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ABSTRACT

KEYWORDS: Localization; Time Difference Of Arraival (TDOA); Adaptive Line

Enhancer (ALE); Correlation

We are trying to find the location of mobile station, by sending a narrow band signal

from mobile station to surrounded base stations. We will pass the received signal at

each base station, through an adaptive line enhancer which will remove the broad band

noise from the received signal. Then we will cross correlatethe received signal with a

reference base station, so that we can find the time difference of arrival at different base

stations with respect to reference base station.

For more precise time information the auto correlation function of narrow band sig-

nal should decay faster near the origin (the main lobe width should be minimum).Sharper

the autocorrelation function gives accurate timing information and that will also reduce

the number of taps required for adaptive line enhancer, so that the computation com-

plexity will also be reduced.
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CHAPTER 1

Introduction

Mobile phones are not just for communication, they have numerous other applications

as well. Among those, there are many real time applications such as identifying the

location of a person or object (ATMs, Restaurants, Shoppingmalls, Railway stations,

etc.), navigation, security purposes, tracking vehicles and finding the traffic. All these

applications depend on the location of mobile phone.

The location of mobile station is find, based on the uplink time difference of arrival.

Initially the mobile station sends a narrow band signal. It will receive by all nearest

base stations, then all the base stations send that signal toa core network (MSC) with

a common reference time. Those signals pass through an adaptive filters to remove

the broad band noise, so the SNR after the filter will improve.Now by doing cross

correlation with a reference base station signal, we get thetime difference of arrival with

respect to that base station. Once we get the time differenceof arrival at different base

stations, we have many algorithm to find the optimal solutionfor the mobile position.

In this thesis we explained Least Square, Taylor Series, TwoStep algorithms. Taylor

series, Two step algorithms are most commonly used. In the simulations we used Taylor

series algorithm to find the optimal solution for mobile station position.

The terrains around all base stations are not same, different base stations have dif-

ferent channel models. The channel models are basically depends on the coverage area

and obstacles in that area. We considered different channelmodels (such as CoST207

Typical Urban (TU), Bad Urban (BU) and 3GPP ) for different base stations.

The mobile is always not in LOS with the base station, so thereis error in the

mobile position due to the NLOS path. Here we are characterizing the NLOS error as

truncated Gaussian noise with some bias. In practical thereshould some error in the

measurements we consider that error as unbiased Gaussian noise with 0.01 variance.

In upcoming technologies the location of mobile station will play a crucial role. The

features of the mobile phone will be available based in your location.



Flow of the thesis:

The rest of the thesis is organized as follows. In Chapter 2, Brief description on

different methods for localization of mobile phones based on time, angle and signal

strength. In Chapter 3, we present different algorithms to find the location of mobile

phone based on TDoA measurement. In Chapter 4, we will study the estimation of

transmitted narrow band signal in different channel environments and find the time

difference using cross-correlation. Chapter 5 is for the simulation results and Chapter 6

includes the conclusion and future work.
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CHAPTER 2

Localization Techniques

Different methods have been proposed based on the requirement of application i.e.

where we need the resultant location of mobile phone. Here wewill discuss some

methods.

2.1 Global Positioning System

GPS (Enge and Misra (1999)) was developed by the Department of Defence (DoD) for

the U.S military applications. Later it was opened for public uses, such as determina-

tion of the location of mobiles users. GPS is a satellite based localization technique.

Satellites send their position and transmit time to the receiver. The receiver calculates

the distance from each satellite by using transit time of signal. The receiver needs sig-

nalling from at least three satellites to find its 3-dimensional position and one more

satellite to synchronize the clocks between the receiver and the satellites.

GPS needs line-of-sight from satellites to mobile station (receiver) to find the accu-

rate position of the mobile phone, which is not possible in most of the cases. However,

it consumes a lot of power and also is not available in many mobile phones.

2.2 Time based location techniques

2.2.1 Timing Advance (TA)

To synchronize the TDMA frame at the Base Station (BS), the mobile phones have to

send their data, advance in time. This advance in time depends on the distance of the

mobile phone from the BS. The mobiles in the sector of inner radius multiple of 550m

and outer radius 550m more than the inner radius around the BShave the same timing



advance because the gap between the time slots of TDMA frame is 3.693µs (one GSM

bit period ), which corresponds to a distance of 550m from BS to MS (distance (BS−
MS −BS) = velocity× time). The BS sends the same TA (Axe (2005) ) value to all

mobile phones which are in the same sector, through a controlchannel so we can find

the location (sector) of the mobile by knowing the TA value.

The TA is a 6 bit binary value to represent the numbers from 0 to63. TA value

0 represents a circle with radius 550m, the maximum value of TA (63) represent the

distance of greater than 34.9km, which is the maximum coverage range of a BS.

