
Approximation of Capacity for ISI channels with
3-level Output Quantization

A Project Report

submitted by

SUHAS S KOWSHIK

in partial fulfilment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY
AND

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2016



THESIS CERTIFICATE

This is to certify that the thesis entitled Approximation of Capacity for ISI chan-

nels with 3-level Output Quantization, submitted by Suhas S Kowshik, to the

Indian Institute of Technology Madras, for the award of the degree of Master of

Technology and Bachelor of Technology, is a bona fide record of the research

work carried out by him under my supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Dr. Andrew Thangaraj
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date:



ACKNOWLEDGEMENTS

I would like to thank Prof. Andrew Thangaraj for guiding me through this project

and helping me realize the importance of intuitive understanding of the problem

at hand. I would also like to express my gratitude towards Prof. Radhakrishna

Ganti for giving useful insights that helped me in this work. Special thanks to

Mr. Arijit Mondal for clarifying any queries that I had on the problem. It would

be unfair if I do not mention my friends Dheeraj and Sundara Rajan with whom I

have had wonderful discussions which have immensely benefited me.

Last but never the least, I would like to thank my parents, Subramanya and

Pushpa, for their continuous support throughout my life; my sister, Sahana, for

bugging me with all sorts of questions in pre-university Math and Physics over

the past year that has helped me in strengthening by basics; and the Almighty.

i



ABSTRACT

KEYWORDS: Capacity, ISI Channel, Quantization

In this work we consider approximating capacity of Inter-Symbol Interference

(ISI) channels with 3-level quantization at the output under an average-power

constrained input. This work is motivated by the recent results on ISI channels

with a 1-bit (2-level) quantization at the output under a similarly constrained

input [Ganti et al., 2015]. Since the exact capacity of such systems are difficult to

characterize, we consider an approximation in which the output concurs with the

exact channel output up to a probability of error. In this approximation, there is no

additive noise but the absolute value of the ISI channel output is constrained to be

away from the decision points of the quantizer by a certain threshold . The capacity

under this approximation is calculated using convex optimization and involves

standard Gibbs distribution. We use Markovian schemes under a zero forcing

input to show that it approaches the approximate capacity. We show that practical

coding schemes can be developed for ISI channels with 3-level output quantization

using the methods developed for the approximate ISI channel and discuss some

signaling methods for actual channel particularly with 2-level quantization. We

also give a possible achievable rate for the exact channel and discuss about using

source simulation to demonstrate that the rate is achievable.
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CHAPTER 1

INTRODUCTION

We often encounter ISI channels with Additive White Gaussian Noise (AWGN)

in practice. Either a finite input alphabet constraint or an average-input power

constraint is usually used based on the applications. Recently, in applications

like optical or intra-chip [Harwood et al., 2007] or millimeter wave [Sun et al.,

2014][Alkhateeb et al., 2014] communications, output quantization of ISI channel

has been looked at due to limitations in a/d conversion at high speeds. The

transmitters of some of these systems can be fairly complex and can operate at

high powers and hence the channel input may not have serious quantization

limits.

Motivated due to the above applications, a noisy ISI channel with average-

power constrained continuous input and 1-bit (2-level) output quantization was

considered in [Ganti et al., 2015]. Apart from this work, the available literature

mostly deals with continuous input/output or a finite input alphabet and contin-

uous output alphabet [Shamai and Laroia, 1996][Sadeghi et al., 2009]. The case

of quantized output with AWGN and no ISI has been dealt with in [Singh et al.,

2009]. The design of quantizers for maximizing information rate for the ISI case

has been considered in [Zeitler et al., 2012]. In the context of millimeter wave

communications, ISI case has been briefly discussed in [Mo and Heath, 2014].

In this work, we consider the 3-level quantization of a noisy ISI channel with

average-power continuous input with methods similar to those in [Ganti et al.,

2015]. The exact capacity of noisy ISI channel with 3-level output quantization is



difficult to characterize explicitly. So we consider an approximation to the ISI chan-

nel model wit 3-level output quantization similar to the one used in [Ganti et al.,

2015]. This approximation does not have additive noise, but the noiseless output

of the channel is constrained to have a certain minimum distance (threshold) from

the transition regions of the quantizer. Because of this constraint, the quantized

outputs of approximate channel and actual channel match upto a probability of

error that can be controlled by the threshold.

The problem of computing exact capacity for the approximate channel involves

solving a quadratic program. We consider a special but useful case where we

impose certain constraint on the quantization points and the threshold. In the

case, it is somewhat easier to solve this optimization problem. For the general case

we provide an algorithm and give an intuitive reasoning for why it works. We also

provide a Markovian achievable scheme under zero forcing input that approaches

approximate capacity.

Since the approximate channel output matches the actual channel output upto

a probability of error, a coding scheme used over approximate channel can be

augmented with a standard error control code to derive a practical coding scheme

for the actual channel. Using this, we describe a signaling method for the actual

ISI channel with noise but with 2-level output quantization since it is easier to

analyze. From this signaling method, we claim that a particular rate is achievable.

We aim to demonstrate this using source simulation techniques where the objective

is to show that an arbitrarily low bit error rate is achievable. But we haven’t been

successful in this regard due to non one-one nature of the source simulator. Instead

we propose and use a typical set theory based method which works, but, due to

computational restrictions, there is severe loss of information rate and we are able
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to show that only a fraction of the proposed rate is achievable. Given enough

computational resources it might possible to use/improve this method to show

that the proposed rate is achievable.

1.1 System model

1.1.1 2-level Quantizer

In [Ganti et al., 2015], a discrete time finite length ISI channel with average-power

constrained continuous input and 1-bit (2-level) quantized output is considered as

shown in Fig 1.1.

Channel

h
+ Q(·)

Xn

Zn

Yn Rn Q(Rn)

Figure 1.1: ISI channel with 2-level quantized output

The input to the channel is denoted X = {Xn ∈ R, 0 ≤ n ≤ N − 1}. The channel

impulse response is of length L and denoted h = {hn ∈ R, 0 ≤ n ≤ L − 1}. The

output of the channel which is the convolution of input with the channel impulse

response is denoted Y = {Yn, 0 ≤ n ≤ N + L − 2}which is given by

Yn =

L−1∑
k=0

hkXn−k (1.1)

The channel h is assumed to be constant. Also, all signals are assumed to be zero

outside their specified ranges. Further, it is assumed that N >> L so that the
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output vector is of length N. So the convolution in (1.1) can be represented in

matrix notation as Y = M̃hX. The entries of N × N matrix M̃h are either 0 or one

of the channel taps hk and X,Y are column vectors of length N. Since the matrix

M̃h is not circulant, the N ×N circulant matrix Mh whose first column is equal to h

is considered under the observation that for large N with fixed L, M̃h behaves like

the circulant matrix Mh in the sense that limn→∞ ‖Mh − M̃h‖ = 0 where ‖ · ‖ is the

matrix norm. In [Ganti et al., 2015] and in this work circular convolution Y = MhX

is assumed for simplicity.

Independent and identically distributed zero-mean Gaussian noise of vari-

ance σ2, denoted Zn is added to Yn to get an intermediate signal Rn = Yn + Zn.

This is quantized by a 2-level quantizer Q(·) to obtain the channel output Q(R) =

{Q(Rn), 0 ≤ n ≤ N − 1}. The quantizer is defined as:

Q(x) =


+1, x ≥ 0

−1, x < 0

(1.2)

The average power of the input is constrained to be at most P:

E[‖X‖2] =

N−1∑
n=0

E[|Xn|
2] ≤ NP (1.3)

.

The goal in [Ganti et al., 2015] was to approximate the mutual information rate

1
N I(X; Q(R)) and provide computable expressions or bounds.

The approximate ISI channel is shown in figure 1.2. In this model, there is no

noise but the convolution output is constrained to be greater than a threshold δ in

absolute value.
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Channel
h

Q(·)
Xn Yn

|Yn| ≥ δ

Sn

Figure 1.2: Approximate ISI channel with 2-level quantized output

This constraint provides justification for ignoring the noise because under this

constraint, the output of the actual model Q(Rn) is approximated by Sn = Q(Yn) up

to a probability of error lesser than or equal to Q(δ/σ), where Q(x) =
∫
∞

x
1

2πeu2/2du

is the standard Q function. So coding schemes for the approximate model can

be used in actual model with an error control coding for the approximation error

Q(δ/σ). Even though there is a loss in information rate due to additional error

control coding, the approximation is useful since the capacity 1
N I(X; S), where

S = {Sn, 0 ≤ n ≤ N − 1}, under the constraints (1.3) and |Yn| ≥ δ has computable

expressions and bounds. Also, the techniques used for computing approximate

capacity can be used to get intuition on signaling and coding methods for output-

quantized ISI channels [Ganti et al., 2015].

1.1.2 3-level Quantizer

We consider a discrete time finite length ISI channel with average-power con-

strained continuous input and 3-level quantized output. The exact channel model

is similar to the one in figure 1.1 with the output quantizer Qd(·), given a real

number d ≥ 0, defined as:

Qd(x) =



+1, x ≥ d

0, −d ≤ x < d

−1, x < −d

(1.4)
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The approximate ISI channel is shown in figure 1.3. In the approximate ISI chan-

nel, there is no noise. However, the quantities |Yn − d| and |Yn + d| are constrained

to be greater than or equal to the threshold δ.

Channel
h

Qd(·)
Xn Yn

|Yn − d| ≥ δ
|Yn + d| ≥ δ

Sn

Figure 1.3: Approximate ISI channel with 3-level quantized output

Under the constraints |Yn ± d| ≥ δ, it is easily seen that the output of the actual

model Qd(Rn) is approximated by Sn = Qd(Yn) up to probability of error lesser than

or equal to 2Q(δ/σ) 1.

Similar to the 2-level case, we consider only circular convolution: Y = MhX

where Mh is a circulant matrix with first column as h. Also, henceforth, the indices

of all vectors/sequences of length N range from 1 to N instead of 0 to N − 1.

