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ABSTRACT

KEYWORDS: Localization; Time Difference Of Arraival (TDOAAdaptive Line

Enhancer (ALE); Correlation

We are trying to find the location of mobile station, by semgdinnarrow band signal
from mobile station to surrounded base stations. We wilsghs received signal at
each base station, through an adaptive line enhancer whiialemove the broad band
noise from the received signal. Then we will cross correflagereceived signal with a
reference base station, so that we can find the time differeharrival at different base

stations with respect to reference base station.

For more precise time information the auto correlation figmcof narrow band sig-
nal should decay faster near the origin (the main lobe wikittukl be minimum).Sharper
the autocorrelation function gives accurate timing infation and that will also reduce
the number of taps required for adaptive line enhancer, sotile computation com-

plexity will also be reduced.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

LIST OF FIGURES

1 Introduction

2 Localization Techniques

2.1 Global Positioning System . . . . .. ... ... ... .......

2.2 Time based locationtechniques . . . . . . .. ... ... ......

2.2.1 Timing Advance (TA) . ... .. ... . ... . ......
2.2.2 Uplink Time of Arrival (U-ToA) . . . . . . ... ... ...
2.2.3 Uplink Time Difference of Arrival (U-TDoA) . . . . . . ..
2.3 Angle of arrival location technique . . . . . ... .. ... ....
2.4 Signal strength based location techniques . . . . . ... ...
24.1 RFFingerprint . . ... ... ... ... .. ...,
2.4.2 Received Signal Strength(RSS) . . . . ... ... .....
2.4.3 Signal Pattern Recognition . . . . . . ... ... ... ...
2.5 Hybrid locationtechniques . . . . . ... .. ... ... ......
2.6 Hidden Markov Model (HMM) . . . . .. ... ... ... .....
2.6.1 HMM based GSM localization . . . . . ... ... .....

3 Location Algorithms based on TDoA measurement
3.1 Introduction . . . . . . . .. . ...
3.2 Leastsquare Algorithm . . . . . . .. ... ... ... ...
3.3 Taylor Series Algorithm . . . . . . .. ... ... ... ... ...
3.4 Two-Step Algorithm . . . . . . ... ... .

10
11
13



3.5 Comparison ofalgorithms . . . . .. ... ... ... .......

4 Channel modelling and adaptive filter

4.1 Channelmodelling . . .. .. ... .. ... ... . ........

4.1.1 Fading of wirelesschannel . . . . ... ... ... .....

412 Channelmodels. . .. ... ... . . ... ... . .....

4.2 AdaptivelineEnhancer . . . . .. ... ... ... 0L

4.3 Autocorrelation . . . . . . ...

5 Simulations and results

6 Conclusion

6.1 Future work

A APPENDIX

15

16
16
17
17
20
22

24

29
29

30



3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6

LIST OF FIGURES

Comparison of Taylor series and Two step algorithms . .. .. .. .

Least mean square Adaptive Line Enhancer . . . . .. .. ... ..

Analysis of noisy sinusoidal through Adaptive filter . . . . . . .

Auto correlation function of Sine wave

Auto correlation function of Cosinewave . . .. ... ... ...

Block diagram of Localization system

NLOS error distribution . . . . . . . ..

Error cdf with 5db SNR and 32 taps .
Error cdf with 15db SNR and 32 taps .
Error cdf with 5db SNR and 128 taps .
Error cdf with 15db SNR and 128 taps

15

22
23
23

25

26
27
27
28



CHAPTER 1

Introduction

Mobile phones are not just for communication, they have mooeother applications
as well. Among those, there are many real time applicatioch ss identifying the
location of a person or object (ATMs, Restaurants, Shopmadls, Railway stations,
etc.), navigation, security purposes, tracking vehicles finding the traffic. All these

applications depend on the location of mobile phone.

The location of mobile station is find, based on the uplinketiifference of arrival.
Initially the mobile station sends a narrow band signal. ilt receive by all nearest
base stations, then all the base stations send that sigaaldce network (MSC) with
a common reference time. Those signals pass through aniaéjiers to remove
the broad band noise, so the SNR after the filter will improdaw by doing cross
correlation with a reference base station signal, we getriteedifference of arrival with
respect to that base station. Once we get the time differehagival at different base
stations, we have many algorithm to find the optimal soluf@rthe mobile position.
In this thesis we explained Least Square, Taylor Series, Step algorithms. Taylor
series, Two step algorithms are most commonly used. In thelations we used Taylor

series algorithm to find the optimal solution for mobile statposition.

The terrains around all base stations are not same, diffbese stations have dif-
ferent channel models. The channel models are basicalgndispon the coverage area
and obstacles in that area. We considered different chanoééls (such as CoST207

Typical Urban (TU), Bad Urban (BU) and 3GPP ) for differensbatations.

The mobile is always not in LOS with the base station, so thererror in the
mobile position due to the NLOS path. Here we are charaatgrine NLOS error as
truncated Gaussian noise with some bias. In practical thleoelld some error in the

measurements we consider that error as unbiased Gausssaniih 0.01 variance.