2.2.2 Uplink Time of Arrival (U-ToA)

The Mobile Station (MS) send the burst signal to the associated and neighbouring base

stations, the BS calculate the distance (which is a circle around the BS with distance

as the radius) of MS by multiplying the signalling time with the velocity of light. To

get the unique position of mobile phone we need three circles(formed by three nearest

BSs), we can find it by trilateration method (Guvenc and Chong(2009)).

In this method, to get the accurate position of mobile phone synchronization be-

tween the BS and MS clocks are necessary. The mean error of this method in urban

environment is 799.4m and 645.3m in suburban environment (Axe (2005)).

2.2.3 Uplink Time Difference of Arrival (U-TDoA)

The nearest BSs receive the signal from the mobile station. All these BSs send the

received signal time to a server. It calculates the time difference between two BSs and

convert that into distance and form a hyperbola. We need two hyperbolas to get the

unique position of mobile phone (Paria S and R).

Here we need synchronization between the clocks of BSs to locate the mobile phone

accurately. To get the accuracy below 50m, the resolution ofthe clocks should be in

nanoseconds, so it is difficult to find the position of mobile phone with accuracy below

50m, using time based localization methods.
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2.3 Angle of arrival location technique

BSs calculate the angle of arrived signal from MS using antenna arrays. We know the

distance between the neighbouring BSs. With the Triangulation method the location of

mobile phone is calculated. For this we need two base stations.

If there is LOS path exist between BSs and MS, the location of the mobile phone can

be found accurately. But this is not the case in urban areas. Moreover extra hardware is

required at every base station.

2.4 Signal strength based location techniques

2.4.1 RF Fingerprint

The properties of RF signal such as signal strength, delay are measured in different

locations using mobile phone, and are stored into a data base. In different locations the

properties of RF signal should be different, so the values can’t be same for different

locations. Now in real time, observe the data samples from the mobile phone, find the

location of mobile using the reference data. There are many algorithms to do this, we

can use either deterministic algorithms or probabilistic algorithms (LTA (2008)).

The accuracy depends on the propagation terrain and reference data. Updating ref-

erence data is required to locate the mobile phone accurately, because the environment

changes with time.

2.4.2 Received Signal Strength (RSS)

This method (Suvi A (2003)) is same as ToA. The MS measures thereceived signal

strength of the nearest BSs, sends this data to a server through associated BS. The

server calculates the circular distance of mobile phone from each base station based on

the received signal strength from the MS. Three circular distances are needed to get a

unique location of mobile phone.
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The accuracy of this method depends on the propagation environment. Small scale

fading is the main factor to reduce the accuracy of mobile phone location in this method.

2.4.3 Signal Pattern Recognition

In this method (Suvi A (2003)) there is no need of over signalling to locate the mobile

phones, the location is made by using HMM and Viterbi algorithms.

When a caller makes call, the associated BS receives the information of uplink sig-

nal strength, downlink signal strength, TA, quality of the downlink signal and the neigh-

bouring base station signal strengths for every 4.165ms (1 TDMA frame duration). This

information is observed for some time period to compare thisobserved sequence with

already predefined models, which are in the same TA zone, find asequence from these

predefined sequences. Then compute the most probable sequence using Viterbi algo-

rithm, which is the estimated path followed by the caller.

The accuracy depends on the propagation terrain, observed signal length and the

number of predefined models.The possible accuracy is less than 100m.

2.5 Hybrid location techniques

Hybrid methods (Axe (2005); Suvi A (2003)) are combination of the above methods,

developed to localize the mobile phones accurately.

AoA and ToA: This is a good method to find the location of mobile phones in rural

and suburban areas, where BSs are far from each other. SingleBS is enough to find

the location of mobile phone. By using ToA method, BS can find the circular distance

of mobile phone around it. By using AoA method, BS find the angle of the received

signal from MS. Taking both of these measurements into account we can calculate the

position of the mobile phone.

The accuracy of this method based on the synchronization of the clocks between BS

and MS as well as the beam width of the array antenna.
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AoA and TDoA: This method can be used anywhere. In this method two BSs are

needed to finds the location of mobile phone. In TDoA method with two BSs, the

server find the distance of mobile phone from two BS and forms ahyperbolic curve. In

AoA method, the associated BS sends the angle of received signal from the MS to that

server. The server calculate the location of mobile phone. This method shows 20-60%

improvement on normal AoA method.

The disadvantages of hybrid methods are that it requires more processing delay and

more cost to implement.

2.6 Hidden Markov Model (HMM)

In Markov Model the states, their transition probabilities, and the initial probabilities

are known for a system. The probability of the next state in Markov model depends

only on the current state.