1Assuming equally likely quantized outputs, the probability of error is lesser than or equal to
4
3Q(δ/σ)
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CHAPTER 2

2-LEVEL OUTPUT QUANTIZATION

In this chapter, we review some of results on approximate ISI channel with 2-level

output quantization from [Ganti et al., 2015].

2.1 Approximate capacity

The capacity of approximate ISI channel in figure 1.2 is given by

CN,δ(P) = sup
E[‖X‖2]≤NP
|Yn|≥δ

I(X,S)
N

=
H(S)

N
(2.1)

where X and S are the column vectors of input and quantized output respectively,

I(·, ·) is the mutual information and H(·) is the entropy. The last equality in (2.1) is

because the vector S is a deterministic function of the input vector X in the absence

of any noise in the approximate channel. Since S ∈ {+1,−1}N, we have CN,δ(P) ≤ 1.

First, the power of the input sequence X required for a given output sequence S

is bounded. For a given output sequence S = s ∈ {−1,+1}N, the constraint |Yn| ≥ δ

can be written as |Yn| = snYn ≥ δ. Hence the minimum energy required to obtain a

given output sequence s is given by:

ε(s) = min
diag(s)Mhx�δ1

‖x‖2 (2.2)

where diag(s) is an N × N diagonal matrix with s on the principal diagonal and



1 denotes the all-1 column matrix. The constraints of this optimization problem

are linear and the feasible set for x is the intersection of hyperplanes, which is

convex. So this optimization problem is a convex optimization problem with

linear constraints and hence strongly dual. Further,

E[‖X‖2] =
∑

s∈{−1,1}N

P(S = s)E[‖X‖2|S = s] ≥
∑

s∈{−1,1}N

P(S = s)ε(s) (2.3)

Since the input X has an average-power constraint, this implies

∑
s∈{−1,1}N

P(S = s)ε(s) ≤ NP (2.4)

Letting εmin = mins ε(s), εmax = maxs ε(s) and ε̄ = 1
2N

∑
s ε(s), under the linear

constraints (2.4), it is known [Jaynes, 1957] that the Gibbs distribution maximizes

the entropy H(S) for εmin ≤ NP ≤ εmax. The optimal Gibbs distribution is given by

P(S = s) =
e−βε(s)

Z
, s ∈ {−1, 1}N (2.5)

where Z is the normalizing constant and β is the unique value for which (2.4) is

met with equality. The maximum entropy is given by H(S) = βNP + ln(Z). The

capacity for different ranges of NP is given in table 2.1.

Table 2.1: Capacity of Approximate ISI channel

Range of NP CN,δ(P) Remarks
NP < εmin 0 No state if feasible

εmin ≤ NP < ε̄ 1
ln 2(βP + ln(Z)

N ) β is such that (2.4) is met with equality
NP ≥ ε̄ 1 β = 0, uniform distribution

It is now required to compute ε(s),∀s ∈ {−1, 1}N.
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2.1.1 Diagonally dominant channels

Definition 2.1.1 (Row-diagonally dominant matrix [Ganti et al., 2015]). An N ×

N matrix A = (ai j) is said to be row-diagonally dominant or simply diagonally

dominant if |aii| ≥
∑

i, j |ai j|,∀i ∈ [N]

The channels h for which the matrix (MhMT
h )−1 exists and is diagonally dominant

are called diagonally dominant channels [Ganti et al., 2015]. It is also assumed that(
(MhMT

h )−1
)

ii
≥ 0,∀i ∈ [N]. We re-state some of the lemmas from [Ganti et al., 2015];

the reader is referred to it for the proofs.

Lemma 2.1.1 ([Ganti et al., 2015]). When the matrix (MhMT
h )−1 is row-diagonally dom-

inant, ε(s) for s ∈ {−1, 1}N is achieved at x∗ that satisfies the equality constraints

diag(s)Mhx∗ = δ1 (2.6)

Hence, ε(s) = ‖x∗‖2 = δ2sTGs where G = (MhMT
h )−1. Also note that the optimal x∗

is actually the zero-forced input: x∗ = δM−1
h s (zero-forced because there is channel

inversion).

Lemma 2.1.2 ([Ganti et al., 2015]). The mean energy for diagonally dominant channels

is given by

ε̄ = δ2tr((MT
h )−1M−1

h ) (2.7)

Let the discrete time Fourier transform (DTFT) of the channel h be

f (λ) =

L−1∑
k=0

hke jkλ. (2.8)

9



Since Mh is circulant, it can be seen that [Ganti et al., 2015]

ε̄ = δ2tr((MT
h )−1M−1

h ) = δ2
N∑

k=1

1∣∣∣ f (2πk
N )

∣∣∣2 . (2.9)

Letting Ph = limN→∞ ε̄/N, which is the minimum average power required for

capacity of 1-bit, and using standard arguments, it is seen in [Ganti et al., 2015] that

(see [Gray, 2006])

Ph →
δ2

2π

∫ 2π

0

1
| f (λ|2

dλ (2.10)

To summarize, for diagonally dominant channels, the approximate ISI channel

capacity in the case of large N is given by

CN,δ(P) =



1, P ≥ Ph

βP + ln(Z)
N , Ph ≤ P < Ph

0, P < Ph

(2.11)

where Ph = limN→∞ εmin/N.

2.2 Achievable schemes

In achievable schemes, an information/message sequence B ∈ {−1, 1}N with a well-

chosen probability distribution is encoded into a channel input x that satisfies

the constraint |yn ≥ δ|. The rate of transmission over the channel is H(B)/N.

In [Ganti et al., 2015], two achievable schemes are considered: Zero-forcing with

Gibbs distribution and Zero-forcing with Markov input. Both are briefly described

below. The reader is referred to [Ganti et al., 2015] for details.

10



2.2.1 Zero-forcing with Gibbs distribution

Let b = {bi}
N
i=1 ∈ {−1, 1}N be an instance of the information sequence B. The input

x to the channel is chosen as x = δM−1
h b, which implies that the output of the ISI

channel is y = Mhx = δb. So the output of the quantizer s equals b. For a diagonally

dominant channel, as seen from lemma 2.1.1 and section 2.1, a Gibbs distribution

on B along with the choice x = δM−1
h b as the channel input results in a capacity

achieving scheme. However, sampling from Gibbs distribution is known to be

exponentially complex in N. Hence b is sampled from a Markov chain instead

which is described in the next section.

2.2.2 Zero-forcing with Markov input

Similar to the previous case, the channel input is chosen as x = δM−1
h b where b is

the information sequence. But now, b is sampled from a 2-state Markov chain as

shown in Figure 2.1. The transition matrix is given by

T =

 α 1 − α

1 − α α

 (2.12)

where 0 ≤ α ≤ 1. Note that sn = bn and the information rate of this scheme is

H(B) = H2(α) = −α log2(α) − (1 − α) log2(1 − α).

−1 0α

1 − α

α

1 − α

Figure 2.1: 2-State Markov chain
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The average transmit power is given by (see [Ganti et al., 2015])

Pzm(α) =
δ2

N
tr

(
E(BBT)(MT

h )−1M−1
h

)
=
δ2

N
tr

(
R(MT

h )−1M−1
h

)
(2.13)

where the correlation matrix R = E(BBT) is given by Ri j = (2α − 1)|i− j|. When N is

large, the Toeplitz matrix R can be approximated by a circulant ([Gray, 2006]) and

Pzm(α)→
δ2

2π

∫ 2π

0

1
| f (λ)|2

(
2(1 − β cos(λ))

1 + β2 − 2β cos(λ)
− 1

)
dλ (2.14)

where β = 2α − 1. The value of α is to be chosen so as to maximize H2(α) subject

to the constraint Pzm(α) ≤ P. Thus the rate achieved at power P, denoted Rm(P) is

given by

Rm(P) = max
α:Pzm(α)≤P

H2(α). (2.15)

Finally, the channel (1, ε), |ε| < 1 is considered under the zero-forcing with

Markov input. The achievable rate is found to be (see [Ganti et al., 2015])

Rm(P) =



1, P ≥ Ph

H2

(
1
2 + 1

2ε
1−Pδ−2(1−ε2)
1+Pδ−2(1−ε2)

)
, Ph ≤ P < Ph

0, P < Ph

(2.16)

where Ph = δ2

1−ε2 and Ph = δ2

(1+ε)2 .

It is observed that the capacity CN,δ(P) and the achievable rate Rm(P) match at

Ph and Ph. The plots of CN,δ(P) and Rm(P) versus the normalized energy P/δ2 are

also given in [Ganti et al., 2015].
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CHAPTER 3

3-LEVEL OUTPUT QUANTIZATION

In this chapter, we present our work on computing the capacity of the approximate

ISI channel (figure 1.3) with average-power constrained continuous input and 3-

level output quantization.

3.1 Approximate capacity

The capacity of the approximate ISI channel in figure 1.3 is given by

CN,δ(P) = sup
E[‖X‖2]≤NP
|Yn±d|≥δ

I(X,S)
N

=
H(S)

N
(3.1)

where X and S are the column vectors of input and quantized output respectively,

I(·, ·) is the mutual information and H(·) is the entropy. The last equality in equation

(3.1) is because the vector S is a deterministic function of the input vector X in the

absence of any noise in the approximate channel. Since S ∈ {+1, 0,−1}N, we have

CN,δ(P) ≤ log2(3).

3.1.1 Description of the 3-level quantizer

The 3-level quantizer Qd(·) described in equation (1.4) can also be described in terms

of two 2-level quantizers. Let s = Qd(y) where y is the intermediate output of the



channel before quantization. Define two 2-level quantized outputs as follows:

s1 =


+1, y ≥ d

−1, y < d

s2 =


+1, y ≥ −d

−1, y < −d

(3.2)

Now s can defined as

s =



+1, s1 = +1 & s2 = +1

0, s1 = −1 & s2 = +1

−1, s1 = −1 & s2 = −1

(3.3)

It can be easily seen that this description is same as that in equation (1.4). With

this description, we have:

|y − d| ≥ δ⇔ s1(y − d) ≥ δ

|y + d| ≥ δ⇔ s2(y + d) ≥ δ
(3.4)

Thus the constraints become linear.