In upcoming technologies the location of mobile statiori plity a crucial role. The

features of the mobile phone will be available based in yocation.



Flow of the thesis:

The rest of the thesis is organized as follows. In Chapterrigf Blescription on
different methods for localization of mobile phones basadime, angle and signal
strength. In Chapter 3, we present different algorithmsrtd the location of mobile
phone based on TDoA measurement. In Chapter 4, we will staeyestimation of
transmitted narrow band signal in different channel emuments and find the time
difference using cross-correlation. Chapter 5 is for theusation results and Chapter 6

includes the conclusion and future work.



CHAPTER 2

Localization Techniques

Different methods have been proposed based on the requitesh@pplication i.e.
where we need the resultant location of mobile phone. Herevilediscuss some

methods.

2.1 Global Positioning System

GPS (Enge and Misra (1999)) was developed by the Departni@efence (DoD) for
the U.S military applications. Later it was opened for pakhises, such as determina-
tion of the location of mobiles users. GPS is a satellite thdsealization technique.
Satellites send their position and transmit time to theivece The receiver calculates
the distance from each satellite by using transit time afaigThe receiver needs sig-
nalling from at least three satellites to find its 3-dimensioposition and one more

satellite to synchronize the clocks between the receivetiam satellites.

GPS needs line-of-sight from satellites to mobile statrec€iver) to find the accu-
rate position of the mobile phone, which is not possible irshad the cases. However,

it consumes a lot of power and also is not available in manyil@phones.

2.2 Time based location techniques

2.2.1 Timing Advance (TA)

To synchronize the TDMA frame at the Base Station (BS), théilagphones have to
send their data, advance in time. This advance in time dependhe distance of the
mobile phone from the BS. The mobiles in the sector of inndiusamultiple of 550m

and outer radius 550m more than the inner radius around tHeaB&the same timing



advance because the gap between the time slots of TDMA fra@1€93ts (one GSM

bit period ), which corresponds to a distance of 550m from®8 $ (distance (BS —
MS — BS) = velocity x time). The BS sends the same TA (Axe (2005) ) value to all
mobile phones which are in the same sector, through a casttesinel so we can find

the location (sector) of the mobile by knowing the TA value.

The TA is a 6 bit binary value to represent the numbers from 630 TA value
0 represents a circle with radius 550m, the maximum valuefo{6B) represent the

distance of greater than 34.9km, which is the maximum c@eerange of a BS.

2.2.2 Uplink Time of Arrival (U-ToA)

The Mobile Station (MS) send the burst signal to the assediahd neighbouring base
stations, the BS calculate the distance (which is a circheirzdt the BS with distance
as the radius) of MS by multiplying the signalling time withetvelocity of light. To

get the unique position of mobile phone we need three ci(emed by three nearest

BSs), we can find it by trilateration method (Guvenc and Ch@@§9)).

In this method, to get the accurate position of mobile phomelsronization be-
tween the BS and MS clocks are necessary. The mean errorsainthod in urban

environment is 799.4m and 645.3m in suburban environmexg (2005)).

2.2.3 Uplink Time Difference of Arrival (U-TDoA)

The nearest BSs receive the signal from the mobile statiolhthAse BSs send the
received signal time to a server. It calculates the timestifice between two BSs and
convert that into distance and form a hyperbola. We need typeitbolas to get the

unique position of mobile phone (Paria S and R).

Here we need synchronization between the clocks of BSs &dddbe mobile phone
accurately. To get the accuracy below 50m, the resolutiah@fclocks should be in
nanoseconds, so it is difficult to find the position of mobite®pe with accuracy below

50m, using time based localization methods.



2.3 Angle of arrival location technique

BSs calculate the angle of arrived signal from MS using ardearrays. We know the
distance between the neighbouring BSs. With the Trianguiahethod the location of

mobile phone is calculated. For this we need two base station

If there is LOS path exist between BSs and MS, the locatioheftobile phone can
be found accurately. But this is not the case in urban areased¥er extra hardware is

required at every base station.

2.4 Signal strength based location techniques

2.4.1 RF Fingerprint

The properties of RF signal such as signal strength, delayraasured in different
locations using mobile phone, and are stored into a data baddferent locations the
properties of RF signal should be different, so the valuest ¢tee same for different
locations. Now in real time, observe the data samples fra@mtbbile phone, find the
location of mobile using the reference data. There are mhgorithms to do this, we

can use either deterministic algorithms or probabilisigoathms (LTA (2008)).

The accuracy depends on the propagation terrain and retedaia. Updating ref-
erence data is required to locate the mobile phone accyrbggause the environment

changes with time.

2.4.2 Received Signal Strength (RSS)

This method (Suvi A (2003)) is same as ToA. The MS measureseiteved signal
strength of the nearest BSs, sends this data to a servemgthmsociated BS. The
server calculates the circular distance of mobile phona feach base station based on
the received signal strength from the MS. Three circulatadises are needed to get a

unigue location of mobile phone.



