
Design and Implementation of LEO Satellite Transceiver

A Project Report

submitted by

ANSHUMAN GAURAV

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2013

THESIS CERTIFICATE

This is to certify that the thesis titled Design and Implementation of LEO Satellite

Transceiver, submitted by Anshuman Gaurav, to the Indian Institute of Technology,

Madras, for the award of the degree of Master of Technology, is a bona fide record of

the research work done by him under our supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Dr. David Koilpillai
Project Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr. Devendra Jalihal
Project Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 20th May 2013

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude for the people who have helped and sup-

ported me throughout my project. I am grateful to my guides, Dr. David Koilpillai and

Dr. Devendra Jalihal, for their continuous support. This project would not have been

a success without their valuable suggestions and insights. Despite their busy schedule

they always managed time to discuss the issues and guide the project in a proper course.

I would like to thank Akshay Gulati, Systems Engineer of IITM Sat project, for his time

and again feedback on our work. He kept us updated with the developments in this field

by other Amateur Radio Satellite groups.

Test bench designed by Jagdish M Mevada was of immense help. It was used to ver-

ify the performance of my design when it is subjected to various channel impairments.

His test bench helped me in debugging my codes and making my design more robust.

Last but not the least, I express my sincere thanks to all the staff members of dif-

ferent labs who have been more than helpful in testing the performance of my design.

They were always ready to discuss about circuit design and equipped me with proper

tools to perform experiments and measurements.

i

ABSTRACT

KEYWORDS: LEO; COM; AX.25; CRC; Interrupt.

This thesis explains the design and implementation of on-board communication system

(COM) for a nano-satellite orbiting in Low Earth Orbit (LEO). Starting from simula-

tions of individual communication sub-systems we gradually moved towards its practi-

cal realization. Final product designed here will be implemented in IITM-Sat. IITM-Sat

is a nano-satellite which is being designed by the students of Indian Institute of Tech-

nology, Madras. It will collect data about electrons and protons in the Earth’s upper-

ionosphere throughout its mission life of one year. This satellite, weighing less than

15 kg, will be placed in a sun-synchronous LEO orbit at an altitude of 600-800 km.

Satellites in this orbit will have a Line-of-Sight contact with Ground Station 6-8 times

per day. Data collected by the satellite over one complete revolution around the Earth

will be stored in the on-board memory and it has to be transmitted to the Ground Station

during its visibility period which lasts for around 5 to 15 minutes.

This thesis aims to cover each and every details regarding individual sub-system

design. All the modules have been described separately and with a new perspective.

Without going into the detailed description of internal structures of these modules, this

thesis aims to present their simplified version and tries to fill in the gap between what

is given in their data-sheet and how we have implemented it in our design. Separate

chapters deals with the hardware and software part.

Modified version of AX.25 protocol is being used for information exchange be-

tween the Ground station and Satellite. Keeping the basic handshaking mechanism

unchanged, some of the fields inside AX.25 frames were modified for our application

with the aim of reducing unnecessary overheads. Separate section has been dedicated

for calculating CRC which is one of the several fields inside AX.25 frame.

Effort has been put into organising the complete software in a way that is easy to

understand. Complete code has been divided into four blocks. Each block is associated

ii

with one of the sub-system of overall COM system. Each block has been explained

using flow chart. Different blocks of code communicates using only few common pa-

rameters and this helps in keeping an easy track of program flow.

COM is completely interrupt driven in order to save power when COM is not in

use. These interrupts can be given by COM sub-systems or can be software generated.

Since there are several interrupts that controls the overall service provided by COM,

there is a separate sub-section on Interrupt Management. It describes the Interrupt flow

and justifies the Interrupt priorities selected for different sub-systems of COM.

Finally this thesis ends with describing the various test bench that we established

to verify the performance of our system. A virtual Ground Station was established

to issue telecommands over uplink and receive telemetry information over downlink.

USRP (Universal Software defined Radio) was used to create the distorted signal as

expected for an actual satellite channel.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES viii

ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Project Overview . 1

1.2 Design Specification . 1

1.3 Approach to the problem . 2

1.4 Types of Impairments and their effects 4

1.4.1 Doppler Effect . 4

1.4.2 Carrier Leakage . 5

2 COM Architecture 8

2.1 Architecture overview . 8

2.2 Overview of Selected Components 9

2.2.1 FSK Receiver (ADF7020-1) 9

2.2.2 GMSK Baseband Modulator (CMX7164) 10

2.2.3 RF Quadrature Transmitter(CMX991) 13

2.2.4 Memory Card . 15

2.2.5 COM (MSP430) . 17

2.2.6 Local Oscillator (ADF4351) 19

2.2.7 Power Amplifier (RF5110) 19

2.3 SPI Interface . 20

2.4 System Reset Arrangement . 21

iv

3 Communication Protocol 23

3.1 AX.25 Protocol . 23

3.2 CRC Implementation . 24

4 Software Architecture 27

4.1 Architecture Overview . 27

4.2 Block Interface . 28

4.2.1 General Block . 28

4.2.2 ADF Block . 30

4.2.3 CMX-A Block . 32

4.2.4 CMX-B Block . 33

4.2.5 Interrupt Management . 33

5 Test Setup 36

6 Conclusion 38

A APPENDIX 39

A.1 MSP430F2619 Connections . 39

A.2 ADF.h . 40

A.3 CML.h . 43

A.4 SD_Card.h . 48

A.5 Main Code . 51

LIST OF TABLES

A.1 Pin connection of MSP430F2619 39

vi

LIST OF FIGURES

1.1 Doppler Shift vs. Time . 4

1.2 Spectrum of Doppler corrupted FSK signal 5

1.3 Receive filter design (a) Bandwidth is large enough to accommodate
Doppler corrupted signal (b) Bandwidth is just enough to allow the
main lobes to pass through it . 5

1.4 Carrier Leakage due to DC offset 6

1.5 Heterodyne up-conversion suppresses Carrier Leakage 6

1.6 BPF centered at Carrier frequency 6

2.1 Network Topology of on-board System 8

2.2 COM Architecture . 9

2.3 A rough overview on the working of ADF7020-1 10

2.4 Block diagram of CMX7164 in Transmit mode 11

2.5 A rough overview on working of CMX7164 12

2.6 Using Streaming C-BUS to write 15 bytes in a single transaction . . 13

2.7 Block diagram of CMX991 in transmit mode 14

2.8 Pin configuration and Circuit diagram of Memory Card 15

2.9 MSP430 Connection with other Modules 17

2.10 Pull-up and Pull-down resistor . 18

2.11 Internal structure of CMX991 . 19

2.12 SPI Master and external slave . 20

2.13 SPI timing diagram . 21

2.14 COM architecture along with System Reset arrangement 22

3.1 Three types of AX.25 frame . 23

3.2 CRC calculation using shift registers 25

3.3 C code to calculate CRC Table . 26

4.1 Software blocks of COM and interface parameters 27

4.2 State flow diagram of COM . 28

vii

4.3 Flow chart for General Block . 29

4.4 Queue for data frames . 30

4.5 Flow chart for ADF Block . 31

4.6 Flow chart for CMX-A sub-block 32

4.7 Flow chart for CMX-B sub-block 33

4.8 Interrupt flow . 34

5.1 ADF7020-1 to ADF7020-1 communication 36

5.2 Test setup to verify Doppler Correction 36

5.3 Complete prototype for Satellite and Ground Station 37

6.1 Lab setup of COM system using Evaluation boards 38

viii

ABBREVIATIONS

CRLB Cramer-Rao Lower Bound

SPI Serial Peripheral Interface

PLL Phase Locked Loop

AFC Automatic Frequency Control

RSSI Received Signal Strength Indication

ISR Interrupt Service Routine

USRP Universal Software defined Radio

FSK Frequency Shift Keying

GMSK Gaussian Minimum Shift Keying

PA Power Amplifier

ix

CHAPTER 1

INTRODUCTION

1.1 Project Overview

The Goal of this project is to design the Communication System for a LEO Satellite.

Right from the selection of components to the design of hardware and software archi-

tecture, this project aims to develop the actual product that would be placed on-board

satellite. Apart from this, communication protocol has to be decided and implemented.

Error detection codes should be implemented to account for the noisy channel. Sep-

arate system has to be designed which can perform System Reset in case of satellite

malfunctioning.

This thesis work will be implemented on a nano-satellite that will be placed in a

sun-synchronous LEO orbit at an altitude of 900 km. Such satellite will cross over any

given point on earth every day at approximately the same local time. It will have a

line-of-sight contact with the Ground Station for 6-8 times per day and the visibility

period for each pass will vary from 5 to 15 minutes. Data collected over one complete

revolution around earth will be stored in a SD card and all of this data has to be sent

over downlink during the span of visibility period.

Real time working prototype was designed using evaluation boards and their per-

formance was tested using USRP (Universal Software Radio Peripheral). Upon veri-

fication of the system performance, schematic of complete system was designed to be

fabricated on a single PCB.

1.2 Design Specification

Uplink:

• FSK Modulation

• Data rate: 1200bps

• Bandwidth: 10KHz

• Center Frequency: 145MHz (HAM Band)

Downlink:

• GMSK Modulation

• BT = 0.3

• Data rate: 19.2kbps

• Bandwidth: 20kHz

• Center Frequency: 435MHz

Occupied bandwidth is defined by article 1.153 of the ITU Radio Regulations (ITU

RR) as

The width of a frequency band such that, below and above the upper

frequency limits, the mean powers emitted are each equal to a specified

percentage β/2 of the total mean power of a given emission

where β is taken to be 1%. For β = 1%, this is often referred to as the 99% power

containment bandwidth.

1.3 Approach to the problem

We started off by studying the major impairments associated with a satellite channel.

Doppler Shift being a major issue, we studied the Doppler pattern that satellite will

encounter. Simulations were performed in Matlab to obtain a plot of Doppler Shift vs.

Time during a visibility period where Doppler Effect will be extreme. This data was

later implemented in USRP to create a Doppler corrupted data and which were used as

an input to our design. After narrowing into FSK modulation for uplink, we simulated

various FSK Modems on Matlab to get the feel of basic working of FSK modem. Algo-

rithms described in [1] and [12] were implemented and results were produced as shown

in these papers. Later, these algorithms were used as a basis to design our own FSK

demodulator after taking Doppler into account.

2

As we know that when we calculate N point FFT of any signal, it actually represents

N equal spaced samples of the actual spectrum. If we transmit FSK signals from Ground

Station such that the frequency of sinusoid, corresponding to bit-0 and bit-1 lie exactly

at one of the FFT sampling point, then using above algorithms we can construct an

optimal performance receiver. But things become complicated due to Doppler Effect.

Doppler shift is observed in the signal exchanged among Satellite and Ground Station

due to net radial velocity between the two. This causes the spectral peaks to shift to

those points which are not sampled by FFT. This causes Spectral Leakage and hence

the system performance degrades.

According to Rife [11], the Maximum Likelihood estimator of the signal frequency

is given by the argument of peak of the periodogram. He argued that this estimator can

be implemented by a peak search of the amplitude spectrum obtained by FFT, followed

by an interpolation on the peak in order to locate the true frequency. Rife also showed

that the Standard Deviation of the estimated frequency from the true frequency is given

by

σ =
fs
2π

√
6

N(N2 − 1)SNR
(1.1)

Hence it establishes Cramer-Rao Lower bound (CRLB) for the estimate. [1] de-

scribes two algorithms to estimate this frequency corresponding to the peak of spectral

amplitude, i.e. Quinn and Dichotomous. Both these algorithms were implemented on

Matlab and the results were confirmed by simulations. Dichotomous Algorithm gives a

better estimate of the true frequency than Quinn’s algorithm but at the cost of increased

computation. Finally a "Guided Search of the Periodogram" Algorithm was introduced

which combines the above two algorithm and gives better performance at reduced com-

plexity.

Above simulations were done with the view of implementing them on a DSP based

processor after down-converting the FSK signal received by Satellite. At the same

time we found a more power efficient way of demodulating FSK signal using a mi-

crocontroller and an FSK transceiver. ADF7020-1 FSK transceiver by Analog Devices

supports our required data rate and using its internal PLL we can perform Doppler

correction with no additional complexity. Performing Doppler correction in DSP pro-

3

cessor will require lots of data processing, which in turn consumes power. ADF7020-1

can downconvert and demodulate FSK signal by consuming less than 58mW power.

MSP430 microcontroller was used to collect data from ADF7020-1 and performs all

other work of data interpretation and management. Having fixed our approach to the

problem, we started looking for the best available GMSK modules in the market. We

are now using CMX7164, which is a GMSK baseband modulator and CMX991, which

is an I/Q up-converter. Few more components i.e. SD Card, LO and Power Amplifier

(PA) were integrated into a single system which are described later in this thesis.

1.4 Types of Impairments and their effects

1.4.1 Doppler Effect

LEO satellites revolve around earth at about 8 km/s. Since the radial velocity itself

changes with time, there is a continuous change in Doppler shift during a visibility

period. As a worst case, LEO satellites operating at 145 MHz will experience a variation

in Doppler shift from 3kHz to -3kHz in single pass. This pattern of Doppler shift as a

function of time is shown in figure 1.1.

Figure 1.1: Doppler Shift vs. Time

Doppler Shift causes shift in the center frequency of transmitted signal. Doppler

corrupted FSK signal is shown in figure 1.2.

4

Figure 1.2: Spectrum of Doppler corrupted FSK signal

Thus the receive filter can be designed in two ways: firstly, we can keep the receive

filter bandwidth to be wide enough to allow the Doppler shifted signals to pass through

it as shown in figure 1.3(a), or we can perform Doppler correction and then adjust the

filter bandwidth to be just enough to allow the main lobe to pass as shown in figure

1.3(b). In terms of receiver’s performance later one will give less BER since former

is allowing more noise to pass through it. We took the second approach for designing

uplink receiver. First approach is not even feasible for our design because the Doppler

shift is in the order of f1 − f0.

