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ABSTRACT

KEYWORDS: Information theory, Information and data security, Cryptogra-

phy, Communication complexity, Secure function computation, 2-

transitive permutation sets

The paramount importance of information security and privacy can not be overempha-

sized in the modern data-driven society. In this work, we study one aspect of information-

security, namely – secure multi-party computation. Our concept of security is information-

theoretic as opposed to security relying on computational hardness assumptions. The prob-

lem of three-party secure computation, where a function of private data of two parties is

to be computed by a third party without revealing information beyond respective inputs

or outputs is considered. New and better lower bounds on the amount of communication

required between the parties to guarantee zero probability of error in the computation and

achieve information-theoretic security are derived. Protocols are presented and proved to

be optimal in some cases by showing that they achieve the improved lower bounds.
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CHAPTER 1

INTRODUCTION

The paramount importance of information security and privacy can not be overemphasized

in the modern data-driven society. Organizations like Google, Facebook and Microsoft’s

servers handle thousands of pentabytes of data every month. With the humongous volume

of data flowing in the giant web of internet, the potential danger of bank details, payment

information, client profiles and personal files getting lost or falling into the wrong hands

looms large.

Cryptography, a sub-field of theoretical computer science, concerns itself with the

study of hiding information from third parties called adversaries. Cryptographers and

cryptanalysts have for years constructed and analysed protocols that prevent third par-

ties from accessing private information. While the majority of cryptographic protocols –

designed over unproven computational hardness assumptions – are easy to implement and

reasonably effective for day-to-day purposes, there are two critical drawbacks concerning

their usage:

1. Theoretical advances in areas like number theory (integer factorization, for e.g.)

would demand adaptability of these algorithms.

2. They are particularly vulnerable to emerging technological developments like quan-

tum computing.

Information theoretic security is an aspect of cryptography which circumvents the

aforementioned problems of the modern cryptographic protocols. Information theoreti-

cally cryptographic protocols do not rely on computational hardness assumptions and are

invulnerable to quantum computing advancements because of the inherent definition of

security and privacy in such protocols. The seminal work of Shannon (Shannon, 1949) in-

troduced the concept of information-theoretic security. The obvious disadvantage of these

protocols is the difficulty in implementing them on a large scale (see Orlandi (2011) for

recent advances in implementations for multi-party computation in general). Neverthe-



less, information-theoretically secure cryptosystems are largely used for the most sensitive

governmental and military communications.

A variety of tasks exist for which information-theoretic security is meaningful:

1. Secret Sharing schemes, like that of Shamir’s (check Appendix A for the scheme),

are information-theoretically secure.

2. Private information retrieval with multiple databases can be achieved with information-

theoretic privacy for the user’s query.

3. Quantum cryptographic protocols are mostly information-theoretically secure.

4. Secure multi-party computation (MPC), the superset of this thesis topic, often (but

not necessarily) concerns with information-theoretic security.

1.1 Information-Theoretically Secure Multi-Party Com-

putation (MPC)

MPC is a very general and one of the most important problems in cryptography. In our

modern, highly data-driven systems and networks, individuals and organizations often in-

teract directly and indirectly with a large number of parties. In such a complex scenario, it

is imperative that one must keep their private data as confidential as possible. Of course,

one could store their data in a hardware device and lock it away, but that would undermine

the very value of the data – to be of some use. A very interesting case that often arises

and that makes MPC relevant is that it is possible to combine confidential information

from several sources to churn out some result of value to all the parties. To illustrate what

we mean by this, consider the following real-world scenario, verbatim from Cramer u. a.

(2012) (see there for a comprehensive treatment of MPC):

1.1.1 Auctions

Auctions exist in many variants and are used for all kinds of purposes, but we concentrate

here on the simple variant where some item is for sale, and where the highest bid wins.

We assume the auction is conducted in the usual way, where the price starts at some preset
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amount and people place increasing bids until no one wants to bid more than the holder of

the currently highest bid. When you enter such an auction, you usually have some (more

or less precisely defined) idea of the maximal amount you are willing to pay, and therefore

when you will stop bidding. On the other hand, every bidder of course wants to pay as

small a price as possible for the item. Indeed, the winner of the auction may hope to pay

less than his maximal amount. This will happen if all other bidders stop participating long

before the current bid reaches this maximum. For such an auction to work in a fair way,

it is obvious that the maximum amount you are willing to pay should be kept private. For

instance, if the auctioneer knows your maximum and is working with another bidder, they

can force the price to be always just below your maximum and so force you to pay more

than if the auction had been honest. Note that the auctioneer has an incentive to do this to

increase his own income, which is often a percentage of the price the item is sold for. On

the other hand, the result of the auction could in principle be computed, if one was given

as input the true maximum value each bidder assigns to the item on sale.

