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ABSTRACT

With the sale of smartphones touching 207.7 million, alone in the fourth quarter of
2012, the mobile boom has reshaped the way we interact with new technology. With greater
processing power, multiple cores, sensors, displays and cameras being put into faster and
efficient mobile phones, virtual reality has made a tremendous breakthrough. The most
important things required for any virtual reality application to appear realistic and pleasing

are geometry and lighting information.

This thesis explains about the geometry and the lighting information, all obtained from
a single image of an indoor environment. The Manhattan-geometry which is very well ob-
served in indoor scenes plays a pivotal role in inferring geometry from the scene. On the
other hand, specularity found in a scene carries a lot more information about the lighting
of the scene. Separating out specularity in a scene opens up its uses to estimate light chro-
maticity and finding the better albedo. However, the lack of knowledge of depth from a
single scene is tough to handle. To provide a solution for this, our method uses a Kinect
depth sensor provided by Microsoft to get the 3D information of the world. Using infor-
mation about the 3D world and the normals, we present a simple approach to estimate the

position(s) of light source(s).

The basic aim of this thesis is to provide a platform for augmented reality by providing
information about the scene geometry, light chromaticity, correct albedo and light source

positions to be able to render a scene.

il
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CHAPTER 1

Introduction

1.1 Motivation

Sometime around 300 B.C., in Alexandria, in ancient Greece, Euclid laid down the prin-
ciples of binocular vision, that each human eye sees a slightly different view of the same
scene. Since then depth and three-dimensional information have been a part of our devel-
opment (Sammons, |1992). Over years and centuries together, science and art have been
applied together to amuse humans by creating 3D effects. However, it was only in the
nineteenth century that there were significant developments in this field. More precisely
in 1838, an English scientist Sir Charles Wheatstone (Sammons), [ 1992)) developed a device
for viewing a stereoscopic pair of separate images, depicting left-eye and right-eye views
of the same scene, as a single three-dimensional image. This particular invention spurred
a boom of three-dimensional revolution and lead various scientists, artists, photographers,
cinematographers to present a perfect picture in 3D. What we see today available easily as
a medium of entertainment, education and economy, 3D pictures, comics and films have

indeed come a long way.

1.2 Overview of extracting 3D information

Inferring 3D from a scene has always been an important part of research in computer vi-
sion. Generating 3D models is very closely related to estimating depth. In fact, 3D and
depth go hand-in-hand from a research point of view. From self-navigating robots, self-
localizing humanoids to autonomously driven cars, 3D computer vision algorithms have
always played a significant role. Depending on the data available, the environment, the

requirement and the application, different depth estimation systems have been developed



and used. Depth extraction techniques can be classified as depth from multiple-images or

depth from single-image.

1.2.1 Depth and 3D from multiple images and videos

Depth information from multiple-images makes use of the point correspondences among
the scenes captured from cameras at different locations. A classical example of this is the
3D reconstruction from stereo-vision systems (Hartley and Zisserman, |2004). The basic
ideas behind these algorithms is disparity and parallax. More or less, all the codes follow a

very similar approach. The important steps are feature detection and matching.

Also, depth information can be inferred from videos based on properties of optical-
flow and camera motion. These are used to make stereoscopic-3D. There are some semi-
automatic 2D-3D conversion systems which take manual inputs, such as multiple segmen-
tation of semantic classes in the key frames of a video sequence, manual labeling of dispar-
ity in the key frames and deciding shot boundaries. Then using these inputs, they perform
motion estimation for dense disparity propagation from key frames-to-non-key frames. One
of the works which uses this is of (Cao et al., 20115). A similar approach based on esti-
mating depth from a video sequence was given by (Huang et al., [2009). His approach is
to extract motion vectors from H.264 encoded video, generate initial motion based depth
map, detect moving foreground objects and modify the depth map and extract depth based
on geometrical perspective and perform depth map fusion using information from both the
depth maps. All these algorithms and methods are directed more towards providing con-
tent for 3D TV. A general overview and comparison study of various 2D to 3D conversion
systems can be found in the research assignment by Q. Wei (Assoc et al.,[2005). A critique

of many such methods is described in a magazine article by (Cao et al.,[2011a).

1.2.2 Geometric reasoning from a single image

Depth information from a single image is a very challenging problem and there is as such no

unique mechanism to infer depth from a single image. However, there have been various



approaches to extract 3D information based on low-level image features such as edges,
colors, vanishing points, textures, etc. These approaches use the knowledge of the three-
dimensional world and try to use these features to make an estimate of the 3D world. An
example is David C. Lee’s work on geometric reasoning from a single image (Lee et al.,
2009), which is closely followed in this thesis. A very similar approach could also be found
in (Delage et al.,[2005)’s work on automatic 3D reconstruction of indoor Manhattan world
from a single image. However, researchers have shown that there have been breakthroughs

in finding depth based on object-class and surroundings.

Some of the related works done recently in the context of 3D scene interpretation are

as follows:

e Geometric Context from a Single Image: (Hoiem er al., 2005)’s work is based on
a learning model to infer properties of a 3D geometric structure using various cues
for surfaces. To obtain useful statistics for modeling various geometric classes, they
build the structural knowledge of the image from pixels to super-pixels (a fine way
of image segmentation done in patches) and from super-pixels to multiple potential
groupings of super-pixels. The various cues used are color, location, shape, texture,
long lines, vanishing points, image gradients, etc. to classify ground, sky and vertical
regions, which are further subdivided according to their planar orientation given by
right-facing planes or left-facing planes or upright planes and non-planar regions as
solid or porous regions. This approach is mainly for outdoor scenes.

e Learning Depth from a Single Monocular Image: (Saxena et al.| 2005) get depth
information from a single image based upon training a collection of monocular im-
ages and their corresponding ground-truth depth maps. They use discriminatively-
trained Markov Random Fields (MRF) that incorporate many local- and global-
image features. Further, these features are used to predict depth map under a super-
vised learning scheme. His Make3D (Saxena et al., 2009) also uses same approach
to learn 3D structure from a single image.

e Recovering the Spatial Layout of Cluttered Rooms: (Hedau ez al., 2009) (Hedau
et al.,2010)’s works focus on getting a spatial layout of an indoor environment. Their
approach is based on finding straight lines in the image and grouping them into three
orthogonal sets corresponding to the 3D co-ordinate system to find the vanishing
points for each set. From these vanishing lines and vanishing points, they rank the
best possible candidate box for a scene based on learned parameters. The clutter in
the room is then found using the ground-vertical line and the learned box model. The
surface layout is further classified, similar to (Hoiem ez al., 2005)’s work.

e Depth Information by Stage Classification: (Nedovic et al., 2007) have proposed
scene categorization as a step to estimate depth. Few of the salient points from their
paper is about the relation between image statistics, scene structure and depth pattern.



When the scene is small, larger surfaces merge into coarser structures showing finer
details of the depth. As the scene depth increases, more and more objects are added
to the scene and the texture of the various patches carry some information about the
depth at those patches. Thus, that paper shows a way to simply categorize various
elements in a scene and estimate depth information.

e Others: There have been many other approaches such as estimating average depth
sense of the scene based on global Fourier transform and local Wavelet Transform
(Torralba and Olival, 2002)), calculating distances between planes from a single scene
and performing various geometric estimations mentioned in (Criminisi et al., [2000),
(Criminist, 2001)°’s works on single view metrology, etc..

In the later part of this thesis, the Kinect sensor (provided by Microsoft) (Microsoft,
November, 2010) has been used to get the corresponding depth map of the scene. Kinect is
a motion sensing input device having a color camera, an infrared projector and an infrared

camera. More detailed discussions about Kinect are given in Chapter 4.

1.3 Importance of lighting information

Changing gears, light plays an important role in augmented reality. Augmented reality is
about merging of two worlds - real and virtual. The "naturalness" of any scene can be taken
off easily if the lighting of the scene is not properly known. Any lighting system can be
quantified by the number of light sources, their corresponding chromaticity (i.e., color of
light) and the position of these light sources in the real world. The interplay of these light
sources with the objects and the surfaces in the scene presents a challenging scenario in
computer vision and computer graphics. Convincing shadows, inter-reflections and proper
illumination do make virtual objects in a scene or a video appear more realistic. Since, one
of the basic aims of augmented reality is to make virtual world close to reality, lighting

indeed becomes an important quantity.

