46



[29] Tassiulas, L. and A. Ephremides (1992). Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in multihop
radio networks. Automatic Control, IEEE Transactions on, 37(12), 1936 –1948.
ISSN 0018-9286.

[30] Tassiulas, L. and A. Ephremides (1993). Dynamic server allocation to parallel
queues with randomly varying connectivity. Information Theory, IEEE Transac-
tions on, 39(2), 466 –478. ISSN 0018-9448.

[31] Viswanath, P., D. N. C. Tse, and R. Laroia (2002). Opportunistic beamforming
using dumb antennas. Information Theory, IEEE Transactions on, 48(6), 1277–
1294.

[32] Westman, E. (2006). Calibration and evaluation of the exponential effective sinr
mapping (eesm) in 802.16. The Royal Institute of Technology (KTH) , Master’s
thesis. ISSN 1536-1276.

[33] Ying, L. and S. Shakkottai (2011). On throughput optimality with delayed
network-state information. Information Theory, IEEE Transactions on, 57(8),
5116–5132.

[34] Zhang, Z., Y. He, and E. Chong, Opportunistic downlink scheduling for mul-
tiuser ofdm systems. In Wireless Communications and Networking Conference,
2005 IEEE, volume 2. 2005. ISSN 1525-3511.

47


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Related Work
	Our Contributions
	Organization of Thesis

	Throughput Optimal Resource Allocation Policy
	System Model
	Problem Formulation
	Stability considerations

	Throughput Optimal Resource Allocation Policy
	Discussion
	Lyapunov Analysis
	Minimizing the Lyapunov Drift


	Delay Based Resource Allocation Policy
	Network model
	The Optimization Objective
	Concave Extension of Utility Function
	Equivalent Problem with Virtual Queues
	Minimizing the Drift-Minus-Utility
	Delay Based Resource Allocation Policy

	Derivation of Outage Probability
	Simulation Results
	Conclusion
	Expressions for Outage Probability for special cases