1.1.2 History of Secure MPC

In conclusion secure MPC studies how mutually distrusting users can compute functions

of their (private) data via interactive communication in such a way that they do not reveal

to each other any more information about their data than can be inferred from learning only

the function outputs. The security requirements on an MPC protocol are so stringent that

it may seem that it is rarely possible to actually achieve. While the founding works Shamir

u. a. (1979); Rabin (1979); Blum (1981); Yao (1982, 1986) were based on computational

limitations of the users, seminal papers by Ben-Or, Goldwasser, and Wigderson (Ben-Or

u. a., 1988) and Chaum, Crépeau, and Damgård (Chaum u. a., 1988) showed how informa-

tion theoretically secure computation of any function is possible between parties connected

by pairwise, private links as long as only a strict minority may collude in the honest-but-

curious model (and a strictly less than one-third minority may collude in the malicious

model).

Information-theoretically secure MPC is closely related to the problem of secret shar-

ing (Shamir, 1979) (Verifiable Secret-Sharing in particular) and it would be worthwhile

3



to look at Appendix A to have a better understanding and appreciate problems in secure

MPC. See Beimel (2011) for a comprehensive treatment of secret sharing schemes.

Though information-theoretically secure MPC has been a central primitive of cryptog-

raphy, relatively less is known about the efficiency of such protocols. While there are rich

results and techniques for the communication complexity of function computation without

security requirements (see for e.g Yao (1979), Kushilevitz (1997), Ma und Ishwar (2013),

Prabhakaran und Prabhakaran (2014)), these are mostly not of relevance for the case with

security conditions added.

1.2 Prior Work and Contributions

The non-interactive model of secure MPC we study here was proposed by Feige, Kilian,

and Naor Feige u. a. (1994) who showed that any function can be securely computed in

this model.

For the interactive model, lower bounds for the optimal amount of communication re-

quired to securely compute (mainly modular addition) were developed using combinatorial

techniques in Franklin und Yung (1992); Chor und Kushilevitz (1993). In a recent work,

information theoretic methods were used to develop lower bounds which are tight for sev-

eral functions of interest Data u. a. (2014); see there for other previous work on lower

bounds for communication and randomness.

Our main contribution is the derivation of a lower bound that exploits the structure of

the function to be computed and other lower bounds on the entropy of the messages. This

lower bound improves upon existing ones, and is seen to be tight in many interesting cases.

We also show that in general, there exist protocols outside FKN model that perform strictly

better than any protocol in the FKN realm via an example which exploits local randomness

to outperform our FKN lowerbound.
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CHAPTER 2

MODEL AND PROBLEM DEFINITION

We consider the three-party secure computation model of Feige u. a. (1994) illustrated in

Fig. 2.1.

The three parties, called Alice, Bob and Charlie, are connected by pairwise private links as

M13

M23

M12

X

Y

Alice

Bob

Charlie Z = f(X,Y )

Figure 2.1: Three-party secure computation model.

shown in the figure. Alice and Bob observe input random variables X and Y , respectively,

taking values in finite alphabets X and Y with joint distribution pXY . The links are noise-

free and all transmission are assumed to be instantaneous.

Consider a function f : X × Y → Z taking values in a finite set Z , and let Z =

f(X, Y ). The goal of our Information theoretic secure computation is for Charlie to com-

pute f securely (this is formalized later) and for Alice and Bob to not learn anything about

the other party’s input than what their own input reveals.



2.1 Protocols

In order to accomplish the above task, the participating members follow procedures called

protocols. While protocols could, in general, involve multiple rounds of communication

between the three participants, our model (also called the one-shot model) imposes the

following conditions for a protocol to be classified as valid.

1. Alice (or Bob) chooses M12 ∈ M12 according to a distribution pM12 and sends it to
Bob (or Alice) privately. This can be written as

M12−X − Y, Z
M12−Y −X,Z. (2.1)

M12 is not revealed to Charlie.

2. Alice sends M13 ∈ M13, a deterministic function of M12 and X , to Charlie. This
can be written as

H(M13|M12, X) = 0. (2.2)

M13 is not revealed to Bob.

3. Bob sends M23 ∈ M23, a deterministic function of M12 and his input Y , to Charlie.
This can be written as

H(M23|M12, Y ) = 0. (2.3)

M23 is not revealed to Alice.

4. Charlie computes Ẑ (his estimate of Z) as a function of M13 and M23.

The random variables M12, M13, and M23 are referred to as messages, and their alpha-

bets are assumed to be finite. The message M13 is a function of M12 and X , and the values

of M13 are denoted as m13 , m13(m12, x). A similar notation m23(m12, y) is used for

M23.