The accuracy of this method depends on the propagationoemagnt. Small scale

fading is the main factor to reduce the accuracy of mobilengtocation in this method.

2.4.3 Signal Pattern Recognition

In this method (Suvi A (2003)) there is no need of over signglto locate the mobile

phones, the location is made by using HMM and Viterbi aldnonis.

When a caller makes call, the associated BS receives theriafmn of uplink sig-
nal strength, downlink signal strength, TA, quality of theehlink signal and the neigh-
bouring base station signal strengths for every 4. 165m&A frame duration). This
information is observed for some time period to comparedbserved sequence with
already predefined models, which are in the same TA zone, faedjaence from these
predefined sequences. Then compute the most probable sequsng Viterbi algo-

rithm, which is the estimated path followed by the caller.

The accuracy depends on the propagation terrain, obsenyeal $ength and the

number of predefined models.The possible accuracy is lassiibOom.

2.5 Hybrid location techniques

Hybrid methods (Axe (2005); Suvi A (2003)) are combinatidrilee above methods,

developed to localize the mobile phones accurately.

AoA and ToA: This is a good method to find the location of mobile phones ialru
and suburban areas, where BSs are far from each other. &6gie enough to find
the location of mobile phone. By using ToA method, BS can fimgldircular distance
of mobile phone around it. By using AoA method, BS find the angfl the received
signal from MS. Taking both of these measurements into atoma can calculate the

position of the mobile phone.

The accuracy of this method based on the synchronizatidreaflocks between BS

and MS as well as the beam width of the array antenna.



AoA and TDoA: This method can be used anywhere. In this method two BSs are
needed to finds the location of mobile phone. In TDoA methoth wivo BSs, the
server find the distance of mobile phone from two BS and fortmgoerbolic curve. In
AO0A method, the associated BS sends the angle of receivedlsigm the MS to that
server. The server calculate the location of mobile phornes method shows 20-60%

improvement on normal AoA method.

The disadvantages of hybrid methods are that it requires pracessing delay and

more cost to implement.

2.6 Hidden Markov Model (HMM)

In Markov Model the states, their transition probabilifiead the initial probabilities
are known for a system. The probability of the next state imkda model depends

only on the current state.

In HMM the states are hidden (Stamp (2011)). State, tramsjprobabilities, ini-
tial probabilities and the observed sample probabilitiegieen state are known for
a system. We can compute the probability of state sequenabdsrving sequence
of samples. This can be easily explained by the followingiagdions. Suppose
there areN statesS = {si, sq, s3...sx }, With initial state distributionr = ;, (m; =
(Pr(s; atinitial time))) and transition probabilitied = {a;; } (a;; = Pr(s; at time t+
1/s; at time t)), M possible observation samples= {v;, vo, vs...v), } With observed
sample probabilitied? = {b;u)} (bjxy = Pr(vi at time t/s; at time t)) . Observe
a sequence of samples from the Befthe states are unobserved in this case), for time
periodT = {ty,ts,1s3,...t;}, the observation sequence(’s= {04, 0,,03,...0;}. Now
we have to find the maximum likelihood state sequence fronobserved sequence.
One way to find it is compute the probabilities of all combioaal state sequences,
then choose the maximum probability sequence as the opsitaed sequence, which
is difficult task and another way is maximize the probability(/, O /A) using Viterbi
algorithm.A is the notation for HMM\ = (A, B, ).



2.6.1 HMM based GSM localization

In this method (Ibrahim and Youssef (2011)), the area ofr@stieis divided into grids.
The state se$ is the collection grids of the area, the observationisebntains asso-
ciated cell tower ID and RSSI of mobile phone. The state ttimmsprobability matrix

is formed based on the physical phenomenon of the area, Hesvation sample prob-
ability matrix find by computing the RSSI value of the assteziacell tower in each
grid. The initial state matrix is found by computed from tlats transition matrix i.e.
m = Aw. The output observation sét has cell tower IDs and RSSI of mobile phone.

By using Viterbi algorithm we can obtain the maximum proliaibstate sequence.

However the accuracy depends on the grid size. The medianadithis method in

rural environment is 93.85m and 50.34m in urban environment



CHAPTER 3

Location Algorithms based on TDoA measurement

3.1 Introduction

TDoOA is better technique to find the location of mobile stattmmpared to ToA, be-
cause in ToA the synchronization between the mobile staimhbase stations are nec-
essary. Whereas in TDoA no need of synchronization betweshilenstation and base
station, but there should be synchronization between the si@tion clocks. In TDoA
mobile station send the signal to all it's neighbouring bstsgions, those signals will
send to a core network, where we can find the time differencarofal of signal at
different base station by using cross correlation of ressignals,by taking one of the

base station as a reference base station.