Figure 1.3: Receive filter design (a) Bandwidth is large enough to accommodate
Doppler corrupted signal (b) Bandwidth is just enough to allow the main
lobes to pass through it

1.4.2 Carrier Leakage

Carrier Leakage is the presence of an un-modulated Carrier within the signal’s band-

width, whose amplitude is independent of the signal’s amplitude. DC Offset and direct

leakage from LO to output are the two main source of carrier leakage.

Effect of DC offset in input signal is shown in figure 1.4. Just because of the pres-

ence of DC offset in input there is an un-modulated carrier present in output signal.

Apart from this, even direct leakage of LO can happen because of the non-linearity of

multiplier itself. Since in direct up-conversion transmission the LO frequency is same

5

Figure 1.4: Carrier Leakage due to DC offset

as the carrier frequency, even BPF cannot filter out the leaked LO since it lies within

signal bandwidth. Carrier leakage can destroy the constellation and raise Error Vector

magnitude (EVM). This is where the advantage of heterodyne transmitter comes in.

Figure 1.5: Heterodyne up-conversion suppresses Carrier Leakage

As shown in figure 1.5, heterodyne transmitter has two Local Oscillators i.e. IF LO

(corresponding to fif) and RF LO (corresponding to frf). Since Carrier frequency is

equal to none of the LO (i.e. Carrier frequency can be either |frf − fif | or |frf + fif |),

leaked signals from these LO can be easily filtered out by BPF (see figure 1.6). As we

can easily verify, heterodyne transmitter is even resistant to DC offset. Thus it produces

a more legitimate signal.

Figure 1.6: BPF centered at Carrier frequency

CMX991 supports both Direct up-conversion and Heterodyne transmission. Ini-

6

tially when we were using CMX991 evaluation board for Direct up-conversion of GMSK

signal, we observed distortion in GMSK spectrum and there were issues in synchro-

nizing it when it was fed to USRP. It was also observed that input signals (I and Q)

of CMX991 were having DC offset due to some extra components on the evaluation

board. These unnecessary components were removed and following this a significant

improvement was observed in the received signal. Later we switched over to Hetero-

dyne transmission mode of CMX991.

7

CHAPTER 2

COM Architecture

On-board satellite there are several systems which co-ordinates with each other to make

the whole satellite work. Figure 2.1 presents the network topology over which we are

working. HEPD (High Energy Particle Detector) keeps count of the number of parti-

cles in ionosphere, ADCS (Attitude Determination and Control System) tries to keep

the on-board antenna pointing towards Earth, EPS (Electrical Power System) manages

power distribution and finally COM (Communication System) is responsible for com-

municating with ground station. Our project is to design the COM system for satellite

and this whole thesis is dedicated to it.

Figure 2.1: Network Topology of on-board System

2.1 Architecture overview

This chapter describes the hardware design of on-board communication system. On-

board satellite there will be four microcontrollers and out of which only one will be

assigned with the task of communication related activities. We will refer to this partic-

ular microcontroller as COM. Figure 2.2 shows the basic block diagram version of our

design. Individual blocks in this figure are described in a separate section.

Figure 2.2: COM Architecture

2.2 Overview of Selected Components

2.2.1 FSK Receiver (ADF7020-1)

ADF7020-1 is a FSK/ASK transceiver manufactured by Analog Devices. Though it

supports many more modulation schemes, we will program it to receive FSK signals.

Some of its desirable features are

• It supports FSK data rate from 150 bps to 200 kbps. Hence we can use it for two
purposes. Firstly, as a Telecommand receiver and Secondly, in a System-Reset
Arrangement. System-Reset arrangement is discussed in details in Section 2.4.

• It can operate from 80 MHz to 325 MHz. Thus it works in our frequency range
of interest i.e. 145 MHz.

• Transceiver RF frequency, Filter Bandwidths, Frequency Deviation, Modulation
Schemes can be programmed using SPI interface. Details regarding SPI interface
are given in Section 2.3.

• It allows trading off Sensitivity and Selectivity of the receiver with Current con-
sumption, depending on the application.

• Automatic Frequency Control (AFC) loop allows the PLL to compensate for fre-
quency error in the incoming signal. This allows us to counter Doppler.

• Provides the Temperature reading, Battery voltage level and (Received Signal
Strength Indication) RSSI signal.

ADF7020-1 downconverts the received FSK signal, corrects doppler, decodes it and

gives the decoded data and its corresponding clock signal at its external pin. This Data

and Clock can be fed to the SPI of microcontroller in Slave mode.

9

Details regarding working of individual section of ADF7020-1 in receive mode can

be found in its datasheet [3]. This section will describe the way it has been implemented

in our design and will stress some of the key points of datasheet. From a laymanŠs point

of view ADF7020-1 is being used in the way shown in figure 2.3.

Figure 2.3: A rough overview on the working of ADF7020-1

ADF7020-1 supports the feature of Automatic Sync Word Recognition. Sync Word

can be preprogrammed into Register 5 of ADF7020-1. In receive mode, this Sync

Word is compared with the incoming bit streams. As soon a Sync Word is detected

in the incoming data stream, an Interrupt is generated. This interrupt signal is gener-

ated by asserting an external pin INT/LOCK (refer pin diagram of ADF7020-1), which

is used by MSP430 as an indication to start capturing data in its SPI Receive Buffer

(UCB0RXBUF). INT/LOCK is automatically de-asserted by ADF7020-1 after nine

data clock cycles.

C functions and variables which are defined exclusively for ADF7020-1 is present

in a separate header ADF.h. Complete code is presented in Appendix A.2.

2.2.2 GMSK Baseband Modulator (CMX7164)

CMX7164 is a GMSK baseband modulator. Its basic block diagram in Transmit mode

is shown in following figure.

Details regarding working of individual blocks can be found in its datasheet [6].

This section will just give a brief overview and clarify few points which have not been

10

Figure 2.4: Block diagram of CMX7164 in Transmit mode

mentioned explicitly.

C-BUS is a protocol, just like SPI, using which microcontrollers can talk to CMX7164.

Before we are able to use CMX7164 as a GMSK baseband modulator, we must load a

proper Function Image (FI) onto it. It is provided by CML microcircuits in the form

of C Header file. Detailed method of loading the FI into CMX7164 is given in its

Datasheet. CMX7164 supports multiple modulation schemes and by loading a proper

Function Image we define the operational capabilities of this device.

Continuous stream of data is transferred by COM to CMX7164 using Streaming C-

BUS (Refer datasheet of CMX7164 for details regarding Streaming C-Bus). Before we

start transferring data from MSP430 to CMX7164 via Streaming C-Bus, it is necessary

to program Modem Command FIFO Control Byte (0x4A) and specify exactly how

many continuous data bytes will be transmitted at a time via streaming C-BUS. At max

15 bytes can be transferred in a single Streaming C-BUS transaction. To repeat, Modem

Command FIFO Control Byte (0x4A) must be written for each C-BUS transaction.

As shown in Figure 2.5, CMX7164 has two internal buffers- CMD FIFO and Com-

mand Buffer. We can transmit data from COM to CMX7164 at a very high speed (up

to 10 MHz). These data are first buffered in CMD FIFO and then Channel Coding is

done on it (optional), followed by Framing. This Framed data is finally stored in a Com-

mand Buffer. CMD FIFO can store 128 data bytes whereas Command Buffer size is

255 bytes. Data will remain buffered in Command Buffer until CMX7164 is instructed

to start Transmission.

This architecture allows COM to send bulk of data to CMX7164 at a very high

speed and then concentrate on some other job. Various types of interrupts are supported

by CMX7164 which can interrupt the COM before CMX7164 runs out of data in Com-

11

Figure 2.5: A rough overview on working of CMX7164

mand Buffer. In our application, we are generating an interrupt as soon the CMD FIFO

is empty. Downlink transmission is occurring at just 19.2 kbps, so, by considering that

CMD FIFO is empty and Command Buffer is full, transmitting 15 bytes in a single

C-Bus transaction will generate another interrupt at an interval of 15×8
19200

= 6.25msec.

Since we are using microcontroller at 16 MHz, it has lot of clock cycles before it need to

refill CMD FIFO. At the C-BUS speed of 2 MHz it will take roughly 17×8
2×106

= 0.68µsec

to transfer 15 bytes of data to CMX7164 (including the time it takes to write in Control

Word).

Lastly, the GMSK Baseband output given by CMX7164 is in differential form.

I-channel output is divided among I+ and I-, similarly Q-channel is divided into Q+

and Q-. Advantage of using Differential Signalling is that it reduces external interfer-

ence. Since external interference tend to affect both wires together, and information

is sent only by the difference between the wires, the technique improves resistance to

electromagnetic noise compared with use of only one wire and an un-paired reference

(ground).

C functions and variables which are defined exclusively for CMX modules are

present in a separate header CML.h. Complete code is presented in Appendix A.3.

It defines following functions:

1. char read8(int reg, char add)

12

2. unsigned int read16(int reg, char add)

3. void write8(int reg, char add, char val)

4. void write16(int reg, char add, unsigned int val)

5. int FI_Load(void);

6. void CMX7164_initialize(void);

7. void CMX991_initialize(void);

Value of reg can be 1 (for CMX7164) or 2 (for CMX991). This is done to use the

same function for both CMX7164 and CMX991. read8() reads 8-bit register from the

address add and read16() reads 16-bit register from add. write8() writes 1 byte data

(val) into the register with address add and write16() write 16-bit data (val) into the

register with address add. FI_Load() loads the Function Image into CMX7164 whereas

CMX7164_initialize() and CMX991_initialize() initializes the two modules before we

start using it. Wherever we need to use 16-bit data, data-type for that variable was

defined as unsigned int (IAR Compiler defines its size as 2-byte). Rather than sending

one byte of data at a time using write8(), we can send at max 15 bytes of data at a time

using streaming C-BUS. Figure 2.6 shows the C-code to transfer 15 byte of data into

CMX7164 using streaming C-BUS.

Figure 2.6: Using Streaming C-BUS to write 15 bytes in a single transaction

2.2.3 RF Quadrature Transmitter(CMX991)

CMX991 is a RF Quadrature Transceiver. We are using it as a Transmitter which up-

converts the complex baseband signals (I and Q) generated by CMX7164. It is basically

a heterodyne transmitter and the overview of its working is shown in figure 2.7, only

difference being that the signals are in Differential form.

13

Figure 2.7: Block diagram of CMX991 in transmit mode

CMX991 has inbuilt IF PLL and IF VCO subsystems but it needs an external Loop

Filter to generate IF LO signal. This IF LO signal is used to modulate the I/Q in-

put which are finally up-converted and then transmitted after image-rejection. The I/Q

inputs are the GMSK Baseband Differential signals generated by CMX7164. As repre-

sented in figure, it is possible to use IF OUT directly by setting Bit_0 = 1 in Tx Control

Register (0x14). But direct up-conversion of the baseband signal gives rise to carrier

leakage and as explained in section 1.4.2, carrier leakage can destroy the constellation

and raise Error Vector magnitude (EVM). Hence we will use heterodyne architecture

for transmission. For this we need two Local Oscillators (LO) i.e. IF LO and RF LO.

Though IF LO can be developed internally, it does not provide an internal RF LO. RF

LO must be applied from an external source and for which we are using ADF4351

frequency synthesizer from Analog Devices.

Considering that IF LO frequency is fif and RF LO frequency is frf , output will be

present at both frf −fif and frf +fif . Work of Image-Reject up-converter is to remove

one of this carrier. Which one will be removed is decided by Bit_2 of Tx Mode Register

(0x15). If Bit_2 = 0 then fc = frf − fif whereas if Bit_2 = 1 then fc = frf + fif .

Just like CMX7164, even CMX991 needs C-BUS serial interface for transfer of

control and status information between its internal registers and an external host (COM).

Internal registers needs to be written only once after reset and before we start using it.

Since this C-BUS connection with host won’t be used after initialization is over, we have

merged it with the C-BUS connection of CMX7164. Thus, same C-BUS wires connects

host (MSP430), CMX7164 and CMX991 except CSN. C-BUS includes a CSN line

14

which has to be asserted before data transfer. By using different CSN for CMX7164 and

CMX991 we can keep the information meant for CMX991 separate from CMX7164’s

information. Further details regarding register description, device architecture and C-

BUS interfacing can be found in its datasheet [7].

2.2.4 Memory Card

Transcend 2GB microSD card is used to store the data collected by Satellite payload.

Data was stored in raw format. Different SD card can has its own specification of maxi-

mum data rate. Our data rate over this SPI interface is 4 MHz. Transcend 2GB microSD

card can support up to 25 MHz in data transfer mode. Details regarding basic interface

with SD cards can be found in [9]. SD Card supports multiple mode of operation (i.e.

SD mode and SPI mode). SPI being simple, we will use microSD card in SPI mode to

communicate with COM.

Normally, card initialization starts by setting SPI Clock to 400 kHz and sending

some basic commands. If card responds positively, then by reading TRAN_SPEED

field in CSD register (Refer [2]) we can know the maximum data transfer rate sup-

ported by that card. Using this information COM can adjust its SPI rate to maximum

possible value. This is required for compatibility across different Cards. In our Satellite

application, since the memory card wont be changed once the satellite is gone, we can

skip this step and from the very beginning we can program SPI speed to the maximum

possible value.

Figure 2.8: Pin configuration and Circuit diagram of Memory Card

Following steps have to be followed to place SD Card in SPI Mode

15

• After power-on, wait for about 1ms and then issue at-least 74 clocks before any
attempt is made to communicate with the card. This allows the card to initialize
any internal state registers before card initialization proceeds.

• Next, the card is Reset by issuing the command CMD0 while holding the SS pin
low. This both resets the card and instructs it to enter SPI mode. By default CRC
is enabled, hence SD card will perform CRC check for each command that has
been transferred. While the CRC, in general, is ignored in SPI mode, the very
CMD0 command must be followed by a valid CRC, since the card enters SPI
mode only after the issue of CMD0. The CRC byte for a CMD0 command with
a zero argument is a constant 0x95 and can be hard coded into microcontroller.