We say that a protocol Π is valid in our model if it satisfies conditions 2.1-2.3. For

the general model, conditions 2.2 and 2.3 need not hold true and Charlie is allowed to

communicate to Alice and Bob. Besides, the number of interactions can be as large as

needed.
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2.2 Security conditions

Having defined the model, we precisely state the security conditions that need to be satis-

fied for our information theoretically secure MPC problem:

1. Charlie is to compute Z with zero probability of error,
i.e.,

H(Z|M13,M23) = 0 (2.4)

2. Alice should not learn anything more about Y than what X reveals,
i.e.,

H(Y |X,M13,M12) = H(Y |X). (2.5)

3. Bob should not learn anything more about X than what Y reveals,
i.e.,

H(X|Y,M23,M12) = H(Y |X). (2.6)

4. Charlie should not learn anything more about (X, Y ) than what Z reveals,
i.e.,

H(X, Y |Z,M13,M23) = H(X, Y |Z). (2.7)

While our one-shot model seems to be very simplistic and the security conditions 2.4–

2.7 seemingly complex (in the sense that the constraints cannot be easily classified as

convex, linear or into other common categories), Feige, Kilian, and Naor (Feige u. a.,

1994) showed that the above goals can be met in this model for any function. This does not,

however, imply that other models of three-party MPC can be ignored. An important point

to note in this regard is that the non-interactive and deterministic nature of the protocols in

our model completely disregards a huge class of protocols – those that exploit the power of

interaction and randomness and which, from a communication complexity point of view,

could be more efficient. In fact, we demonstrate that local randomness strictly helps in the

case of a particular function.

2.3 Problem definition

Now we are ready to define the optimization problems of interest:

inf
Π
{H(M13)|2.4− 2.7} (P.1)

7



inf
Π
{H(M23)|2.4− 2.7} (P.2)

inf
Π
{H(M12)|2.4− 2.7} (P.3)

In words, given a function f , we are interested in protocols which meet the secure com-

putation goals with the minimum possible communication. We will obtain lower bounds

for the entropies H(M12), H(M13) and H(M23), which give lower bounds on the commu-

nication needed to accomplish secure computation. We will then demonstrate protocols

which meet these lower bounds and, hence, are optimal for some examples of interest.

Lower bounds (see Appendix C) for P.1–P.3 have already been derived in Data u. a.

(2014) for the general interactive model. We will use these throughout the paper for de-

riving our lower bounds and for comparison as well. Note that though these lower bounds

are for the interactive model, they apply to our model as well as any valid protocol in

our model is also a valid protocol in the general model. In our work, we will mostly be

concerned with P.3 as that seems to be the weak point for many functions in Data u. a.

(2014).

2.4 Some assumptions

For the rest of this paper, we will assume the following:

• pXY has full support, i.e. every value in the alphabet is taken with a positive proba-
bility. Without loss of generality, we will assume that M12 has full support.

• No inputs are redundant, i.e. if f(x, y) = f(x′, y) for all y ∈ Y , then x = x′, and
similarly for the second input to f . Given the full support assumption on pXY , this
can be shown to be without loss of generality.

8



CHAPTER 3

LOWER BOUND ON H(M12)

3.1 Motivating example: Secure AND

To fix ideas, consider the case where X = Y = Z = {0, 1} and f(X, Y ) = XY is the

AND of two uniformly random bits X and Y . Protocol 1 is a one-shot protocol for secure

computation of AND from Feige u. a. (1994).

Protocol 1 : Secure AND

1: Alice randomly and uniformly picks a permutation of (0, 1, 2) - say (α, β, γ)

- and sends it to Bob.

2: Alice sends M13 = α if X = 1 and M13 = β if X = 0 to Charlie, while Bob

sends M23 = α if Y = 1 and M23 = γ if Y = 0.

3: Charlie computes Z = 1 if M13 = M23 or Z = 0 otherwise.

It is easy to see that the above protocol satisfies all the requirements of the secure com-

putation of AND. It requires H(M13) = H(M23) = log2 3 bits on the Alice-Charlie and

Bob-Charlie links. These values are known to be optimal even for a more general model

where Alice, Bob, and Charlie may interact over multiple rounds Data u. a. (2014). For the

Alice-Bob link, the protocol hasH(M12) = log2 6. However, for the interactive model, the

lower bound in Data u. a. (2014) is only 1.826 < log2 6 ≈ 2.585. One of the contributions

of this paper is to show that, for the non-interactive model, H(M12) ≥ log2 6 is, in fact, a

lower bound and the protocol is, indeed, optimal for secure AND. Additionally, even for

the case of computing the AND of n bits, we show that the repeated use of the Secure

AND protocol above is optimal for M12.

Similar ideas are used to obtain lower bounds and prove optimality of protocols for two

other computations, namely addition of 0-1 integers and equality testing.



3.2 Lower bound on |M12| for secure AND

As mentioned before, lower bounds on the entropies of the transcripts on the links in the

interactive model were presented in Data u. a. (2014). We will use the bounds on H(M13)

and H(M23) from there (which also apply for our non-interactive model) in combination

with the properties of the function f to derive a new lower bound on H(M12).

To illustrate the idea involved in the derivation of the bound, we first show that for

any one-shot protocol for secure AND, we have |M12| ≥ 6. The general lower bound on

H(M12) is presented later.

Firstly, from Data u. a. (2014), it is known that H(M13) ≥ log2 3 for secure AND,

which implies that |supp(M13)| ≥ 3. Next, we will use the following properties of the

AND function, and their implications on the secure AND protocol when the distribution

of (X, Y ) has full support:

1. f(1, 0) 6= f(1, 1): For Charlie to compute Z with zero probability of error, it must
be the case that supp ((M13,M23)|XY = 10) and supp ((M13,M23)|XY = 11) are
disjoint.