Let say the signal received &t base station is at time wherei = 1,2, ..k
Now we will find the time difference of arrival at differentfastations w.r.t base station
1.
th=ti—t1 i=2,3,..k (3.1)

wherek is the maximum number of base stations associated to mdhtiers C'(=
3 x 108 m/sec) is the speed of the lightz; is the distance of mobile station froitt
base station, therefore

rii=T; — 1 1= 2, 3, Lk (32)

Suppose the co-ordinates of mobile statiorfaisy), i base station i$z;, y;). i =
2,3, ..k, and the co-ordinates of base station 1 (reference bagendtate(0, 0). So the

distance between mobile station and base station can denvais

= (-2’ + (i —y)? =23k (3.3)



and

r? = 2% + ¢ (3.4)

By solving eq.(3.2), eq.(3.3) and eq.(3.4), we can find thetfmm of mobile station.
There are many algorithms to solve the above equations. \Werare explaining the

three basic and popular algorithms to solve the above emsati

3.2 Least square Algorithm

For simplicity consider the number of base stations coratkid mobile station is 3.

from eq.(3.2),

7"51 = (7"2—7’1)2
7”:»2,1 = (7”3—7“1)2

Substitute eq.(3.3) and eq.(3.4) in above equations, weevatite the equations as

2001 + 22y = —2r911m + x% + y% — T%l

2x3x + 2y3y = —2r31r1 + x?,, + yg — Tgl

We can write the above equations in matrix form as
HX =ric+d (3.5)
where

H_ T2 Y2 X = x e —Ta1 = (25 +y3) — 13

T3 Y3 Y —731 (23 +y3) — 3

the optimal solution forX is given by the equation

X = argmin [|[HX — (ric+ d)||?

10



The optimalX is
X = pinv(H).(ric + d) (3.6)

Form the above optimal value we will getandy in terms ofr;. Substituter andy in
eg.(3.4) and get the positive root for and back substitute in the eq.(3.6) then we will
get the mobile station location (Sayedal. (2005)). We can extend the number base

stations greater than 3, and follow the same procedure.

The least square solution doesn’t give appropriate salditionon-linear equations,

so that we are going for Taylor series algorithm.

3.3 Taylor Series Algorithm

In this method (Foy (1976)) instead of solving nonlinearttahge equations we are
going to linearize the distance function using Taylor seapproximation. The distance

function is
fiu(z,y, @i, y;) = 7’?1 =rp—€1 =23,k (3.7)

Wherer?!, is the true value angd,is measured value, which may contains neisedue
to the NLOS measurements.

The Taylor series expansion of the above function is
fil + aﬂéx + ai25y =T;1 — €1 1= 2, 3, .k (38)

where a;; = %2 and a; = %2 at (z,y)

For k = 3 we can write eq.(3.8) as
Jo1 + @210 + agdy = 121 — €21

f31 + az100 + asedy = r3; — €31

11



The matrix form of the above equations are

GoX =h—c¢
where
a a ox o1 —
a— 21 Qa22 6X = Ch= 91 — fo1
azy ass oy r31 — fa1

The optimal solution fob X, with weighted matrix) is given by the equation

5X = argmin (G6X — h)TQ ™ (GsX — h)||

The optimal X is
5X = (GTQ'G)'GTQ 'h (3.9)

The weighted matrix Q! = E(ee?) ', and for Gaussian noise with variane®at

base station. The covariance matrix is given by

2 2 2
05 + 07 o1

Q= 2 2 2
o1 o3 + 07

If the variances are equal then covariance matrix

Q=0
1 2
Let the initial guess ofz, y) = (z,,y,) and itis updated as = = + dz andy = y + dy,
the process repeats un<it andyy are small enough. The position of the mobile station
is the final(x, y) coordinates.
The final solution of mobile station position without weiglig matrix is as close as

with weighting matrix, so no need worry about the NLOS erfoairacteristic.

12



3.4 Two-Step Algorithm

The Taylor series algorithm has a problem with initial gudtssiay not converge all the
times or it may takes more iterations to converge which ismaationally expensive.
Here we are looking at another algorithm (Chan and Ho (1994)ich doesn’t need of

any initial guess and it will converge surely.

In this algorithm initially we assume that andx andy are independent and solve
for r1, x andy, then computéx, y) with the constraint? = z2 + 3.

From eq (3.2) and (3.3), with k=3
2 2 2
Ty + 21911 = 15 + Y5 — 2207 — 2Y2y

7’§1 + 2r31r = x§ + y§ — 2x31 — 2Y3Yy

The matrix form of the above equations are

g1 = hl — Gl.ul (310)
where
2 2 2 v
r5; — (x5 + X r
hy = 21 (2 92) Gy =2 2 Y2 T2 ul— y
T§1 - (x§ +y32,) T3 Y2 T31
(A1

The error matrixe; is due to the error in measurements. kgtis the measured value
andr!, is the true value, therefore; = ¥, + dr;;, heredr;; is error in measurement.
The optimal solution for eq ((3.10)) is given by the equatieith weighting matrixii’;

is

12\1 = a'r’gmin (h,l — Gl.ul)TI/Vl(hl — Gl.ul)
The solution for the above equation is

12\1 - (G{WlGl)ilG{Wlhl (311)