• The card initiates the initialization process when a CMD1 is received. To detect
end of the initialization process, the host controller must send CMD1 and check
the response until end of the initialization. When the card is initialized success-
fully, In Idle State bit in the R1 response is cleared (i.e. R1 response changes
from 0x01 to 0x00). The initialization process can take hundreds of milliseconds,
so that this is a consideration to determine the time out value. After the In Idle
State bit is cleared, generic read/write commands will be accepted.

• Finally, Block Size is programmed to 512 bytes.

Data can be read only from the starting address of each Block. Under the header

file SD_Card.h there are following four functions which perform all SD Card related

transactions:

1. int SD_init(void);

2. unsigned char SD_sendCommand(unsigned char cmd, unsigned long int arg,
char crc);

3. unsigned char SD_readSingleBlock(unsigned long int startBlock);

4. unsigned char SD_writeSingleBlock(unsigned long int startBlock);

SD_init() function initializes SD Card in the way described above. SD_sendCommand()

sends command to SD Card. Here arg represents an argument associated with a partic-

ular command and crc represents 8-bit CRC of the command. As described earlier only

CMD0 needs a valid CRC, for other commands we can put it as 0. SD_readSingleBlock()

function reads 512 bytes from a block whose index number is startBlock. Similarly,

SD_writeSingleBlock() function writes 512 bytes of data to the block with index num-

ber startBlock.

C functions and variables which are defined exclusively for CMX modules are

present in a separate header SD_Card.h. Complete code is presented in Appendix

A.4.

16

2.2.5 COM (MSP430)

COM is the name given to that microcontroller which manages all communication re-

lated activities of Satellite with Ground Station. Considering the large amount of con-

stant data that has to be placed on-board, we selected MSP430F2619 microcontroller.

It offers 120 kB of Code memory and 4 kB of RAM. Code memory stores all constant

data in our code and the code itself. We needed Code memory to be large enough to

accommodate code along with following constant data:

• Function Image (FI). Size of FI itself is 52 kB.

• Look-up table to calculate CRC. Size of this look-up table is 512 bytes.

Figure 2.9: MSP430 Connection with other Modules

It provides four USCI modules (USCI_A0, USCI_B0, USCI_A1 and USCI_A2)

which support multiple serial communication modes. As shown in figure 2.9, USCI_A0,

USCI_B0 and USCI_B1 were used in SPI mode (described in next section) to interface

with ADF7020-1, CMX modules and Memory Card respectively. Both the CMX mod-

ules i.e. CMX7164 and CMX991 share a common SPI except Chip-Select (CSN). As

shown in main figure, CSN_A goes to CMX7164 and CSN_B goes to CMX991. Fourth

17

USCI module namely USCI_A1 was used in UART mode to communicate with PC. Re-

ceived tele-commands can be directly observed in PC Hyperterminal using UART. This

helped us a lot in debugging our system. Finally, Bit-banging was implemented on pins

2, 3, 4 and 5 to program the internal registers of ADF7020-1. Details regarding individ-

ual pin connections are given in Appendix A.1. Full details regarding MSP430 features

are provided in [5].

Figure 2.10: Pull-up and Pull-down resistor

Another desirable feature of this microcontroller is that it provides a provision for

Pull-up/down its I/O pins. The basic function of a Pull-up/down resistor is to ensure that

any floating input will be allocated a default value. If nothing is connected to an input

pin, the value of the input is considered to be floating. Most gates will float towards

a high state but this is a very weak condition, and any electrical noise could cause the

input to go low. Function of Pull-up and Pull-down circuit is same i.e. to create a

default value for a floating input, but Pull-up pulls the line high whereas Pull-down

pulls it low. Reason for its importance is that floating input becomes very sensitive to

its immediate surrounding and picks up a random signal of 1Šs and 0Šs even when we

place our fingers close to the pin. Figure 2.10 shows how external resistor is used to

pull an input pin of any module. P1.0 of MSP430 is connected to CMX7164 interrupt

whereas P2.0 is connected to ADF7020-1 interrupt. CMX7164 interrupt is active-low,

so P1.0 is Pulled-up. Interrupt from ADF7020-1 is active-high, so P2.0 is Pulled-low.

Having an internal Pull-up/down resistor in microcontroller spares us from including

an extra resistor in our design. Price that we pay by enabling this feature is in terms

of increased response time. High speed transactions cannot be performed by enabling

internal Pull.

18

2.2.6 Local Oscillator (ADF4351)

ADF4351 is a frequency synthesizer from Analog Devices. It is being used as an RF

LO for CMX991. According to the datasheet of CMX991, RF LO input frequency has

to be reduced by a factor of 2 or 4. Following figure is taken from CMX991 datasheet

which highlights this point. External RF LO is connected across pin TXLOP and pin

TXLON.

Figure 2.11: Internal structure of CMX991

In our application CMX991 has been configured for fc = frf − fif and fif =

90MHz. So to get an output at 435MHz, frf must be equal to 525MHz. Since we

are dividing RF LO input by 2, ADF4351 must generate 525× 2 = 1050MHz signal.

Refer to its datasheet [4] for further details.

2.2.7 Power Amplifier (RF5110)

Power of GMSK modulated output from RF Quadrature transmitter is 0 dBm. As per

our link budget we need to transmit GMSK signal with 1 Watt (i.e. 30 dBm) of power.

Thus we need an amplifier with 30 dB of gain. For this we are using power amplifier

RF5110 from RF Micro Devices. As per the graphs given in RF5110 datasheet [8], we

can get 31 dBm of gain at 450 MHz with an efficiency of 49% and Vcc = 2.8V . For 32

dBm of gain we have to use Vcc = 3.3V and in this case efficiency is 47%.

Control over output power can be achieved by controlling VAPC pin of RF5110.

Control range varies from approximately 1.0 V for -10 dBm to 2.6 V for +33 dBm RF

output power.

19

2.3 SPI Interface

SPI stands for "Serial Peripheral Interface" and it is widely used with embedded systems

because it is a simple and efficient interface. MSP supports two types of SPI: 3-pin SPI

and 4-pin SPI. We used 3-pin SPI for all SPI interface. Its three signal wires hold a

clock (CLK), a "Master Out, Slave In" (MOSI) data line, and a "Master In, Slave Out"

(MISO) data line. Apart from these three pins, one additional pin is required which is

called Chip Select or Slave Select. ADF7020-1 manual calls it as SLE (Load Enable).

Use of this line is clearly visible in the Serial Interface Timing Diagram provided in the

datasheet of ADF7020-1, CMX7164, CMX991 and SD Card. Serial data is transmitted

and received by devices using a clock provided by the Master.

SPI is a full duplex protocol i.e. for each bit shifted out the MOSI line (one per

clock) another is shifted in on the MISO line. As soon a byte of data is written into

UCxTXBUF, Master will start transmitting it over MOSI line and at the same time it

will sample MISO line. When the transmission UCxTXBUF is over, we can extract

information from UCxRXBUF since transmission and reception takes place simultane-

ously. Following figure is taken from MSP430 datasheet which shows SPI in action.

Original Image has been modified to include a Chip Select (CS) pin for our application.

Figure 2.12: SPI Master and external slave

Another important thing about SPI is setting Clock polarity and Phase. Each SPI

enabled module will have its own choice of Clock polarity and Phase which cannot be

changed. Microcontroller should abide with those requirements to communicate with it.

Following figure (taken from MSP430 datasheet) shows all four possible combinations

of Clock polarity and Phase which can be selected using UCCKPH and UCCKPL bits

in SPI Control Registers.

20

Figure 2.13: SPI timing diagram

Before using ADF7020-1, Memory Card, CMX7164 and CMX991, their internal

registers needs to be programmed. All these chips will be in Slave mode and COM

will be their Master. Using two different Chip Select lines, CSN_A and CSN_B for

CMX7164 and CMX991 respectively, we can use USCI_B0 for both CMX7164 and

CMX991. Similarly, we used two different SLE’s pin, SLE_A and SLE_B, to share

same SPI among ADF7020-1 and ADF4351. USCI_B1 module was reserved for Mem-

ory Card whereas bit-banging was used on Port-6 I/O pins of MSP430 to imitate them

as an SPI port. ADF7020-1 and ADF4351 are programmed using the bit-banged I/O

pins as shown in figure 2.9.

Apart from an SPI which can program internal registers, ADF7020-1 needs an-

other SPI on MSP430 which can accept its Data and Clock signal. We saw earlier that

ADF7020-1 (an FSK Demodulator) demodulates RF signal and gives Data and Clock

signal at its output. Since, only Master can generate Clock, USCI_A0 SPI module of

MSP430 was put in Slave mode to sample the Data line at positive Clock edges.

2.4 System Reset Arrangement

It is recommended to have a separate mechanism to reset the system in case emer-

gency arises. Considering that satellite starts malfunctioning and the transmitted signal

spectrum starts leaking outside our allocated band, then we should be able to stop it

immediately. We should be capable of doing this by sending a Reset Command using a

21

link which is separate from the normal communication uplink.

Looking into the advantages of ADF7020-1, we have decided to use it as a receiver

for Reset Command also. We will send Reset Command using FSK modulation and at

a very low data rate of 300 bps. Hence its two main lobes will occupy net 1200 Hz of

bandwidth. We have selected a separate band within the allocated bandwidth of 10 kHz

for reset signalling. Figure 2.14 shows the complete architecture along with the System

reset arrangement and the uplink spectrum.

Figure 2.14: COM architecture along with System Reset arrangement

Moreover, it was observed by other HAM users that their satellite were unable to

listen to the telecommands once they start transmitting. So it is good to switch off the

transmitter automatically after some time. Recognizing that the maximum visibility

period is 10 minutes, we have implemented a full system reset, 10 minutes after the

last telecommand that was received. It was implemented using a Watchdog timer. Im-

plementation of Watchdog timer is discussed in section 4.2.5. Performing system reset

after 10 minutes of receiving last telecommand will makes sure that satellite will atleast

receive telecommand in the next pass. Apart from this, Watchdog timer will keep giving

reset signal at every 10 minutes when the satellite is not communicating with Ground

Station.

22

CHAPTER 3

Communication Protocol

3.1 AX.25 Protocol

It is a data link layer protocol derived from the X.25 protocol which is an ITU-T stan-

dard protocol for packet switched wide area network (WAN) communication. It is de-

signed for use by amateur radio operators. AX.25 is used extensively on amateur packet

radio networks. It occupies the first and second layer of OSI reference model, and is

responsible for transferring data (encapsulated in packets) between nodes and detecting

errors introduced by the communication channel.

We are using AX.25 protocol because of its simplicity, compatibility and widespread

use among satellites network over amateur band. The information to be transmitted are

sent in small blocks of data, called frames. Each frame is made up of several smaller

groups, called fields. Figure 3.1 shows the three basic types of frames.

Figure 3.1: Three types of AX.25 frame

An Information (I) frame is used to send data using flow control, an Unnumbered(U)

frame can be used to send data without any flow control and Supervisory (S) frame is

used to control the connection (example- to establish connection, terminate connection

or to send flow control request). Further details and handshaking information can be

found in AX.25 document. Calculation of FCS is described in next section. CRC is one

of the popular FCS algorithm and for AX.25 encoding it is recommended to use CRC

CCITT-16 polynomial (i.e. x16 + x12 + x5 + 1).

While transmitting information over downlink, data stored in Memory card was di-

vided by COM into blocks of 512 bytes over which AX.25 encoding was implemented.

Finally this information was transmitted over downlink using Unnumbered(U) frame.

Since U-frame do not provide any feedback facility, the frames lost can not be recov-

ered.

3.2 CRC Implementation

In order to verify the authenticity of telecommand, a 16-bit checksum is added at the end

of each AX.25 frame. This 16-bit CRC word is generated using CCITT-16 generator

polynomial (i.e. x16 + x12 + x5 + 1). Details regarding CRC error detecting codes can

be found in [10]. Kinds of errors that can be detected by using a particular generator

polynomial depends upon its structure. By going though the theorems and arguments

in [10] we can evaluate the performance of CCITT-16 Code. To summarize them up we

can make following points regarding CCITT-16:

• All single bit errors will be detected

• All adjacent double-bit errors will be detected

• All odd number of bit errors will be detected

• All two-bit errors which are separated by 215 − 1 = 32767 bits (i.e. 4095 bytes)
will be detected

• All error bursts of 16 bits or less are detected

A burst-error of length b is defined as any pattern of errors for which the number

of symbols between the first and last errors, including these errors, is b. We have used

maximum packet size of 523 bytes. Hence all single and double bit errors will be

definitely detected. Quoting a line from [13] :

For randomly distributed errors, it is estimated that the likelihood of

CRC-16 not detecting an error is 10−14, which equates to one undetected

error every two years of continuous data transmission at a rate of 1.544

Mbps.

24

A paper on cyclic codes, [10], describes several ways of computing CRC. At first

we directly implemented the method described in Fig. 1 of this paper, using generator

polynomial x16+x12+x5+1. CRC encoding was done by using bit-wise shift operation

as shown in figure 3.2. If we go through [10], it is clearly mentioned that by using this

method we will have to enter 16-zeros after the entry of last data bit to get a valid Check

sum into the registers. Once these 16 zeros are inserted, we can extract Checksum from

Bit-0 to Bit-15 and place them at the end of last data bit. We can see from figure 3.2

that for each bit of data we have to perform a bit-wise shift operation and a modulo-2

addition. This requires large number of computation and consumes lot of clock cycles.

Figure 3.2: CRC calculation using shift registers

We overcome this issue by using a look-up table to compute checksum. Previously

we were working one bit at a time, but now, using look-up table we can work with one

byte at a time. Looking at the bottom 8 bits of the CRC register and scanning this byte

from right to left (Bit-0 to Bit-7). Every time we find a non-zero bit, we XOR the key

into the register at a bit offset such that this bit is turned off by the top invisible bit of the

key. This operation can modify the remaining bits in the byte we scanned but XORing

is like addition, it is Associative and we can do it in any order. So we can XOR together

a bunch of shifted keys corresponding to a given byte and store it in a table for later use.