3.1.2 Power constraint

We bound the power of the input sequence/vector X required for a given output

sequence/vector S. Given S = s ∈ {1, 0,−1}N, we have the constraints |Yn − d| =

s1(n)(Yn − d) ≥ δ and |Yn + d| = s2(n)(Yn + d) ≥ δ. So, the minimum energy ε(s)

required for a given output sequence s is given by the following optimization
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problem

ε(s) = min
x

diag(s1)(Mhx−d1)�δ1
diag(s2)(Mhx+d1)�δ1

(
‖X‖2

)
(3.5)

where s1, s2 ∈ {−1, 1}N, for i ∈ [N]

s1(i) =


+1, (Mhx)(i) ≥ d

−1, (Mhx)(i) < d

s2(i) =


+1, (Mhx)(i) ≥ −d

−1, (Mhx)(i) < −d

(3.6)

and s(i) is described according to (3.3). The inequality constraints are linear and

the feasible set for x is the intersection of hyperplanes, and thus convex. Hence the

above optimization problem is a convex optimization problem. Further, similar to

the 2-level case, we have

E[‖X‖2] =
∑

s∈{−1,0,1}N

P(S = s)E[‖X‖2|S = s] ≥
∑

s∈{−1,0,1}N

P(S = s)ε(s) (3.7)

Since the input X has an average-power constraint, this implies

∑
s∈{−1,0,1}N

P(S = s)ε(s) ≤ NP (3.8)

3.1.3 Entropy maximization

Letting εmin = mins ε(s), εmax = maxs ε(s) and ε̄ = 1
3N

∑
s ε(s), under the linear

constraints (3.8), it is known [Jaynes, 1957] that the Gibbs distribution maximizes

15



the entropy H(S) for εmin ≤ NP ≤ εmax. The optimal Gibbs distribution is given by

P(S = s) =
e−βε(s)

Z
, s ∈ {−1, 0, 1}N (3.9)

where Z is the normalizing constant and β is the unique value for which (3.8) is

met with equality. The maximum entropy and capacity are given by

H(S) = βNP + ln(Z)

CN,δ(P) = βP +
ln(Z)

N
.

(3.10)

It is easy to see that for NP < εmin there exists no valid probability distribution. For

NP = ε̄, it is known [Jaynes, 1957] [Conrad, 2013] that β = 0 and Gibbs distribution

is the uniform distribution on {−1, 0, 1}N. The capacity for different ranges of NP

is given in table 3.1.

Table 3.1: Capacity of Approximate ISI channel with 3-level output quantization

Range of NP CN,δ(P) Remarks
NP < εmin 0 No state if feasible

εmin ≤ NP < ε̄ 1
ln 2(βP + ln(Z)

N ) β is such that (3.8) is met with equality
NP ≥ ε̄ log2(3) β = 0, uniform distribution

It is now required to compute ε(s),∀s ∈ {−1, 0, 1}N.

3.2 Solution of the optimization problem

We begin by defining Strongly diagonally dominant channels.

Definition 3.2.1 (Strongly diagonally dominant channel). A discrete time, finite

tap channel h is said to be strongly diagonally dominant if the N × N channel

16



matrix Mh is such that ∀J ⊂ [N], the inverse of the matrix obtained by deleting the

rows and columns of (MhMT
h ) corresponding to index set J is diagonally dominant.

We also have the following lemma:

Lemma 3.2.1. Let P be an N ×N matrix such that P−1 is row-diagonally dominant (with

(P−1)ii > 0,∀i ∈ [N]). Also ∀J ⊂ [N], let the matrix obtained by deleting the rows and

columns of P corresponding to J, denoted QJ be invertible. Then Q−1
J is row diagonally

dominant.

The reader is referred to appendix A for the proof.

3.2.1 The optimization problem

The optimization problem (3.5) is restated here:

ε(s) = min
x

diag(s1)(Mhx−d1)�δ1
diag(s2)(Mhx+d1)�δ1

(
‖x‖2

)
. (3.11)

Given s ∈ {−1, 0, 1}N, s1, s2 ∈ {−1, 1}N are defined through

s(i) =



+1, s1(i) = +1 & s2(i) = +1

0, s1(i) = −1 & s2(i) = +1

−1, s1(i) = −1 & s2(i) = −1

(3.12)
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3.2.2 The dual problem and the solution

The Lagrangian function of the optimization problem is

L(x, λ1, λ2) = ‖x‖2 +λT
1

(
δ1−diag(s1)(Mhx−d1)

)
+λT

2

(
δ1−diag(s2)(Mhx+d1)

)
(3.13)

where λ1, λ2 ∈ R
N are the Lagrange multipliers.

Since the primal problem is convex with linear constraints, strong duality

holds. So, if x∗ is primal optimal and (λ∗1, λ
∗

2) is dual optimal then infx L(x, λ∗1, λ
∗

2) =

L(x∗, λ∗1, λ
∗

2), and this x∗ can be found by setting the gradient of the Lagrangian func-

tion with respect to x to zero; we get x∗ = 1
2

(
MT

h diag(s1)λ∗1 + MT
h diag(s2)λ∗2

)
. Also by

complementary slackness we have, for i ∈ [N], λ∗1(i)
(
δ1−diag(s1)(Mhx∗−d1)

)
(i) = 0

and λ∗2(i)
(
δ1 − diag(s2)(Mhx∗ + d1)

)
(i) = 0. Now it can be shown that λ∗1(i)λ∗2(i) = 0

since the corresponding constraints cannot be simultaneously active (as long as

d > δ).

Now it is to be found for which i ∈ [N] the multipliers have to be zero. Suppose

for some i we have s(i) = 1 then the second constraint becomes strict inequality

and hence, by complimentary slackness, λ∗2(i) = 0. Similarly, if s(i) = −1 then

λ∗1(i) = 0. If s(i) = 0 then, intuitively, the minimum energy input x would be such

that y(i) = 0. So we set λ∗1(i)λ∗2(i) = 0 but we do not yet know where each of these

multipliers are non-zero.

Let J0 = {i ∈ [N] : s(i) = 0}, J1 = {i ∈ [N] : s(i) = 1} and J−1 = {i ∈ [N] : s(i) = −1}.

So if i ∈ J1 then λ∗2(i) = 0, and if i ∈ J−1 then λ∗1(i) = 0. We now need to find the
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optimal values of remaining multipliers. The Lagrangian dual is

L(λ1, λ2) =δ(λT
1 + λT

2 )1 + d(λT
1 s1 − λ

T
2 s2)

−
1
4

(
λT

1 diag(s1)MhMT
h diag(s1)λ1 + λT

1 diag(s1)MhMT
h diag(s2)λ2

+ λT
2 diag(s2)MhMT

h diag(s1)λ1 + λT
2 diag(s2)MhMT

h diag(s2)λ2

) (3.14)

We must also know the indices in J0 where the multipliers are non zero. But we

have the following lemma.

Lemma 3.2.2. Given s ∈ {−1, 0, 1}N and channel matrix Mh, there exists d0 > 0 such that

∀d > d0, we have λ1(i) = 0 = λ2(i),∀i ∈ J0.

The reader is referred to the end of appendix B section B.3 for the proof.

So, in this section, we only consider the case of d >> δ such that λ1(i) = 0 =

λ2(i),∀i ∈ J0. For a more general discussion one can refer to appendix B where

we present an algorithm for finding the indices in J0 where the multipliers are

non-negative.

We can simplify this by removing the zero values of multipliers. Let

A = diag(s1)MhMT
h diag(s1)

B = diag(s1)MhMT
h diag(s2)

C = diag(s2)MhMT
h diag(s1)

D = diag(s2)MhMT
h diag(s2)

(3.15)
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With this notation, we get

L(λ1, λ2) =δ(λT
1 )J11J1 + δ(λT

2 )J−11J−1 + d((λT
1 )J1sJ1

1 − (λT
2 )J−1sJ−1

2 )

−
1
4

(
(λT

1 )J1AJ1 J1λJ1
1 + (λT

1 )J1BJ1 J−1λJ−1
2

+ (λT
2 )J−1CJ−1 J1λJ1

1 + (λT
2 )J−1DJ−1 J−1λJ−1

2

) (3.16)

where the superscripts denote the sub-matrix corresponding to the rows and/or

columns represented by them. It can also be seen that AJ1 J1 = diag(s1)J1 J1(MhMT
h )J1 J1diag(s1)J1 J1

since diag(s1) is a diagonal matrix; similarly for B, C and D.

Setting the gradient of the Lagrangian dual with respect to λJ1
1 and λJ−1

2 to zero

to find the optimal values of the multipliers, we get

 diag(s1)J1 PJ1 J1 diag(s1)J1 diag(s1)J1 PJ1 J−1 diag(s2)J−1

diag(s2)J−1 PJ−1 J1 diag(s1)J1 diag(s2)J−1 PJ−1 J−1 diag(s2)J−1


 λJ1

1

λJ−1
2


= 2

 δ1J1 + ds1
J1

δ1J−1 − ds2
J−1


(3.17)

where P = (MhMT
h ). This can also be written as

 PJ1 J1 diag(s1)J1 PJ1 J−1 diag(s2)J−1

PJ−1 J1 diag(s1)J1 PJ−1 J−1 diag(s2)J−1


 λJ1

1

λJ−1
2


= 2

 δs1
J1 + d1J1

δs2
J−1 − d1J−1


. (3.18)
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Note that i ∈ J1 =⇒ s1(i) = +1 and i ∈ J−1 =⇒ s2(i) = −1. Hence we have

 PJ1 J1 −PJ1 J−1

PJ−1 J1 −PJ−1 J−1


 λJ1

1

λJ−1
2

 = 2

 (δ + d)1J1

(−δ − d)1J−1

 = 2(δ + d)

 1J1

−1J−1

 (3.19)

Assuming that the matrix in the left hand side of the above equation to be

invertible, we have the optimal values of the multipliers unless these values are

negative. In the next section we give sufficient conditions for non-negativity of the

solution to equation (3.19): diagonally dominant channels.