In general, any computer graphics application requires the designer to specify the exact
location of source of light, its shape, color, intensity, etc. to model its effects in a scene.
However, the inverse problem of getting lighting information from a scene is not at all an
easy task. A survey of light source detection methods (Funk, 2003) by Nathan Funk gives

a good overview on the state-of-the-art light source detection methods.
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1.3.1 Overview of different light estimation systems

There are many solutions proposed till date for light source detection. One of the first
methods by Ullman (S.,|1975) for light source detection was based only for images having
light sources explicitly inside the image. But most of the light source detection methods are
fine tuned for light sources which are not inside the image, but somewhere in the surround-
ing. Today many solutions make use of complex hardware setup such as high dynamic
range cameras, high resolution cameras and light probe cameras to detect light sources.
However, recently there have been significant advances in making light source detection
possible with cheap hardware setups such as the Kinect (Neverova et al.,[2012) (Neverova,

2012). Following are some of the methods:

e Image Based Lighting: (Debevec, 2002) in his tutorial on Image Based Lighting
brings in the flavor of computer graphics. He uses light probes such as spheres kept
in the scene to estimate the light source and then renders the scene by a complete
graphics based approach. This approach is widely used in movie productions and
gaming where user satisfaction is more concerned at the cost of time and computa-
tional resources. Most of the graphics related methods involve ray tracing and ray
casting algorithms, which are computationally very expensive.

e Estimating the Natural Illumination Conditions from a Single Outdoor Image:
(Lalonde et al., 2012) present a probabilistic approach in modeling the position of
the sun in an outdoor scene. They also model the clouds which may occlude the
sun’s visibility. The probabilistic model is formed by a data-driven approach where
parameters are combination of weak cues that can be extracted from different por-
tions of the image: the sky, the vertical surfaces, the ground, and the convex objects
in the image.

e Markerless augmented reality with light source estimation for direct illumina-
tion: (Frahm er al.| 2005) developed a system for inserting a synthetic object into a
scene in real-time. Their approach uses an offline tracking of the scene with a nor-
mal camera and a fish-eye lens. The camera scans the entire space of the scene and
the fish-eye lens captures the lighting in the scene. The light sources are estimated
from the fish-eye lens. After aligning the images captured from two different moving
cameras, a 3D model is reconstructed with position of light sources estimated and a
synthetic object is rendered into a real scene.

o Identifying Image Authenticity by Detecting Inconsistency in Light Source Di-
rection: (Lv et al.,[2009) developed a very simple approach based on detecting forg-
eries in the image by estimating the light source directions in the suspected patches.
They use a blind identification process to detect the light source directions either at
a finite or an infinite distance. They model the light source direction as a solution to



a least-square method with error function being the measure between the actual light
intensity and calculated light intensity.

e Probe-free method:Some other approaches are based on detecting shadows of ob-
jects of known geometry (Madsen and Nielsen, 2008) to make light source detec-
tion a probe-free method. As can be seen from few of these examples above, light
source detection involves a lot of external hardware which may not be easily avail-
able. Hence, such methods are definitely useful.

1.4 Problem Statement

We believe that a single image does carry a lot more information than what meets the eye.
Keeping the approach intact to a single image of an indoor scene, this thesis aims at infer-
ring geometry and lighting accurately to the extent possible. Although depth information is
not easy to derive from a single image, using depth sensor like the Kinect, 3D co-ordinates
of the scene can be exploited to estimate the position of light source affecting the scene.
The objectives of this thesis are:

1. to get 3D information about orientation of surfaces from a single image of an indoor
scene,

2. to be able to detect the possible locations in a scene where the light sources are likely
to affect; when no information about the light sources is available.

3. to estimate the correct chromaticity of light from a single image, normalize the image
to get good color constancy, and in the process, remove inter-reflections in a scene,

4. to get the correct albedo of the scene and utilizing it for rendering a scene and

5. to use a cheap depth sensor like Kinect to get the depth map of the scene; since, depth
is not easy to get from a single image, and use this depth to estimate the light sources
which are affecting the scene.

All the algorithms are developed for indoor scenes where the indoor environment fol-
lows the Manhattan-world assumptions very closely. This paves the way to provide a plat-
form for removing user interactions which are there in a recent work on rendering a syn-
thetic object into a scene (Karsch er al.l 2011). Also, it provides insights into the amount
of information which just a single image provides. This thesis presents a unique way of

estimating light sources, different from most of the traditional approaches. The specularity



in an image holds a key element for estimation of light source. The approach taken in this
thesis closely follows (Neverova et al., 2012)) and (Neverova, 2012))’s works on light esti-
mation in indoor environment. It would be relevant to quote from The Merchant of Venice
by William Shakespeare - "How far that little candle throws his beams! So shines a good
deed in a weary world" and yes, indeed this shine in the cluttered environment does a good

deed for our algorithm. So, let there be light!!!

1.5 Organization of the thesis

Chapter 2 explains the method used to infer 3D geometry from a single image by getting
possible line segment candidates, detecting vanishing points and estimating orientation of

planes. This chapter also contains the results as well as the system limitations.

Chapter 3 deals with getting lighting information from a single image. It discusses
about specularity as an important intrinsic image quantity. It also talks about Retinex theory
and explains the methodology to detect light chromaticity and removing specularity and

inter-reflections in the scene.

Chapter 4 brings in a new component to the thesis by using a depth sensor hardware as
an image capturing device and getting the information of 3D world co-ordinate and normal
at every pixel. This information about the geometry and the knowledge of depth helps in
better understanding the lighting in the scene. The chapter discusses in detail the reflection

model and exploits this information to detect the light sources in the image.

Chapter 5 throws some light on possible applications and extensions to this thesis along

with conclusions.



CHAPTER 2

3D geometry from a single image

This chapter explains the process of generating 3D orientation estimates of a scene based
on geometry. As explained earlier, the images considered in this thesis are only indoor en-
vironments. The indoor environments follow the Manhattan world very closely, by which,
we mean that entirely all the architectural buildings follow the 3D co-ordinate system of
vertical planes, ground and ceiling being orthogonal or parallel to each other. This scenario

presents a unique way of interpreting scenes and geometry from just a single image.

This chapter closely follows the works of (Lee e al., [2009), (Hedau et al., 2010),
(Rother, 2002)) and uses some functions available in Kovesi’s MATLAB toolbox (Kovesi,
2000). The entire algorithm is implemented in MATLAB. Few images of indoor scene
were taken from the data set mentioned in (Hedau et all, 2010) as well as on from NYU
data set (Silberman and Fergus|, 2011). These data sets provide images of various rooms,
hallways, offices, corridors, etc.. Although clutter, inclined planes, undetected as well as
false edges pose a challenge in estimating the 3D geometry of the indoor environment,
the process followed in this thesis proves to be very helpful in understanding the surface

orientations in the scene. A detailed approach is explained below.

2.1 Get possible line-segment candidates

The following procedure to get line candidates uses some standard functions from MAT-
LAB toolbox given by (Kovesi, 2000) that are tweaked as per the requirement of the sys-
tem. This is a very widely-practiced and effective approach taken towards classifying line

segments.

Given any image, the first step of the algorithm is to convert it into a gray scale image.

For getting a better contrast in the image in order to detect as many edges as possible, the



() (b)

Figure 2.1: Canny edge detection (2.1b]) on the given image (2.1a)) with threshold [0.1 0.2]
and Gaussian smoothing using variance 1.

image is histogram equalized. A Canny edge detector (Canny, [1986) proves to be a bet-
ter candidate as compared to other edge detecting methods because of Gaussian smooth-
ing operation, non-maximum suppression and double thresholding. For our purpose, the
smoothing parameter is taken as 1, and the threshold [0.1 0.2] works out decently for an

indoor setup as shown in Figure[2.1]

The next step is to fit line-segments to an edge. A minimum length for the edge to
be classified as a line segment is calculated and is a function of the image size, usually
taken as %th of the diagonal of the image. It is necessary to discard short edges to avoid
confusion to the algorithm. It is always the longer edges which have more significance in
detecting the vanishing points. Given the image and the edge points, it is necessary to track
all the edges. A raster scan through image is performed looking for edge points. Each edge
point is considered as a starting point and edges are tracked in a particular direction. The
connectivity for an edge is considered as its standard 8-pixel neighborhood. Till the point,
such connected edges are found, the edges are stored in an array and labeled accordingly.
When no more connected edges are found, the edge is tracked in the opposite direction
from the previous starting point. This process is followed blindly for every edge point
found. The edges whose length is shorter than the minimum length are discarded. At this
stage, all the edges are stored in a form of list containing points corresponding to those

edges and labeled accordingly.

Once all the edge arrays are listed, it is necessary to generate line-segments. This



Figure 2.2: Line-segments (Figure i are fitted onto the edge image (Figure .

is performed by checking how straight a particular edge is. Given a particular edge, the
deviation of the midpoint of that edge from the line joining these endpoints is checked.
If this deviation is above a certain threshold, then the same procedure is followed; now
considering the midpoint and the end points as two separate edges. In simple words, given
any edge, we check how closely it can be imitated by various line-segments. Again the
shorter line segments are discarded. At the end of this stage, all the possible line-segment
candidates are available for further processing. Figure shows the line-segments (Figure
[2.2b)) being fitted onto the edge image (Figure [2.2a) obtained by Canny edge detection
(Canny, |1986).