C code for calculating this table entries is shown in figure 3.3.

Once the table is pre-calculated, we can use it to evaluate the CRC of any message

byte-by-byte. Since the table is constant, we have stored it into the code memory of

COM. At each step when we shift one byte out of the register and shift in the next

message byte, we use the shifted out byte as an index to our CRC table. The value from

the table contains the accumulated XOR of appropriately shifted keys. We XOR this

value into the register and continue the process until the whole message is consumed.

As mentioned previously, we will have to enter 16-zeros after the entry of last data

bit to get a valid checksum into the registers. When we are implementing byte-wise

operation, we will have to insert two bytes of all zeros. In order to avoid inserting these

25

Figure 3.3: C code to calculate CRC Table

extra zeros, the very same paper [10] have explained another method in Fig. 2. We

can merge the idea of this method with above byte wise operation and come up with a

solution where checksum is present in the registers as soon the last data byte has been

entered. We can keep XORing the accumulated keys into the register, but postpone the

XORing of the message byte until its time comes to be shifted out of the register. Again,

it is possible because of the Associativity property of addition.

26

CHAPTER 4

Software Architecture

4.1 Architecture Overview

Complete code can be divided into three primary blocks. First is ADF Block (for

ADF7020-1), Second is CMX Block (i.e. for CMX7164 and CMX991) and last one

is General Block. CMX Block can again be divided into two sub-blocks (CMX-A and

CMX-B). Different blocks can communicate using some common parameters as shown

in figure 4.1, i.e. ADF Block communicates with CMX-A Block using a single param-

eter Command but both the blocks can alter parameter Ready. CMX-A and ADF Block

controls General Block using Ready. General Block and CMX-B Block communicate

using Empty.

Figure 4.1: Software blocks of COM and interface parameters

ADF Block is that part of code which defines the duty of COM when an interrupt

is issued by ADF7020-1, CMX Block defines the duty of COM when an interrupt is

issued by CMX7164 and General Block is the set of instructions which are executed

inside main() function. Role of various parameters are defined as follows:

• Command : Each telecommand has been associated with a number. Command is
an integer which indicates what tele-command has been received.

• Ready : It indicates the present state of COM. At a time COM can be in any one
of the three states, namely Idle (Ready=0), Housekeeping (Ready=1) and Data
Transfer(Ready=2). State flow diagram for COM is shown in figure 4.2.

• Empty : It indicates the status of circular Queue which is used to store data frames
to be transmitted (described in section 4.2.1).

Figure 4.2: State flow diagram of COM

4.2 Block Interface

4.2.1 General Block

This block defines the set of works which COM will do after Power-on/Reset. Apart

from this, it is responsible for reading blocks of data from Memory card. Flow-chart of

figure 4.3 summarizes the job of this block.

First thing to do after Power-on/Reset is to initialize the pins of COM (MSP430).

Then COM tries to establish connection with ADF7020-1. COM confirms the working

state of ADF7020-1 by reading its Silicon Revision Readback Word (refer datasheet

of ADF7020-1). If ADF7020-1 returns Silicon Revision Readback Word as 0x2018

then COM verifies its presence and moves on to initializing CMX7164, else it will reset

ADF7020-1 and then try to re-initialize it.

Initializing CMX7164 takes some time. As mentioned before, CMX7164 can be

used only after the Function-Image has been loaded into it. COM confirms the proper

loading of Function-Image (FI) when it receives a valid Product-ID and Function-Image

code from CMX7164. If somehow FI fails to load in first attempt, COM resets it and

tries to load it again.

When connection with ADF7020-1 (uplink receiver) and CMX7164 (downlink trans-

mitter) has been established, COM initializes Memory Card. After receiving expected

28

Figure 4.3: Flow chart for General Block

response from memory card, COM starts listening to the tele-commands.

Next, COM enables the interrupt associated with ADF7020-1. Since, ADF7020-1

gives an interrupt when it detects a valid Frame Sequence, COM should be ready to

respond to it immediately. Initially COM will be in Idle State (Ready=0) and hence

it will enter Low Power mode (LPM). This helps reducing power consumption when

COM is not in use. Since CPU and Master Clock are disabled in LPM, all CPU activities

are seized. COM stays in LPM and just waits for an interrupt from ADF7020-1.

When interrupted by ADF7020-1, ADF Block is executed which in turn can enable

CMX7164 interrupt based on the received telecommand. Either ADF Block or CMX-A

Block can alter Ready parameter which specifies the state of COM (i.e. Idle, House-

keeping or Data Transfer). After serving the respective Interrupt Service Routine (ISR),

when program execution returns to General Block, COM will decide whether to read

data from Memory Card or not based on the parameters Ready and Empty.

Software maintains a circular queue whose entries are *ptr[0], *ptr[1] and *ptr[2].

These are the character pointers that stores the address of 512 bytes character array

each. Properties of this Queue is as follows:

• When Front == Rear and Empty==1, Queue is empty

• When Front == Rear and Empty==0, Queue is full

29

• When data block is read from memory card, it is added at Rear and then Rear
= (Rear+1) mod 3. Now if Rear==Front then Empty=0 (i.e. Queue if
Full).

• Data is transmitted from Front and then Front = (Front+1) mod 3. If
Front==Rear then Empty=1 (i.e. Queue is Empty).

Figure 4.4: Queue for data frames

When COM reads one block of data from Memory card it is stored at the rear end

of queue i.e. *ptr[Rear]. When COM transmits data to CMX7164, the data is extracted

from *ptr[Front]. Since COM is interrupt driven, it can transfer data to CMX7164 and

read blocks from Memory card at the same time. Thus when COM is busy transferring

one of the three buffer, it can keep filling the empty buffers. Buffer is ready to receive

new data from Memory card once it has been transferred to CMX7164.

4.2.2 ADF Block

ADF Block comprises the Interrupt Service Routine (ISR) associated with ADF7020-

1 interrupt. As explained earlier, ADF7020-1 generates an interrupt when it detects a

valid Frame Sequence. When COM receives this interrupt it follows following steps:

• Stops listening to ADF7020-1 interrupt.

• It enables SPI for receiving data from ADF7020-1 (USCI-A0) and also enables
interrupt associated with UCA0RXBUF as soon it receives a byte.

• Inside ISR of UCA0RXBUF each received byte is stored in an array till we re-
ceive an End Flag.

• Once End Flag is encountered, the received character array is compared with
stored commands to identify what action needs to be taken. At this point ADF7020-
1 interrupt is enabled again.

Advantage of using UCA0RXBUF interrupt is that COM can perform many other

works in the interval of receiving two bytes. Since uplink speed is 1200 bps, one byte

30

will be received in 6.66 msec. COM is working at 16 MHz, hence there are approxi-

mately 106 k clock cycles in this duration. So rather than waiting for whole frame to

come, UCA0RXBUF interrupt allows us to use 106 k clock cycles in more productive

work.

Works done by COM after receiving a complete frame is shown in the flow-chart

of figure 4.5. Parameter controlled by this block is Command. Command is just a

numerical representation of the telecommand that has been received.

Few unique things have to be done when COM starts transmitting for first time (i.e.

when COM is in Idle State (Ready==0) and it receives SABM telecommand). This

situation is handled by ADF block itself. As shown in the flow-chart, all conditions

associated with Idle State (Ready==0) is handled by ADF Block. Controls over other

COM states are left over as the job of CMX-A Block.

ADF Block changes COM state from Idle (Ready=0) to Housekeeping (Ready=1)

when it receives a new SABM frame.

Figure 4.5: Flow chart for ADF Block

31

4.2.3 CMX-A Block

As explained in previous section, ADF Block enables interrupt from CMX7164 only

when SABM frame is received in Idle state. Also, it was mentioned in CMX7164

Section that interrupt will be issued by CMX7164 as soon the CMD Buffer is empty.

When CMX7164 is already transmitting data, this interrupt means that CMX7164 is

asking for more data before it runs out of it.

Each time the interrupt is generated by CMX7164, COM executes CMX Block.

CMX-A sub-block is completely bypassed if no new telecommand has been received

(i.e. Command == 0). If COM receives a new command then CMX-A sub-block

responds according to the designed protocol. Job of CMX-B sub-block is to fill the

data into CMD Buffer, but CMX-A directs it by specifying what it should fill based

on the received telecommand. If CMX-A finds that Ground Station is asking for link

termination or some unexpected event has occurred, then CMX-A can proceed for link

termination and in this case CMX-B will be bypassed.

Figure 4.6: Flow chart for CMX-A sub-block

32

4.2.4 CMX-B Block

This block is concerned with filling the CMD buffer of CMX7164. As soon a new

SABM frame has been received COM starts transmitting Preambles. Preamble is noth-

ing but a series of 10101. . . which are used for clock synchronization at the Ground

Station. Using streaming C-BUS transaction, maximum of 15 bytes can be transferred

at a time. CMX7164 generates an interrupt when CMD Buffer is empty, i.e. when the

transferred bytes have been read from CMD Buffer. Since downlink transmission speed

is 19.2 kbps, it takes 6.25 msec. for CMX7164 to transmit 15 bytes and hence generate

an interrupt. Following flow-chart describes the job of this block.

Figure 4.7: Flow chart for CMX-B sub-block

4.2.5 Interrupt Management

All the software blocks that we have implemented in MSP430 are interrupt driven.

Complete code uses four ISR (Interrupt Service Routines) which are described below:

• Port-2 ISR: Interrupt signal given by ADF7020-1 is connected to P2.0 pin of
MSP430. ADF7020-1 issues an interrupt when it detects Frame Synchronization
field in the received bits. On receiving an interrupt from ADF7020-1, PORT-2
ISR is executed.

• PORT-1 ISR: Interrupt signal from CMX7164 is connected to P1.0 of MSP430

• USCIAB0 Rx ISR: This ISR is executed when MSP430 received one byte of
information through either USCI_A0 or USCI_B0. Though USCI_A0 stores the
received byte in register UCA0RXBUF and USCI_B0 stores the received byte
in UCB0RXBUF, they both share a common ISR. Data and Clock provided by

33

ADF7020-1 are collected by MSP430 via USCI_A0 module. Since we have not
activated interrupt associated with USCI_B0, USCIAB0 Rx ISR will be executed
only when USCI_A0 module receives a byte in UCA0RXBUF from ADF7020-1.

• WDT Timer ISR: As mentioned earlier, we want to reset the COM system after
every 10 minutes. Watchdog timer keeps a count of the time elapsed and triggers
system reset when the timer expires.

Interrupt priorities are fixed and it defines what interrupt is serviced when more than

one interrupt is pending simultaneously. As mentioned in the datasheet of MSP430F2619,

interrupt from Watchdog timer has highest priority, followed by USCI_A0 Receive,

PORT-2 (ADF7020-1) and PORT-1 (CMX7164). Interrupt from ADF7020-1 was given

priority over that from CMX7164 because CMX7164 has the facility of buffering the

information that has to be transmitted. This allows us to service ISR associated with

PORT-2 (ADF7020-1) while continuing seamless transmission from CMX7164. Figure

4.8 shows the interrupt flow that is implemented in our code. In this figure all the edges

emanating from a single point represents the steps that has to be performed simultane-

ously.

Figure 4.8: Interrupt flow

After the COM is powered-on/Reset, only PORT-2 and WDT Timer interrupt is en-

abled. Upon receiving a valid Frame Sequence, PORT-2 ISR disables itself and enables

USCI_A0 interrupt. Here COM collects the telecommand byte by byte until an End flag

is encountered. Once a complete telecommand has been received, USCI_A0 Rx ISR

disables itself, enables PORT-1 ISR again and based on the received telecommand it can

either activate or deactivate PORT-2 ISR. While all these things are processing, WDT

34

Timer is running in parallel which performs COM reset after every 10 minutes. When

USCI_A0 Rx ISR detects a new SABM request, WDT Timer will reset its countdown

and will start counting again to generate System reset 10 minutes after the last "new"

SABM frame was received.

35

CHAPTER 5

Test Setup

This chapter describes the various test set-up we build at each stage of our project.

Our first aim was to establish a reliable communication link between two ADF7020-1

FSK transceivers. For this, as shown in figure 5.1, one ADF7020-1 was used as a FSK

transmitter which accepts AX.25 encoded frames from host MSP430 while another

ADF7020-1 receives the FSK signal, demodulates it and passes it to client MSP430.

Client MSP430 extracts data from AX.25 frames and passes it to PC via UART. Data

received by PC were observed in Windows Hyperterminal.

Figure 5.1: ADF7020-1 to ADF7020-1 communication

Next step was to verify the performance of uplink receiver in the presence of Doppler.

For this we established the arrangement as shown in figure 5.2. As mentioned earlier,

we performed Matlab simulation to obtain the Doppler shift vs. Time relationship.

These values were put into the USRP code to generate a real-time Doppler corrupted

FSK signal. This Doppler corrupted signal was fed as input to ADF7020-1 and the

received data was observed in Hyperterminal. ADF7020-1 was able to track the signal

with Doppler shift up to ±50kHz.

Figure 5.2: Test setup to verify Doppler Correction

Finally CMX7164, CM991 and ADF4351 were integrated with ADF7020-1 and

MSP430 to create a full working prototype of on-board satellite communication system.

A prototype for ground station was also constructed which can send telecommand and

receives telemetry. Telecommand were issued by ground station based on the user input

and satellite response was observed in PC.

Figure 5.3: Complete prototype for Satellite and Ground Station

37

CHAPTER 6

Conclusion

By the end of this project we were ready with the final hardware design for on-board

communication system of IITM-Sat. Single microcontroller (COM) along with six ex-

ternal modules were combined to form the complete self-contained COM system. Ini-

tial testing of this design was performed using the evaluation boards of MSP430F2619,

ADF7020-1 (FSK Receiver), CMX7164 (GMSK Baseband Modulator), CMX991 (I/Q

up-converter), ADF4351 (Local Oscillator) and RF5110 (Power Amplifier).