3.2.3 Conditions for non-negativity: diagonally dominant chan-

nels

Let Z =

 PJ1 J1 −PJ1 J−1

PJ−1 J1 −PJ−1 J−1

 and let Q be the matrix obtained from P by removing

the rows and columns corresponding to indices in J0. Let λ =

 λJ1
1

λJ−1
2

, W =

2(δ + d)

 1J1

−1J−1

 and N =

 IJ1 0

0 −IJ−1

 where IJ1 andIJ−1 are identity matrices of

dimensions |J1| and|J−1| respectively. The matrices Z, W and N are dependent on

the output state s through the sets J0, J1 and J−1.

We can write Z as Z = UQUTN where U is a permutation matrix (and hence

unitary). So the equation (3.19) becomes

UQUTNλ = W (3.20)
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So, if Q is invertible then

λ = NUQ−1UTW (3.21)

It can be seen that UQ−1UT =

 (Q−1)J1 J1 (Q−1)J1 J−1

(Q−1)J−1 J1 (Q−1)J−1 J−1

.

So if Q−1 = (ti j),

i ∈ J1 =⇒ λ1(i) = 2(δ + d)
∑

j∈[N]\J0

ti j(−1)1[ j∈J−1]

i ∈ J−1 =⇒ λ2(i) = −2(δ + d)
∑

j∈[N]\J0

ti j(−1)1[ j∈J−1]
(3.22)

where 1[x ∈ A] is 1 if x ∈ A and 0 otherwise .

We want the multipliers to be non-negative for any J0, J1 and J−1. Suppose

i ∈ J1. We want λ1(i) ≥ 0. It is sufficient if
∑

j∈[N]\J0
ti j(−1)1[ j∈J−1]

≥ 0. Similarly, for

i ∈ J−1, it is sufficient if
∑

j∈[N]\J0
ti j(−1)1[ j∈J−1]

≤ 0. So if Q−1 is diagonally dominant

(with diagonal entries being non-negative) then the above sufficient conditions are

satisfied and hence λJ1
1 and λJ−1

2 are non-negative. So if P satisfies the hypothesis of

lemma 3.2.1 then Q−1 is diagonally dominant and hence the optimal multipliers in

(3.22) are non-negative.

Further, using (3.17) and x∗ = 1
2

(
MT

h diag(s1)λ∗1 + MT
h diag(s2)λ∗2

)
we get the fol-

lowing under-determined system of equations for x∗:

diag(s1)MJ1[]
h x∗ = δ1J1 + dsJ1

1

diag(s2)MJ−1[]
h x∗ = δ1J−1 − dsJ−1

2

(3.23)

where MJ[]
h denotes the sub-matrix corresponding to rows with indices J and all
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columns. This can re-written as

 MJ1[]
h

MJ−1[]
h

 x∗ =

 δsJ1
1 + d1J1

δsJ−1
2 − d1J−1

 . (3.24)

It is well known that for an under-determined system Ax = b with (AAT) invertible,

the least norm solution is given by x = AT(AAT)−1b. Letting H̄ =

 MJ1[]
h

MJ−1[]
h

 and

s̄ =

 δsJ1
1 + d1J1

δsJ−1
2 − d1J−1

, we have

x∗ = H̄T(H̄H̄T)−1s̄. (3.25)

Note that H̄H̄T = UQUT and from equations (3.21) and (3.18) we have

 (λ∗1)J1

(λ∗2)J−1

 = 2

 diag(s1)J1 0

0 diag(s2)J−1

 UQ−1UTs̄. (3.26)

So clearly H̄T(H̄H̄T)−1s̄ = 1
2

(
MT

h diag(s1)λ∗1 + MT
h diag(s2)λ∗2

)
.

Therefore the solution to the optimization problem (3.11) is the least norm

solution to (3.24) which is given by (3.25). Hence the optimal energy for the case

of large d is given by

ε(s) = s̄T(H̄H̄T)−1s̄ = (δ + d)2s̃TQ−1s̃ (3.27)

where Q is the sub-matrix obtained from MhMT
h by removing the rows and columns

corresponding to J0 and s̃ is the column vector obtained by removing the entries

corresponding to J0 from the quantized output sequence/vector s.

23



3.3 Zero forcing input

It can be seen that, for output sequence s such that J0 = ∅, the equation (3.25) for

minimum energy input reduces to

x∗ = (δ + d)M−1
h s. (3.28)

This is called the zero forced input because it involves channel inversion. In this

section we consider only the zero-forced input to the channel as an approximation

to the minimum energy input given by equation (3.25). The zero forced input x to

the channel is given by

x = (δ + d)M−1
h s. (3.29)

So the approximate minimum energy, denoted again by ε(s) is given by

ε(s) = ‖x‖2 = (δ + d)2sTGs (3.30)

where G = (MhMT
h )−1. We characterize the mean energy ε̄ for zero forcing in the

following lemma.

Lemma 3.3.1. The mean energy for zero forcing is given by

ε̄ =
2
3

(δ + d)2tr((MT
h )−1M−1

h ) (3.31)

where tr(A) denotes the trace of the matrix A.

Proof. For s ∈ {−1, 0, 1}N, the energy for zero forcing given by (3.30) can be expanded

as

ε(s) = (δ + d)2(
N∑

i=1

Gii +
∑
i, j,i, j

Gi jsis j). (3.32)
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Hence,

ε̄ =
1

3N

∑
s∈{−1,0,1}N

ε(s) = (δ + d)2 1
3N

 N∑
i=1

Gii(2 × 3N−1) +
∑
i, j,i, j

Gi j

 ∑
s∈{−1,0,1}N

sis j


 . (3.33)

Note that, for any i, j, i , j, we have
∑

s∈{−1,0,1}N sis j = 0. Therefore

ε̄ =
2
3

(δ + d)2
N∑

i=1

Gii =
2
3

(δ + d)2tr((MT
h )−1M−1

h ). (3.34)

�

We can now characterize the average power Ph = limN→∞ ε̄/N which is the

minimum average power needed for capacity of log2(3) bits in the case of zero

forcing, in terms of the discrete time Fourier transform (DTFT) of the channel h.

Let the DTFT of the channel be

f (λ) =

L−1∑
k=0

hke jkλ. (3.35)

Since Mh is circulant, it can be seen that

ε̄ =
2
3

(δ + d)2tr((MT
h )−1M−1

h ) =
2
3

(δ + d)2
N∑

k=1

1∣∣∣ f ( 2πk
N )

∣∣∣2 . (3.36)

Using standard arguments, it can be shown that [Gray, 2006]

Ph →
2
3

(δ + d)2

2π

∫ 2π

0

1
| f (λ)|2

dλ. (3.37)

So, for large N, the maximum information rate of approximate ISI channel

which are strongly diagonally dominant in the case of large d, under zero forcing,
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is given by

RN,δ(P) =


log2(3), P ≥ Ph

βP + ln(Z)
N , Ph ≤ P < Ph

(3.38)

where Ph = limN→∞ εmin/N = 0. The case P < Ph does not arise.

3.4 Achievable schemes

In this section, we consider achievable schemes for the approximate ISI channel

which is strongly diagonally dominant. In achievable schemes, a message/information

sequence B ∈ {−1, 0, 1}N with a carefully chosen distribution is encoded into a chan-

nel input x that satisfies the constraints |yn ± d| ≥ δ. The rate of transmission over

the approximate ISI channel is H(B)/N.

3.4.1 Gibbs distribution

Let b = {bi}
N
i=1 ∈ {−1, 0, 1}N be a sample of the information sequence B. Choose the

input to the channel according to (3.25): x = H̄T(H̄H̄T)−1b̄ (with H̄ defined according

to b). It can be verified that the output of the quantizer s equals b. As seen before

in section 3.1.3, a Gibbs distribution on B and the choice x = H̄T(H̄H̄T)−1b̄ as the

input to the channel results in a capacity achieving scheme. Hence for strongly

diagonally dominant channels, in the case of large d, the scheme x = H̄T(H̄H̄T)−1b̄

is optimal when b is sampled from the Gibbs distribution. But this input x is non-

trivial in the sense that the matrix H̄ itself depends on b. So we consider the zero

forcing input in the subsequent discussions since it just involves channel matrix

inversion.
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Zero forcing with Gibbs distribution

As before, let b = {bi}
N
i=1 ∈ {−1, 0, 1}N be a sample of the information sequence B. In

this case we choose the input to the channel as

x = (δ + d)M−1
h b (3.39)

which is the zero forcing input. The output of the ISI channel is y = Mhx = (δ+ d)b.

So y satisfies the constraints |y ± d| ≥ δ. Hence the output of the quantizer s

equals b. As seen in section 3.1.3, a Gibbs distribution on B gives the maximum

information rate. This could be less than capacity since the energy for zero forcing

(3.30) is greater than or equal to the optimal energy (3.27) for each output sequence

s{−1, 0, 1}N. But it can be seen through simulations that both these schemes have

very close information rate for the case of large d.

However, b is a sequence of length N and we are dealing with large N, and it

is known that sampling from a Gibbs distribution has exponential complexity in

N. So it is impractical to use this scheme. In the next subsection, we consider the

case of zero forcing with the information sequence b sampled from a simple 3-state

Markov chain.

3.4.2 Zero forcing with Markov input

Here, we choose x = (δ+d)M−1
h b, where b is the information sequence. The sequence

b is sampled from a 3-state Markov chain shown in figure 3.1 with the transition
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matrix

T =


α

β
2

β
2

β
2 α

β
2

β
2

β
2 α


(3.40)

where 0 ≤ α ≤ 1 and α+β = 1. Note that the quantizer output s(n) = b(n), 1 ≤ n ≤ N

and the achievable rate of this scheme is

H(α, β/2, β/2) = −
(
α log2(α) + (β/2) log2(β/2) + (β/2) log2(β/2)

)
= −

(
α log2(α) + (1 − α) log2

(1 − α
2

)) (3.41)

−1 0

+1

α

β/2

β/2

α

β/2

β/2

α

β/2 β/2

Figure 3.1: 3-State Markov chain

The average transmit power, denoted Pzm(α), is given by

Pzm(α) =
1
N
E[‖X‖2] =

(δ + d)2

N
E[BT(M−1

h )TM−1
h B]

=
(δ + d)2

N
tr(E[BBT](M−1

h )TM−1
h ).