13



whereW ;! = E(e;e)
By substituting-;; = r;;° + ér;; andr;,° = r,° + r,°, we get the approximate value of
€1 = (2r0ry, 2r§5T31)T.
ThereforelV, = 1BY'Q~'BY™". whereB? = diag(r, ) andQ is covariance matrix
of errors. i.epry; and ors;.
Here we don’t know the true values, so we use the measureds/aistead of true val-
ues, thereford; = diag(r», r3) and weighting matrix becomés; = 1B,7'Q~'B; .

and we also don’t know the, andrz, we will approximateu; as
0= (GTQ'G))'GTQ ™M (3.12)

After gettingr, andr; values, we will calculaté?; matrix and findu; from the eq

(3.11). We can repeat this process un=tiandr; values will converges.

After getting theu; matrix, we will use the relation? = 22 + 3. and we write the

equations in matrix form as

Eg = h2 — G2.u2

where
U1(1)2 10
22
hy = u(2)?], Ga2= |0 1 |, u2=
2
9 Y

The optimal solution for above equation , with weighting matV; is given by

12\2 = a'r’gmin (h,z — GQ.UQ)TW2<h2 — GQ.UQ)
The solution for the above equation is
Wy = (GIWLGa) tGITW,hy (3.13)
The weighting matrix, W, ! = E(eyed) = 1 BYE[6u,5u, "] BY.

!

14



Here BY = diag(ui(1),u1(2),u1(3)).
From eq.(3.11)ov(ul) = E[du du,T] = G?TW1G?_1
In practical we don’t knowY, GY, so we will By, Gy in their place, the effective weight-
ing matrix is
1

W2 - ZBglGlTlelBgl. (314)

The final position of the mobile is estimated from the eq33dnd (3.14). The sign of
the mobile station coordinates preserves the sign in thialisolution i.e.y;. The two

step algorithm is more dependent on the NLOS error. Diffetemains have different
kind of NLOS error distribution, and it changes with time, we have to update the

algorithm with appropriate NLOS error distribution.

3.5 Comparison of algorithms

Taylor series algorithm and Two step algorithms are moreuf@phere we are compar-
ing two algorithms by taking a known mobile position and taelding biased Gaussian
noise to the distance to make the mobile is in NLOS to the basiess. In this simula-
tion we didn’t use any weighting matrix for Taylor series@ighm still the performance

of Taylor series algorithm is better than two step algori{{@henet al. (2008)).

Comparison of Taylor series and Two step algorithms

Taylor series

two step

140 160

Figure 3.1: Comparison of Taylor series and Two step algorit
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CHAPTER 4

Channel modelling and adaptive filter

4.1 Channel modelling

There are many obstacles between the transmitter and nsibtien. If we transmit
a signal at the transmitter, it reaches the receiver (maisiéx) through multiple paths.
So we can model the impulse response of the channglas sum of the impulses with

different amplitudes; and different propagation delays
h(t) =) ad(t— 1) (4.1)

These multiple paths are due to Reflections, Scattering®dfrdctions (RAP). When

the EM wave hits an object which is larger in size comparedaeelength of the signal
it gets reflection, scattering occurs when the signal hitelgact whose size is in the
order of the wavelength of the signal or less and diffractieours at the edge of an

obstacle which is large compared to wavelength of the signal
Here we define the parameters of wireless channel to desbeligpe of channel

e Doppler shift(f,)—Change in the frequency of propagation wave due to relativ
motion between transmitter and receiver.

e Doppler spreadp,)-The maximum difference between the Doppler shifts of the
paths contributing to a tap.

e Coherence timd(.)-The time interval for which the channel taps are constant.
This is inversely proportional to Doppler spread.

e Delay spreadl;)-Difference between the delay times of longest and shortes
paths (considering only significant energy paths).

e Coherence bandwidthi(.)-The range of frequencies over which the channel is
coherent (flat).



4.1.1 Fading of wireless channel

The received signal strength varies with time and frequemlgich is known adad-
ing. We can divide this variation into two typesSmall scale fadingis the rapid
fluctuations in signal strength as the mobile moves througimall distance. This
is mainly due to scattering. There are different types oflsstale fading based on
Doppler spread and delay spread: Fast fadifig€ Delay requirement), Slow fad-
ing (T. > Delay requirement), Flat fading (' < W.) and Frequency selective
fading (# > W.). We can model these channel taps with Rician and Raylegth-di
butions (DAV (2005)). If there is a line-of-sight (LOS) patkist between transmitter
and receiver we can model with Rician distribution and ifréhis no LOS path exist
between transmitter and receiver we can model with Rayléigfinibution.Large scale
fadingis the path loss with distance and shadowing by the largeaolest as the mo-
bile moves through a distance of the order of cell size. Wemadel these channel
taps with Log-normal distribution (RAP) . This Log-normasulibution determines the

variation of signal strength due to shadowing for same trater, receiver separation.