2. f(0, 0) = f(0, 1) = 0: For Charlie to not differentiate between the inputs (0,0) and
(0,1) given Z = 0, the supp((M13,M23)|XY = 00) and supp((M13,M23)|XY =
01) must be identical.

Since

[m13(m12, 1), m23(m12, 0)] ∈ supp ((M13,M23)|XY = 10) ,

[m13(m12, 1), m23(m12, 1)] ∈ supp ((M13,M23)|XY = 11) ,

and the two support sets above are disjoint, we have that m23(m12, 0) 6= m23(m12, 1) for

m12 ∈ supp(M12).

Let a = m13(m12, 0) ∈ M13 for some m12 ∈ M12, and let b = m23(m12, 0), b′ =

m23(m12, 1). Note that b′ 6= b,

[a, b] ∈ supp((M13,M23)|XY = 00),

[a, b′] ∈ supp((M13,M23)|XY = 01).

10



Since supp((M13,M23)|XY = 00) and supp((M13,M23)|XY = 01) are identical, we

have that

[a, b′] ∈ supp((M13,M23)|XY = 00)

as well. Since a appears as [a, b] and [a, b′] in supp((M13,M23)|XY = 00), there ex-

ists m′12 ∈ M12 such that a = m13(m′12, 0). Thus, corresponding to every message in

supp(M13|X = 0), there are two distinct elements in M12. However, since f(1, 0) =

f(0, 0) implies that supp(M13|XY = 10) = supp(M13|XY = 00), and (X, Y ) has full

support, we must have supp(M13|X = 0) = supp(M13|X = 1) = supp(M13). This results

in the bound

|M12| ≥ 2 |supp(M13)| ≥ 6.

In the next section, we formally generalize the above arguments to an arbitrary function

f . Additionally, we translate the counting argument above into a probabilistic language

resulting in bounds on the entropy H(M12).

3.3 A general lower bound on H(M12)

From the previous section, the change or lack of change in f(x, y) when keeping x fixed

and altering y ∈ Y (or vice versa) plays an important role in the structure of the message

sets. Two such useful properties of a one-shot protocol for the secure computation of f are

stated in the following lemmas for future reference. Recall that we assume that pX,Y has

full support.

Lemma 1. If f(x, y) = f(x′, y′), then (M13,M23)|X = x, Y = y and (M13,M23)|X =

x′, Y = y′ are identically distributed. Further, the marginalsM13|X = x andM13|X = x′

are identically distributed.

Proof. Let z = f(x, y). Since (M13,M23)− Z − (X, Y ) is a Markov chain, we have

Pr(M13 = a,M23 = b|Z = z,X = x, Y = y)

= Pr(M13 = a,M23 = b|Z = z).

11



Since Z = f(X, Y ), we have (M13,M23)− (X, Y )− Z is a Markov chain, which results

in

Pr(M13 = a,M23 = b|Z = z,X = x, Y = y)

= Pr(M13 = a,M23 = b|X = x, Y = y).

Combining, we get

Pr(M13 = a,M23 = b|Z = z)

= Pr(M13 = a,M23 = b|X = x, Y = y).

Since z = f(x′, y′), we get that

Pr(M13 = a,M23 = b|Z = z)

= Pr(M13 = a,M23 = b|X = x′, Y = y′)

= Pr(M13 = a,M23 = b|X = x, Y = y)

proving the first part of the lemma. Marginalizing over M23, we get that

Pr(M13 = a|X = x, Y = y) = Pr(M13 = a|X = x′, Y = y′).

Since M13 −X − Y is a Markov chain (since Alice does not learn anything more about Y

than what X reveals), we have

Pr(M13 = a|X = x, Y = y) = Pr(M13 = a|X = x), (3.1)

which completes the proof of the lemma.

Lemma 2. Let x, x′ ∈ X such that x 6= x′. Then, for all m12 ∈ M12, m13(m12, x) 6=

m13(m12, x
′). Similarly, m23(m12, y) 6= m23(m12, y

′) for y, y′ ∈ Y and y 6= y′.

Proof. Since there are no redundant inputs, there is a y ∈ Y such that f(x, y) 6= f(x,′ , y).

If, for any m12 ∈ M12, m13(m12, x) = m13(m12, x
′), then Charlie will receive the same

12



message [m13(m12, x) m23(m12, y)] for the two different inputs (x, y) and (x′, y) when

M12 = m12, which can happen with positive probability, resulting in an error in computa-

tion. Hence, for all m12 ∈M12, m13(m12, x) 6= m13(m12, x
′) .

The following theorem provides a lower bound on H(M12).