2.2 Vanishing point detection

Most of the indoor images are taken upright with the vertical edges/walls appearing straight
in the image. This proves to be an important starting point to classify line-segments which
are vertical. All those lines which subtend a small angle (for our experiments, we consider
20° as the threshold) to a point (i.e., [0, 10°]) very far away in the top of the image plane are
classified as vertical lines. These lines are then used to find a common intersection point

corresponding to these lines, which is nothing but the vertical vanishing point.

A RANSAC (Random Sampling Consensus) approach is used to decide which lines

among those classified as vertical lines are used just to speed up the process. A vertical
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Figure 2.3: Explanation of distance between a vanishing point and a line-segment given in
Figure [2.3a} Figure 2.3b]explains the distance between a line and a segment as
used in the code (Image source: (Rother, 2002)).

vanishing point is decided depending on a voting algorithm explained in (Rother, [2002).

The possible candidate gets votes which are decided by:

d(a,s) length of s
t = l———— 2.1
vote(a) Z o ( ta ) T <max length of s) 1)

all s vote for a

where s is a line-segment which votes for a possible vanishing point candidate a only if the
distance d(a, s) is below a certain threshold ?,. In this notation, d(a, s) is defined as the
angle between the corresponding line-segment s and a point a. The concept of the distance
between the vanishing point and a line-segment is shown in Figure [2.3a] and the distance
between a line-segment and a line is shown in Figure [2.3b, In this context, distance is
calculated as the angle subtended by a point on the mid-point of the line-segment. Also
more weightage is given if the length of the line-segment s is more. The weights w, and
wo are taken as 0.3 and 0.7, respectively. The angular threshold ¢, is taken as 10°. Once the
vertical vanishing point is decided, the set of lines which now subtend a small angle (10°)
are classified as vertical lines. Others are used in computing the remaining two vanishing

points.

The process of finding the second and third vanishing point uses the fact that these
three vanishing points are orthogonal to each other in real world. Also in the image plane,

from the properties of the vanishing points, they follow orthogonality criterion and camera
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Figure 2.4: Explanation for the camera geometry and the orthogonality criterion (Image
source: (Rother, [2002))).

criterion to compute the other two vanishing points. The orthogonality criterion is shown

in Figure [2.4]and can be explained as

< cvy,cvg >= 0, < cvg,cvg >=0and < cvs,cvy >=10 2.2)

The camera criterion makes use of the knowledge of principal point and focal length. For
known camera intrinsic values, these are exact values, otherwise some empirically decided
ranges and values for camera intrinsic parameters are used to decide which value makes the
vanishing point orthogonal as explained in (Rother, 2002). The vanishing point may be at
infinity in certain cases; but in our case we assume it to be finite for all the three directions.
In this thesis, infinity is assumed as 107 (in pixels) for simplicity. A simple algorithm to

explain the above express is explained below.

Algorithm 1 Find all vanishing point
Inputs: v, : Vertical vanishing point i.e., highest vote accumulator as explained before
Output: [v, v, v3]: Orthogonal vanishing points
: Use other lines which do not belong to vertical vanishing point v
: Go through all pairs of possible vanishing points pair v; and v;
if (v1, v;), (v, v;) and (v}, v1) satisfy vanishing line criterion then
if Orthogonality criterion and camera criterion is satisfied by (vy, v;, v;) then
Compute vote = vote(vy) + vote(v;) + vote(v;)
end if
end if
: Take (v;, v;) with the highest vote vote

AN AN A
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Figure 2.5: Detected line-segments, which are used to calculate the vanishing points. The
three colors (red, green and blue) correspond to the line-segments for three
vanishing point. One of the vanishing point is shown as a blue cross in the
image. Other vanishing points are finite, but very far away in the image plane.

(b)

Figure 2.6: Another example showing the detected line-segments (Figure [2.6a) (yellow
lines indicate outliers); corresponding vanishing points for the scene (Figure

The method to tackle vanishing point at infinity is explained in 2002) but not
considered in this thesis. This approach has been followed by (Lee ef al.l 2009), (Hedau

et al,2009), (Hedau e al.,[2010)), (Karsch er al.,2011) and (Neveroval, 2012). Hence, this

too becomes more or less a standard algorithm, when it comes to detecting vanishing points

in indoor environment. The detected vanishing point for the image under consideration
(Figure [2.14) is shown in Figure [2.5] The vanishing point is shown as a blue cross in the
image. Another example to show all the three vanishing points in the image plane is shown

in Figure [2.6] The vanishing points are indicated as blue crosses.
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2.3 Inferring orientation of planes

Once the vanishing points and the best set of lines corresponding to those vanishing points
are decided, it is important to estimate what the combination of these lines means. This
work was inspired from Geometry Reasoning for single image structure recovery (Lee
et al.,2009). The basic idea of this section is as follows: given that the surfaces are oriented
along three co-ordinate axes, the set of lines which form a particular surface are very well

defined and are unique for that particular orientation.

For example, consider Figure 2.7 below.

P

Figure 2.7: A surface inferred in between lines p;ps and p)p, (Image source: (Lee ef al.,
2009)).

A line-segment p;p- belonging to line [ has the vanishing point v, lying on it. Any
surface can be formed by sweeping a segment about the vanishing point in a particular
direction until it is restricted by another line belonging to the same vanishing point. In
this case, that line is given by p/p,. As per simple logic, the other set of line completing
the surface must belong to another vanishing point. As shown in Figure the vanishing

point v, will give the line-segment p,p}. The point p} can be given by

P =p +a(v,—p) (2.3)

The point p}, is given by the intersection of the lines v,p} and v,p,. In a similar manner,
we can sweep the surface in the opposite direction, where the sweep is given by 3. Rest
of the nomenclature remains the same. Thus, the set of pixels that is supported by all such

lines can be given by Sw(l,;, vy, &y;) and Sw(l,;, vy, B/x\ ;) (I; indicates all those lines

14



belonging to vanishing point v,) (Lee et al., 2009), where
a,; = max(a) and 5/; = max(3) (2.4)

From this formulation, it is clear that the orientation of a plane whose line-segments belong
to vanishing points v, and v, must be oriented in the direction of the other remaining
vanishing point v,. So the entire set of of pixels that is supported by all lines belonging to

v, and swept toward v, in the orientation of Z is

P:cyz - U Sw(l:c,hvyyaw\,i) Usw(lm,wvyyﬁ/a:i) (25)

all lw,i

This is done for all the three vanishing points and using combination logic, the surfaces
are inferred from these. The result of this stage is the estimated geometric surfaces from a

single image (Figure[2.8)). A simple algorithm is explained below.

Algorithm 2 Inferring orientation of planes

Inputs: Line-segments, Vanishing points

Output: Orientation map of the scene

. Initialize a cell for all vanishing points and line classes.

: Each cell corresponds to a image plane.

: for Every line-segment do
Find the line class i.e., which direction it belongs to. R
Find polygons which fit the plane as given by Sw(l;, v;, &) and Sw(l;, v;, 3).
Assign that polygon a plane label.

end for

: Use combination based on which plane will be formed by which set of vanishing point
and line class. Assign that as orientation map by combining all.

AN A A

To be able to detect a good estimate of the orientation of the scene, more number of
line-segments are required. Hence, Canny edge detector (Canny, [1986) with Gaussian
smoothing parameter of 0.5 is used. Figure|2.8alis the resulting edge map and Figure [2.8b
shows the line-segments fitted onto those edges. Figure [2.8d)is the estimated orientation

map of the scene while Figure is the corresponding ground truth. More results follow.
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Figure 2.8: For detecting orientation map (2.8d), more lines (2.8b) are required which are
obtained from a finer edge map (2.8a)) and vanishing point information as ex-

plained in Section 2.2]

2.4 Results

The images on which the experiments were performeded consist of various scenes. The
images presents a very well balanced mixture of varying environments. Some results are
shown in this section and they include cases where the estimated maps have come good as
well as not that good. There are some failure cases as well. Also, an analysis of the results
obtained is performed and follows the results. Later, some of the limitations and challenges

are discussed in Section 2.31

Figures [2.94) and [2.10a show the original images. The inferred orientation maps are

shown in Figures[2.9band [2.10b} respectively. The corresponding groundtruth orientation
maps for these images are shown in Figures [2.9¢]and [2.10¢] respectively. It can be observed

that the geometry is very well defined in these scenes and the orientation maps have come
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Figure 2.9: Estimated orientation map (Figure [2.9b)) corresponding to image shown in Fig-
ure[2.9a The groundtruth for the same is shown in Figure

(b)

(b) (©)

Figure 2.10: Estimated orientation map (Figure [2.10b) corresponding to image shown in
Figure 2.10a] The groundtruth for the same is shown in Figure 2.10c]

out really well. Very small portions are missing in the orientation maps due to presence of

some object in the scene.