In HMM the states are hidden (Stamp (2011)). State, transition probabilities, ini-

tial probabilities and the observed sample probabilities of given state are known for

a system. We can compute the probability of state sequence byobserving sequence

of samples. This can be easily explained by the following assumptions. Suppose

there areN statesS = {s1, s2, s3...sN}, with initial state distributionπ = πi, (πi =

(Pr(si at initial time))) and transition probabilitiesA = {aij} (aij = Pr(si at time t+

1/sj at time t)), M possible observation samplesV = {v1, v2, v3...vM} with observed

sample probabilitiesB = {bj(k)} (bj(k) = Pr(vk at time t/sj at time t)) . Observe

a sequence of samples from the setV (the states are unobserved in this case), for time

periodT = {t1, t2, t3, ...tl}, the observation sequence isO = {01, 02, 03, ...0l}. Now

we have to find the maximum likelihood state sequence from theobserved sequence.

One way to find it is compute the probabilities of all combinational state sequences,

then choose the maximum probability sequence as the optimalstate sequence, which

is difficult task and another way is maximize the probabilityPr(I, O/λ) using Viterbi

algorithm.λ is the notation for HMMλ = (A,B, π).
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2.6.1 HMM based GSM localization

In this method (Ibrahim and Youssef (2011)), the area of interest is divided into grids.

The state setS is the collection grids of the area, the observation setV contains asso-

ciated cell tower ID and RSSI of mobile phone. The state transition probability matrix

is formed based on the physical phenomenon of the area, the observation sample prob-

ability matrix find by computing the RSSI value of the associated cell tower in each

grid. The initial state matrix is found by computed from the state transition matrix i.e.

π = Aπ. The output observation setO has cell tower IDs and RSSI of mobile phone.

By using Viterbi algorithm we can obtain the maximum probability state sequence.

However the accuracy depends on the grid size. The median error of this method in

rural environment is 93.85m and 50.34m in urban environment.
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CHAPTER 3

Location Algorithms based on TDoA measurement

3.1 Introduction

TDoA is better technique to find the location of mobile station compared to ToA, be-

cause in ToA the synchronization between the mobile stationand base stations are nec-

essary. Whereas in TDoA no need of synchronization between mobile station and base

station, but there should be synchronization between the base station clocks. In TDoA

mobile station send the signal to all it’s neighbouring basestations, those signals will

send to a core network, where we can find the time difference ofarrival of signal at

different base station by using cross correlation of received signals,by taking one of the

base station as a reference base station.

Let say the signal received atith base station is at timeti wherei = 1, 2, ...k

Now we will find the time difference of arrival at different base stations w.r.t base station

1.

ti1 = ti − t1 i = 2, 3, ...k (3.1)

ti1.C = ti.C − t1.C i = 2, 3, ...k

wherek is the maximum number of base stations associated to mobile station. C(=

3 × 108 m/sec) is the speed of the light.ri is the distance of mobile station fromith

base station, therefore

ri1 = ri − r1 i = 2, 3, ...k (3.2)

Suppose the co-ordinates of mobile station is(x, y), ith base station is(xi, yi). i =

2, 3, ..k, and the co-ordinates of base station 1 (reference base station) are(0, 0). So the

distance between mobile station and base station can be written as

r2i = (xi − x)2 + (yi − y)2 i = 2, 3, ...k (3.3)



and

r21 = x2 + y2 (3.4)

By solving eq.(3.2), eq.(3.3) and eq.(3.4), we can find the position of mobile station.

There are many algorithms to solve the above equations. Herewe are explaining the

three basic and popular algorithms to solve the above equations.

3.2 Least square Algorithm

For simplicity consider the number of base stations connected to mobile station is 3.

from eq.(3.2),

r221 = (r2 − r1)
2

r231 = (r3 − r1)
2

Substitute eq.(3.3) and eq.(3.4) in above equations, we canrewrite the equations as

2x2x+ 2y2y = −2r21r1 + x2
2 + y22 − r221

2x3x+ 2y3y = −2r31r1 + x2
3 + y23 − r231

We can write the above equations in matrix form as

HX = r1c+ d (3.5)

where

H =


x2 y2

x3 y3


 , X =


x
y


 , c =


−r21

−r31


 , d =

1

2


(x

2
2 + y22)− r221

(x2
3 + y23)− r231




the optimal solution forX is given by the equation

X̂ = argmin ||HX − (r1c + d)||2

10



The optimalX is

X̂ = pinv(H).(r1c+ d) (3.6)

Form the above optimal value we will getx andy in terms ofr1. Substitutex andy in

eq.(3.4) and get the positive root forr1 and back substitute in the eq.(3.6) then we will

get the mobile station location (Sayedet al. (2005)). We can extend the number base

stations greater than 3, and follow the same procedure.

The least square solution doesn’t give appropriate solution for non-linear equations,

so that we are going for Taylor series algorithm.