4.1.2 Channel models

To provide better coverage we divide the area into cells ag®)dicro and Pico (Quek
(2005); Mauri (2012)). A Macro cell covers the range from ltar80km. The base
station antennas are usually mounted on the buildings t, laihd their transmitted
power is 20 to 40W. These are located in less interferencsasech as rural, open
places. A Micro cell covers the range from 100m to 1km. Theglteof the base station
antenna is comparable to the buildings, and the transnpttectr of these antennas is
5to 15W. These are installed in high interference areag#fictzones ,shopping malls.
Pico cell covers the range from 4m to 400m. These antennagegyesmall and the

transmitted power is below 1W. These are located in rooms\dis, airport etc.,

We use different propagation models for indoor and outdogirenment with dif-
ferent cell sizes, such as Okumura model, Hata model, COSIElmand 3GPP models.
Okumura, Hata models are for narrow band channels where&3 GZBPP models are

for wide band channels.
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Okumura model (RAP) is developed based on the measurentesitgal attenua-
tion with frequency and distance in urban environment widhstant base station and
mobile station antenna heights. Okumura drew the curvesdbas these measure-
ments, the curves were meant to determine the attenuatiarfuasction of frequency
ranges from 100MHz to 1920MHz and the distance ranges fram tbkLOOkm. Then
he developed an equation based on this and added some icorifector to that equa-
tion to account for different propagation environmentse Gisadvantage of this model

is its slow response to the rapid changes of propagaticaiterr

Hata model (RAP) is an empirical formulation of data giver@kumura, with fre-
guency ranges from 150MHz to 1500MHz. Hata gave some fordaul@orrection
based on propagation environment and he took the heightstefhiaas are also vari-
ables. This model is good for large cell sites but not for siéls of the size less than

1km radius (Personal communications systems).

These models are developed based on the measurement datd, stiitable for all

environments and also didn't specify anything about the@epspectrum.

COST channel models

cost207 : COST 207 (COS (1989)) channel models are developed for 2G GBM
munications, with carrier frequency 900MHz and bandwidtB4i10MHz. This model
specifies four outdoor macro cell scenarios such as Rura R4\, Typical Urban
(TU), Bad Urban (BU), Hilly Terrain (HT). It provides the PewDelay Profile (PDP)
of these scenarios with different decay exponentials and Boppler spectrums for
each scenario based on the delaydf PDP. The four Doppler spectrums are CLAS-
SIC fort < 0.5us, GAUSSIANI for 0.5us < T < 2us, GAUSSIAN for T > 2us
and RICE for LOS path. COST 207 uses 4 to 12 unevenly spaceddamplement the
channel PDP.

As the capacity increases, the cell size decreases fromont@anicro and pico,
COST 207 didn’t consider the micro, pico cell scenarios. &bwer it didn’t mention

anything about the power loss with distance for differevirmments.
COST 259 : As the applications increase, the data rate of the chanrelges,
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so the channel has to accommodate from low data rate suchaastecigh data rate
such as files, videos and to improve the quality of serviceligtter to approximate the

channel models distinguishably for different environnsent

COST 259 (3GP (2004-12)) specifies the channel models fi@rdift environments
with cell type macro, micro and pico. The carrier frequeada macro cell is 900MHz
or 1.8GHz, for micro cell is 1.2GHz or 5GHz and for pico ceB@Hz or 24GHz, with
the bandwidth less than 10GHz.

Macro Micro Pico
Typical Urban| Street Canyons Tunnel/Corridor
Bad Urban Open Places Factory
Rural Area Tunnels Office/Residential Home
Hilly Terrain | Street Crossings Open Lounge

Table 4.1: Cost259 specify channel models for the above@mvients!

In COST 259 models the channel is specified by the number efarisl A cluster
is group of rays which travel approximately the same disartach cluster decreases
exponentially with delay. Channel is fully described by fodowing parameters {
P, t;, 0., }, wherei is the number of clusters;, is total power in clustet, T, is the

delay of the first path in clustérando. ; is i cluster rms delay spread.

COST 259 models considered different parameters of theagadn channel such
as path loss, fast fading (small scale effect), shadow fpflarge scale effects), delay

spread and angle of arrival. The drawback of all these cHaane, uses less bandwidth.

3GPP channel models

The data rates provided by the 3GPP channel models are faku@#8kbps, 5.7Mbps,
11Mbps, 75Mbps and 500Mbps, for downlink 384kbps, 14Mb@\Rps,300Mbps

and 1Gbps. These channel models can be well suitable beydsgems also.

3GPP (3GP (2004-12)) channel models are developed by thgsanaf different
channel models in different environments. These channédefsare similar to COST

259 channel models and simple to implement. These chanraglsare also specified
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by the number of clusters. The total power of each clusteoimalized in such a way
that the maximum total power in any of the cluster is 1W. 3GR&noel models use
up to 20 taps to describe the power delay profile, these chéape are generated as
i.i.d random variables from uniform distribution in theemal [0, 0.40.] , the Doppler

spectrum is RICE for LOS path, Classic for non-line-of-$itLOS) paths.