(@) (b)

Figure 2.11: Inferring orientation maps in presence of clutter. (Case: well defined geome-
try in the scene.)

In some cases there is a lot of clutter in the room and that poses a challenge to the algo-

rithm. Yet, the geometry is inferred blindly (Figures[2.11bland 2.12Db) to get the surfaces in

17



between the detected line-segments. It can be seen that because of the presence of clutter
in the scene, the orientation map do not come out continuous. In scenarios, where walls
or edges are partially visible (Figure [2.12a)), getting orientation map does not make much

sense.

Figure 2.12: Inferring orientation maps in presence of clutter. (Case: not much geometry
can be inferred anyway.)

However, there are few errors in detecting the planes because of wrongly detected line-

segments as shown in Figures [2.13al and [2.14al This results in getting false orientation in

some patches. In some cases, due to absence of any strong lines or planes, the algorithm
completely fails as shown in Figure 2.15b] Also, it can be seen from Figure [2.154] that
because of false classification of line-segments in the scene, the algorithm fails and is not
suitable to be used under such scenarios. Thus, to make use of this algorithm, 3D geometry

of the scene should be perfectly captured in the scene.

(b)

Figure 2.13: Example 1: Minor error due to wrongly classified line-segment.
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(a) (b)

Figure 2.14: Example 2: Minor error due to wrongly classified line-segment.

(b)

Figure 2.15: Failure cases
2.4.1 Analysis of the results

The overall analysis of this algorithm is shown in Table 2.1 The result was obtained on

60 indoor scenes obtained from different datasets available mentioned in (Hedau et al.|

2009), (Neverova et all [2012). The images offer a great variety of indoor environments

right from alleys, offices, kitchens, study rooms, shops, bedrooms, etc.. The analysis was
done on two sets of results of orientation maps. In the first set of results, the minimum
length of the line to be considered was %m of the length of the diagonal (in pixels) of the
image for detecting the vanishing point and %th of the length of the diagonal (in pixels) for

detecting the orientation map. The other set of result (shown in Figures [2.16a] and [2.16b))

was obtained using a fixed minimum length of 5 pixels for all the images, which is much

shorter length than the previous case.
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(b)

Figure 2.16: Results obtained allowing short lines.

To tell whether the orientation of a pixel is correct, a groundtruth orientation map was
manually sketched using GIMP. We sketched the groundtruth and colored the planes in the
scene according to the three colors (red - for floor and ceiling, green - for side walls and
blue - for background) used to display our results. The groundtruth drawn neglected small

clutter or objects in the scene and a coarse-groundtruth was only considered. Some of the

examples of groundtruth are shown in Figures [2.9¢| 2.10c} [2.13b] and [2.14b]

The entire analysis done on the 60 images is shown in Figure[2.4.1] Figure[2.17ashows
the percentage of detected pixels for all images in Set 1. Figure 2.17b|shows the percentage
of correctly detected pixels out of the detected pixels for Set 1. Similarly, Figures and
[2.17d|show the percentage of detected pixels and correctly detected pixels among those for
Set 2. In Figure 2.4.1] all the bar graphs have Y-axis as the percentage of detection and

X-axis as the image number.

Another set of analysis was done on 39 images, where the principal point and the focal

length were known and so, this knowledge was used to detect orientation of the plane.

These images were obtained from NYU dataset (Silberman and Fergus, 2011)). The analysis

of the result obtained from these 39 images is shown in Table[2.2]

It can be seen from the tables that the number of pixels detected will increase when we
allow shorter line-segments to decide the orientation maps. When compared to the coarser
groundtruth maps, the accuracy will go down. However, the shorter line-segments capture

few small planes very well which might be planes of objects in the scene. The images also
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Figure 2.17: Analysis result for the 60 images.

consisted of some indoor scenes where geometry was difficult to tell.

Roughly, it can be said that the orientation map is detected for about 70% of the image
and out of these detected pixels about 80% are correct. However, when images where
geometry is very well intact, the detection rate can go upto 80% with an accuracy of 85 —

90% correct detection.

For the first set of results, a visual inspection was performed. On a scale of 0 — 10 (0
being the worst and 10 being the best), 60% of the images show a score of 7 and above
and the average visual score for the 60 images is about 6.5. For the 39 images from NYU
dataset, the average visual inspection score is 6.69 and more than 64% of the images have
score of 7 and above. It can also be observed that perceptually, the results from Set 2

(Figures [2.16a) and [2.16b) are not appealing because allowing short line-segments results

in many smaller, thinner and discontinuous orientation planes, which are not likely to be

found in an indoor scene. Such cases occur only when there is a lot of clutter in the room;
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in which case, inferring geometry from such a scene becomes a difficult task.

Item Set 1 Set 2
minlenl = *diag minlenl = 5
minlenl = - *diag minlenl = 5
Average pixels 67.49% 68.58%
detected S.D. = 10.66% S.D. = 5.31%
Accuracy of detection | 78.24% 65.93%
S.D. =13.03% S.D. 15.78%
MAX = 95.10% MAX = 92.6%
MIN = 37.1% MIN = 21.8%
Images having above
average correct 20(66.67%) 33(65%)
detection and their MEAN = 85.65% MEAN = 74.99%
mean S.D. = 4.33% S.D. = 6.05%

Table 2.1: Analysis of 60 images.

Item Set 1 Set 2
minlenl = ;- *diag minlenl = 5
minlenl = - *diag minlenl =5

Average pixels 66.25% 68.61%

detected S.D.=11.2% S.D. = 4.45%

Accuracy of detection | 79.79% 67.27%
S.D.=12.8% S.D. 15.37™%

Images having above
average correct
detection and their
mean

2(64.10%)
MEAN = 86.42%
S.D. = 3.45%

28(71.79%)
MEAN = 74.63%
S.D. = 4.88%

Table 2.2: Analysis of 39 images from NYU dataset.

2.5 Limitations and Challenges

The limitations and challenges faced by this approach are:

e The entire logic is based on the richness of the information provided by edges.

e [f it is not possible to detect enough number of line-segments, the orientation map is
coarser. To avoid this problem, the line detection algorithm is taken at two different
stages. While detecting the vanishing points, longer edges are considered. However,
while considering lines for orientation maps, short line-segments are considered.
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e False line-segments detected due to various reasons (mainly, because of presence of
gradient in the image itself) result into false orientation maps or result into small
number of false planes in between bigger planes (Figure [2.13a] [2.144).

e In places where there is no information about lines, the orientation map is missing.

One of the solutions is to correctly detect ground-vertical boundary and separate the
ground plane (Delage et al., 2005). Knowing the kind of corners formed by the connecting
surfaces in an image (Lee ef al., 2009)), reconstructing these corners in between the detected
planes can rectify some of the problems faced by this algorithm. However, this is useful if
3D reconstruction of a scene is being considered, since in such a case the entire orientation

of the room along with it’s depth information is required to be known.
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CHAPTER 3

Lighting information from a single image

As described in introduction (Chapter 1) of this thesis, there have been many methods to
get the lighting information. However, the use of a very simple approach discussed in Shen
and Cai (2009), Neverova et al. (2012) helps to estimate the light chromaticity in a given

image.

3.1 Specularity: An important intrinsic quantity

Most of the computer vision algorithms assume that object surfaces are purely diffuse (or
homogeneous) Shen and Cai (2009). However, there is no homogeneity in the real world.
Many objects such as plastic, wood, human skin, textile, ceramics, etc. are not homo-
geneous and do appear frequently in the indoor environment. Hence it is important to
consider both diffuse as well as specular reflections. This specularity carries a lot of in-
formation related to surface roughness, lighting direction or can be used for image-based

scene synthesis Shen and Cail (2009).

For any material, the diffuse and specular components can be described as follows.
Whenever a ray of light strikes a surface, some of the light ray is immediately reflected
from the surface because of the different refractive indices between the air and the surface
at that location. This part of light is called as specular reflection, which is dependent on the
local orientation and the roughness degree of the surface Shen and Cai| (2009). Thus most
of the specular reflections i.e. "interface reflections" occur due to smooth surfaces. Since
the reflection is almost mirror-like and occur in some small range of angles, it is safe to

assume that specular reflections are caused because of the perfect mirror-like reflections.

Some of the light is absorbed by the body and then reflected back to the surround-
ings. This scattering of light depends upon the inside-structure of the object. Most non-

homogeneous objects have a random structure inside them and hence it is safe to assume



that the "body reflection” is uniform in all directions and this component is termed as dif-

fuse.

The aim of this part of the thesis is to infer the light chromaticity from specularity
obtained from a single image. This section provides a strong argument that it is the specu-
larity in the indoor environment which is a strong cue for the presence of light source that
is affecting the image. Knowing the light chromaticity correctly, a scene can be very well
normalized to remove the effects of inter-reflections in the scene. This gives a better idea
of the scene and a true specular-free image is obtained which can be then further decom-
posed into intrinsic images given by reflectance and shading, as described in Lightness and

Retinex theory Land et al. (1971).