(3.42)

Let γ = 1 − 3β
2 . The eigenvalues of T are (1, γ, γ). Using the eigenvalue decom-
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position, it can be shown that

Td =
1
3


1 + 2γd 1 − γd 1 − γd

1 − γd 1 + 2γd 1 − γd

1 − γd 1 − γd 1 + 2γd


. (3.43)

Using (1/3, 1/3, 1/3) as the initial distribution and Td, we get

E[b(n)b(n + d)] =
2
3
γd. (3.44)

Hence the correlation matrix R = E[BBT] is given by Ri j = 2
3γ
|i− j|. Therefore,

Pzm(α) =
(δ + d)2

N
tr(R(M−1

h )TM−1
h ). (3.45)

Note that R is a Toeplitz matrix. When N is large, it can be approximated by a

circulant matrix [Gray, 2006] and

Pzm(α)→
2
3

(δ + d)2

2π

∫ 2π

0

1
| f (λ)|2

(
2(1 − γ cos(λ))

1 + γ2 − 2γ cos(λ)
− 1

)
dλ (3.46)

where f (λ) =
∑L−1

k=0 hke jkλ is the DTFT of the channel h. It is required to choose α so

as to maximize the entropy H(α, β/2, β/2). The rate achieved at power P, denoted

Rm(P), is given by

Rm(P) = max
α:Pzm(α)≤P

H(α, β/2, β/2) (3.47)
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3.5 Numerical results for (1, ε) channel

In this section, we evaluate the capacity of approximate ISI channel and the rate

achieved by the Markov scheme in section 3.4.2 for the (1, ε) channel. For numerical

evaluation, we choose δ = 0.3.

The channel (1, ε), |ε| ≤ 1 is strongly diagonally dominant if |ε| <
√

3
2 − 1 (refer

appendix C). We consider 0 ≤ ε ≤
√

3
2 − 1 only. For this channel,

f (λ) = 1 + εe jλ. (3.48)

From (3.37), the minimum average power required for zero forcing is given by

Ph =
2
3

(δ + d)2

1 − ε2 . (3.49)

The transmit power required for the 3-state Markov scheme (3.46) is

Pzm(α) =
2
3

(δ + d)2

1 − ε2

(
1 − εγ
1 + εγ

)
(3.50)

where γ = 1 − 3β/2 = (3α − 1)/2. Since 0 ≤ α ≤ 1, we have

Pzm(α) ≥
2
3

(δ + d)2

(1 + ε)2 = Ph. (3.51)

Hence the problem of maximum entropy for the 3-state Markov chain translates to

Rm(P) = max
α≥ 1

3 + 2
3ε

(
1−(3/2)P(δ+d)−2(1−ε2)
1+(3/2)P(δ+d)−2(1−ε2)

) H(α, β/2, β/2). (3.52)

Note that the constraint in the above equation can also be written asα ≥ 1
3 + 2

3ε

(
Ph−P
Ph+P

)
.
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The solution of the above optimization problem is given by

Rm(P) =



log2(3), P ≥ Ph

H
(
α = 1

3 + 2
3ε

(
Ph−P
Ph+P

)
, β/2, β/2

)
, Ph ≤ P < Ph

0, P < Ph = 2
3

(δ+d)2

(1+ε)2

(3.53)

It can be observed that RN,δ(P) from (3.38) and the achievable rate Rm(P) match

at Ph

3.5.1 Simulation

In Figure 3.2, the approximate capacity CN,δ(P), the maximum information rate

under zero forcing RN,δ(P) and the achievable rate of Markov scheme Rm(P) are

plotted as a function of the normalized power P/(δ + d)2 for ε = 0.1, δ = 0.3, d = 50

and N = 10. The same are plotted for ε = 0.2 in Figure 3.3. It can be observed that,

as ε increases, the gap between the optimal scheme and the zero forcing scheme

increases.

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Normalized energy: P/(δ + d)2

bi
ts

 p
er

 c
ha

nn
el

 u
se

ε=0.1

 

 

C
N,δ (P) with optimal Gibbs

R
N,δ(P) with zero forcing Gibbs

R
m

(P)

Figure 3.2: CN,δ(P), RN,δ(P) and Rm(P) versus normalized P/(δ + d)2 for ε = 0.1
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Figure 3.3: CN,δ(P), RN,δ(P) and Rm(P) versus normalized P/(δ + d)2 for ε = 0.2
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CHAPTER 4

SOURCE SIMULATION

So far, we have characterized the capacity of approximate ISI channel with average

power constrained continuous input and quantized output. Using the approximate

channel as a precoder we can come up with signaling methods for the actual

channel with AWGN noise. In this chapter, we look at how to do signaling and

discuss about simulating the entire system so as to be able to prove that a certain

rate is achievable.

4.1 Signaling for approximate ISI channel

Enc
E[‖X‖2]≤NP
|Yn ± d| ≥ δ

Sn

R = H(S)
N

Channel

h

Xn Qd(·)
Yn Sn

Figure 4.1: Signaling for approximate ISI channel with 3-level quantizer

In Figure 4.1, the input to the approximate ISI channel is the optimum minimum

energy input (3.25) for a particular input vector/sequence s ∈ {−1, 0, 1}N. Given s

sampled according to the optimal Gibbs distribution and channel h, the encoder

looks up for the optimal x∗ according to (3.25) and that is the input to the approx-

imate ISI channel. It can be seen that the output after quantization is indeed s

and the achievable rate is the H(S)/N which is the capacity of the approximate ISI



channel. So given a sequence of iid message bits (with equal probability of being

0 or 1), power P and the channel h, if we can encode in to the alphabet {−1, 0, 1}N

such that the outputs s ∈ {−1, 0, 1}N are according to the Gibbs distribution then

this is a capacity achieving scheme. A similar argument holds for the approximate

ISI channel with 2-level quantized output as well. In the next section, we discuss

signaling method for the actual ISI channel with a 2-level quantized output since

the analysis is slightly simpler compared to the 3-level case. Nonetheless, a similar

argument holds for the latter case as well.

4.2 Signaling for actual ISI channel with noise

Enc
E[‖X‖2]≤NP
|Yn| ≥ δGibbs

Sampler

Outer

Enc
Rout ≈ 1 −H2(Q(δ/σ))

Sn

Rin = H(S)
N

Channel

h

Xn
+

Yn

Zn ∼ N(0, σ2)

Q(·)
Rn

Gibbs

Decoder

Outer

Dec

Q(Rn)

Figure 4.2: Signaling for actual ISI channel with noise

The idea here is similar to the signaling for the approximate ISI channel: given a

channel h and power constraint P and a sequence of equally likely iid message bits,

sample S = s ∈ {−1, 1}N from the optimal Gibbs distribution for the corresponding

approximate ISI channel with 2-level quantization and encode it into the optimal x∗

(2.6), and give it as input to the actual channel. Due to noise, the output sequence

after quantization need not be s. Decoding it back to the bit sequence, we need to
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a use an error control code to correct the errors. From Figure 4.2, it can be seen

that the Gibbs sampler sees a binary symmetric channel with probability of error

p ≤ H(δ/σ) (but interleaving might be necessary since the channel has memory).

The capacity of a binary symmetric channel with probability of error p is 1−H2(p).

Hence an outer error correcting code of rate Rout = 1−H2(Q(δ/σ)) can be used. This

seems to imply that an overall rate of RoutH(S)/N = 1 − H2(Q(δ/σ))CN,δ(P) should

be achievable. So, if we can simulate this system and be able to achieve bit error

rate (BER) as low as we want for some SNR (signal to noise ratio) then we can say

that the above rate is achievable. In the next section, we have a brief discussion

regarding source simulation and suggest a method to simulate the above system.

But due to computational complexity of the method we are not able to get to the

required rate.

4.3 Source simulation

In this a section, we describe a well-known method of simulating an arbitrary

discrete probability distribution from a sequence of iid Bernoulli 1/2 (Ber(1/2))

random bits.

Let the target distribution be {p1, p2, . . . , pk} with samples {α1, α2, . . . , αk}. Let

{Xn}n∈N, Xn ∈ {0, 1} be iid Ber(1/2). Let U =
∑
∞

n=1 Xn/2n. Note that U ∼ Unif[0, 1].

Let Um =
∑m

k=1 Xk/2k,m ≥ 1. Let c0 = 0 and c j =
∑ j

i=1 pi, 1 ≤ j ≤ k where c j are

values of the cumulative distribution function of the target distribution. We have

the following algorithm [Romik, 1999]:
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Algorithm 1 Algorithm to sample from a given discrete distribution

1: loop:

2: Sample X1,X2, . . . one at a time

3: if ∃m:[∃ j such that c j−1 < Um < Um + 1
2m < c j] then

4: Output α j

5: break

6: else

7: goto loop

We also have the following theorem from [Romik, 1999]:

Theorem 4.3.1. If H(p1, p2, . . . , pk) denote the entropy of the target distribution, then the

number of iid Ber(1/2) samples N required in the source simulation algorithm 1 satisfies

H(p1, p2, . . . , pk) ≤ E[N] ≤ H(p1, p2, . . . , pk) + 4 (4.1)

But there is a serious issue with this method of sampling: there exists many

input sequences that leads the same sample. Essentially, the sampler is not one-

one. This leads to problem while decoding. We haven’t been able to successfully

tackle this problem. In the next subsection, we present a different approach based

on the theory of typical sequences.

4.3.1 Source simulation: typical sequences

Here, instead of sampling from the full Gibbs distribution over 2N sample space,

we choose top k highly probable samples; we set the probability of other samples

to 0 and normalize to get a new distribution. Call this distribution Gibbs-1. From
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the sample space of Gibbs-1 (only non-zero probability samples are considered),

form iid sequences of length m. Now we have a joint probability distribution on

the space of m length sequences of vectors sampled from Gibbs-1; call this sample

space Γ. From the theory of typical sequences and typical sets, for large enough m,

given ε > 0, there is a set A(ε)
m ⊂ Γ such that

2−m(H(X)+ε)
≤ p(x1, x2, . . . , xm) ≤ 2−m(H(X)−ε), (x1, x2 . . . , xm) ∈ A(ε)

m (4.2)

where X ∼ Gibbs-1. So the elements in the typical set have almost uniform

distribution. We also have,

P(A(ε)
m ) ≥ 1 − ε (4.3)

for large m. So for the sequence (x1, x2, . . . , xm) ∈ Γ, the probability that it belongs

to typical set is very high.