Figure 6.1: Lab setup of COM system using Evaluation boards

Since the performance is verified by experiments on evaluation boards we proceeded

to design schematic for integrating all the modules into single PCB. Future testing has

to be performed on this single PCB design.

As a communication protocol between ground station and satellite, modified version

of AX.25 protocol was implemented. Handshaking mechanism, as defined in the AX.25

specifications, were deployed and verified. Exact protocol can be implemented once all

the telecommands are decided.

APPENDIX A

APPENDIX

A.1 MSP430F2619 Connections

MSP Pin no. Description Direction
59 PDRF for ADF4351 Out
60 CE for ADF4351 Out
61 CE for ADF7020-1 Out
2 MISO for ADF7020-1 In
3 MOSI (Common for ADF7020-1 and ADF4351) Out
4 SLE for ADF7020-1 Out
5 SCLK (Common for ADF7020-1 and ADF4351) Out
6 SLE for ADF4351 Out

12 Interrupt from CMX7164 In
13 Reset CMX7164 Out
14 CSN for CMX991 (CSNB) Out
15 Reset CMX991 Out
16 CSN for CMX7164 (CSNA) Out
20 Interrupt from ADF7020-1 In
21 To VAPC of Power Amplifier Out
28 Clock from ADF7020-1 In
29 C-BUS MOSI (Common from CMX7164 and CMX991) Out
30 C-BUS MISO (Common from CMX7164 and CMX991) In
31 C-BUS Clock (Common from CMX7164 and CMX991) Out
32 MOSI from ADF7020-1 In
44 Clock for SD Card In
45 Slave Select SS for SD Card Out
46 MOSI for SD Card Out
47 MISO from SD Card In

Table A.1: Pin connection of MSP430F2619

A.2 ADF.h

d e f i n e ADF7020 1

d e f i n e ADF4351 2

d e f i n e CE_ADF7020 P6OUT | = BIT2

d e f i n e CE_ADF4351 P6OUT | = BIT1

d e f i n e RFon_ADF4351 P6OUT | = BIT0

d e f i n e RFoff_ADF4351 P6OUT &= ~BIT0

unsigned char SIL [4] = {0 x00 , 0x00 , 0x01 , 0xC7 } ;

unsigned char RSSI [4] = {0 x00 , 0x00 , 0x01 , 0x47 } ;

unsigned char RET [4] ;

unsigned char Reg7020_0 [4] = {0 x79 , 0x04 , 0x43 , 0xB0 } ;

unsigned char Reg7020_1 [4] = {0 x00 , 0x03 , 0x90 , 0x11 } ;

unsigned char Reg7020_3 [4] = {0 x00 , 0x62 , 0x80 , 0x93 } ;

unsigned char Reg7020_4 [4] = {0 x01 , 0x00 , 0x00 , 0x54 } ;

unsigned char Reg7020_5 [4] = {0 x94 , 0xFE , 0x7E , 0x35 } ;

unsigned char Reg7020_6 [4] = {0x0C , 0x48 , 0x1E , 0xC6 } ; / / l n a mode =1 , O p t i m i z e d f o r D e l t a _ f = 2 . 5 kHz

unsigned char Reg7020_9 [4] = {0 x00 , 0xBA , 0x31 , 0xE9 } ;

unsigned char Reg7020_11 [4] = {0 x00 , 0x10 , 0x35 , 0x5B } ;

unsigned char Reg4351_5 [4] = {0 x00 , 0x58 , 0x00 , 0x05 } ;

unsigned char Reg4351_4 [4] = {0 x00 , 0xAC , 0x80 , 0x3C } ;

unsigned char Reg4351_3 [4] = {0 x00 , 0x00 , 0x04 , 0xB3 } ;

unsigned char Reg4351_2 [4] = {0 x00 , 0x00 , 0x4E , 0x42 } ;

unsigned char Reg4351_1 [4] = {0 x08 , 0x00 , 0x80 , 0x09 } ;

unsigned char Reg4351_0 [4] = {0 x00 , 0x54 , 0x00 , 0x00 } ;

c o n s t char SABM_pkt [] = { ’ I ’ , ’ I ’ , ’T ’ , ’M’ , ’−’ , ’S ’ , ’ a ’ , ’ t ’ , ’ ’ , ’S ’ , ’A’ , ’B ’ , ’M’ ,0 xCF , 0 x67 , 0 x00 } ; / / CRC i s 0xCF67

c o n s t char SD_pkt [] = { ’ I ’ , ’ I ’ , ’T ’ , ’M’ , ’−’ , ’S ’ , ’ a ’ , ’ t ’ , ’ ’ , ’S ’ , ’D’ , ’ ’ , ’ ’ ,0 xF4 , 0 xD4 , 0 x00 } ; / / CRC i s 0xF4D4

c o n s t char TERM_pkt [] = { ’ I ’ , ’ I ’ , ’T ’ , ’M’ , ’−’ , ’S ’ , ’ a ’ , ’ t ’ , ’ ’ , ’T ’ , ’E ’ , ’R ’ , ’M’ ,0 x41 , 0 xF9 , 0 x00 } ; / / CRC i s 0x41F9

i n t Off se t_Rx =0;

char Rx [8 0] ;

void w r i t e (i n t , unsigned char ∗) ;

void r e a d (unsigned char ∗) ;

i n t A D F 7 0 2 0 _ i n i t i a l i z e (void) ;

void A D F 4 3 5 1 _ i n i t i a l i z e (void) ;

void A D F 4 3 5 1 _ i n i t i a l i z e (void)

{

RFon_ADF4351 ;

CE_ADF4351 ;

d e l a y (5) ; / / Try r e d u c i n g

w r i t e (ADF4351 , Reg4351_5) ;

w r i t e (ADF4351 , Reg4351_4) ;

w r i t e (ADF4351 , Reg4351_3) ;

w r i t e (ADF4351 , Reg4351_2) ;

w r i t e (ADF4351 , Reg4351_1) ;

w r i t e (ADF4351 , Reg4351_0) ;

}

i n t A D F 7 0 2 0 _ i n i t i a l i z e ()

{

CE_ADF7020 ;

d e l a y (5) ;

r e a d (SIL) ;

i f (RET[0]==0 x20 && RET[1]==0 x18)

{

w r i t e (ADF7020 , Reg7020_0) ;

w r i t e (ADF7020 , Reg7020_1) ;

w r i t e (ADF7020 , Reg7020_3) ;

40

w r i t e (ADF7020 , Reg7020_4) ;

w r i t e (ADF7020 , Reg7020_5) ;

w r i t e (ADF7020 , Reg7020_6) ;

d e l a y (5 0) ;

w r i t e (ADF7020 , Reg7020_9) ;

d e l a y (5 0) ;

w r i t e (ADF7020 , Reg7020_11) ;

re turn 1 ;

}

re turn 0 ;

}

void w r i t e (i n t ADF, unsigned char Reg [4])

{

unsigned char D;

f o r (i n t i =0 ; i <=3; i ++)

{

D = Reg [i] ;

f o r (i n t j =1 ; j <=8; j ++)

{

d e l a y (5) ;

P6OUT &= ~BIT6 ; / / CLK low

i f (D&0x80)

P6OUT | = BIT4 ;

e l s e

P6OUT &= ~BIT4 ;

D< <=1;

d e l a y (5) ;

P6OUT | = BIT6 ; / / CLK h igh

}

}

d e l a y (5) ;

P6OUT | = BIT6 ; / / CLK low

i f (ADF == 1)

{

P6OUT | = BIT5 ; / / SLE h igh

d e l a y (5) ;

P6OUT &= ~BIT5 ; / / SLE low

d e l a y (5) ;

}

e l s e

{

P6OUT | = BIT7 ; / / SLE h igh

d e l a y (5) ;

P6OUT &= ~BIT7 ; / / SLE low

d e l a y (5) ;

}

}

void r e a d (unsigned char c [4])

{

unsigned char a [4] = { 0 , 0 , 0 , 0 } , b ,D;

f o r (i n t i =0 ; i <=3; i ++)

{

D = c [i] ;

f o r (i n t j =1 ; j <=8; j ++)

{

d e l a y (5) ;

P6OUT &= ~BIT6 ; / / CLK low

i f (D&0x80)

P6OUT | = BIT4 ;

e l s e

P6OUT &= ~BIT4 ;

D< <=1;

41

d e l a y (5) ;

P6OUT | = BIT6 ; / / CLK h igh

}

}

d e l a y (5) ;

P6OUT &= ~BIT6 ; / / CLK low

P6OUT | = BIT5 ; / / SLE h igh

d e l a y (5) ;

P6OUT | = BIT6 ; / / CLK h igh

d e l a y (5) ;

P6OUT &= ~BIT6 ; / / CLK low

f o r (i n t i =0 ; i <=3; i ++)

f o r (i n t j =1 ; j <=8; j ++)

{

d e l a y (5) ;

P6OUT | = BIT6 ; / / CLK h igh

i f (P6IN & BIT3)

b = 0x01 ;

e l s e

b=0x00 ;

a [i] = a [i] < <1;

a [i] = a [i] + b ;

d e l a y (5) ;

P6OUT &= ~BIT6 ; / / CLK low

}

P6OUT &= ~BIT5 ; / / SLE low

RET [0] = a [0] ;

RET [1] = a [1] ;

RET [2] = a [2] ;

RET [3] = a [3] ;

}

42

A.3 CML.h

d e f i n e CMX7164 1

d e f i n e CMX991 2

d e f i n e CON_7164 P1OUT &= ~BIT4

d e f i n e DIS_7164 P1OUT | = BIT4

d e f i n e CON_991 P1OUT &= ~BIT2

d e f i n e DIS_991 P1OUT | = BIT2

d e f i n e Rx_FIFO_Level 0x4F

d e f i n e Rx_FIFO_Word 0x4D

d e f i n e Delay1 1

d e f i n e Enable_CMX7164 P1OUT | = BIT1

d e f i n e Disable_CMX7164 P1OUT &= ~BIT1

d e f i n e Enable_CMX991 P1OUT | = BIT3

d e f i n e Disable_CMX991 P1OUT &= ~BIT3

d e f i n e Enable_Tx_CMX7164 w r i t e 1 6 (CMX7164 , 0x6B , 0 x0042) / / Preamble , FS1 , Raw Data

d e f i n e Go_Idle_CMX7164 w r i t e 1 6 (CMX7164 , 0x6B , 0 x0000)

void C M X 7 1 6 4 _ i n i t i a l i z e (void) ;

void C M X 9 9 1 _ i n i t i a l i z e (void) ;

i n t FI_Load (void) ;

char r e a d 8 (i n t , char) ;

unsigned i n t r e a d1 6 (i n t , char) ;

void w r i t e 8 (i n t , char , char) ;

void w r i t e 1 6 (i n t , char , unsigned i n t) ;

void d e l a y (i n t) ;

void C M X 7 1 6 4 _ i n i t i a l i z e ()

{

/ / Program Block 5

r e a d1 6 (CMX7164 , 0x7E) ;

w r i t e 1 6 (CMX7164 , 0x6B , 0 x0350) ; / / PB5 . 3 , IDLE , PLL O f f

w r i t e 1 6 (CMX7164 , 0x6A , 0xA000) ;

/ / GPIOA s e t as an a u t o m a t i c o u t p u t , i t w i l l go h igh as soon as a Tx command i s r e c e i v e d

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x8028) ;

/ / GPIOB s e t as an a u t o m a t i c o u t p u t , i t w i l l go low $28 x 1 /20 symbol p e r i o d s a f t e r a Tx command i s r e c e i v e d

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x0000) ;

/ / GPIOC i s n o t a u t o m a t i c a l l y c o n t r o l l e d Ű i t i s manua l l y c o n t r o l l e d

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x0000) ;

/ / GPIOD i s n o t a u t o m a t i c a l l y c o n t r o l l e d Ű i t i s manua l l y c o n t r o l l e d

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x8050) ;

/ / AUXDAC1 Ű t h e RAMDAC w i l l a u t o m a t i c a l l y s t a r t ramp up $50 x 1 /20 symbol p e r i o d s a f t e r a Tx command i s r e c e i v e d

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x8040) ;

/ / Modu la t ion w i l l s t a r t $40 x 1 /20 symbol p e r i o d s a f t e r a Tx command i s r e c e i v e d

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x8000) ;

/ / RAMDAC w i l l a u t o m a t i c a l l y s t a r t ramp down as soon as m o d u l a t i o n ends

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x8000) ;

/ / GPIOA w i l l go low as soon as m o d u l a t i o n ends

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0xA080) ;

/ / GPIOB w i l l go h igh $80 x 1 /20 symbol p e r i o d s a f t e r m o d u l a t i o n ends

whi le (! (0 x4000 & r ea d 16 (CMX7164 , 0x7E))) ;

43

/ / Program Block 1

w r i t e 1 6 (CMX7164 , 0x6B , 0 x0110) ;

w r i t e 1 6 (CMX7164 , 0x6A , 2) ;

whi le (! (0 x4000 & r e ad 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x2019) ;

whi le (! (0 x4000 & r e ad 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 1 2 8) ;

whi le (! (0 x4000 & r e ad 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 1) ;

whi le (! (0 x4000 & r e ad 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 1 6) ;

whi le (! (0 x4000 & r e ad 16 (CMX7164 , 0x7E))) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x2799) ;

whi le (! (0 x4000 & r e ad 16 (CMX7164 , 0x7E))) ;

/ / Program Block 4

w r i t e 1 6 (CMX7164 , 0x6B , 0 x0140) ;

w r i t e 1 6 (CMX7164 , 0x6A , 0 x0100) ; / / BT = 0 . 3

whi le (! (0 x4000 & re ad 16 (CMX7164 , 0x7E))) ;

}

i n t FI_Load ()

{

char ch1 ;

unsigned i n t va l1 , v a l 2 ;

i n t c o u n t ;

Enable_CMX7164 ;

d e l a y (3 0 0 0 0) ;

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x01 ;

whi le (UCB0STAT & UCBUSY) ;

DIS_7164 ;

d e l a y (1 0 0 0 0) ;