3.3 Taylor Series Algorithm

In this method (Foy (1976)) instead of solving nonlinear distance equations we are

going to linearize the distance function using Taylor series approximation. The distance

function is

fi1(x, y, xi, yi) ∼= r0i1 = ri1 − ǫi1 i = 2, 3, ...k (3.7)

Wherer0i1 is the true value andri1is measured value, which may contains noiseǫi1, due

to the NLOS measurements.

The Taylor series expansion of the above function is

fi1 + ai1δx+ ai2δy = ri1 − ǫi1 i = 2, 3, ..k (3.8)

where ai1 =
∂fi1
∂x

and ai2 =
∂fi1
∂y

at (x, y)

Fork = 3 we can write eq.(3.8) as

f21 + a21δx+ a22δy = r21 − ǫ21

f31 + a31δx+ a32δy = r31 − ǫ31

11



The matrix form of the above equations are

G.δX = h− ǫ

where

G =


a21 a22

a31 a32


 , δX =


δx
δy


 , h =


r21 − f21

r31 − f31




The optimal solution forδX, with weighted matrixQ is given by the equation

δ̂X = argmin (GδX − h)TQ−1(GδX − h)||

The optimalδX is

δ̂X = (GTQ−1G)−1GTQ−1h (3.9)

The weighted matrix Q−1 = E(ǫǫT )
−1

, and for Gaussian noise with varianceσ2
i at

base stationi. The covariance matrix is given by

Q =


σ

2
2 + σ2

1 σ2
1

σ2
1 σ2

3 + σ2
1




If the variances are equal then covariance matrix

Q = σ2


2 1

1 2




Let the initial guess of(x, y) = (xg, yg) and it is updated asx = x+ δx andy = y+ δy,

the process repeats un-tilδx andδy are small enough. The position of the mobile station

is the final(x, y) coordinates.

The final solution of mobile station position without weighting matrix is as close as

with weighting matrix, so no need worry about the NLOS error characteristic.

12



3.4 Two-Step Algorithm

The Taylor series algorithm has a problem with initial guess. It may not converge all the

times or it may takes more iterations to converge which is computationally expensive.

Here we are looking at another algorithm (Chan and Ho (1994)), which doesn’t need of

any initial guess and it will converge surely.

In this algorithm initially we assume thatr1 andx andy are independent and solve

for r1, x andy, then compute(x, y) with the constraintr21 = x2 + y2.

From eq (3.2) and (3.3), with k=3

r221 + 2r21r1 = x2
2 + y22 − 2x2x− 2y2y

r231 + 2r31r1 = x2
3 + y23 − 2x3x− 2y3y

The matrix form of the above equations are

ε1 = h1 −G1.u1 (3.10)

where

h1 =


r

2
21 − (x2

2 + y22)

r231 − (x2
3 + y23)


 , G1 = −2


x2 y2 r21

x3 y2 r31


 , u1 =




x

y

r1




The error matrixε1 is due to the error in measurements. Letri1 is the measured value

andr0i1 is the true value, thereforeri1 = r0i1 + δri1, hereδri1 is error in measurement.

The optimal solution for eq ((3.10)) is given by the equation, with weighting matrixW1

is

û1 = argmin (h1 −G1.u1)
TW1(h1 −G1.u1)

The solution for the above equation is

û1 = (GT
1W1G1)

−1GT
1W1h1 (3.11)

13



whereW−1
1 = E(ǫ1ǫ

T
1 )

By substitutingri1 = ri1
0 + δri1 andri10 = ri

0 + r1
0, we get the approximate value of

ǫ1 = (2r02δr21 2r03δr31)
T .

ThereforeW1 =
1
4
B0

1
−1
Q−1B0

1
−1. whereB0

1 = diag(r02, r
0
3) andQ is covariance matrix

of errors. i.e,δr21 and δr31.

Here we don’t know the true values, so we use the measured values instead of true val-

ues, thereforeB1 = diag(r2, r3) and weighting matrix becomesW1 =
1
4
B1

−1Q−1B1
−1.

and we also don’t know ther2 andr3, we will approximateu1 as

û1 = (GT
1Q

−1G1)
−1GT

1Q
−1h1 (3.12)

After gettingr2 andr3 values, we will calculateW1 matrix and findu1 from the eq

(3.11). We can repeat this process un-tilr2 andr3 values will converges.