Now, choose top 2n probable sequences from A(ε)
m , create a uniform distribution

on them and encode using n bits. This implies that bits are iid Ber(1/2). Ideal,

we would like to have 2n as close to |A(ε)
m | as possible. But depending on the

computational feasibility, we may have to compromise.

So, now, given a sequence of iid equally likely message bits, we can consider n at

a time and sample from the new uniform distribution on 2n sequences. Clearly, this

encoding is one-one. Each element of the sequence can be encoded into optimal x∗

and sent through the channel (as described in section 4.2). But while decoding we

may have errors, and the received vectors may not be in the non-zero sample space

of Gibbs-1. Even if they are, not every sequence of length m of vectors from Gibbs-1

is in the sampled uniform distribution. So we can use a nearest neighbor search

to find valid vectors from Gibbs-1 and then the valid sequences from the uniform
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distribution. The latter is computationally expensive and thus puts a limitation

on n. Finally ,we can decode them into message bits. Since we also have an error

control code in place, we may have to use interleaving to make the coded bits close

to iid, but this is fine. In the next subsection, we give some numerical results.

4.3.2 Numerical results

For the simulation, we chose [1, ε] channel with N = 9, ε = 0.2, δ = 0.3. The value

of other parameters and results are given below.

k = 20, m = 5, n = 10

P = 0.08

Entropy of Gibbs distribution = 8.11

Entropy of Gibbs-1 ≈ 4

Entropy of the transmitted vectors in {−1, 1}N = 3.35

Γ = 3.2 × 106, size of typical set = 1049760

SNR = 22db, Rout = 0.9, 1 −H2(Q(δ/σ)) = 0.9998

For SNR=22db, BER = 0 for more than 106 message bits

Hence, a rate of around 0.4 × CN,δ(P)(1 −H2(Q(δ/σ)) was achieved

(4.4)

So, it can be seen that the huge loss in rate is mainly due to the loss in entropy in

Gibbs-1. It remains to be seen if we can improve upon this method or come up

with better methods to perform source simulation and decoding in the presence

of noise.

For example, using the Gibbs sampler according to algorithm 1, a Viterbi algo-

rithm could be used at the decoder assuming that the receiver knows what was the
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length of the message bits that was used to sample each of the samples. Again, the

issue is to use a suitable metric. Even when there is no noise, there can different

sequences of message bits which are of same length that can give the same sample.

So tackling the decoding part could be an interesting problem for future study.
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CHAPTER 5

CONCLUDING REMARKS

The capacity of approximate ISI channel with average power constrained continu-

ous input and 3-level quantized output was characterized using Gibbs distribution.

Markovian achievable schemes that approach capacity were described. More gen-

eral and better Markovian achievable schemes could be studied in future. Also, it

would be interesting to generalize the output quantization to any arbitrary level.

Further, signaling methods for the actual ISI channel were studied and a pos-

sible achievable rate was proposed. A well-known sampler was described but it

was observed that it wasn’t one-one and hence could not be decoded. A typical set

based method to sample from an approximate Gibbs distribution was proposed

and decoding became possible; but there was a severe loss in information rate. It

would interesting to come up with source simulation techniques for which decod-

ing in the presence of noise is possible without a substantial loss in information

rate. These could be topics for further study.



APPENDIX A

PROOF OF LEMMA 3.2.1

In this chapter, we provide a proof of lemma 3.2.1. This is inspired from the

discussion in [adam W , http://math.stackexchange.com/users/43193/adam w]. The

lemma is restated here for convenience:

Lemma A.0.2. Let P be an N×N matrix such that P−1 is row-diagonally dominant (with

(P−1)ii > 0,∀i ∈ [N]). Also ∀J ⊂ [N], let the matrix obtained by deleting the rows and

columns of P corresponding to J, denoted QJ, be invertible. Then Q−1
J is row diagonally

dominant.

Proof. It is enough to prove the lemma for J ⊂ [N] which are singleton matrices

because for any other J, we can construct QJ by removing one row and correspond-

ing column at a time, and applying the lemma repeatedly we can conclude that

the result holds for any J ⊂ [N]

Without loss of generality, assume that J = {N}, i.e. QJ is obtained by deleting

the last row and last column of P. So

P =

 QJ b

cT d

 (A.1)

where b, c are column vectors of length N − 1 and d is a scalar. Let P−1 be given by

P−1 =

 E f

gT h

 (A.2)



where f , g are column vectors of length N − 1 and h > 0 is a scalar. So we have

 QJ b

cT d


−1

=

 E f

gT h

 (A.3)

which implies  E f

gT h


 QJ b

cT d

 =

 IN−1 0

0T 1

 (A.4)

where IN−1 is the identity matrix of size (N − 1) × (N − 1). Now left multiplying

equation (A.4) with

 IN−1 − f 1
h

0T 1

 we get

 E − f 1
h gT 0

gT h


 QJ b

cT d

 =

 IN−1 − f 1
h

0T 1

 . (A.5)

Thus we have (
E − f

1
h

gT
)

QJ = IN−1 ⇐⇒ Q−1
J = E − f

1
h

gT. (A.6)

So (Q−1
J )i j = Ei j −

fi g j

h . Since P−1 is row-diagonally dominant, we have

Eii −

N−1∑
j=1, j,i

|Ei j| − | fi| ≥ 0, i ∈ {1, 2, · · · ,N − 1}

h −
N−1∑
j=1

|g j| ≥ 0 =⇒
1
h

N−1∑
j=1

|g j| ≤ 1.

(A.7)
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Therefore, for i ∈ {1, 2, · · · ,N − 1}, we have

(Q−1
J )ii −

N−1∑
j=1, j,i

|(Q−1
J )i j| = Eii −

figi

h
−

N−1∑
j=1, j,i

∣∣∣∣∣∣Ei j −
fig j

h

∣∣∣∣∣∣
≥ Eii −

| figi|

h
−

N−1∑
j=1, j,i

|Ei j| − | fi|

N−1∑
j=1, j,i

|g j|

h

= Eii −

N−1∑
j=1, j,i

|Ei j| − | fi|

N−1∑
j=1

|g j|

h

≥ Eii −

N−1∑
j=1, j,i

|Ei j| − | fi| ≥ 0.

(A.8)

Hence Q−1
J is row-diagonally dominant. �
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APPENDIX B

OPTIMIZATION PROBLEM OF 3-LEVEL

QUANTIZER

In this chapter we discuss the optimization problem (3.11) in generality and give

proof of lemma 3.2.2.

B.1 The optimization problem

Let x and y denote the input and output vectors of length N respectively for the

channel h with N×N matrix Mh. Let s ∈ {−1, 0, 1}N denote the quantized output. Let

{+d,−d} be the decision points. Let s1, s2 ∈ {−1, 1}N be 2-level quantizers defined

according to (3.12). Given s ∈ {−1, 0, 1}N and 0 < δ < d, the aim is to solve the

optimization problem (3.11) which is restated here for convenience:

ε(s) = min
x

diag(s1)(Mhx−d1)�δ1
diag(s2)(Mhx+d1)�δ1

(
‖x‖2

)
(B.1)

where 1 is the all-1 column vector of length N.

B.2 The dual problem and the solution

The Lagrangian function of the optimization problem is

L(x, λ1, λ2) = ‖x‖2 +λT
1

(
δ1−diag(s1)(Mhx− d1)

)
+λT

2

(
δ1−diag(s2)(Mhx + d1)

)
(B.2)



where λ1, λ2 ∈ R
N are the Lagrange multipliers.

Since the primal problem is convex with linear constraints, strong duality

holds. So, if x∗ is primal optimal and (λ∗1, λ
∗

2) is dual optimal then infx L(x, λ∗1, λ
∗

2) =

L(x∗, λ∗1, λ
∗

2), and this x∗ can be found by setting the gradient of the Lagrangian func-

tion with respect to x to zero; we get x∗ = 1
2

(
MT

h diag(s1)λ∗1 + MT
h diag(s2)λ∗2

)
. Also by

complementary slackness we have, for i ∈ [N], λ∗1(i)
(
δ1−diag(s1)(Mhx∗−d1)

)
(i) = 0

and λ∗2(i)
(
δ1 − diag(s2)(Mhx∗ + d1)

)
(i) = 0. Now it can be shown that λ∗1(i)λ∗2(i) = 0

since the corresponding constraints cannot be simultaneously active (as long as

d > δ).

Now it is to be found for which i ∈ [N] the multipliers have to be zero. Suppose

for some i we have s(i) = 1 then the second constraint becomes strict inequality

and hence, by complimentary slackness, λ∗2(i) = 0. Similarly, if s(i) = −1 then

λ∗1(i) = 0. If s(i) = 0 then, intuitively, the minimum energy input x would be such

that y(i) = 0. So we set λ∗1(i)λ∗2(i) = 0 but we do not yet know where each of these

multipliers are non-zero.

Let J0 = {i ∈ [N] : s(i) = 0}, J1 = {i ∈ [N] : s(i) = 1} and J−1 = {i ∈ [N] : s(i) = −1}.

So if i ∈ J1 then λ∗2(i) = 0, and if i ∈ J−1 then λ∗1(i) = 0. We now need to find the

optimal values of remaining multipliers. The Lagrangian dual is

L(λ1, λ2) =δ(λT
1 + λT

2 )1 + d(λT
1 s1 − λ

T
2 s2)

−
1
4

(
λT

1 diag(s1)MhMT
h diag(s1)λ1 + λT

1 diag(s1)MhMT
h diag(s2)λ2

+ λT
2 diag(s2)MhMT

h diag(s1)λ1 + λT
2 diag(s2)MhMT

h diag(s2)λ2

) (B.3)

We must also know the indices in J0 where the multipliers are non zero. Let

us assume that we know this OR let us choose these indices arbitrarily. Let
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Ja
0 = {i ∈ J0 : λ1(i) , 0}, Jb

0 = {i ∈ J0 : λ2(i) = 0 = λ1(i)} and Jc
0 = {i ∈ J0 : λ2(i) , 0}.