/ / Read RxFIFO L e v e l u n t i l t h r e e d e v i c e check appears

f o r (i n t i =1 ; i <=3; i ++)

{

r ea d1 6 (CMX7164 , Rx_FIFO_Word) ;

}

/ / B lock

w r i t e 1 6 (CMX7164 , 0x49 , DB1_LEN) ;

w r i t e 1 6 (CMX7164 , 0x49 , DB1_PTR) ;

c o u n t = 0 ;

whi le (c o u n t < DB1_LEN)

{

ch1 = r e a d 8 (CMX7164 , 0x4B) ;

i f (ch1 >=0x80) re turn 0 ;

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x49 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =0 ; i <128−(i n t) ch1 ; i ++)

{

UCB0TXBUF = db1 [c o u n t] > >8;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = db1 [c o u n t + +] ;

whi le (UCB0STAT & UCBUSY) ;

i f (c o u n t ==DB1_LEN) break ;

}

DIS_7164 ;

44

d e l a y (Delay1) ;

}

v a l 1 = r ea d1 6 (CMX7164 , 0x4D) ; / / Shou ld be 0 x0024

v a l 2 = r ea d1 6 (CMX7164 , 0x4D) ; / / Shou ld be 0xC156

/ / B lock 2

w r i t e 1 6 (CMX7164 , 0x49 , DB2_LEN) ;

w r i t e 1 6 (CMX7164 , 0x49 , DB2_PTR) ;

c o u n t = 0 ;

whi le (c o u n t < DB2_LEN)

{

ch1 = r e a d 8 (CMX7164 , 0x4B) ;

i f (ch1 >=0x80) re turn 0 ;

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x49 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =0 ; i <128−(i n t) ch1 ; i ++)

{

UCB0TXBUF = db2 [c o u n t] > >8;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = db2 [c o u n t + +] ;

whi le (UCB0STAT & UCBUSY) ;

i f (c o u n t ==DB2_LEN) break ;

}

DIS_7164 ;

d e l a y (Delay1) ;

}

v a l 1 = r ea d1 6 (CMX7164 , 0x4D) ; / / Shou ld be 0xFFF2

v a l 2 = r ea d1 6 (CMX7164 , 0x4D) ; / / Shou ld be 0xF1F0

/ / A c t i v a t i o n Block

w r i t e 1 6 (CMX7164 , 0x49 , ACTIVATE_LEN) ;

w r i t e 1 6 (CMX7164 , 0x49 , ACTIVATE_PTR) ;

c o u n t =0 ;

whi le (! (r e ad 16 (CMX7164 , 0x7E) & 0 x4000))

{

i f (c o u n t ++ >= 1000) re turn 0 ;

}

v a l 1 = r ea d1 6 (CMX7164 , 0x4D) ; / / Shou ld be 0 x7164

v a l 2 = r ea d1 6 (CMX7164 , 0x4D) ; / / Shou ld be 0 x1002

/ / To i n d i c a t e t h a t FI has been lo ad ed c o r r e c t l y

i f (v a l 1 ==0 x7164 && v a l 2 ==0 x1002) re turn 1 ;

e l s e re turn 0 ;

}

void w r i t e 8 (i n t reg , char add , char v a l)

{

i f (r e g == CMX7164) CON_7164 ;

e l s e i f (r e g == CMX991) CON_991 ;

d e l a y (Delay1) ;

UCB0TXBUF = add ;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = v a l ;

whi le (UCB0STAT & UCBUSY) ;

i f (r e g == CMX7164) DIS_7164 ;

e l s e i f (r e g == CMX991) DIS_991 ;

d e l a y (Delay1) ;

}

void w r i t e 1 6 (i n t reg , char add , unsigned i n t v a l)

{

i f (r e g == CMX7164) CON_7164 ;

e l s e i f (r e g == CMX991) CON_991 ;

45

d e l a y (Delay1) ;

UCB0TXBUF = add ;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = val > >8;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = v a l ;

whi le (UCB0STAT & UCBUSY) ;

i f (r e g == CMX7164) DIS_7164 ;

e l s e i f (r e g == CMX991) DIS_991 ;

d e l a y (Delay1) ;

}

char r e a d 8 (i n t reg , char add)

{

char ch ;

i f (r e g == CMX7164) CON_7164 ;

e l s e i f (r e g == CMX991) CON_991 ;

d e l a y (Delay1) ;

UCB0TXBUF = add ;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = 0xAA;

whi le (UCB0STAT & UCBUSY) ;

whi le (! (IFG2 & UCB0RXIFG)) ;

ch = UCB0RXBUF;

i f (r e g == CMX7164) DIS_7164 ;

e l s e i f (r e g == CMX991) DIS_991 ;

d e l a y (Delay1) ;

re turn ch ;

}

unsigned i n t r e a d1 6 (i n t reg , char add)

{

unsigned i n t v a l =0 ;

i f (r e g == CMX7164) CON_7164 ;

e l s e i f (r e g == CMX991) CON_991 ;

d e l a y (Delay1) ;

UCB0TXBUF = add ;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = 0xAA;

whi le (UCB0STAT & UCBUSY) ;

whi le (! (IFG2 & UCB0RXIFG)) ;

v a l = UCB0RXBUF;

v a l = va l < <8;

UCB0TXBUF = 0xAA;

whi le (UCB0STAT & UCBUSY) ;

whi le (! (IFG2 & UCB0RXIFG)) ;

v a l = v a l + UCB0RXBUF;

i f (r e g == CMX7164) DIS_7164 ;

e l s e i f (r e g == CMX991) DIS_991 ;

d e l a y (Delay1) ;

re turn v a l ;

}

void C M X 9 9 1 _ i n i t i a l i z e ()

{

Disable_CMX991 ;

d e l a y (1 0 0 0) ;

Enable_CMX991 ;

d e l a y (1 0 0 0) ;

/ / Needs e x t e r n a l RF LO f o r o u t p u t a t 435MHz

w r i t e 8 (CMX991 , 0x11 , 0xC3) ;

w r i t e 8 (CMX991 , 0x14 , 0x52) ;

w r i t e 8 (CMX991 , 0x15 , 0x21) ;

w r i t e 8 (CMX991 , 0x16 , 0x00) ;

w r i t e 8 (CMX991 , 0x23 , 0x07) ;

w r i t e 8 (CMX991 , 0x22 , 0x08) ;

w r i t e 8 (CMX991 , 0x20 , 0xC0) ;

46

w r i t e 8 (CMX991 , 0x21 , 0xA0) ;

}

void d e l a y (i n t a)

{

f o r (i n t i =1 ; i <=a ; i + +) ;

}

47

A.4 SD_Card.h

d e f i n e SD_CS_ASSERT P5OUT &= ~BIT0

d e f i n e SD_CS_DEASSERT P5OUT | = BIT0

d e f i n e GO_IDLE_STATE 0

d e f i n e SEND_OP_COND 1

d e f i n e SEND_CSD 9

d e f i n e SET_BLOCK_LEN 16

d e f i n e READ_SINGLE_BLOCK 17

d e f i n e WRITE_SINGLE_BLOCK 24

d e f i n e CRC_ON_OFF 59

char b u f f e r [5 1 3] ;

unsigned i n t S D _ i n i t (void) ;

unsigned char SD_sendCommand (unsigned char cmd , unsigned long i n t arg , char c r c) ;

unsigned char SD_readS ing l eB lock (unsigned long i n t s t a r t B l o c k) ;

unsigned char S D _ w r i t e S i n g l e B l o c k (unsigned long s t a r t B l o c k) ;

unsigned char S D _ w r i t e S i n g l e B l o c k (unsigned long i n t s t a r t B l o c k)

{

unsigned char r e s p o n s e ;

unsigned i n t i , r e t r y =0;

r e s p o n s e = SD_sendCommand (WRITE_SINGLE_BLOCK , s t a r t B l o c k < <9 , 0) ; / / w r i t e a Block command

i f (r e s p o n s e != 0x00) / / check f o r SD s t a t u s : 0 x00 − OK (No f l a g s s e t)

re turn r e s p o n s e ;

SD_CS_ASSERT ;

UCB1TXBUF=(0 xFE) ; / / Send s t a r t b l o c k t o k e n 0 x f e (0 x11111110)

whi le (UCB1STAT & UCBUSY) ;

f o r (i =0 ; i <512; i ++) / / send 128 b y t e s da ta

{

UCB1TXBUF=(’ a ’ +(i %26)) ;

whi le (UCB1STAT & UCBUSY) ;

}

UCB1TXBUF=(0 xFF) ; / / t r a n s m i t dummy CRC (16− b i t) , CRC i s i g n o r e d here

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

i f ((r e s p o n s e & 0 x1f) != 0x05) / / r e s p o n s e= 0xXXX0AAA1 ; AAA= ’010 ’ − da ta a c c e p t e d

{ / / AAA=’101’− da ta r e j e c t e d due t o CRC e r r o r

SD_CS_DEASSERT ; / / AAA=’110’− da ta r e j e c t e d due t o w r i t e e r r o r

re turn r e s p o n s e ;

}

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

whi le (! r e s p o n s e) / / w a i t f o r SD card t o c o m p l e t e w r i t i n g and g e t i d l e

{

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

i f (r e t r y ++ > 0 x f f f e) {SD_CS_DEASSERT ; re turn 1 ; }

}

SD_CS_DEASSERT ;

48

UCB1TXBUF=(0 xFF) ; / / j u s t spend 8 c l o c k c y c l e d e l a y b e f o r e r e a s s e r t i n g t h e CS l i n e

whi le (UCB1STAT & UCBUSY) ;

SD_CS_ASSERT ; / / re−a s s e r t i n g t h e CS l i n e t o v e r i f y i f card i s s t i l l busy

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

whi le (! r e s p o n s e) / / w a i t f o r SD card t o c o m p l e t e w r i t i n g and g e t i d l e

{

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

i f (r e t r y ++ > 0 x f f f e) {SD_CS_DEASSERT ; re turn 1 ; }

}

re turn 0 ;

}

unsigned char SD_readS ing l eB lock (unsigned long i n t s t a r t B l o c k)

{

unsigned char r e s p o n s e ;

unsigned i n t i , r e t r y =0;

r e s p o n s e = SD_sendCommand (READ_SINGLE_BLOCK , s t a r t B l o c k < <9 ,0) ; / / read a Block command

/ / b l o c k a d d r e s s c o n v e r t e d t o s t a r t i n g a d d r e s s o f 512 b y t e B lock

i f (r e s p o n s e != 0x00) / / check f o r SD s t a t u s : 0 x00 − OK (No f l a g s s e t)

re turn r e s p o n s e ;

SD_CS_ASSERT ;

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

whi le (r e s p o n s e != 0 x f e) / / w a i t f o r s t a r t b l o c k t o k e n 0 x f e (0 x11111110)

{

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

i f (r e t r y ++ > 0 x f f f e) {SD_CS_DEASSERT ; re turn 1 ; } / / r e t u r n i f t ime−o u t

}

f o r (i =0 ; i <512; i ++) / / read 128 b y t e s

{

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

b u f f e r [i] = UCB1RXBUF;

}

b u f f e r [5 1 2] = 0x00 ;

UCB1TXBUF=(0 xFF) ; / / r e c e i v e incoming CRC (16− b i t) , CRC i s i g n o r e d here

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(0 xFF) ; / / e x t r a 8 c l o c k p u l s e s

whi le (UCB1STAT & UCBUSY) ;

SD_CS_DEASSERT ;

re turn 0 ;

}

unsigned i n t S D _ i n i t (void)

{

unsigned char i , r e s p o n s e , r e t r y =0 ;

SD_CS_ASSERT ;

do

49

{

f o r (i =0 ; i <10; i ++)

{

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

}

r e s p o n s e = SD_sendCommand (GO_IDLE_STATE , 0 , 0x95) ; / / send ’ r e s e t & go i d l e ’ command

r e t r y ++;

i f (r e t r y >0 x f e) re turn 0 ; / / t i m e o u t

} whi le (r e s p o n s e != 0x01) ; / / Wait t i l l SD Card e n t e r s I d l e S t a t e

SD_CS_DEASSERT ;

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(0 xFF) ;

whi le (UCB1STAT & UCBUSY) ;

r e t r y = 0 ;

do

{

r e s p o n s e = SD_sendCommand (SEND_OP_COND, 0 , 0) ; / / a c t i v a t e card ’ s i n i t i a l i z a t i o n p r o c e s s

r e s p o n s e = SD_sendCommand (SEND_OP_COND, 0 , 0) ; / / r e s e n d command (f o r c o m p a t i b i l i t y w i t h some c a r d s)

r e t r y ++;

i f (r e t r y >0 x f e) re turn 0 ; / / t i m e o u t

} whi le (r e s p o n s e) ;

SD_sendCommand (CRC_ON_OFF , 0 , 0) ; / / d i s a b l e CRC; d e a f a u l t − CRC d i s a b l e d i n SPI mode

SD_sendCommand (SET_BLOCK_LEN , 512 , 0) ; / / s e t b l o c k s i z e t o 128

re turn 1 ; / / normal r e t u r n

}

unsigned char SD_sendCommand (unsigned char cmd , unsigned long i n t arg , char c r c)

{

unsigned char r e s p o n s e , r e t r y =0;

SD_CS_ASSERT ;

UCB1TXBUF=(cmd | 0x40) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(arg > >24) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(arg > >16) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(arg > >8) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(a r g) ;

whi le (UCB1STAT & UCBUSY) ;

UCB1TXBUF=(c r c) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

whi le (r e s p o n s e == 0 x f f)

{

UCB1TXBUF=(0 x f f) ;

whi le (UCB1STAT & UCBUSY) ;

r e s p o n s e = UCB1RXBUF;

i f (r e t r y ++ > 0 x f e) break ;

}

UCB1TXBUF=(0 x f f) ;

whi le (UCB1STAT & UCBUSY) ;

SD_CS_DEASSERT ;

re turn r e s p o n s e ;