3GPP specify the channel models for Typical Urban (TU) witbbite speed 3,
50 and 120kmph, Rural Area (RA) with mobile speed 120 and @fdkand Hilly
Terrain (HT) with mobile speed 120kmph. Channel modelliaggmeters for the above

environments are listed in the table 4.2.

Terrain | Channel shape| N, P, (W) T(ps) o.(1s)
TU Single cluster | 1 with
with all 20 taps P=1 T1=0 | 0,1=05
NLOS paths

RA Single cluster | 1 with P=1 T, =0
with one 10taps| P, =0.43 T =0 | 0p3 =0.14

LOS path (Direct path)
HT Two clusters | 2 with P=1 T =0 | 071 =0.29
with all 10for | Po,=004 |Ty=15| o0.2=1

NLOS path each

Table 4.2: 3gpp channel modelling parameters for TU, RA, HT.

4.2 Adaptive line Enhancer

Adaptive line enhancer is a time varying system, which widict the original narrow
band signal from the noisy input signal. The filter contairedixaumber of taps and

weights of these taps are varying according to the erroreaptitput (Storey (2013)).

Let say the inputis[n] = s[n]+n[n], wheres[n] is the desired signal andn] is the
Gaussian noise.The desired sigs@l| is narrow band signal, so there is a correlation
between adjacent samples. To decorrelate the Gaussiawvmeiwill send the delayed
version of input through the adaptive filter.

The adaptive filter predict the’” sample from previoud/ + 1 samples and compare

with the original input, the error in predicted output andyoral input is used to update
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the filter weights.

Output,y[n]

Input, r[n]=s[n]+n[n] Error, e[n]

> +

A
Cpredictor T |
| input |
| ] 1 ] ‘
Dealy z’1 z1 71 |
W Wy Wm |

3 3 .

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.1: Least mean square Adaptive Line Enhancer

The Adaptive filter output
yln| = wy,.r,_a 4.2)

where w,, = [w, wy wy....wy] and r, = [r, r1 ro....ra)-
The error signat[n] will be

e[n] = r[n] — yln] (4.3)
The filter weights update using NLMS algorithm as

rn—A
|2

(4.4)

Wnt1 = Wy, + ey,

Wherey. is the step size it varies from 0 to 1. If thevalue is high the weights will be

update fastly but the error will be more. For this applicatibe/ value is 0.001.

In figure (4.2) the red curve is sinusoidal signal added wigln§sian noise which is
the input (blue colour curve) to the adaptive filter. The greerve is the adaptive filter
output, which is the prediction to the input sinusoidal sigihe filter output is closer

estimation of the desired sinusoidal signal. The adaptitex femove the noise to some
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Adaptive Line Enhancement of a Noisy Sinusoidal Signal
3
T T T I

amplitude

-3
4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800
Time

Figure 4.2: Analysis of noisy sinusoidal through Adaptiveefi

extend, so the SNR at the receiver will increase.

4.3 Autocorrelation

The pilot signal, which we are sending from the mobile statiall place a crucial
role to get the precise time information at the receiver. at®correlation function of
the signal should be sharp that mean it should decay faktar,dnly we will get the
accurate timing information and it is also robust to the e@dded to the signal. The
signal should also be narrow band (correlation betweercadiasample), then only we

can estimate it with adaptive filter.

Fig 4.3 and 4.4 are autocorrelation functions of 1hz sirdedaf 1s duration with
phase)® and90° respectively. The equations for the above auto correldtiontions
are given in the appendix.

The autocorrelation with pha$g® is decaying rapidly compare t§ phase sinusoidal
signal, so it is better to us#° phase shifted sinusoidal as the pilot signal instead of

phase sinusoidal.
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Autocorrelation function of sine wave
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Figure 4.3: Auto correlation function of Sine wave

Auto correlation function of cosine wave
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Figure 4.4: Auto correlation function of Cosine wave
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CHAPTER 5

Simulations and results

The block diagram in fig 5.1 shows, how the mobile station imsiestimation will be
done. Initially the mobile station sends the signal to a&lneighbouring base stations.
The received signals pass through an adaptive filter, thewilénd the time differ-
ence of arrival at different base stations with referenca tmase station, using cross

correlation (Mardenet al. (2012)).

Y

—> BS#1

+
SO
rin-t,] \—y Delay > Adapti%er ( Cross

Correlation

v

Peak
—>»  BS#2 f Detector
r[n-t 2] ‘ to1 .
! Delay |—>» Adaptivefilter —>» Taylor-series
: t Algorithm
1 k1

Peak
Detector Estimated

>
Mobile position
—> BS#k + ﬁ
A
¢ »  Cross

rin-tyl Delay Adap%lter Correlation

Figure 5.1: Block diagram of Localization system

For simulation purpose we considered 7 base stations ptaded), (4.5R v3R/2),
(1.5R2.5v/3R) (3R —2v/3R), (—1.5R —2.5v/3R), (—3R2V/3R) (—4.5R —/3R/2),
with R = 500, the position of mobile station is at500 600). The mobile station send
a signal (1Khz, 1ms duration sine and cosine signals) toadelstations and it will
received by base stations through different channels tfansel models refer chapter

4). 1t is always not be the case the mobile is in LOS with theslsiation, moreover



in the case of urban area the mobile is NLOS with base statimst of the times. So
we added NLOS error to the distance from Gaussian distdbutivhich is shown in
the figure 5.2. There is also be some error in the measureneetdok it has unbiased
Gaussian random variable with variance 0.01 (Hussaad. (2012)). Finally we used

Taylor series method to estimate the position of the molbéia.