Theorem 1. Let x ∈ X and S ⊆ Y be such that f(x, y) = f(x, y′) for y, y′ ∈ S, i.e. the

elements of S result in the same value of f when X = x. Then,

H(M12) ≥ H(M13|X = x) + log2 |S|. (3.2)

Proof. Consider a = m13(m12, x) ∈ M13 for m12 ∈ M12. Let S = {y1, y2, . . . , y|S|} and

bi = m23(m12, yi). For i, j ∈ {1, . . . , |S|} and i 6= j, by Lemma 2, bi 6= bj and

[a bi] ∈ supp((M13,M23)|X = x, Y = yi).

Since f(x, yi) are equal for all i, we see that

[a bi] ∈ supp((M13,M23)|X = x, Y = y1)

for i = 1, 2, . . . , |S|. So, there exists mi ∈ M12 such that a = m13(mi, x) and bi =

m23(mi, y1) for i = 1, 2, . . . , |S|.

By Lemma 1, we have

Pr(M13 = a,M23 = bi|X = x, Y = yi)

= Pr(M13 = a,M23 = bi|X = x, Y = y1). (3.3)
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Using shorthand notation M3 = [M13 M23] and (XY = xy) for (X = x, Y = y),

Pr(M13 = a|X = x)
(a)
= Pr(M13 = a|XY = xy1)

(b)

≥
|S|∑
i=1

Pr(M13 = a,M23 = bi|XY = xy1)

(c)
=

|S|∑
i=1

Pr(M13 = a,M23 = bi|XY = xyi)

(d)
=

|S|∑
i=1

∑
m∈M12

Pr(M3 = [a bi],M12 = m|XY = xyi)

(e)
=

|S|∑
i=1

∑
m∈M12

pM12(m)Pr(M3 = [a bi]|XY = xyi,M12 = m)

(f)

≥ |S| pM12(m12),

where (a) follows from (3.1), (b) follows from marginalization over M23 (possibly par-

tial), (c) follows from (3.3), (d) follows from marginalization over M12, (e) follows be-

cause M12 is independent of (X, Y ), and (f) follows because a = m13(m12, x) and

bi = m23(m12, yi).

Rewriting, we get the upper bound

pM12(m12) ≤ Pr(M13 = a|X = x)

|S|
(3.4)

whenever a = m13(m12, x) for x ∈ X and m12 ∈M12.

For x ∈ X and a ∈ supp(M13|X = x), let pM13|X(a|x) = Pr(M13 = a|X = x) and

M(a) = {m ∈M12 : m13(m,x) = a}. Note thatM12 partitions as∪a∈supp(M13|X=x)M(a)

and

pM13|X(a|x) = pM13|XY (a|xy) =
∑

m∈M(a)

pM12(m). (3.5)

14



Now,

H(M12) =
∑

m∈M12

pM12(m) log2

(
1

pM12(m)

)
(a)
=

∑
a∈supp(M13|X=x)

∑
m∈M(a)

pM12(m) log2

(
1

pM12(m)

)
(b)

≥
∑

a∈supp(M13|X=x)

∑
m∈M(a)

pM12(m) log2

|S|
pM13|X(a|x)

= log2 |S| −
∑

a∈supp(M13|X=x)

∑
m∈M(a)

pM12(m) log2 pM13|X(a|x)

(c)
= log2 |S| −

∑
a∈supp(M13|X=x)

pM13|X(a|x) log2 pM13|X(a|x)

= H(M13|X = x) + log2 |S|,

where (a) follows by the partitioning ofM12, (b) from (3.4) and (c) follows from (3.5).

Corollary 1. Let f be such that, for any two inputs x1, x
′
1 ∈ X , there exists y1, y

′
1 ∈ Y for

which f(x1, y1) = f(x′1, y
′
1). For S ⊆ Y and a fixed x ∈ X satisfying f(x, y) = f(x, y′)

for all y, y′ ∈ S, we have

H(M12) ≥ H(M13) + log2 |S|. (3.6)

Proof. For f satisfying the condition in the corollary, by Lemma 1, M13|X = x is identi-

cally distributed for all x ∈ X . So, for a ∈M13, we have

pM13(a) =
∑
x∈X

Pr(X = x)Pr(M13 = a|X = x)

= Pr(M13 = a|X = x).

This implies that H(M13) = H(M13|X = x) and the proof of the corollary is complete.
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CHAPTER 4

EXAMPLES

We compute the lower bound developed in the previous section for several interesting

functions and prove optimality of protocols in some cases.

4.1 Secure AND

Let X ,Y be {0, 1}n, X = [X1 X2 · · · Xn], Y = [Y1 Y2 · · · Yn] with the random variables

X and Y having full support over X ×Y . Let Z = f(X, Y ) = [X1Y1 X2Y2 · · · XnYn] be

the bitwise AND of the inputs.

Consider inputs x1, x
′
1 ∈ {0, 1}n, and let 0n denote the length-n, all-zero vector. Now,

f(x1, 0n) = f(x′1, 0n) = 0n. Hence, f satisfies the condition of Corollary 1. Using x = 0n

and S = {0, 1}n, we have

H(M12) ≥ H(M13) + log2 2n ≥ n log2 6, (4.1)

where H(M13) ≥ n log2 3 from C.1 and H(M23) ≥ n log2 3 from C.2. The above lower

bound shows that the protocol of Section 3.1 for Secure AND is optimal for computation

of n-bit secure AND.