}

50

A.5 Main Code

i n c l u d e <msp430f2619 . h>

i n c l u d e < s t d l i b . h>

i n c l u d e < s t r i n g . h>

/ / # i n c l u d e " 7 1 6 4 −1 . 0 . 0 . 4 . h "

i n c l u d e " 7164 −1 .0 .0 .2 . h "

i n c l u d e "CML. h "

i n c l u d e "ADF. h "

i n c l u d e " SD_Card . h "

d e f i n e SABM 1

d e f i n e SD 2

d e f i n e DISC 3

d e f i n e Frame0 4

d e f i n e Frame1 5

d e f i n e Frame2 6

d e f i n e Frame3 7

d e f i n e Frame4 8

d e f i n e Frame5 9

d e f i n e Frame6 10

d e f i n e Frame7 11

d e f i n e Length 512 / / 128

d e f i n e Frame_Len 523 / / 139 / / Frame_Len i s t h e c o n s t a n t l e n g t h o f each da ta frame

c o n s t unsigned i n t c r c T a b l e [0 x100] =

{

0x0000 , 0x1021 , 0x2042 , 0x3063 , 0x4084 , 0x50A5 , 0x60C6 , 0x70E7 ,

0x8108 , 0x9129 , 0xA14A , 0xB16B , 0xC18C , 0xD1AD , 0xE1CE , 0xF1EF ,

0x1231 , 0x0210 , 0x3273 , 0x2252 , 0x52B5 , 0x4294 , 0x72F7 , 0x62D6 ,

0x9339 , 0x8318 , 0xB37B , 0xA35A , 0xD3BD , 0xC39C , 0xF3FF , 0xE3DE ,

0x2462 , 0x3443 , 0x0420 , 0x1401 , 0x64E6 , 0x74C7 , 0x44A4 , 0x5485 ,

0xA56A , 0xB54B , 0x8528 , 0x9509 , 0xE5EE , 0xF5CF , 0xC5AC , 0xD58D ,

0x3653 , 0x2672 , 0x1611 , 0x0630 , 0x76D7 , 0x66F6 , 0x5695 , 0x46B4 ,

0xB75B , 0xA77A , 0x9719 , 0x8738 , 0xF7DF , 0xE7FE , 0xD79D , 0xC7BC ,

0x48C4 , 0x58E5 , 0x6886 , 0x78A7 , 0x0840 , 0x1861 , 0x2802 , 0x3823 ,

0xC9CC , 0xD9ED , 0xE98E , 0xF9AF , 0x8948 , 0x9969 , 0xA90A , 0xB92B ,

0x5AF5 , 0x4AD4 , 0x7AB7 , 0x6A96 , 0x1A71 , 0x0A50 , 0x3A33 , 0x2A12 ,

0xDBFD , 0xCBDC, 0xFBBF , 0xEB9E , 0x9B79 , 0x8B58 , 0xBB3B , 0xAB1A ,

0x6CA6 , 0x7C87 , 0x4CE4 , 0x5CC5 , 0x2C22 , 0x3C03 , 0x0C60 , 0x1C41 ,

0xEDAE , 0xFD8F , 0xCDEC , 0xDDCD, 0xAD2A , 0xBD0B , 0x8D68 , 0x9D49 ,

0x7E97 , 0x6EB6 , 0x5ED5 , 0x4EF4 , 0x3E13 , 0x2E32 , 0x1E51 , 0x0E70 ,

0xFF9F , 0xEFBE , 0xDFDD, 0xCFFC , 0xBF1B , 0xAF3A , 0x9F59 , 0x8F78 ,

0x9188 , 0x81A9 , 0xB1CA , 0xA1EB , 0xD10C , 0xC12D , 0xF14E , 0xE16F ,

0x1080 , 0x00A1 , 0x30C2 , 0x20E3 , 0x5004 , 0x4025 , 0x7046 , 0x6067 ,

0x83B9 , 0x9398 , 0xA3FB , 0xB3DA , 0xC33D , 0xD31C , 0xE37F , 0xF35E ,

0x02B1 , 0x1290 , 0x22F3 , 0x32D2 , 0x4235 , 0x5214 , 0x6277 , 0x7256 ,

0xB5EA , 0xA5CB , 0x95A8 , 0x8589 , 0xF56E , 0xE54F , 0xD52C , 0xC50D ,

0x34E2 , 0x24C3 , 0x14A0 , 0x0481 , 0x7466 , 0x6447 , 0x5424 , 0x4405 ,

0xA7DB , 0xB7FA , 0x8799 , 0x97B8 , 0xE75F , 0xF77E , 0xC71D , 0xD73C ,

0x26D3 , 0x36F2 , 0x0691 , 0x16B0 , 0x6657 , 0x7676 , 0x4615 , 0x5634 ,

0xD94C , 0xC96D , 0xF90E , 0xE92F , 0x99C8 , 0x89E9 , 0xB98A , 0xA9AB ,

0x5844 , 0x4865 , 0x7806 , 0x6827 , 0x18C0 , 0x08E1 , 0x3882 , 0x28A3 ,

0xCB7D , 0xDB5C , 0xEB3F , 0xFB1E , 0x8BF9 , 0x9BD8 , 0xABBB, 0xBB9A ,

0x4A75 , 0x5A54 , 0x6A37 , 0x7A16 , 0x0AF1 , 0x1AD0 , 0x2AB3 , 0x3A92 ,

0xFD2E , 0xED0F , 0xDD6C , 0xCD4D , 0xBDAA, 0xAD8B , 0x9DE8 , 0x8DC9 ,

0x7C26 , 0x6C07 , 0x5C64 , 0x4C45 , 0x3CA2 , 0x2C83 , 0x1CE0 , 0x0CC1 ,

0xEF1F , 0xFF3E , 0xCF5D , 0xDF7C , 0xAF9B , 0xBFBA , 0x8FD9 , 0x9FF8 ,

0x6E17 , 0x7E36 , 0x4E55 , 0x5E74 , 0x2E93 , 0x3EB2 , 0x0ED1 , 0x1EF0

} ;

/ / c o n s t u n s i g n e d char f l a g [4] = {0 xFF , 0xFF , 0xFF , 0xFF } ;

c o n s t unsigned char f l a g [1 1] = {0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF , 0xFF } ;

c o n s t unsigned char s p a r e [6] = {0 x55 , 0x55 , 0x55 , 0x55 , 0x55 , 0x55 } ;

c o n s t unsigned char UA_pkt [] = {0x7E , ’ I ’ , ’ I ’ , ’T ’ , ’M’ , ’−’ , ’S ’ , ’ a ’ , ’ t ’ , ’ ’ , ’U’ , ’A’ , ’ ’ , ’ ’ ,0 x0D , 0 x00 } ;

51

c o n s t unsigned char DM_pkt [] = {0x7E , ’ I ’ , ’ I ’ , ’T ’ , ’M’ , ’−’ , ’S ’ , ’ a ’ , ’ t ’ , ’ ’ , ’D’ , ’ i ’ , ’ s ’ , ’ c ’ ,0 x0D , 0 x00 } ;

c o n s t unsigned char Nul l [] = {0 x00 } ;

c o n s t i n t Res_Len = 1 6 ;

c o n s t i n t gen = 0 x1021 ;

char ∗ p t r [3] ;

char Pkt0 [Length +15] , Pk t1 [Length +15] , Pk t2 [Length + 1 5] ;

i n t F r o n t =0 , Rear =0 , Empty =1 , Abor t =0 , Ready = 0 ,NS = 0 ;

long i n t WDTcount =0;

i n t Command=0;

void M S P _ i n i t i a l i z e (void) ;

void F i r s t _ T x (void) ;

void Send_Frame (c o n s t unsigned char ∗) ;

void End_Tx (void) ;

void r e c e i v e (void) ;

void main ()

{

BCSCTL1 = CALBC1_16MHZ ;

DCOCTL = CALDCO_16MHZ;

_ _ e n a b l e _ i n t e r r u p t () ;

IE1 | = WDTIE;

WDTCTL = WDTPW + WDTTMSEL + WDTCNTCL; / / S top watchdog t i m e r

p t r [0] = Pkt0 ;

p t r [1] = Pkt1 ;

p t r [2] = Pkt2 ;

M S P _ i n i t i a l i z e () ;

Disable_CMX991 ;

whi le (! A D F 7 0 2 0 _ i n i t i a l i z e ()) ;

P4OUT | = BIT3 ;

whi le (! FI_Load ())

{

Disable_CMX7164 ;

d e l a y (1 0 0 0) ;

}

C M X 7 1 6 4 _ i n i t i a l i z e () ;

P4OUT | = BIT4 ;

whi le (! S D _ i n i t ()) ;

P4OUT | = BIT2 ;

P2IE = 0x01 ; / / I n t e r r u p t i s c a l l e d when SYNC i s d e t e c t e d by ADF7020

whi le (1)

{

i f (Ready ==2)

{

i f ((Rear == F r o n t) & (! Empty)) / / I f F u l l

d e l a y (5) ;

e l s e

r e c e i v e () ;

}

e l s e i f (Ready ==1)

{

d e l a y (5) ;

}

e l s e i f (Ready ==0)

{

LPM1 ;

}

}

}

#pragma v e c t o r = WDT_VECTOR

_ _ i n t e r r u p t void WDT_ISR (void)

{

52

/ / Housekeep ing can be done here t o check i f e v e r y t h i n g i s f i n e . I f some module i s n o t working , R e s e t

WDTcount ++;

i f (WDTcount >=292969)

WDTCTL = 0 ; / / Genera te PUC R e s e t

e l s e

WDTCTL = WDTPW + WDTTMSEL + WDTCNTCL;

}

void r e c e i v e ()

{

SD_readS ing l eB lock (0) ; / / <<== Changes

s p r i n t f (p t r [Rear] , "%s%c%s " , f l a g , ’ 0 ’ +(NS++)%3 , b u f f e r) ; / / Cannot a c c e p t 0 x00 i n s i d e s t r i n g

Rear = (Rear +1)%3;

i f (F r o n t == Rear) Empty =0;

}

#pragma v e c t o r = PORT2_VECTOR

_ _ i n t e r r u p t void PORT2_ISR (void)

{

P2IE = 0x00 ;

P2IFG = 0x00 ; / / Flag must be c l e a r e d manua l l y

P4OUT &= 0xF0 ;

Of f se t_Rx = 0 ;

UCA0CTL1 &= ~UCSWRST;

IE2 | = UCA0RXIE ;

}

#pragma v e c t o r = USCIAB0RX_VECTOR

_ _ i n t e r r u p t void USCIAB0_RX_ISR (void)

{

s t a t i c unsigned i n t a c c u m u l a t o r = 0xFFFF ;

unsigned char c ;

c = UCA0RXBUF;

i f (c==0x0D | | Offse t_Rx >40) / / Maximum Pa c ke t S i z e = 40

{

i f (a c c u m u l a t o r != 0)

{

P4OUT = 0xFF ;

whi le (1)

{

d e l a y (3 0 0 0 0) ;

d e l a y (3 0 0 0 0) ;

d e l a y (3 0 0 0 0) ;

d e l a y (3 0 0 0 0) ;

d e l a y (3 0 0 0 0) ;

P4OUT ^= 0xFF ;

}

}

a c c u m u l a t o r = 0xFFFF ;

Rx [Of f se t_Rx] = NULL;

i f (! s t r cm p (Rx , SABM_pkt)) / / SABM

{

P4OUT | = BIT3+BIT0 ;

i f (Ready ==0)

{

LPM1_EXIT ;

WDTcount = 0 ;

Ready = 1 ;

F i r s t _ T x () ;

Send_Frame (UA_pkt) ;

P1IE = 0x01 ; / / Enable Por t1 I n t e r r u p t

w r i t e 1 6 (CMX7164 , 0x6C , 0 x8100) ; / / W r i t e i n IRQ_Mask t o a c t i v a t e Cmd_done

}

e l s e

{

Command = SABM;

}

53

}

e l s e i f (! s t r cm p (Rx , SD_pkt)) / / SD (Send Data)

{

P4OUT | = BIT3+BIT1 ;

i f (Ready ==0)

{

F i r s t _ T x () ;

Send_Frame (DM_pkt) ;

End_Tx () ;

}

e l s e

{

Command = SD ;

}

}

e l s e i f (! s t r cm p (Rx , TERM_pkt)) / / DISC

{

P4OUT | = BIT3+BIT1+BIT0 ;

i f (Ready ==0)

{

F i r s t _ T x () ;

Send_Frame (DM_pkt) ;

End_Tx () ;

}

e l s e

{

Command = DISC ;

}

}

UCA0CTL1 = UCSWRST;

Of f se t_Rx = 0 ;

P2IE = 0x01 ;

}

e l s e

{

Rx [Of f se t_Rx ++] = c ;

whi le (! (UC1IFG & UCA1TXIFG)) ;

UCA1TXBUF = c ;

a c c u m u l a t o r = ((a c c u m u l a t o r & 0x00FF) << 8) ^ c r c T a b l e [((a c c u m u l a t o r >> 8) ^ c) & 0x00FF] ;

}

}

void End_Tx ()

{

P1IE = 0x00 ;

w r i t e 1 6 (CMX7164 , 0x49 , 0xF000) ; / / I n d i c a t e B u r s t end i s i n t e n d e d

Ready = 0 ;

whi le (! (r e ad 16 (CMX7164 , 0x7E)&0 x0200)) ; / / Wait u n t i l t h e b u r s t ends . T a i l l e n g t h can be programmed i n PB3

Disable_CMX991 ;

RFoff_ADF4351 ;

Go_Idle_CMX7164 ;

}

void Send_Frame (c o n s t unsigned char ∗ch)

{

i n t quo , c o u n t =0 ;

char rem ;

quo = Res_Len / 1 5 ;

rem = Res_Len %15;

f o r (; quo >0; quo−−)

{

w r i t e 8 (CMX7164 , 0x4A , 0 x1F) ; / / 15 b y t e s i n each da ta b lock , a f t e r which CMX7164 w i l l r e q u e s t more da ta from h o s t

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0 x48 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =1 ; i <=15; i ++)