Also, let Jm,n = Jm ∪ Jn, m,n ∈ {−1, 0, 1} and Jx
0,n = Jx

0 ∪ Jn, n ∈ {−1, 0, 1}, x ∈ {a, b, c}.

With this notation, we get

L(λ1, λ2) =δ(λT
1 )Ja

0,11Ja
0,1 + δ(λT

2 )Jc
0,−11Jc

0,−1 + d((λT
1 )Ja

0,1s
Ja
0,1

1 − (λT
2 )Jc

0,−1s
Jc
0,−1

2 )

−
1
4

(
(λT

1 )Ja
0,1AJa

0,1 Ja
0,1λ

Ja
0,1

1 + (λT
1 )Ja

0,1BJa
0,1 Jc

0,−1λ
Jc
0,−1

2

+ (λT
2 )Jc

0,−1CJc
0,−1 Ja

0,1λ
Ja
0,1

1 + (λT
2 )Jc

0,−1DJc
0,−1 Jc

0,−1λ
Jc
0,−1

2

) (B.4)

where the superscripts denote the sub-matrix corresponding to the rows and/or

columns represented by them. It can also be seen that AJa
0,1 Ja

0,1 = diag(s1)Ja
0,1 Ja

0,1(MhMT
h )Ja

0,1 Ja
0,1diag(s1)Ja

0,1 Ja
0,1

since diag(s1) is a diagonal matrix; similarly for B, C and D.

Setting the gradient of the Lagrangian dual with respect to λ
Ja
0,1

1 and λ
Jc
0,−1

2 to zero

to find the optimal values of the multipliers, we get

 diag(s1)Ja
0,1 PJa

0,1 Ja
0,1 diag(s1)Ja

0,1 diag(s1)Ja
0,1 PJa

0,1 Jc
0,−1 diag(s2)Jc

0,−1

diag(s2)Jc
0,−1 PJc

0,−1 Ja
0,1 diag(s1)Ja

0,1 diag(s2)Jc
0,−1 PJc

0,−1 Jc
0,−1 diag(s2)Jc

0,−1


 λ

Ja
0,1

1

λ
Jc
0,−1

2


= 2

 δ1Ja
0,1 + ds1

Ja
0,1

δ1Jc
0,−1 − ds2

Jc
0,−1


(B.5)

where P = (MhMT
h ). This can also be written as

 PJa
0,1 Ja

0,1 diag(s1)Ja
0,1 PJa

0,1 Jc
0,−1 diag(s2)Jc

0,−1

PJc
0,−1 Ja

0,1 diag(s1)Ja
0,1 PJc

0,−1 Jc
0,−1 diag(s2)Jc

0,−1


 λ

Ja
0,1

1

λ
Jc
0,−1

2


= 2

 δs1
Ja
0,1 + d1Ja

0,1

δs2
Jc
0,−1 − d1Jc

0,−1


(B.6)

Using the fact that [i ∈ J1 =⇒ s1(i) = 1], [i ∈ Ja
0 =⇒ s1(i) = −1], [i ∈ Jc

0 =⇒
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s2(i) = 1] and [i ∈ J−1 =⇒ s2(i) = −1], the above equation can be expanded further

and we get



−PJa
0 Ja

0 PJa
0 J1 PJa

0 Jc
0 −PJa

0 J−1

−PJ1 Ja
0 PJ1 J1 PJ1 Jc

0 −PJ1 J−1

−PJc
0 Ja

0 PJc
0 J1 PJc

0 Jc
0 −PJc

0 J−1

−PJ−1 Ja
0 PJ−1 J1 PJ−1 Jc

0 −PJ−1 J−1





λ
Ja
0

1

λJ1
1

λ
Jc
0

2

λJ−1
2


= 2



(−δ + d)1Ja
0

(δ + d)1J1

(δ − d)1Jc
0

(−δ − d)1J−1


(B.7)

Assuming that the matrix in the left hand side of the above equation to be invertible,

we have the optimal values of the multipliers unless these values are negative. We

need to find the conditions on the matrix on the left hand side such that the

solutions we get by inversion are non-negative for any given output state s. In the

next section, we will show that diagonal dominance of P−1 will ensure the non-

negativity of λJ1
1 and λJ−1

2 , and also provide a proof of lemma 3.2.2. Later, in section

B.4, we give an algorithm that gives us the sets Ja
0 and Jc

0 so that the multipliers λ
Ja
0

1

and λ
Jc
0

2 are non-negative.
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B.3 Conditions for non-negativity

Let Z =



−PJa
0 Ja

0 PJa
0 J1 PJa

0 Jc
0 −PJa

0 J−1

−PJ1 Ja
0 PJ1 J1 PJ1 Jc

0 −PJ1 J−1

−PJc
0 Ja

0 PJc
0 J1 PJc

0 Jc
0 −PJc

0 J−1

−PJ−1 Ja
0 PJ−1 J1 PJ−1 Jc

0 −PJ−1 J−1


and let Q be the matrix obtained from

P by removing the rows and columns corresponding to Jb
0. Let λ =



λ
Ja
0

1

λJ1
1

λ
Jc
0

2

λJ−1
2


,

W = 2



(−δ + d)1Ja
0

(δ + d)1J1

(δ − d)1Jc
0

(−δ − d)1J−1


and N =



−Ia
J0

0 0 0

0 IJ1 0 0

0 0 IJc
0

0

0 0 0 −IJ−1


where Ia

J0
, Ic

J0
IJ1 andIJ−1 are

identity matrices of dimensions |Ja
0|, |J

c
0| |J1| and|J−1| respectively. The matrices Z, W

and N are dependent on the output state s through the sets J0, J1 and J−1.

We can write Z as Z = UQUTN where U is a permutation matrix (and hence

unitary). So the equation (B.7) becomes

UQUTNλ = W (B.8)

So, if Q is invertible then

λ = NUQ−1UTW (B.9)
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It can be seen that UQ−1UT =



(Q−1)Ja
0 Ja

0 (Q−1)Ja
0 J1 (Q−1)Ja

0 Jc
0 (Q−1)Ja

0J−1

(Q−1)J1 Ja
0 (Q−1)J1 J1 (Q−1)J1 Jc

0 (Q−1)J1 J−1

(Q−1)Jc
0 Ja

0 (Q−1)Jc
0 J1 (Q−1)Jc

0 Jc
0 (Q−1)Jc

0 J−1

(Q−1)J−1 Ja
0 (Q−1)J−1 J1 (Q−1)J−1 Jc

0 (Q−1)J−1 J−1


.

So if Q−1 = (ti j),

i ∈ J1 =⇒ λ1(i) = 2
[
δ

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈Ja
0∪J−1] + d

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈Jc
0∪J−1]

]
i ∈ J−1 =⇒ λ2(i) = −2

[
δ

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈Ja
0∪J−1] + d

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈Jc
0∪J−1]

] (B.10)

where 1[x ∈ A] is 1 if x ∈ A and 0 otherwise .

We want the multipliers to be non-negative for any J0, J1 and J−1. Suppose

i ∈ J1. We want λ1(i) ≥ 0. It is sufficient if
∑

j∈[N]\Jb
0
ti j(−1)1[ j∈Ja

0∪J−1]
≥ 0 and∑N

j=1 ti j(−1)1[ j∈Jc
0∪J−1]

≥ 0. Similarly, for i ∈ J−1, it is sufficient if
∑

j∈[N]\Jb
0
ti j(−1)1[ j∈Ja

0∪J−1]
≤

0 and
∑N

j=1 ti j(−1)1[ j∈Jc
0∪J−1]

≤ 0. So if Q−1 is diagonally dominant (with diagonal en-

tries being non-negative) then the above sufficient conditions are satisfied and

hence λJ1
1 and λJ−1

2 are non-negative. So if P satisfies the hypothesis of lemma 3.2.1

then Q−1 is diagonally dominant and hence the optimal multipliers in (B.10) are

non-negative.

We also have,

i ∈ Ja
0 =⇒ λ1(i) = 2

[
δ

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈J1∪Jc
0]
− d

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈Jc
0∪J−1]

]
i ∈ Jc

0 =⇒ λ2(i) = 2
[
δ

∑
j∈[N]\Jb

0

ti j(−1)1[ j∈Ja
0∪J−1]

− d
∑

j∈[N]\Jb
0

ti j(−1)1[ j∈Ja
0∪J1]

] (B.11)

Again assuming that P satisfies the hypothesis of lemma 3.2.1, Q−1 is diagonally

dominant and hence the coefficients of both d and δ are non-negative. So for a
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given channel for which the matrix P = MhMT
h satisfies the hypothesis of lemma

3.2.1 (and hence Q−1 is diagonally dominant for every s, Ja
0 and Jc

0), given output

sequence s and a choice of Ja
0, Jc

0, as d increases, the optimal value of λ1 and

λ2, corresponding to Ja
0 and Jc

0 respectively, as calculated from equations (B.11),

decrease monotonically. So, given such a channel, there exists a d0 > δ > 0 such

that for any d > d0, for any output sequence s and any choice of Ja
0, Jc

0, the value of

multipliers as calculated from (B.11) are negative. This implies that the only valid

choice is Jb
0 = J0 and Ja

0 = Jc
0 = ∅. Thus we have the proof of lemma 3.2.2.