3.2 Methodology to separate specularity

This section explains the methodology used for getting a specular-free image and in the
process estimating chromaticity of the light. This work has been referred from Shen and
Cai| (2009), Neverova et al. (2012). They present a very simple and efficient approach
for removing specularity and estimating the light chromaticity from specularity. However,
there are numerous methods available to separate specularity in an image. A brief survey

on all specularity removal methodologies can be found in a survey by |Artusi ez al. (2011).

The approach is based on removing a minimum of the three color channels and then
adding a pixel dependent offset. An intuitive explanation on why this algorithm works is
based on the fact that diffuse component have higher chromaticity. Mathematically, it has
been proved in Tan and Ikeuchi|(2008). The following algorithm needs the light chromatic-
ity to be known at first. So the same algorithm is performed in two iterations. From the
result of the first iteration, the light chromaticity is estimated. Using this chromaticity, the
image is normalized and then using this chromaticity-normalized image, specular reflec-
tions are found out. This proves to be a very simple and efficient approach to remove the

inter-reflections and to get the correct diffuse and specular component of the image.
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Given a image I, the diffuse component D° can be calculated as

I if min[R(p), G(p), B T,
Do) (p) [R(p), G(p), B(p)] < a0
I(p) — ksmin[R(p), G(p), B(p)] + ksTs  otherwise

where R, G and B are the three-color channels, p is the 2D pixel co-ordinate and the
coefficient k; is set experimentally (ks = 0.6) and the threshold 7; depends on i i.e.,
the mean of all the minimum values and 03 1.e., the variance of all minimum values. The

threshold can be calculated as
T, = Us + o, (32)

where « is again chosen experimentally. Changing the value of o changes the amount
of specularity (or shine) as shown in Figure [3.1] below; the detected specularity goes on
decreasing as we go from figure to with increasing «. Lesser the a, more is the
speckle.

() (b) () (d)

Figure 3.1: Changing the value of « causes this effect. From left to right, the value of « is
0.2,0.5,1and 1.5.

The specularity component C can be obtained as

C°(p) = I(p) — D°(p) (3.3)

The superscript 0 is used just to indicate that the results are obtained from a completely

color-based approach.

At this stage, the specularity is separated from the image. From this obtained spec-

ularity component, the light chromaticity is estimated as the mean of all the specularity
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component. [Ry, G, By| gives the mean chromaticity of the specular pixels. The normal-

ized image is obtained as

R, + G, + B,
Ru(p) = R(p)T
R, + G, + B,
Gulp) = Glp)=
R, +G,+ B,
B.(p) = B (p)T (3.4)

where [R,,, G, B,] gives the normalized image. The same algorithm is then performed
over this normalized image with a different value of «. The resulting specularity is the fi-
nal specularity in the image. The result obtained is specular-free, chromaticity-normalized
diffuse, which can be used for further processing. It is necessary to perform two iterations
since the algorithm mentioned in (Shen and Cai, 2009) assumes that the specular compo-
nent be pure white (Artusi ef al., 2011). The values of o used are 0.5 for first iteration and
1 for the second iteration. However, the experiment has also been performed with different
sets of a’s ranging from 0.6 — 2 and the best possible combination, which appears convinc-
ing is selected. While deciding on the light chromaticity, the number of specular pixels for
deciding the mean p; should be high enough to make a robust estimate. This also explains
why a smaller value of « is used in the first iteration. If the number of specular pixels is
very less, then the approach taken to estimate the light chromaticity is to calculate the mean
intensity of the 10 brightest pixels in the image (Neverova et al.l, 2012). This approach is
very similar to maxRGB (Funt and Shi, 2010). Even if no specular component is found, the
algorithm is not disturbed and the desired outputs are still available. It should be noted that
the specular-free image obtained as a result of this algorithm is more close to the diffuse

component of the image (Artusi ef al., 2011).

3.2.1 Intrinsic Images

In the Lightness and Retinex theory (Land ef al., [1971), it is shown that sensations of color
show a strong correlation with reflectance. Although the amount of visible light reaching

the eye depends on the product of reflectance and illumination, it is very easy for the visual
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system to separate the amount of flux and know exactly the reflectance. A very similar

idea is also explained in (Tan and Tkeuchil [2004))’s work on getting intrinsic properties of

an image with highlights. A simple way to explain this is given by (Grosse et al.l 2009) as

follows:

e The observed intensity at any pixel p in the image / can be written as:

I(p) = p(p)S(p) + C(p) (3.5)

where p(p) is the albedo (or reflectance), S(p) is the illumination (or shading) and
C'(p) is the specularity.

e Since the specularity is removed in the previous step, it is safe to assume that the
image [ can be considered as a product of the shading image .S and reflectance image
p. It can be further expressed as:

I(p) = pp)S(p)
logl(p) = logp(p) + logS(p)
Vlogl(p) = Vlogp(p) + VlogS(p) (3.6)

where V is the gradient operator.

(d) ®

Figure 3.2: The different Retinex algorithm applied on images|3.2aland|3.2d. (Grosse et al.,
2009)’s results are shown in Figures [3.2b] and 3.2¢] (Limare ez al, 2011)’s
results are shown in Figures and [3.21]

e From the retinex theory (Land ez al.| [1971)),(Grosse ez al,2009), it is known that it is

unlikely that significant shading boundaries and reflectance edges occur at the same
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point. Thus, a simplifying assumption can be made that every image derivative is
either caused by shading or reflectance. This reduces the problem to that of a binary
classification problem (Grosse et al., 2009).

e The results obtained by (Grosse et all, 2009)’s method are shown in Figures [3.2b|
and However, the albedo obtained is dependent on the shading obtained as the
albedo and shading images occur as pairs.

e A better approach of getting reflectance only, completely independent of shading
used in this thesis is to solve the discrete partial differential equation using Discrete
Fourier Transform (Limare ef al., 2011). The results of this method are perceptually

more convincing (Figures and [3.21).

3.3 Results

Following are some results and are shown in Figures [3.3] and [3.4] Figures [3.3a] and
show the original images. The separated specularity for both the images is shown in Figures
and respectively. The chromaticity-normalized images obtained are shown in
Figures and It can be observed that a reddish tinge is removed from both the
scenes. Removing specularity from the chromaticity normalized images give the diffuse
images shown in Figures and[3.4d] The albedos are estimated using partial differential
equation (Limare et al., |2011)) and the results are shown in Figure for Figure
Figure [3.3f] for Figure [3.3d] Figure for Figure and Figure [3.4f] for Figure [3.4d] It
can be observed that it is difficult to infer any color information at some location as it is

completely lost due to specularity.

Few results on chromaticity-normalization are given in Figure [3.5] The first column
of images shows the original image, the second column are the chromaticity-normalized

images and the third column correspond to the diffuse component obtained.

To prove the point of better normalization, the algorithm was run on a dataset provided
by (Gehler et al., [2008), which included a Macbeth Color Checker in each image. The
intensity of the white square in the Macbeth color checker was manually checked and
the process of normalization agrees with the visual inspection results as well. Thus, this
algorithm also provides tools for checking color constancy or getting the color constancy

of the image.
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Figure 3.3: Estimated specularity(Figure [3.3b) from the image m Chromaticity-
normalized image is shown in Figure Diffuse image obtained is shown

in Figure [3.3d] Estimated albedos Figure for Figure and Figure [3.31]

for Figure [3.3d]
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®

Figure 3.4: Estimated specularity(Figure [3.4b) from the image Chromaticity-
normalized image is shown in Figure Diffuse image obtained is shown

in Figure [3.4d] Estimated albedos Figure [3.4¢] for Figure and Figure [3.41]

for Figure [3.4d]
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Figure 3.5: Original images are on the left, images in the middle column are chromaticity
normalized and the corresponding diffuse components are on right.

Few of the results are shown in Figure [3.6) with first row (Figures [3.6a] [3.6b| and [3.6¢)

displaying the original images from the dataset and the second row (Figures[3.6d] [3.6¢and
[3.61] respectively) displaying the results of the algorithm. The results from these images
can be visually verified by observing the color of the white square appearing at the bottom

left corner in the Color Checker.

3.3.1 Changing the light intensity

The separated specularity component, gives a simple tool to modify the light chromaticity
of the scene. The specularity component tells the places where the light is affecting the in-

tensity values. By asking a user to input which light chromaticity he wants, we can change
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Figure 3.6: The first row shows the original images. The second row shows the better
normalized images. Results are verified using the Macbeth Color Checker.

light colors as per our needs. This is done by just adding the chromaticity-normalized

diffuse to the specular component enhanced by the input chromaticity from the user.