4.2 Secure 0-1 SUM

Let X ,Y be {0, 1}n, X = [X1 X2 · · · Xn], Y = [Y1 Y2 · · · Yn] with the random variables

X and Y having full support over X ×Y . Let Z = f(X, Y ) = [X1 +Y1 X2 +Y2 · · · Xn +

Yn] be the integer SUM of the inputs. Note that Z = {0, 1, 2}n.



Consider inputs x1, x
′
1 ∈ {0, 1}n, and let 1n denote the length-n, all-one vector. Now,

f(x1, 1n − x1) = f(x′1, 1n − x′1) = 1n. Hence, f satisfies the condition of Corollary 1.

Using x = 0n and S = 0n, we have

H(M12) ≥ H(M13) ≥ n log2 3, (4.2)

where H(M13) ≥ n log2 3 from C.1 and H(M23) ≥ n log2 3 from C.2. This is an improve-

ment on the existing bound of H(M12) ≥ 1.5n from C.5 proved in Data u. a. (2014) and

we prove the optimality of this bound below.

Protocol 2 from Data u. a. (2014) securely computes SUM for n = 1:

Protocol 2 : Secure 0-1 SUM

1: Alice randomly and uniformly picks an element from {0, 1, 2} (say α) and

sends it to Bob.

2: Alice sends (X1 +α) mod 3 to Charlie while Bob sends (Y1−α) mod 3.

3: Charlie recovers Z1 = X1 + Y1 mod 3.

Repeated use of the above protocol achieves H(M13) = H(M12) = n log2 3, and is opti-

mal.

4.3 Secure EQ

Let X = Y = {0, 1, . . . , Q − 1}, with the random variables X and Y having full support

over X × Y . Let Z = f(X, Y ) = 1(X = Y ) be the indicator function for equality of X

and Y . Note that Z = {0, 1}.

Working out the lower bounds C.3 and C.4, we get H(M13) ≥ log2Q and H(M23) ≥

log2Q.
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4.3.1 Lower bound on H(M12)

Consider inputs x1, x
′
1 ∈ {0, 1, . . . , Q − 1}. Now, f(x1, x1) = f(x′1, x

′
1) = 1. Hence, f

satisfies the condition of Corollary 1. Using x = 0 and S = {1, 2, . . . , Q− 1}, we have

H(M12) ≥ H(M13) + log2(Q− 1) ≥ log2(Q(Q− 1)), (4.3)

where we have used H(M13) ≥ log2Q.

We remark that the techniques outlined in Data u. a. (2014), namely equation C.5 does

not easily yield this particular lower bound (in the interactive model) for H(M12). In

fact, the best we could obtain (by evaluating bounds on a particular input distribution) was

H(M12) ≥ log(Q) + Q−1
Q

log(Q − 1), which converges to our lower bound as Q → ∞.

Further, since the bounds in Data u. a. (2014) need supremization over input distributions,

it is computationally difficult to evaluate RHS of C.5 exactly for all values of Q.

4.3.2 Protocol

Let Π be a set of permutations of the set [Q] , {0, 1, . . . , Q − 1}. The set Π is said to be

sharply 2-transitive if, for every i, j, i′, j′ ∈ [Q] with i 6= j and i′ 6= j′, there exists exactly

one permutation π ∈ Π such that π(i) = i′ and π(j) = j′ (Grundhöfer und Müller, 2009).

Since there are exactly Q(Q− 1) pairs (i, j) with i 6= j, it follows that |Π| = Q(Q− 1), if

Π is sharply 2-transitive.

For an arbitrary Q, the existence of sharply 2-transitive permutation sets is, in general,

not known, and there are instances where sharply 2-transitive permutation sets have been

proven to not exist (Grundhöfer und Müller, 2009). However, for the case when Q is

a prime power, the set of permutations {αx + β : α, β ∈ FQ, α 6= 0} form a sharply

2-transitive permutation set, where FQ is the finite field of order Q (Cameron, 1998).

Suppose Q is such that a sharply 2-transitive permutation set of order Q exists. Let Π

be such a set. Protocol 3 describes secure EQ over {0, 1, . . . , Q− 1}.
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Protocol 3 : Secure EQ

1: Alice randomly and uniformly chooses a permutation π ∈ Π and sends it to

Bob.

2: Alice sends π(x) and Bob sends π(y) to Charlie.

3: Charlie computes Z = 1(π(x) = π(y)).

The correctness of the above protocol is easy to see. Given that M13 = π(x), M23 =

π(y) and π(x) 6= π(y), since Π is sharply 2-transitive, for any pair (x′, y′) with x′ 6= y′,

there exists exactly one permutation π′ ∈ Π such that π′(x′) = M13 and π′(y′) = M23.