After getting theu1 matrix, we will use the relationr21 = x2 + y2. and we write the

equations in matrix form as

ε2 = h2 −G2.u2

where

h2 =




u1(1)
2

u1(2)
2

u1(3)
2


 , G2 =




1 0

0 1

1 1


 , u2 =


x

2

y2




The optimal solution for above equation , with weighting matrix W2 is given by

û2 = argmin (h2 −G2.u2)
TW2(h2 −G2.u2)

The solution for the above equation is

û2 = (GT
2W2G2)

−1GT
2W2h2 (3.13)

The weighting matrix, W−1
2 = E(ǫ2ǫ

T
2 ) =

1
4
B0

2E[δu1δu1
T ]B0

2 .
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Here B0
2 = diag(u1(1), u1(2), u1(3)).

From eq.(3.11)cov(u1) = E[δu1δu1
T ] = G0

1
T
W1G

0
1

−1

In practical we don’t knowB0
2 , G

0
1, so we willB2, G1 in their place, the effective weight-

ing matrix is

W2 =
1

4
B−1

2 G1
TW1G1B

−1
2 . (3.14)

The final position of the mobile is estimated from the eq.(3.13) and (3.14). The sign of

the mobile station coordinates preserves the sign in the initial solution i.e.,u1. The two

step algorithm is more dependent on the NLOS error. Different terrains have different

kind of NLOS error distribution, and it changes with time, sowe have to update the

algorithm with appropriate NLOS error distribution.

3.5 Comparison of algorithms

Taylor series algorithm and Two step algorithms are more popular, here we are compar-

ing two algorithms by taking a known mobile position and thenadding biased Gaussian

noise to the distance to make the mobile is in NLOS to the base stations. In this simula-

tion we didn’t use any weighting matrix for Taylor series algorithm still the performance

of Taylor series algorithm is better than two step algorithm(Shenet al. (2008)).
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Figure 3.1: Comparison of Taylor series and Two step algorithms
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CHAPTER 4

Channel modelling and adaptive filter

4.1 Channel modelling

There are many obstacles between the transmitter and mobilestation. If we transmit

a signal at the transmitter, it reaches the receiver (mobileuser) through multiple paths.

So we can model the impulse response of the channelh(τ) as sum of the impulses with

different amplitudesai and different propagation delaysτi.

h(τ) =
∑

i

aiδ(τ− τi) (4.1)

These multiple paths are due to Reflections, Scatterings andDiffractions (RAP). When

the EM wave hits an object which is larger in size compared to wavelength of the signal

it gets reflection, scattering occurs when the signal hits anobject whose size is in the

order of the wavelength of the signal or less and diffractionoccurs at the edge of an

obstacle which is large compared to wavelength of the signal.

Here we define the parameters of wireless channel to describethe type of channel

• Doppler shift(fD)–Change in the frequency of propagation wave due to relative
motion between transmitter and receiver.

• Doppler spread(Ds)–The maximum difference between the Doppler shifts of the
paths contributing to a tap.

• Coherence time(Tc)–The time interval for which the channel taps are constant.
This is inversely proportional to Doppler spread.

• Delay spread(Td)–Difference between the delay times of longest and shortest
paths (considering only significant energy paths).

• Coherence bandwidth(Wc)–The range of frequencies over which the channel is
coherent (flat).



4.1.1 Fading of wireless channel

The received signal strength varies with time and frequencywhich is known asfad-

ing. We can divide this variation into two types.Small scale fading is the rapid

fluctuations in signal strength as the mobile moves through asmall distance. This

is mainly due to scattering. There are different types of small scale fading based on

Doppler spread and delay spread: Fast fading (Tc ≪ Delay requirement), Slow fad-

ing (Tc ≫ Delay requirement), Flat fading (W ≪ Wc) and Frequency selective

fading (W ≫ Wc). We can model these channel taps with Rician and Rayleigh distri-

butions (DAV (2005)). If there is a line-of-sight (LOS) pathexist between transmitter

and receiver we can model with Rician distribution and if there is no LOS path exist

between transmitter and receiver we can model with Rayleighdistribution.Large scale

fading is the path loss with distance and shadowing by the large obstacles as the mo-

bile moves through a distance of the order of cell size. We canmodel these channel

taps with Log-normal distribution (RAP) . This Log-normal distribution determines the

variation of signal strength due to shadowing for same transmitter, receiver separation.

4.1.2 Channel models

To provide better coverage we divide the area into cells as Macro, Micro and Pico (Quek

(2005); Mauri (2012)). A Macro cell covers the range from 1kmto 30km. The base

station antennas are usually mounted on the buildings or hills, and their transmitted

power is 20 to 40W. These are located in less interference areas such as rural, open

places. A Micro cell covers the range from 100m to 1km. The height of the base station

antenna is comparable to the buildings, and the transmittedpower of these antennas is

5 to 15W. These are installed in high interference areas as traffic zones ,shopping malls.

Pico cell covers the range from 4m to 400m. These antennas arevery small and the

transmitted power is below 1W. These are located in rooms, tunnels, airport etc.,

We use different propagation models for indoor and outdoor environment with dif-

ferent cell sizes, such as Okumura model, Hata model, COST models and 3GPP models.