Some of the results of the scenes are shown in Figures [3.7¢] and 3.7 corresponding
to the image shown in Figure [3.7a] Before changing the intensity of light, it has been
normalized as shown in Figure Another set of result on image [3.8ais shown. Lights
of various intensities are shown in Figures[3.8b| [3.8cand [3.8dl

3.4 Limitations

e This thesis does not compare any different specularity removal method and solely
depends on the result obtained by (Shen and Cail, [2009)’s algorithm.

e The images obtained were taken directly from the internet or from certain database,
where the actual light intensity is not known.

e The algorithm explained in this thesis computes the results for checking color con-
stancy using Macbeth color checker and relies on the fact that since, the colors in the
Macbeth color checker are coming exactly as they should be after normalization, the
light chromaticity must have been estimated correctly.
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Figure 3.7: Changing intensity and color of light source. Image is the original im-
age. Image shows the separated specularity. Image is chromaticity-

normalized image, whereas image [3.7d is the diffuse. Images and 3.71]
show the change of light color.
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Figure 3.8: Changing intensity and color of light source. Image is the original image.
Normalization not required since only white light is present. Images [3.8b}
and [3.8d|show the change of light color.
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CHAPTER 4

Lighting with normals

Till now, we have considered two independent single-image based approaches to get ge-
ometry and lighting information as discussed in Chapter 2 and Chapter 3, respectively. It
is well known that geometry and depth go hand-in-hand. However, depth is difficult to
estimate from just a single image and is an open-ended problem. In spite of inferring 3D
geometry of the scene, it is difficult to give depth sense to a scene from just a single image.
There have been learning based approaches (Hoiem et al., 2005), (Saxena et al.l, [2005),
(Saxena et al.l,|2009) as mentioned in Chapter 1. Inferring normals from a scene is also an
extremely difficult task in computer vision. However, there have been works (Sun et al.,

2008)), (Wu et al., [2008)) related to this also.

On the other hand, there has been a lot of development in the field of depth-sensing
cameras and they provide a great platform for image processing engineers. In this thesis,
we use Kinect as a depth-sensor camera to get the depth map of the scene. The depth,
geometry and specular information helps to find the position of light source. In this thesis,
we propose a method to find the single light source as well as multiple light sources. This
chapter also tries to discuss some aspects related to lighting using dichromatic reflection

model and geometry of the scene.

4.1 Kinect: An overview

The working principle of the Kinect is based on projection of a known IR-pattern which is
detected by an IR CMOS camera. Calibration between the projector and the IR camera is
done by the manufacturer. The depth map of a scene is calculated from the intensity of the
IR light pattern observed by the IR camera. The depth information has a very high accuracy
in the range of 0.8 — 1.2m; it has a medium level of accuracy from 1.2 — 2m range and be-

yond 2.0m, it has a low level of accuracy. The depth error increases quadratically from few



millimeters at 0.5m distance to 7cm at the maximum operating range of 5m (Khoshelham
and Elberink, [2012)). A depth range of 0.4 — 4.0m is considered to be acceptable range of

operation. Kinect has a normal RGB camera also. The resolution of both the IR camera
and the RGB camera is 640x480 @ 30fps with a point cloud density of about 300, 000.
However, because of the spatially located cameras, the RGB image and the depth image
need to be calibrated. Usually, the data obtained from Kinect without doing any processing
appears like the one shown in Figures d.Taland 4.1b] The correction of systematic errors is
a prerequisite for the alignment of the depth and color data, and relies on the identification
of the mathematical model of depth measurement and the calibration parameters involved

(Khoshelham and Elberinkl 2012)).

(b)

Figure 4.1: Raw result from the Kinect. shows the color camera output. is the
depth captured from IR camera.

Normal calibration techniques cannot be used because of the presence of IR camera.
For this purpose, Kinect Calibration tool-kit 2011)) is used. Few of the problems

related to Kinect are:

e Low resolution of depth and RGB image; while the region which overlaps in both
color and depth image is further small compared to the total resolution.

e Non-linear accuracy of the depth data. The accuracy deteriorates drastically as the
distance increases.

e The depth data is of low resolution and also is affected by the presence of occlusions
since the camera is a single point of view.

e The pair of IR emitter-sensor fails to provide depth information in presence of light
sources saturating the depth sensor, low albedo surfaces, object boundaries having
high curvatures, specular reflections and transparent objects.
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To have a good knowledge of the depth of the scene, it is important that the depth
image is aligned with RGB image as well as the depth image is continuous (i.e., the holes
occurring in a depth map are filled). To overcome all this, a dataset of indoor scenes

provided by NYU (Silberman and Fergus, |2011) is used. The data set consists of 2284

indoor images having aligned and filtered depth-map consisting of various indoor scenes

across NYU and also with different lighting conditions.

(@) (b)

(2 ()

Figure 4.2: Examples from NYU dataset. First column shows the RGB color image from
the Kinect. Second column shows the depth image. Third column shows the
overlap of the color and the depth image.

Some of the examples are shown in Figure #.2] Figures 4.2a] {.2d| and {.2¢| shows

the color images captured from Kinect sensor. Figure [4.2b] [4.2¢] and 4.2h| show the corre-

sponding depth maps. Figures [4.2¢| [4.21] and [4.21] show the overlap between the color and

the depth image confirming the alignment between the two images.
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Figure [4.3] show the 3D models of the images. The figure shows the 3D models as

viewed in Meshlab.

(b)

Figure 4.3: 3D models corresponding to images in4.2a| 4.2d| and {4.2g| respectively.

Exploiting this depth information available from Kinect sensor, we generate the 3D
model, calculate the normal at every pixel and then use this information to detect the source
of light. While estimating the normal, the normal is calculated by considering neighboring
points, estimating tangent planes and building Riemman graphs. This method is followed
in Meshlab and MATLAB surfnorm. However, the normal does not come out smooth (refer
to Figures: @I and @[) Hence, before using these normal, we use a function to smooth

these normal and restrict it to be either one of these 6 orientations:

[£1,0,0], [0,=1,0], [0,0,%1]

(b)

Figure 4.4: 3D models showing the effect of light. The normals are actually wrongly ori-
ented and hence those shadows are appearing.
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4.2 Exploiting 3D information

In section 3.2, we separated the specularity from a single image. The approach taken in
Chapter 3 was purely a color space based approach. Here, we bring in the information of

geometry. The specularity at a certain point can also be modeled in the following way.

Consider Figure
macicscopic parfect
spec ular direction intertacs reflecton incident light
N | /
body reflecion
\ - AR
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4 .} 4
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- * s L] - T COLORANT
L] L] . o ™

Figure 4.5: Reflection of light according to dichromatic reflection model (Image source:
(Neveroval, [2012))).

It is not always the case that the specular reflection occurs in a pure mirror-like reflec-
tion. For simplifying purpose, we can assume that the reflection is very likely in a small

range of angles around the pure mirror reflection and hence, it can be modeled as follows:

d — 2d, d — 2(n,d)n
d, — d = = 4.1
1= ) = g ] @D

1
=) (
where r is the pure mirror reflection, d is the direction vector joining the point and the
source of light and n is the normal at that point. Now whatever specularity is seen in the
camera, it is because of the fact that this particular r is aligned with the viewing direction v.
Then, it can be shown from equation and Figure {4.5| that whatever specularity is being
observed in the scene, if back-projected at those specular points will give a set of vectors d

pointing in the direction of incident lights.

d
r — 2(n,r)n = Tdl (4.2)
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The intersection of all such d’s gives us a potential light source. Writing the equation of a

line in 3D as

li = Cj + tdl (43)

where c; is a specular point in the image, d; is corresponding direction of light source (4.2))

at that point and ¢ is just a scalar quantity.

Using concepts from 3D co-ordinate geometry, it can be determined whether two lines
are parallel or coinciding, or intersecting exactly in one point or are skew lines. It was
found that in almost every case, the lines turned out to be skew. In general, it can be said
that the light source in an indoor environment is a tube, or a cluster of tubes, or a bulb. It is
very obvious from this fact that whatever light reflecting from any surface need not come

from one single point. It is very difficult to model such a lighting system as a single point.

4.2.1 Getting candidates for detection of light source

The following is the method followed to get the possible light direction candidate.

1. As explained in the Section 3.2, we separate the specularity in the image. The spec-
ularity seen in an image is same for all the three color channels. And hence, only a
gray scale (single channel) specularity is considered.

2. The specularity is normalized in the scale of 0 to 255 and only specular components
having intensities above 100 are considered. Since, specular components occur very
close to each other, mostly as connected components, it is safe to assume that they
all lie on the same plane and hence can be clustered together as one. In a window of
3 x 3, the close neighbors are averaged for the ease of computation. Depending on
how the specularity is observed in the scene, the size of this window is modified.