Noise distribution
900 T

Figure 5.2: NLOS error distribution

Fig.5.3 and 5.4 are cumulative error distribution of mopitsition estimation, with
32 tap adaptive filter and the SNR at the receivers are 5db aallol rtespectively. Fig.
5.5 and 5.6 are also cumulative error distribution of the iegiiosition estimation, but
with 128 tap adaptive filter and the SNR’s are 5db, 15 db rasghz In both the cases

cosine wave performs better than sine wave.

As the number of filter taps increases, the accuracy of estijmanobile position
increases. The estimation accuracy with cosine wave at By &ith 32 tap adaptive
filter is better than sine wave at 15db, with 128 tap filter. Bing cosine waves we can
also reduce the number of filter taps, so that the computatiarplexity of the system
will also reduce. The mean error in estimation of mobileistawith sine and cosine

waves are pilot signals are shown in table 5.1.

In all the cases with cosine wave as a pilot sightgk; of error is below 100 meters.
We can say that at minimum possible conditions (fdk; of call the error will be below

100 meter. So this is usefull for E911 applications and ftweotapplications such as
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Estimation With noise [0 200]

0 100

Figure 5.3: Error cdf with 5db SNR and 32 taps

200

300

400

Error in meters

500

S.NO | taps| SNR (db)| mean erron mean error
with sine | with cosine
1 32 5 133.06 44.71
2 32 15 95.322 29.71
3 128 5 116.77 37.63
4 128 15 93.79 28.64

Table 5.1: Mean errors in mobile position estimation

navigation and tracking of vehicles.
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Figure 5.4: Error cdf with 15db SNR and 32 taps

Estimation with noise [0 200jm

Figure 5.5: Error cdf with 5db SNR and 128 taps
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Estimation with noise [0 200jm

Figure 5.6: Error cdf with 15db SNR and 128 taps
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CHAPTER 6

Conclusion

To estimate the mobile position using TDoA we require atti@lsase stations. The

estimation is possible when the mobile is in standby mode.

The Taylor series algorithm performs better than two stgprihm, but the problem
with it’s initial guess. If the initial guess will be closedh it will converge in lesser

number of iterations, which is computationally efficient.

The time difference information is based on the autocaticgidunction of the pilot
signal. If the autocorrelation function of the pilot sigrsdlarp we will get the precise

time information.

We test the above system in different channel models suclo&re07, 3GPP and
GSM channel models. The error in location estimation algeedds on the channel
models. This localization system will be usefull for mostloé applications including

E-911 emergency services.

6.1 Future work

Choose the initial guess of the Taylor series method sudhittiaall surely converge
with lesser number of iterations.
Choose the pilot signal which has narrow bandwidth and itteeorrelation function is

sharp and decay faster, so that we will get accurate timernrdton.



APPENDIX A

APPENDIX

The autocorrelation function of sine wave of 1hz frequenoy &s duration. Consider

the duration of 1sis 1 unit.

For0o<t<«<1

R,.(T) = / sin(2nt) - sin(2mw(t — 7)) dt (A.1)

1 1
= cos(27T) / sin?(27t) dt — sin(277T) / cos(2nt)sin(2nt) dt
T T

N | —

(cos(Qm) / 1(1—005(477t))dt—sm(27w) / 1 sin(4rt) dt)

(cos(2m) (1 T4 %f:”)) - %i“) (—1+ 005(47TT)))

DO | —

R..(T) =

The autocorrelation function is symmetric, so

R,.(T) = % <cos(27r’t) <1 — T+ sm(;l77:|’t|)) - sm(j;r|’t|) (—1+ cos(47r’t))) , for|tl <1

=0, otherwise



Similarly the autocorrelation function of 1hz, one secomdation cosine wave is

given by

For0<Tt<1

R..(T) = /1 cos(2mt) - cos(2n(t — 1)) dt (A.2)

1 1
= cos(27T) / cos?®(2mt) dt + sin(27T) / cos(2mt)sin(2mt) dt

( cos(2m7) / 1(1 + cos(dnt)) dt + sin(2r7) / 1 sin(dnt) dt )

<cos<2m) (1 - W) + w (—1+ cos(4m)))

The autocorrelation function is symmetric, so

R..(T) = % (cos(27r’t) (1 — || — Sm(j:h‘)) + Sm(j:‘ﬂ) (—1+ cos(47r’t))) , fort] <1

=0, otherwise
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