{

54

UCB0TXBUF = ch [c o u n t + +] ;

whi le (UCB0STAT & UCBUSY) ;

}

DIS_7164 ;

d e l a y (Delay1) ;

}

i f (rem != 0)

{

w r i t e 8 (CMX7164 , 0x4A , 0 x10 + rem) ; / / 15 b y t e s i n each da ta b lock , a f t e r which CMX7164 w i l l r e q u e s t more da ta from h o s t

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x48 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (; rem >0; rem−−)

{

UCB0TXBUF = ch [c o u n t + +] ;

whi le (UCB0STAT & UCBUSY) ;

}

DIS_7164 ;

d e l a y (Delay1) ;

}

}

void F i r s t _ T x (void)

{

C M X 9 9 1 _ i n i t i a l i z e () ;

A D F 4 3 5 1 _ i n i t i a l i z e () ;

r e a d1 6 (CMX7164 , 0x7E) ; / / C lear I n e r r u p t S t a t u s R e g i s t e r

w r i t e 1 6 (CMX7164 , 0x50 , 0 x0080) ; / / F lush Command FIFO

w r i t e 8 (CMX7164 , 0x4A , 0 x1F) ; / / 15 b y t e s i n each da ta b lock , a f t e r which CMX7164 w i l l r e q u e s t more da ta from h o s t

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x48 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =1 ; i <=15; i ++)

{

UCB0TXBUF = 0xAA;

whi le (UCB0STAT & UCBUSY) ;

}

DIS_7164 ;

d e l a y (Delay1) ;

Enable_Tx_CMX7164 ; / / Preamble , FS1 , Raw Data

}

#pragma v e c t o r = PORT1_VECTOR

_ _ i n t e r r u p t void PORT1_ISR (void)

{

P1IFG = 0x00 ;

i f (r e a d1 6 (CMX7164 , 0x7E)&0 x0800) P4OUT &= ~BIT5 ;

i f (Command)

{

i f (Command == DISC) / / (B3 && ! B2 && B1 && B0) / / DISC

{

Command = 0 ;

Send_Frame (UA_pkt) ;

End_Tx () ;

re turn ;

}

e l s e i f (Command == SD) / / (B3 && ! B2 && B1 && ! B0) / / SD

{

Command = 0 ;

i f (Ready ==2)

{

Send_Frame (DM_pkt) ;

55

End_Tx () ;

re turn ;

}

e l s e

{

Send_Frame (UA_pkt) ;

Abor t = 1 ;

Ready = 2 ;

}

}

e l s e i f (Command == SABM) / / (B3 && ! B2 && ! B1 && B0) / / SABM

{

Command = 0 ;

i f (Ready ==2)

{

w r i t e 1 6 (CMX7164 , 0x49 , 0x810D) ; / / W r i t e s T e r m i n a t i o n c h a r a c t e r 0x0D

Send_Frame (DM_pkt) ;

End_Tx () ;

re turn ;

}

e l s e

{

Send_Frame (UA_pkt) ; / / Assuming o n l y Preamble w i l l be t r a n s m i t t e d now

}

/ / S e t a l l i n i t i a l i z a t i o n p a r a m e t e r s here

F r o n t =0 ; Rear =0; Empty =1; Abor t =0 ; Ready = 1 ; NS = 0 ;

}

}

/ / No e l s e

{

s t a t i c i n t Bytes2Tx=Frame_Len , O f f s e t =0 ;

s t a t i c unsigned i n t a c c u m u l a t o r = 0xFFFF ;

i f (Empty)

{

w r i t e 8 (CMX7164 , 0x4A , 0 x18) ; / / 4 b y t e s i n each da ta b lock , a f t e r which CMX7164 w i l l r e q u e s t more da ta from h o s t

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0 x48 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =1 ; i <=8; i ++)

{

UCB0TXBUF = 0xAA;

whi le (UCB0STAT & UCBUSY) ;

}

DIS_7164 ;

d e l a y (Delay1) ;

re turn ;

}

e l s e

{

i f (Bytes2Tx >= 15)

{

w r i t e 8 (CMX7164 , 0x4A , 0 x1F) ; / / 4 b y t e s i n each da ta b lock , a f t e r which CMX7164 w i l l r e q u e s t more da ta from h o s t

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x48 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =1 ; i <=15; i ++)

{

UCB0TXBUF = ∗(p t r [F r o n t]+ O f f s e t) ;

a c c u m u l a t o r = ((a c c u m u l a t o r & 0x00FF) << 8) ^ c r c T a b l e [((a c c u m u l a t o r >> 8) ^ ∗(p t r [F r o n t] + O f f s e t ++)) & 0x00FF] ;

whi le (UCB0STAT & UCBUSY) ;

}

DIS_7164 ;

d e l a y (Delay1) ;

Bytes2Tx −= 1 5 ;

re turn ;

56

}

e l s e i f (Bytes2Tx >0 && Bytes2Tx <15)

{

w r i t e 8 (CMX7164 , 0x4A , 0 x10 + (0 x0F&(char) Bytes2Tx)) ; / / 4 b y t e s i n each da ta b lock , a f t e r which CMX7164 w i l l r e q u e s t more da ta from h o s t

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x48 ;

whi le (UCB0STAT & UCBUSY) ;

f o r (i n t i =1 ; i <=Bytes2Tx ; i ++)

{

UCB0TXBUF = ∗(p t r [F r o n t]+ O f f s e t + +) ;

a c c u m u l a t o r = ((a c c u m u l a t o r & 0x00FF) << 8) ^ c r c T a b l e [((a c c u m u l a t o r >> 8) ^ ∗(p t r [F r o n t] + O f f s e t ++)) & 0x00FF] ;

whi le (UCB0STAT & UCBUSY) ;

}

DIS_7164 ;

d e l a y (Delay1) ;

Bytes2Tx = 0 ;

re turn ;

}

e l s e

{

w r i t e 8 (CMX7164 , 0x4A , 0 x13) ; / / 3 b y t e s i n da ta b l o c k

CON_7164 ;

d e l a y (Delay1) ;

UCB0TXBUF = 0x48 ;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = a c c u m u l a t o r > >8;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = a c c u m u l a t o r ;

whi le (UCB0STAT & UCBUSY) ;

UCB0TXBUF = 0x0D ;

whi le (UCB0STAT & UCBUSY) ;

DIS_7164 ;

d e l a y (Delay1) ;

F r o n t = (F r o n t +1)%3;

i f (F r o n t == Rear) Empty =1;

O f f s e t =0 ;

Bytes2Tx=Frame_Len ;

a c c u m u l a t o r = 0 ;

re turn ;

}

}

}

}

void M S P _ i n i t i a l i z e ()

{

/ / Por t1 S e t t i n g

P1REN = BIT0 + BIT1 + BIT3 ; / / Pu l l−up / Pu l l−down Enabled

P1OUT = BIT0 + BIT1 + BIT2 + BIT3 + BIT4 ; / / P u l l Up

P1DIR = BIT1 + BIT2 + BIT3 + BIT4 ;

P1IES = 0x01 ; / / N e g a t i v e Edge t r i g g e r e d

P1IFG = 0x00 ;

P1IE = 0x00 ;

/ / CMX7164 and CMX991

UCB0CTL1 = UCSSEL_2 + UCSWRST;

UCB0CTL0 = UCMSB + UCMST + UCSYNC + UCCKPH;

UCB0BR0 = 0x08 ;

UCB0BR1 = 0x00 ;

P3SEL = BIT1 + BIT2 + BIT3 ;

P3DIR = BIT1 + BIT3 ;

UCB0CTL1 &= ~UCSWRST; / / SPI work ing a t 2MHz

/ / UART1 i n i t i a l i z a t i o n f o r communcat ion w i t h PC

UCA1CTL0 = 0 ;

57

UCA1CTL1 = UCSSEL_2 + UCSWRST;

UCA1BR0 = 0x34 ;

UCA1MCTL = UCBRF_1 + UCBRS_0 + UCOS16 ;

P3SEL | = BIT6 + BIT7 ;

P3DIR | = BIT6 ;

UCA1CTL1 &= ~UCSWRST; / / T r a n s m i t t i n g a t 1 9 . 2 kbps

/ / For Memory Card I n t e r f a c i n g

UCB1CTL1 = UCSSEL_2 + UCSWRST;

UCB1CTL0 = UCMSB + UCMST + UCSYNC + UCCKPL;

UCB1BR0 = 0x02 ;

UCB1BR1 = 0x00 ;

P5SEL = BIT1 + BIT2 + BIT3 ;

P5DIR = BIT0 + BIT1 + BIT3 ;

UCB1CTL1 &= ~UCSWRST;

/ / For Communicat ion w i t h ADF7020

UCA0CTL1 = UCSWRST;

UCA0CTL0 = UCMSB + UCSYNC + UCCKPL; P3SEL | = BIT0 + BIT4 ;

/ / Por t2 I n t e r r u p t

P2REN = BIT0 ;

P2OUT = 0x00 ;

P2IES = 0x00 ; / / BIT0 ;

P2IFG = 0x00 ;

P2IE = BIT0 ;

P4DIR = 0xFF ;

P4OUT = 0x00 ;

/ / For ADF b i t−banging

P6REN = BIT0 + BIT1 + BIT2 ;

P6DIR | = BIT1 + BIT2 + BIT4 + BIT5 + BIT6 + BIT7 ;

P6OUT = 0x00 ;

}

58

REFERENCES

[1] Aboutanios, E. and S. Reisenfeld (2007). Frequency estimation and tracking for
low earth orbit satellites.

[2] Datasheet (). Transcend 2gb microsd card manual. URL http://www.
comx-computers.co.za/download/transcend/TS2GUSD2-P3.
pdf.

[3] Datasheet (2005). Adf7020-1 datasheet. URL http://www.analog.
com/en/rfif-components/rfif-transceivers/adf7020-1/
products/product.html#product-documentation.

[4] Datasheet (2012). Adf4351 datasheet. URL http://www.analog.
com/en/rfif-components/pll-synthesizersvcos/adf4351/
products/product.html#product-documentation.

[5] Datasheet (Dec 2004). Msp430x2xx family user’s guide. URL http://www.
ti.com/lit/ug/slau144i/slau144i.pdf.

[6] Datasheet (May 2012). Cmx7164 datasheet. URL http://www.cmlmicro.
com/products/CMX7164_Multi_Mode_Wireless_Data_Modem/
?q=cmx7164&curr=32.

[7] Datasheet (Oct 2012). Cmx991 datasheet. URL http://www.cmlmicro.
com/products/CMX991_RF_Quadrature_Transceiver/?q=
CMX991&curr=16.

[8] Datasheet (Rev A1 DS060921). Rf5110 manual. URL http://www.rfmd.
com/CS/Documents/RF5110DS.pdf.

[9] Foust, F. (). Secure digital card interface for the msp430. URL
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/
sdcard_appnote_foust.pdf.

[10] Peterson, W. W. and D. T. Brown (). Cyclic codes for error detection. Proceed-
ings of the IRE.

[11] Rife, D. C. and R. R. Boorstyn (1974). Single-tone parameter estimation fiom
discrete-time observations. IEEE Transactions on Information Theory.

[12] Shinsuke Hara, Y. T., A. Wannasarnmaytha and N. Morinaga (1997). A novel
fsk demodulation method using short-time dft analysis for leo satellite communi-
cation systems.

[13] Tomasi, W., Advanced Electronic Communications System. Sixth edition, PHI, .

59

http://www.comx-computers.co.za/download/transcend/TS2GUSD2-P3.pdf
http://www.comx-computers.co.za/download/transcend/TS2GUSD2-P3.pdf
http://www.comx-computers.co.za/download/transcend/TS2GUSD2-P3.pdf
http://www.analog.com/en/rfif-components/rfif-transceivers/adf7020-1/products/product.html#product-documentation
http://www.analog.com/en/rfif-components/rfif-transceivers/adf7020-1/products/product.html#product-documentation
http://www.analog.com/en/rfif-components/rfif-transceivers/adf7020-1/products/product.html#product-documentation
http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4351/products/product.html#product-documentation
http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4351/products/product.html#product-documentation
http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4351/products/product.html#product-documentation
http://www.ti.com/lit/ug/slau144i/slau144i.pdf
http://www.ti.com/lit/ug/slau144i/slau144i.pdf
http://www.cmlmicro.com/products/CMX7164_Multi_Mode_Wireless_Data_Modem/?q=cmx7164&curr=32
http://www.cmlmicro.com/products/CMX7164_Multi_Mode_Wireless_Data_Modem/?q=cmx7164&curr=32
http://www.cmlmicro.com/products/CMX7164_Multi_Mode_Wireless_Data_Modem/?q=cmx7164&curr=32
http://www.cmlmicro.com/products/CMX991_RF_Quadrature_Transceiver/?q=CMX991&curr=16
http://www.cmlmicro.com/products/CMX991_RF_Quadrature_Transceiver/?q=CMX991&curr=16
http://www.cmlmicro.com/products/CMX991_RF_Quadrature_Transceiver/?q=CMX991&curr=16
http://www.rfmd.com/CS/Documents/RF5110DS.pdf
http://www.rfmd.com/CS/Documents/RF5110DS.pdf
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Project Overview
	Design Specification
	Approach to the problem
	Types of Impairments and their effects
	Doppler Effect
	Carrier Leakage

	COM Architecture
	Architecture overview
	Overview of Selected Components
	FSK Receiver (ADF7020-1)
	GMSK Baseband Modulator (CMX7164)
	RF Quadrature Transmitter(CMX991)
	Memory Card
	COM (MSP430)
	Local Oscillator (ADF4351)
	Power Amplifier (RF5110)

	SPI Interface
	System Reset Arrangement

	Communication Protocol
	AX.25 Protocol
	CRC Implementation

	Software Architecture
	Architecture Overview
	Block Interface
	General Block
	ADF Block
	CMX-A Block
	CMX-B Block
	Interrupt Management

	Test Setup
	Conclusion
	APPENDIX
	MSP430F2619 Connections
	ADF.h
	CML.h
	SD_Card.h
	Main Code