3. Light direction candidates at these specular locations obtained after filtering, are eval-
uated according to the formula given by equation 4.2] The equation of line passing
at a particular specular point and having direction given by equation 4.2]is given by

equation[4.3]
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4.2.2 Single light source detection

In case if a single light source is affecting the scene, an approach similar to (Lv ef al.,
2009) is used to estimate the source of light. Given that a single light source is present,
that light source can be approximated as a point light source. As discussed previously, the
specularity in the image holds information about the light sources affecting the image. The
specular component separated from an image helps to find the direction of light source. The
pixels which are classified as specular tell the locations. The locations c;s and the direction
of light source i.e., d;s calculated at those points by using equation can be written in
the form of lines 1;s given by equation Since, all such lines must come from a single
light source, they all will intersect at a point S = [S,, S, S,]. This means that, ideally, the
distance of all such lines from this point must be zero and hence, the sum of distances of

all such points must also be zero.

Considering the arguments in section 4.2 that all such lines can be skew, a light source

detection problem can be modeled as an optimization problem (refer to equation 4.4).

f(S) = f(Sara Syv SZ)
k
= Z [Distance of point S from ;] 4.4)
i=1
k
_ Z | (LUE{L — Ly,’i)(cz,i — SZ) + (Ly,i - Lz,i)(cx,i - S:p) + (Lz,i - Lx,i)(cy,i - Sy) |

i1 1Ll

where k is the number of such lines, which means the number of significant specular pixels found
in the image. Since this is a unconstrained optimization, MATLAB function fminunc is used to
optimize equation {.4] with respect to the variable S with initial condition as the origin (or camera
location). The results obtained are convincing for the images where there is for sure a single light
source present and the cost of the function remains very low. Although, this approach suffers from
a drawback of getting stuck in a local minima, this gives a fairly decent idea of the light source
direction correctly. The optimization is dependent on the initial condition and hence, the result can
be improved with a better initialization of the light source. Few of the results are shown in Figures

[4.6a and [4.6bl
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Figure 4.6: Light positions estimated using the logic explained in Section and then
projected on the image plane to display the result. The rays are drawn manually
just to explain the concept.

4.2.3 Results for single light source detection

Since the images being considered for the experiment belonged to a dataset, no groundtruth about
the position of light source was available. For single light source, the cost of the optimization was
used as a measure to tell the accuracy of the algorithm. By dividing the cost into three classes
as GOOD, OK and BAD, the result can be classified as shown in Table @ The images under
consideration consisted of those having not only a single light source but also multiple light sources,
along with sunlight affecting few of the images. Also few of the images consisted of light source
appearing inside the camera point of view and that meant that the light source was classified as

specularity and was considered in the calculation for the cost function.

GOOD OK BAD
T=10% | 2=3429% | & =25.71%

Table 4.1: Analysis of the single light source estimates performed over 35 images with
depth maps available.

4.2.4 Multiple light sources detection

As discussed in section [d.2] it is not proper to model a light source as a point light source. Even
when there is only a single light source illuminating the image, it is hard to tell whether that light
source is captured in the image, or it is outside the image and also it not known whether the light

source is artificial or natural. There have been work on outdoor scenes to detect the source of light or
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direction of natural light (Lalonde et al.| [2012)), (Frahm ef al.,2005). However, those algorithms are
tailored only for outdoor purposes. By keeping the approach completely mathematical, a multiple

light source detection algorithm is proposed.

1. The specularity obtained from an image is first normalized in the range 0 to 255. Using few
morphological operations, the centroids of the contours formed is obtained. These centroids
are probably the candidates to be considered for calculating light sources.

2. The distance between all possible pairs among the candidates is calculated given by the for-

mula:
. Ci1C2 - N
Distance = ——— 4.5
IN]|
where N = dq x do (4.6)

where c; and d; are as explained in equation 4.3|and section

3. The intersection point of only those pairs is considered for which the distance is below a
user-defined threshold. For our experiments, we consider this threshold as 10cms. To find
the intersection point, a least square solution is applied.

4. Once all such possible light source position candidates are obtained, we compute the Eu-
clidean distance between all these points. Considering each candidate as a node in a graph,
a link in the graph is defined only if the Euclidean distance is less than a certain threshold
(same as above). A cluster of such connected nodes is then found to compute the light source
positions.

4.3 Dichromatic Reflection model

Both the methodologies explained in sections 4.2.2] and [4.2.4] are crude. In a later section, we
discuss about an optimization technique used to correct the position of light source as explained in
(Neverova et al., [2012)), (Karsch et al., [2011). The optimization technique discussed is based on
rendering a scene knowing the geometry and the information of light source. In order to render
a scene, the scene formation model need to be studied. Hence, we consider a simple dichromatic
reflection model as explained in (Shafer, 1985)) to see how a light source affects the scene. It is very
similar to what is explained in Phong’s model (Phong, [1975)). With the 3D world co-ordinates and
normals available now, the reflection model considered in this thesis brings in a new flavor to this

problem.

Revisiting the reflection model, the intensity at any pixel in the image is because of the body
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Source Source

py() P p(1) P

Diffuse reflection Specular reflection

Figure 4.7: The diffuse component and the specular component (Image source: (Neverova,
2012)).

reflection or the interface reflection. Referring to the figure[d.7]

I(AwBa <)07¢7p) - Ib(Aaﬁagpup) + Iint()\7ﬂ7w7p)

- mb(/B7 spap)cb()‘up) + mint(ﬁuw)p)c’int()‘ap) (47)

where ) is the wavelength of light, I(\, 3, ¢, 1, p) is the intensity at pixel p due to each spectral
component (in simple words, color at p), m;,; and m; depend on the object and light source geom-
etry and describe the intensity of the reflected light regardless of the light wavelength and material
properties, c;n: is the surface color under illumination and ¢ is the color property of the mate-
rial under the given illumination (Neverova et al., 2012)). Here c;,; and ¢ are the relative spectral

distribution independent of the geometry. From equation 3.3, it is known that,

I(p) = D(p) + C(p) (4.8)

where D(p) is the diffuse component and C(p) is the specular component. Equations 4.7/ and

clearly show that

D(p) = mp(B,¢,p)cp(N, p) and

Clp) = min(B,0,p)cint( N, p) (4.9)

Also from photometry (Neverova, 2012), it is known that, for a single light source, the diffuse
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component can be expressed as: (refer to Figure 4.7|for notations)

cosa cos3
dz
(ng,d)(n,d)
df*

D()‘ap) = pd()‘ap)IO()‘)

= —pa(A\,p)Io(N) (4.10)

where pg(\, p) is the diffuse reflection coefficient, Io(\) is the light source intensity on the given
wavelength and in the direction perpendicular to the light source surface. If we consider NV light

sources, then the diffuse component can be expressed as:

(ng i, n, d;
D\p)y = —pa(Xp) ZIOz S|d)|(4) (4.11)

The specular component due to a single light source can be expressed as:

CAp) = ps(A\p)Io(A)cosa(cosp)F

= oA\ (V) (ns, d)

||d”k+l(v’(d —2(n,d)n))" (4.12)

where ps(A, p) is the specular reflectance and k can be defined as a parameter set experimentally.
(In original literature the value for k£ has been taken as (0, ..., 10) (Phong, |1975), however, we take

arbitrary value, typically k = 55 (Neverova ef al.,2012)).

For multiple light sources, specular component can be written as:

C\p)Ny = ps(\,p) Z[OZ |ycisi|7k+11) (v,(d; — 2(n, d;)n))" (4.13)

In practice, the specular reflectance is found to be constant for all pixelsi.e. ps(A, p) = ps. This also
agrees with the fact that while normalizing the image in Chapter 3, we were normalizing the entire
scene and not just the position where the specularity is present. Hence, from equations[4.8|4.11{and

[.13] the final light distribution which is observed from a camera can be written as

(ng 4, d;)(n, d;)

N
I(\p) = —Pd()‘ap)ZIO,i()‘) s[4

+ps Z Toi( |r:;|‘|’k+‘1) (v,(dj — 2(n, d;)n))* (4.14)
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Equation 4.14|can be expressed in terms of it’s three color components as

R N pd,r(p)Rs,i ( d )( d )
ngj,dj)\n,dj
G = = | pag()Gas [SIHdHA;}
i=1 !
Bl Pdb(p)Bs,i
Rs,i
al (ng 4, d;) k
ersz Gsi W(V,(di*ﬂn,di)n))
i=1 !
Bs,i

From equations [4.7] [4.14] and [4.15] the four components can be expressed as:

o [lluminant and material spectral characteristics:

pd,r(p) R
Cb,i(p) = |Pd,g (p)Gs,i
pd,p(P)Bs.i

o Diffuse shading distribution

myi(p) = [W]

o Light chromaticity or specular reflecance coefficient:

Rs,i
Cint,i(p) = Ps Gs,i
Bs,i
e Specular shading distribution:
ng i, d;
Mint,i(p) = W(Va(di —2(n,d;)n))"
1

(4.15)

(4.16)

“4.17)

(4.18)

(4.19)

Using these formulae, one can recreate a shading as well as specularity knowing the 3D model

of the scene. One such example (Figure 4.8a) and its corresponding manually assigned normal map

in Figure on which the Dichromatic Reflection Model was applied to generate the shading and

specularity is shown in Figures [4.9a] 4.9b| and 4.9¢]

A point to be noted is that these results were obtained just by randomly changing the positions

and direction of light source and considering only a single light source. But this exercise allows us

to see how a position of light source is related to its shading and specularity (Figure f.9d). This

leads us to make use of an optimization technique to improve upon the estimate of light source

based on shading and specularity obtained.
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(b) ©

Figure 4.8: One example whose original image is shown in erroneous normal map
obtained using Meshlab .8b|and manually corrected normal map in

S ‘
(a) (b)

(d)

Figure 4.9: Various shadings (4.9al 4.9b/ and 4.9c)) obtained by changing the position and
direction of light source. @ shows a random specularity obtained in an image.