Therefore, the protocol satisfies the security condition for Charlie.

For the above protocol, H(M12) = log |Π| = log2(Q(Q− 1)), H(M13) = log2Q, and

H(M23) = log2Q. This proves the optimality of the protocol.

4.4 Computation of a composite function

Let X ∼ Unif{0, 1}, Y ∼ Unif{0, 1, 2, 3} and Z = f(X, Y ), where

f(X, Y ) =

XY if Y ∈ {0, 1}

[(X + Y ) mod 2] + 2 if Y ∈ {2, 3}
(4.4)

From Data u. a. (2014), for the interactive model, we have

H(M13) ≥ sup
pX′Y ′

(RI(X ′;Z ′) +H(X ′, Y ′|Z ′)),

and using the distribution pX′Y ′(0, 0) = pX′Y ′(0, 1) = pX′Y ′(1, 1) = 1
3
, we get H(M13) ≥

log(3). For M23, we have

H(M23) ≥

(
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

H(X,Z ′′|Y ′′)

)
,
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which evaluates to H(M23) ≥ 1
2

log(20) = 2.16. For M12, we have

H(M12) ≥ sup
pX′

(
sup
pY ′

RI(Y ′;Z ′)

)
+

(
sup
pY ′′

RI(X ′;Z ′′) +H(X ′, Z ′′|Y ′′)

)
,

which evaluates to 2.0.

To obtain a better bound for H(M12), we use Corollary 1. Since f(0, 0) = f(1, 0), the

function satisfies the condition in Corollary 1. Now, consider x = 0 and S = {0, 1} ⊆ Y .

Since f(0, 0) = f(0, 1), we get

H(M12) ≥ H(M13) + log2 |S| = log2 6,

upon using H(M13) ≥ log2 3. This improves on the lower bound of 2 obtained earlier

from Data u. a. (2014).

The protocol below is for the secure computation of f .

Protocol 4 : Composite function

1: Alice chooses a permutation of (0, 1, 2), say (α, β, γ) uniformly at random

and sends it to Bob.

2: Alice sends β if X = 0 and α if X = 1 to Charlie. Bob sends to Charlie

(0, γ) if Y = 0, (0, α) if Y = 1, (1, α) if Y = 2 and (1, β) if Y = 3.

3: Charlie computes Z = 1(M23(2) = M13) if M23(1) = 0 and Z =

1(M23(2) = M13) + 2 if M23(1) = 1.

Note: M23(i) here refers to the ith symbol that Bob sends to Charlie, for example, if Bob

sends (0, α), M23(1) = 0 and M23(2) = α.

The communication needed for the above protocol is log2 3 bits on the Alice-Charlie link

and log2 6 bits each on the Alice-Bob and Bob-Charlie link. Note that this is an asymmetric

protocol. The Alice-Charlie link and Alice-Bob link are optimal, but the Bob-Charlie

link’s optimality is still not known. This points to possible improvements in the bounds on

H(M13) and H(M23) in asymmetric cases using properties of the function f .
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4.5 A function with an efficient non-FKN protocol

Let X, Y ∼ Unif{0, 1, 2}. Consider the following function:

f(X, Y ) =

2 if X = 2 or Y = 2

X ⊕ Y else
(4.5)

Using C.1 and C.2 we get H(M13) ≥ 2.3137 and H(M23) ≥ 2.3137, and using Corollary

1, we get H(M12) ≥ 3.8987. Consider Protocol 5.

Protocol 5 : Non-FKN protocol

1: Alice chooses a permutation of (0, 1, 2) uniformly at random, say (α, β, γ),

and a random bit, say k, and shares it with Bob.

2: Alice sends


(α,X ⊕ k) if X ∈ {0, 1}

(β, k′) else
.

Bob sends


(α, Y ⊕ k) if Y ∈ {0, 1}

(γ, k′′) else
,

where k′ and k′′ are random bits generated from Alice’s and Bob’s local ran-

domness.

3: Charlie recovers

Z =


2 if M13(1) 6= M23(1)

M13(2)⊕M23(2) else
.

Note: M23(i) here refers to the ith symbol that Bob sends to Charlie, for example, if Bob

sends (0, α), M23(1) = 0 and M23(2) = α.

It is easy to see that this protocol requires log2 3 + 1 bits of communication on the Alice-

Charlie and Bob-Charlie links and log2 6 + 1 = 3.58 bits of communication on the Alice-

Bob link. Surely, this is less than our lower bound of 3.89 for the Alice-Bob link, thus

pointing to the fact that there may be protocols outside the FKN model of computation

which outperform all FKN protocols.
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CHAPTER 5

CONCLUSION AND SCOPE FOR FUTURE WORK

In this work, we started out attempting to fix the gap between the communication com-

plexity lower bound for AND computation and the best known upper bound. Interestingly,

we end up with more questions than answers. Of course, for a restricted model of compu-

tation, we did resolve the question concerning AND computation (and for other functions

as well), but the problem remains unsolved for the general interactive model.