Further, using (B.5) and x∗ = 1
2

(
MT

h diag(s1)λ∗1 + MT
h diag(s2)λ∗2

)
we get the follow-

ing under-determined system of equations for x∗:

diag(s1)M
Ja
0,1[]

h x∗ = δ1Ja
0,1 + ds

Ja
0,1

1

diag(s2)M
Jc
0,−1[]

h x∗ = δ1Jc
0,−1 − ds

Jc
0,−1

2

(B.12)

where MJ[]
h denotes the sub-matrix corresponding to rows with indices J and all

columns. This can re-written as

 M
Ja
0,1[]

h

M
Jc
0,−1[]

h

 x∗ =

 δs
Ja
0,1

1 + d1Ja
0,1

δs
Jc
0,−1

2 − d1Jc
0,−1

 . (B.13)

It is well known that for an under-determined system Ax = b with (AAT) invertible,

the least norm solution is given by x = AT(AAT)−1b. Letting H̄ =

 M
Ja
0,1[]

h

M
Jc
0,−1[]

h

 and

s̄ =

 δs
Ja
0,1

1 + d1Ja
0,1

δs
Jc
0,−1

2 − d1Jc
0,−1

, we have

x∗ = H̄T(H̄H̄T)−1s̄. (B.14)

50



Note that H̄H̄T = UQUT and from equations (B.9) and (B.6) we have

 (λ∗1)Ja
0,1

(λ∗2)Jc
0,−1

 = 2

 diag(s1)Ja
0,1 0

0 diag(s2)Jc
0,−1

 UQ−1UTs̄. (B.15)

So clearly H̄T(H̄H̄T)−1s̄ = 1
2

(
MT

h diag(s1)λ∗1 + MT
h diag(s2)λ∗2

)
.

Therefore the solution to the optimization problem (B.1) is the least norm solu-

tion to (B.13) which is given by (B.14). Hence the optimal energy is given by

ε(s) = s̄T(H̄H̄T)−1s̄. (B.16)

B.4 Finding the sets Ja
0 and Jc

0

We now give an algorithm to find the sets Ja
0 and Jc

0 (and Jb
0 = J0 \ (Ja

0 ∪ Jc
0)). First,

we make some observations. In this section d represents the generic decision point

parameter of the quantizer.

Assume that for a given channel matrix Mh, output sequence s and the quantizer

decision points [+d1,−d1] (i.e. d = d1), we know the the sets Ja
0 and Jc

0 such that

the multipliers corresponding to them as calculated from equation (B.11) are non-

negative. When we increase d from d1, beyond some point say d2, atleast one of

these multipliers may become negative and hence the previous choice of Ja
0 and Jc

0

are no longer correct. Now for d ∈ [d1, d2) the choices of Ja
0 and Jc

0 are valid and the

corresponding multipliers decrease monotonically as d is increased from d1 to d2.

Let ε > 0 be small. For d ∈ [d2, d2 + ε], let J̄a
0 and J̄c

0 be a valid choice of the

subsets in J0 where the λ1(i) , 0, i ∈ J̄a
0 and λ2(i) , 0, i ∈ J̄c

0 and ε is small enough

such that these sets are valid throughout the interval [d2, d2 + ε]. We claim that
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J̄a
0 ⊂ Ja

0 and J̄c
0 ⊂ Jc

0. Although it seems difficult to give a rigorous proof, we provide

an explanation for the same and the claims is supported by numerical simulations

that we have performed.

For simplicity, let us assume thatλ1(i1), i1 ∈ Ja
0 is the only multiplier that becomes

zero when d is increased from d1 to d2. For d < d2 we use Ja
0 and Jc

0 in equation (B.7)

(call this case 1), and for d ≥ d2 we use J̄a
0 and J̄c

0 in equation (B.7) (call this case 2). In

case 1, as d becomes close to d2, λ1(i1) ≈ 0. Hence the first column of the coefficient

matrix in the left hand side of (B.7) can be neglected, and therefore the rows in the

left hand side (representing the equations), except for the row corresponding to i1,

are almost equal to the corresponding rows in case 2. Thus by removing the row

and column corresponding to i1 ∈ Ja
0 from case 1 we get equation (B.7) for case 2.

Hence J̄a
0 = Ja

0 \ i1. So, J̄a
0 ⊂ Ja

0. Similarly J̄c
0 ⊂ Jc

0.

Thus if we know valid Ja
0 and Jc

0 for some decision point parameter d1, we can

find the corresponding sets J̄a
0 and J̄c

0 for any d > d1 as follows:

Algorithm 2 Algorithm to find J̄a
0 and J̄c

0 given Ja
0, Jc

0 and d

1: function f(Ja
0, Jb

0, d, s, Mh)
2: J̄a

0 ← Ja
0

3: J̄c
0 ← Jc

0
4: loop:
5: Solve equations (B.11)
6: if ∃i ∈ J̄a

0 such that λ1(i) < 0 or ∃ j ∈ J̄c
0 such that λ2( j) < 0 then

7: A1 = {i ∈ J̄a
0 : λ1(i) < 0}

8: A2 = {i ∈ J̄c
0 : λ2(i) < 0}

9: J̄a
0 ← J̄a

0 \ A1

10: J̄c
0 ← J̄c

0 \ A2

11: goto loop
12: close;
13: return J̄a

0, J̄c
0

So if the sets Ja
0 and Jc

0 are known for the case d = δ, then for any other value of

the d, the above algorithm can be used to find these sets.
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B.5 The case d = δ

In the case of d = δ, there is no need to decompose the set J0 and we can find Ja
0 and

Jc
0. But, given s, for i ∈ J0, both optimal multipliers can possibly be non-zero since

d−δ = −δ+d. Let ε > 0 be small. For d = δ+ε, we know that theλ1(i)λ2(i) = 0, i ∈ J0.

We can choose ε small enough that the sets Ja
0 and Jc

0 remain constant for every

d ∈ (δ, δ + ε]. The corresponding multipliers satisfy equation (B.11) and hence are

continuous functions of d in this interval. Hence, we can impose the condition

λ1(i)λ2(i) = 0 for the case of d = δ as well.

In this case, equation (B.4) becomes

L(λ1, λ2) =δ(λT
1 )J0,11J0,1 + δ(λT

2 )J0,−11J0,−1 + d((λT
1 )J0,1sJ0,1

1 − (λT
2 )J0,−1sJ0,−1

2 )

−
1
4

(
(λT

1 )J0,1AJ0,1 J0,1λJ0,1

1 + (λT
1 )J0,1BJ0,1 J0,−1λJ0,−1

2

+ (λT
2 )J0,−1CJ0,−1 J0,1λJ0,1

1 + (λT
2 )J0,−1DJ0,−1 J0,−1λJ0,−1

2

) (B.17)

Setting the gradient of the Lagrangian with respect to λJ0,1

1 and λJ0,−1

2 to zero, we

get



−PJ0 J0 PJ0 J1 PJ0 J0 −PJ0 J−1

−PJ1 J0 PJ1 J1 PJ1 J0 −PJ1 J−1

−PJ0 J0 PJ0 J1 PJ0 J0 −PJ0 J−1

−PJ−1 J0 PJ−1 J1 PJ−1 J0 −PJ−1 J−1





λJ0
1

λJ1
1

λJ0
2

λJ−1
2


=2



(−δ + d)1J0

(δ + d)1J1

(δ − d)1J0

(−δ − d)1J−1



= 4



0J0

(δ)1J1

0J0

(−δ)1J−1



(B.18)
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Simplifying, we get


−PJ0 J0 PJ0 J1 −PJ0 J−1

−PJ1 J0 PJ1 J1 −PJ1 J−1

−PJ−1 J0 PJ−1 J1 −PJ−1 J−1




λJ0

1 − λ
J0
2

λJ1
1

λJ−1
2


= 4


0J0

(δ)1J1

−(δ)1J−1


(B.19)

If P−1 is diagonally dominant then it can be seen that the multipliers corre-

sponding to the indices J1 and J−1 are non-negative by arguments similar to those

used in section B.3. By solving equation (B.19), for each i ∈ J0 we know the value

of λ1(i) − λ2(i) and we also know that λ1(i)λ2(i) = 0. So we have

λ1(i) − λ2(i) = 0 then choose λ1(i) = 0 = λ2(i)

λ1(i) − λ2(i) > 0 then choose λ2(i) = 0 & λ1(i) > 0

λ1(i) − λ2(i) < 0 then choose λ1(i) = 0 & λ2(i) > 0

(B.20)

Thus the optimal multipliers are non-negative and we know the sets Ja
0, Jb

0 and

Jc
0 for the case of d = δ.

54



APPENDIX C

THE (1, ε) CHANNEL

Consider the (1, ε) channel where |ε| < 1. For this channel with N ≥ 3, P = (MhMT
h )

is given by

P =



1 + ε2 ε 0 0 · · · ε

ε 1 + ε2 ε 0 · · · 0

0 ε 1 + ε2 ε · · · 0

0 0 ε 1 + ε2
· · · 0

...
...

...
...

. . .
...

0 0 · · · ε 1 + ε2 ε

ε 0 0 · · · ε 1 + ε2



(C.1)

This channel is diagonally dominant if ε <
√

3
2 − 1. To see this, P can be written as

P = I + ε where I is the identity matrix of dimension N. If ε = (εi, j), then

‖ε‖∞ = max
1≤i≤N

N∑
j=1

|εi j| = ε2 + 2|ε| (C.2)

Let ‖ε‖∞ < 1
2 ⇔ |ε| <

√
3
2 − 1. Then P−1 = I − ε + ε2

− ε3 + ... (i.e., the Neumann

series converges). We know ‖εk
‖∞ ≤ ‖ε‖k∞ <

1
2k . Let S = −ε + ε2

− ε3 + ... = (si j).

Then for any i ∈ [N], 1 + sii −
∑

j, j,i |si j| ≥ 1−
∑N

j=1 |si j| > 1−
∑
∞

k=1
1
2k > 0. Hence P−1 is

diagonally dominant.

We can also prove, independent of lemma 3.2.1, that this channel is strongly

diagonally dominant. For any set J ⊂ [N], if the rows and columns of P corre-



sponding to the indices in J are removed we get a new matrix Q which still has

the diagonal entries as 1 + ε2. If Q is written as Q = I + ε then it can be seen that

‖ε‖∞ ≤ ε2 + 2|ε|. Therefore

|ε| <

√
3
2
− 1 =⇒ ‖ε‖∞ <

1
2

(C.3)

Hence, by a similar argument as above, Q−1 is diagonally dominant. Therefore this

channel is strongly diagonally dominant for |ε| <
√

3
2 − 1.
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