Okumura, Hata models are for narrow band channels whereas COST, 3GPP models are

for wide band channels.
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Okumura model (RAP) is developed based on the measurements of signal attenua-

tion with frequency and distance in urban environment with constant base station and

mobile station antenna heights. Okumura drew the curves based on these measure-

ments, the curves were meant to determine the attenuation asa function of frequency

ranges from 100MHz to 1920MHz and the distance ranges from 1km to 100km. Then

he developed an equation based on this and added some correction factor to that equa-

tion to account for different propagation environments. The disadvantage of this model

is its slow response to the rapid changes of propagation terrain.

Hata model (RAP) is an empirical formulation of data given byOkumura, with fre-

quency ranges from 150MHz to 1500MHz. Hata gave some formulafor correction

based on propagation environment and he took the heights of antennas are also vari-

ables. This model is good for large cell sites but not for cellsites of the size less than

1km radius (Personal communications systems).

These models are developed based on the measurement data, donot suitable for all

environments and also didn’t specify anything about the Doppler spectrum.

COST channel models

cost207 : COST 207 (COS (1989)) channel models are developed for 2G GSMcom-

munications, with carrier frequency 900MHz and bandwidth is 8-10MHz. This model

specifies four outdoor macro cell scenarios such as Rural Area (RA), Typical Urban

(TU), Bad Urban (BU), Hilly Terrain (HT). It provides the Power Delay Profile (PDP)

of these scenarios with different decay exponentials and four Doppler spectrums for

each scenario based on the delay (τ) of PDP. The four Doppler spectrums are CLAS-

SIC for τ ≤ 0.5µs, GAUSSIAN1 for 0.5µs < τ ≤ 2µs, GAUSSIAN2 for τ > 2µs

and RICE for LOS path. COST 207 uses 4 to 12 unevenly spaced taps to implement the

channel PDP.

As the capacity increases, the cell size decreases from macro to micro and pico,

COST 207 didn’t consider the micro, pico cell scenarios. Moreover it didn’t mention

anything about the power loss with distance for different environments.

COST 259 : As the applications increase, the data rate of the channel changes,
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so the channel has to accommodate from low data rate such as voice to high data rate

such as files, videos and to improve the quality of service it is better to approximate the

channel models distinguishably for different environments.

COST 259 (3GP (2004-12)) specifies the channel models for different environments

with cell type macro, micro and pico. The carrier frequencies for macro cell is 900MHz

or 1.8GHz, for micro cell is 1.2GHz or 5GHz and for pico cell 2.5GHz or 24GHz, with

the bandwidth less than 10GHz.

Macro Micro Pico
Typical Urban Street Canyons Tunnel/Corridor

Bad Urban Open Places Factory
Rural Area Tunnels Office/Residential Home

Hilly Terrain Street Crossings Open Lounge

Table 4.1: Cost259 specify channel models for the above environments[6]

In COST 259 models the channel is specified by the number of clusters. A cluster

is group of rays which travel approximately the same distance. Each cluster decreases

exponentially with delay. Channel is fully described by thefollowing parameters {

Pi, τi,στ,i }, where i is the number of clusters,Pi is total power in clusteri, τi is the

delay of the first path in clusteri andστ,i is ithcluster rms delay spread.

COST 259 models considered different parameters of the propagation channel such

as path loss, fast fading (small scale effect), shadow fading (large scale effects), delay

spread and angle of arrival. The drawback of all these channels are, uses less bandwidth.

3GPP channel models

The data rates provided by the 3GPP channel models are for uplink 128kbps, 5.7Mbps,

11Mbps, 75Mbps and 500Mbps, for downlink 384kbps, 14Mbps, 28Mbps,300Mbps

and 1Gbps. These channel models can be well suitable beyond 3G systems also.

3GPP (3GP (2004-12)) channel models are developed by the analysis of different

channel models in different environments. These channel models are similar to COST

259 channel models and simple to implement. These channel models are also specified
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by the number of clusters. The total power of each cluster is normalized in such a way

that the maximum total power in any of the cluster is 1W. 3GPP channel models use

up to 20 taps to describe the power delay profile, these channel taps are generated as

i.i.d random variables from uniform distribution in the interval [0, 0.4στ] , the Doppler

spectrum is RICE for LOS path, Classic for non-line-of-sight (NLOS) paths.

3GPP specify the channel models for Typical Urban (TU) with mobile speed 3,

50 and 120kmph, Rural Area (RA) with mobile speed 120 and 250kmph and Hilly

Terrain (HT) with mobile speed 120kmph. Channel modelling parameters for the above

environments are listed in the table 4.2.