The technique used to bound H(M12) relied on certain combinatorial structure of the

protocols. This indicates the possibility of using advanced combinatorial arguments (like

those in communication complexity) in conjunction with information theoretic methods to

obtain lower bounds for Secure MPC in general.

For the secure EQ computation, we constructed a protocol based on sharply transitive

permutation sets, which are known to exists only for certain orders. Such sets have been

proved to not exist for some other orders as well, which points to the possibility of more

sophisticated protocols for the function. Additionally, from a mathematical perspective,

any relation between this information theoretic lower bound for the function and the exis-

tence of such sets could be of great interest. For instance, assuming that we get tight lower

bounds (either entropy or cardinality bounds) for a general q − ary EQ, can we construct

the smallest 2-transitive permutation set of order q?

The last two examples clearly expose the limitations of our lower bounds as well as the

one-shot model. The last example specifically raises the question of coming up with tight

lower bounds taking local randomness into account. Additionally, the possible advantages

of interactive protocols is an interesting topic for future work.



APPENDIX A

SHAMIR’S SECRET SHARING

The Shamir’s secret sharing is a scheme (Shamir, 1979) to divide a data D into n pieces –

D1, D2, ..., Dn in such a way that

• Knowledge of any k or more pieces of Di reveals D.

• Knowledge of k − 1 or fewer pieces of Di reveals no information whatsoever of D,
i.e., all values of D are equally likely.

Such a scheme is called a (k, n) threshold scheme.

To motivate the importance of this problem consider the following:

Eleven scientists are working on a secret project. They wish to lock up the documents in

a cabinet so that the cabinet can be opened if and only if six or more of the scientists are

present. What is the smallest number of locks needed? What is the smallest number of keys

to the locks each scientist must carry?

It is not hard to show that the minimal solution uses 462 locks and 252 keys per scientist.

These numbers are clearly impractical, and they become exponentially worse when the

number of scientists increases.

Shamir’s scheme is based on polynomial interpolation. Assume D to be a positive in-

teger. Pick a prime p which is greater than both D and n. Choose a1, a2, ..., ak−1 randomly

from a uniform distribution over {0, 1, 2, ..., p− 1}. Consider the following polynomial

q(x) = D + a1x+ a2x
2 + ...+ ak−1x

k−1 (A.1)

Now the shares Di are the evaluations of q(x) at n distinct points, i.e., Di = q(xi). Given

any subset of k of theseDi values, we can find q(x) by polynomial interpolation and hence

D = q(0). But even k − 1 of these Di values would not suffice to have any information of

D; with k − 1 values, one can construct only q′(x) which has no information of D.



APPENDIX B

COMPUTING ANY FUNCTION via FKN MODEL

The minimal model of MPC that we study is from Feige u. a. (1994). The following is a

protocol to compute any boolean function f : {0, 1}n×{0, 1}n → {0, 1}. This extends to k

valued functions trivially since each of the log k output bits represents a boolean function.

Protocol : FKN Protocol

1: Alice sends 2n random bits k0, k1, ..., k2n−1 bits to Bob. Additionally Al-

ice sends j, a n-bit number picked randomly from a uniform distribution in

{0, 1, ...2n} to Bob.

2: Alice sends the following string to Charlie: f(x, j mod 2n) ⊕

kj mod 2n , f(x, j+1 mod 2n)⊕kj+1 mod 2n , ..., f(x, j+2n−1 mod 2n)⊕

kj+2n−1 mod 2n . This string is nothing but a masked version of all possible

output values when X = x, and they are cyclically permuted.

3: Bob sends the following to Charlie: ky and y − j mod 2n.

4: Charlie computes f(x, y) by picking the y − j mod 2n-th element from Al-

ice’s string, which would be f(x, y)⊕ ky and XORing it with ky.

It is easy to see that this preserves the information theoretic security condition of the MPC

since Charlie would learn nothing about Alice’s and Bob’s inputs. The only information

he receives is the function value.



APPENDIX C

LOWER BOUNDS ON COMMUNICATION

COMPLEXITY FOR THE INTERACTIVE MODEL

Here we state the simplified entropy lower bounds from Data u. a. (2014) without proofs;

see there for the proofs and other lower bounds. The following bounds will be used

throughout the thesis.

H(M13) ≥ sup
pX′Y ′

[I(Y ′;Z ′) +H(X ′, Z ′|Y ′)] (C.1)

H(M23) ≥ sup
pX′Y ′

[I(X ′;Z ′) +H(Y ′, Z ′|X ′)] (C.2)

H(M13) ≥ sup
pX′

{(
sup
pY ′

I(Y ′;Z ′)

)
+H(X ′)

}
(C.3)

H(M23) ≥ sup
pY ′

{(
sup
pX′

I(X ′;Z ′)

)
+H(Y ′)

}
(C.4)

H(M12) ≥ sup
pX′

{
sup
pY ′

I(Y ′;Z ′) + sup
pY ′′
{I(X ′;Z ′′) +H(X ′;Y ′′|Z ′′)}

}
(C.5)
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