4.3.1 Rendering through Optimization

As explained in section [.3] any image can be formed by considering equations [4.14] and @.15]

An optimization method to improve the estimated light source(s) based on the reflection model is

explained in (Neverova et al,2012)) and (Karsch ez al., 2011) is used. We optimize for the light

source parameters by rendering the diffuse shading and specularity using the geometry and the

current light source estimates (Neverova ef al.l 2012).

N
L = argminy, ¢ ¢ {Z [a[CO(p) — C(p)* + BIS°(p) — S()] + D> [ Loi — Lz‘]Q} (4.20)

P =1
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where C? is specular shading or specularity obtained from pure image based approach, C is the
specularity as calculated from the knowledge of 3D co-ordinates and normals, S is diffuse shad-
ing obtained from pure image based approach and S is calculated by the knowledge of geometry,
Lyg; is the initial light source estimates obtained from sections and and L is the set of
parameters, which we need to estimate. The dimension of L is N x 6 where NV is the number of
light sources present and each light source has its 3 spatial co-ordinates and 3 parameters describing
the lighting intensity. However, while performing experiments, we consider light chromaticity in-
tensities to be constant for all the light sources in the scene and hence do not consider it as a metric
to be changed during the optimization process. The third term in the optimization makes sure that
the optimization doesn’t diverge too much from the initial estimate. The basic idea is to make the
rendered scene as close as possible to the original scene and in turn estimating the light source in a
more reliable way. The quantities «, 3 and v are weights and are decided experimentally to 1, 0.75

and 30 M, M, where M, and M, are the dimensions of the image (Neverova, 2012).

A result is shown in Figure . 10| to explain how this optimization performs. Figure d.10a) shows
the desired shading (i.e., the gray level of the albedo obtained). Figure [4.10b] shows the shading
obtained by using the single light source estimate as explained in section.2.2] Multiple light source
estimates are obtained as explained in section [d.2.4] However, the result obtained for shading from
those estimates does not convey much information and hence, not shown in this thesis. Giving these
multiple light sources estimated as initial estimates for the optimization function, optimization is
performed and the obtained light source positions are used to obtain the shading as shown in Figure
The shading is obtained as a superposition of multiple shading images from different light

sources.

4.4 Limitations and Shortcomings

e Equations {{.14] and [4.15] do not consider the shadows cast by objects on different parts of
the scene. To make this possible, it is necessary to do cast detection for the scene. How-
ever, implementing cast detection in MATLAB was tried out and found to be not suitable
computationally. It is completely a GPU based algorithm.

e There is no mathematical proof about the optimization (refer to equation .20) and it is not
sure how much accurate and stable that system is going to be. It is purely based on the fact
that lighting affects specularity and the diffuse shading of the scene and hence, this justifies
the presence of these two terms in the optimization equation.

o All the graphics based approach like ray tracing, ray casting, which are used for rendering a
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Figure 4.10: After optimization, the shading obtained using the corrected position of mul-
tiple light source is shown in Figure To illustrate, the shading obtained
by a single light source is shown in Figure 4.10b The original shading of the
scene is shown in Figure [4.104]

scene are not considered in this thesis. Also, in commercial rendering applications, off-the-
shelf graphics tools are considered directly.

e Rendering a scene with a synthetic object or relighting of a scene have not been achieved
completely although important steps in achieving so have been discussed and a platform for
the same has been laid out.

However, the results do have significant importance as they have the capability to perform ren-
dering of a scene just from the knowledge of geometry, lighting and depth and without using any
rendering software. This in turn can help in performing rendering in scenarios without a GPU. With
better knowledge about scene formation, the optimization function can be very well defined. Thus

this particular topic has a huge potential for future work.
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CHAPTER 5

Conclusions

In this thesis, an approach to get geometry and lighting information from a single image of an
indoor scene was discussed. The approach was strictly restricted to a single image of an indoor
scene. Relying on the fact that the architectural environment of the indoor environment has a very
well-defined geometry, a simple algorithm was adopted from works by (Lee et al.,[2009) and others
(Hedau et al.,2009), (Rother, 2002)), (Kovesi, [2000). Geometry estimate of indoor scenes from just
a single image hints at what more can be done using just a single image. On the other hand, lighting
information of the scene was also acquired from a single image by separating the specularity in
the image as explained in (Shen and Cai, [2009) and (Neverova, 2012). Here, too, a very simple
approach was used to tell us lot more information about the environment in which the photo was
taken. With the kind of approach used, it was very easy to show that how a scene will appear in

different lighting intensities.

Depth being a difficult task to obtain from a single image, we relied on using a depth sensor like
Kinect to get the depth of the scene under consideration. This depth, when used with the previous
results obtained, made way to exploit the geometry in the scene and use the knowledge of lighting
information to predict the positions of light sources which are there around the scene. We proposed
a simple way to do the initial estimates of a single light source (if present) and also, a mechanism
for detecting multiple light sources as well as modeling multiple light sources as point light sources
was proposed. Though these methods were very crude, they were important because of the nature of
optimization which was used to refine these light source position estimates. Since, the optimization
was unconstrained and had a high chance of getting stuck in local minima, the result obtained
depended on the initial estimates. By using dichromatic reflection model and the initial estimate
of light source, scene formation model was studied and using this a rendered scene was compared
with original scene to correct for the light source positions. We believe that there can be further

improvement to this optimization algorithm.

We could have obtain data from Kinect to perform our experiments and have the groundtruths

available with us. But the problem with Kinect data was low resolution of depth image and other



problems associated with it as explained in section 4.1. That is why we relied on Kinect data set
provided by NYU (Silberman and Fergus| 2011)), which was free of all the problems explained
in that section. Thus, this thesis allowed us to look at further extensions which can be made by
harnessing the Kinect data properly. One such possibility is that by registering the consecutive depth
image taken by moving the Kinect across the indoor scene, one can not only obtain an increased
point density, but also create a complete point cloud of an indoor environment possibly in real time

(Khoshelham and Elberinkl, [2012).

Keeping the entire approach analytical and without considering any learning-based cues, the re-
sults obtained promise to provide a platform for numerous applications driven by augmented reality.
Applications involving gaming via a Kinect sensor can be enhanced to make the gaming experience
a very pleasing one. However, a simple mobile camera can also turn into a useful as well as a
fun application using the geometry knowledge and lighting knowledge obtained just from a single
scene of an indoor environment. One of the immediate offshoots of this project is in-painting the
highlights inside the image and getting rid of the "flash-effect" when images are captured (Park and
Lee, 2007)). Also, if we do not restrict to a single image, using Kinect, amazing applications can
be thought of. One such application is to take multi-view images of an indoor environment, build
a dense 3D point cloud of the scene, estimate the entire geometry of the scene in 3D and estimate
the position of the light sources in the scene (or affecting the scene.) Once all this information is
obtained, a scene can be rendered with different light source positions and intensities. One such ex-
ample is about how a room will appear over the course of the day. Also, inserting a synthetic object
in a 3D world and then render a scene or a video, making it appear realistic, is also a possibility.
These ideas require a lot of graphics-based methodologies and hence, these were not considered in
this thesis. However, with good background in graphics and graphics based programming, these

results can be obtained.

In this thesis, all the codes were implemented in form of MATLAB scripts and functions. From
a commercial point of view, things can be implemented using OpenCV and C/C++ to get real-time
computer vision applications. No standard graphical methods were used. However, the outputs
from this thesis can be streamlined into graphics-hardware pipeline and using standard rendering
tools, rendered images/videos may be formed as explained above. Although geometry and lighting
information may not be an end product of any system, those are few of the most important param-
eters when it comes to augmented reality and some possible solutions to get those are studied and

explained in this thesis.
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