Terrain Channel shape Nc Pi(W ) τ(µs) στ(µs)
TU Single cluster 1 with

with all 20 taps P1 = 1 τ1 = 0 στ,1 = 0.5
NLOS paths

RA Single cluster 1 with P1 = 1 τ1 = 0
with one 10 taps P2 = 0.43 τ2 = 0 στ,1 = 0.14
LOS path (Direct path)

HT Two clusters 2 with P1 = 1 τ1 = 0 στ,1 = 0.29
with all 10 for P2 = 0.04 τ1 = 15 στ,2 = 1

NLOS path each

Table 4.2: 3gpp channel modelling parameters for TU, RA, HT.

4.2 Adaptive line Enhancer

Adaptive line enhancer is a time varying system, which will predict the original narrow

band signal from the noisy input signal. The filter contain fixed number of taps and

weights of these taps are varying according to the error at the output (Storey (2013)).

Let say the input isr[n] = s[n]+n[n], wheres[n] is the desired signal andn[n] is the

Gaussian noise.The desired signals[n] is narrow band signal, so there is a correlation

between adjacent samples. To decorrelate the Gaussian noise we will send the delayed

version of input through the adaptive filter.

The adaptive filter predict thenth sample from previousM + 1 samples and compare

with the original input, the error in predicted output and original input is used to update
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the filter weights.

Figure 4.1: Least mean square Adaptive Line Enhancer

The Adaptive filter output

y[n] = wn.rn−∆ (4.2)

where wn = [wo w1 w2....wM ] and rn = [ro r1 r2....rM ].

The error signale[n] will be

e[n] = r[n]− y[n] (4.3)

The filter weights update using NLMS algorithm as

wn+1 = wn + µen
rn−∆

||rn2||
(4.4)

Whereµ is the step size it varies from 0 to 1. If theµ value is high the weights will be

update fastly but the error will be more. For this application theµ value is 0.001.

In figure (4.2) the red curve is sinusoidal signal added with Gaussian noise which is

the input (blue colour curve) to the adaptive filter. The green curve is the adaptive filter

output, which is the prediction to the input sinusoidal signal. The filter output is closer

estimation of the desired sinusoidal signal. The adaptive filter remove the noise to some
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Figure 4.2: Analysis of noisy sinusoidal through Adaptive filter

extend, so the SNR at the receiver will increase.

4.3 Autocorrelation

The pilot signal, which we are sending from the mobile station will place a crucial

role to get the precise time information at the receiver. Theautocorrelation function of

the signal should be sharp that mean it should decay faster, then only we will get the

accurate timing information and it is also robust to the noise added to the signal. The

signal should also be narrow band (correlation between adjacent sample), then only we

can estimate it with adaptive filter.

Fig 4.3 and 4.4 are autocorrelation functions of 1hz sinusoidal of 1s duration with

phase00 and900 respectively. The equations for the above auto correlationfunctions

are given in the appendix.

The autocorrelation with phase900 is decaying rapidly compare to00 phase sinusoidal

signal, so it is better to use900 phase shifted sinusoidal as the pilot signal instead of00

phase sinusoidal.

22



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−300

−200

−100

0

100

200

300

400

500

600

Time

A
m

pl
itu

de

Autocorrelation function of sine wave

Figure 4.3: Auto correlation function of Sine wave
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Figure 4.4: Auto correlation function of Cosine wave
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CHAPTER 5

Simulations and results

The block diagram in fig 5.1 shows, how the mobile station position estimation will be

done. Initially the mobile station sends the signal to all it’s neighbouring base stations.

The received signals pass through an adaptive filter, then wewill find the time differ-

ence of arrival at different base stations with reference toa base station, using cross

correlation (Mardeniet al. (2012)).

Figure 5.1: Block diagram of Localization system

For simulation purpose we considered 7 base stations placedat (0 0), (4.5R
√
3R/2),

(1.5R 2.5
√
3R) (3R−2

√
3R), (−1.5R−2.5

√
3R), (−3R 2

√
3R) (−4.5R−

√
3R/2),

with R = 500, the position of mobile station is at(500 600). The mobile station send

a signal (1Khz, 1ms duration sine and cosine signals) to all base stations and it will

received by base stations through different channels (for channel models refer chapter

4). It is always not be the case the mobile is in LOS with the base station, moreover



in the case of urban area the mobile is NLOS with base station most of the times. So

we added NLOS error to the distance from Gaussian distribution, which is shown in

the figure 5.2. There is also be some error in the measurement we took it has unbiased

Gaussian random variable with variance 0.01 (Hussainet al. (2012)). Finally we used

Taylor series method to estimate the position of the mobile station.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

Error Value

N
um

be
r 

of
 v

al
ue

s

Noise distribution

Figure 5.2: NLOS error distribution

Fig.5.3 and 5.4 are cumulative error distribution of mobileposition estimation, with

32 tap adaptive filter and the SNR at the receivers are 5db and 15db respectively. Fig.

5.5 and 5.6 are also cumulative error distribution of the mobile position estimation, but

with 128 tap adaptive filter and the SNR’s are 5db, 15 db respectively. In both the cases

cosine wave performs better than sine wave.

As the number of filter taps increases, the accuracy of estimating mobile position

increases. The estimation accuracy with cosine wave at 5db SNR, with 32 tap adaptive

filter is better than sine wave at 15db, with 128 tap filter. By using cosine waves we can

also reduce the number of filter taps, so that the computationcomplexity of the system

will also reduce. The mean error in estimation of mobile station with sine and cosine

waves are pilot signals are shown in table 5.1.

In all the cases with cosine wave as a pilot signal,90% of error is below 100 meters.

We can say that at minimum possible conditions, for67% of call the error will be below

100 meter. So this is usefull for E911 applications and for other applications such as

25



0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Estimation With noise [0 200]

Error in meters

C
D

F

 

 

Cosine

sine

Figure 5.3: Error cdf with 5db SNR and 32 taps

S.NO taps SNR (db) mean error mean error
with sine with cosine

1 32 5 133.06 44.71
2 32 15 95.322 29.71
3 128 5 116.77 37.63
4 128 15 93.79 28.64

Table 5.1: Mean errors in mobile position estimation

navigation and tracking of vehicles.
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Figure 5.4: Error cdf with 15db SNR and 32 taps
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Figure 5.5: Error cdf with 5db SNR and 128 taps
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Figure 5.6: Error cdf with 15db SNR and 128 taps
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CHAPTER 6

Conclusion

To estimate the mobile position using TDoA we require at least 3 base stations. The

estimation is possible when the mobile is in standby mode.

The Taylor series algorithm performs better than two step algorithm, but the problem

with it’s initial guess. If the initial guess will be close then it will converge in lesser

number of iterations, which is computationally efficient.

The time difference information is based on the autocorrelation function of the pilot

signal. If the autocorrelation function of the pilot signalsharp we will get the precise

time information.

We test the above system in different channel models such as COST207, 3GPP and

GSM channel models. The error in location estimation also depends on the channel

models. This localization system will be usefull for most ofthe applications including

E-911 emergency services.

6.1 Future work

Choose the initial guess of the Taylor series method such that it will surely converge

with lesser number of iterations.

Choose the pilot signal which has narrow bandwidth and it’s autocorrelation function is

sharp and decay faster, so that we will get accurate time information.



APPENDIX A

APPENDIX

The autocorrelation function of sine wave of 1hz frequency and 1s duration. Consider

the duration of 1s is 1 unit.

For0 < τ < 1

Rxx(τ) =

∫ 1

τ

sin(2πt) · sin(2π(t− τ)) dt (A.1)

= cos(2πτ)

∫ 1

τ

sin2(2πt) dt− sin(2πτ)

∫ 1

τ

cos(2πt)sin(2πt) dt

=
1

2

(
cos(2πτ)

∫ 1

τ

(1− cos(4πt)) dt− sin(2πτ)

∫ 1

τ

sin(4πt) dt

)

Rxx(τ) =
1

2

(
cos(2πτ)

(
1− τ+

sin(4πτ)

4π

)
− sin(2πτ)

4π
(−1 + cos(4πτ))

)

The autocorrelation function is symmetric, so

Rxx(τ) =
1

2

(
cos(2πτ)

(
1− |τ|+ sin(4π|τ|)

4π

)
− sin(2π|τ|)

4π
(−1 + cos(4πτ))

)
, for |τ| < 1

= 0, otherwise



Similarly the autocorrelation function of 1hz, one second duration cosine wave is

given by

For0 < τ < 1

Rxx(τ) =

∫ 1

τ

cos(2πt) · cos(2π(t− τ)) dt (A.2)

= cos(2πτ)

∫ 1

τ

cos2(2πt) dt+ sin(2πτ)

∫ 1

τ

cos(2πt)sin(2πt) dt

=
1

2

(
cos(2πτ)

∫ 1

τ

(1 + cos(4πt)) dt+ sin(2πτ)

∫ 1

τ

sin(4πt) dt

)

Rxx(τ) =
1

2

(
cos(2πτ)

(
1− τ− sin(4πτ)

4π

)
+

sin(2πτ)

4π
(−1 + cos(4πτ))

)

The autocorrelation function is symmetric, so

Rxx(τ) =
1

2

(
cos(2πτ)

(
1− |τ| − sin(4π|τ|)

4π

)
+

sin(2π|τ|)
4π

(−1 + cos(4πτ))

)
, for |τ| < 1

= 0, otherwise
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