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ABSTRACT

KEYWORDS: Testbed; motion planning; differential games; target guarding; au-

tonomous mapping; active SLAM

This thesis is composed of two parts where we have addressed two different problems

in the broad domain of autonomous field robots. The first problem deals with evaluat-

ing planning and control algorithms for an autonomous guard robot which must protect

a bounded target region from intruders. Most analytic solutions for this problem as-

sume a 2D holonomic robot while most robots are in general non-holonomic. In this

work, we study the effects of vehicle dynamics on the performance of these analytic

solutions. The second problem deals with developing motion planning strategies for

autonomously mapping a structure of interest using a ground robot equipped with a

depth sensor. We develop algorithms that do not assume any prior information about

the structure including size or geometry of the structure. Moreover, our proposed poli-

cies have been verified using simulations and were found to achieve a higher coverage

than some classic strategies like frontier based exploration algorithm.
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CHAPTER 1

Introduction

An autonomous guard robot can be used in a variety of fields ranging from anti-poaching

systems, where autonomous robots protect the habitat of wild animals from intruding

poachers, to border patrol problems, where teams of autonomous robots are tasked with

protecting the border of a secluded campus or region of interest. A major challenge in

building such a guard robot is developing path planning algorithms that can compute

optimal trajectories for the robot in real-time. Rufus Isaacs, in his pioneering work on

differential games (Isaacs, 1999), presented optimal strategies for both the guard and

the intruder, assuming both agents to have equal speed, see Fig. 1.1.

Figure 1.1: Guarding a target problem from (Isaacs, 1999). a) P and E plays optimally.
b) P plays optimally, but E does not. c) E plays optimally, but P does not.

The target guarding problem is a two player game wherein the intruder robot (evader

E) attempts to reach a secluded region (target area C) while evading capture by the guard

robot (pursuer P). The objective of the participating agents are opposite, thus making it



a differential game. While the intruder attempts to minimize the distance to the target

area at the end of the game, the guard robot attempts to maximize it. The game ends if

the intruder safely reaches the target area or if the guard robot successfully intercepts

the intruder before the intruder reaches the target area. Rufus Isaacs showed that, for

the simple case where both agents have equal speeds, if the target region is closer to

the guard, then the optimal strategy for both agents is to move towards that point D,

on the perpendicular bisector of their initial positions, which is closest to that target

area. In particular, this implies that if the intruder follows a pure-pursuit strategy (i.e.)

head directly towards the target, he is playing sub-optimally. A key characteristic of

a differential game is that if either of the agents adopt a policy other than the optimal

strategy, it results in an advantage for the other agent. Therefore, an optimal guidance

law for the guard robot should compute the desired heading for the robot at each instant

using the current positions of the agents.

In the simple version of the game analysed by Rufus Isaacs, the velocities of both

the agents were assumed to be equal. Further, the criterion for capture is the coincidence

of the two robots. In reality, both these assumptions are incorrect. The velocity of the

guard robot is usually greater than that of the intruder robot. Further, the robots are not

point objects. Therefore, their physical size implies that capture occurs if the agents

come within a certain distance δ whose value depends on the size of both the agents.

In (Venkatesan and Sinha, 2014), Raghav et. al. extended the work of Rufus Isaacs

to remove these two assumptions. Further, they provide a fast computation method to

compute the optimal heading for the guard robot at every instant. In (Lau and Liu,

2014), Liu and Lau present an autonomous border patrol system that considers a single

fast guard robot protecting the target region from multiple non-cooperating intruders.

A major limitation of these works is that they assume the agents to be point objects that

can instantaneously move in any direction on the 2D plane. But such robots belong

to a special class of robots called holonomic robots. Most robots in reality are non-

holonomic and have a minimum turning radius. Even robots with zero minimum turning

radius, such as differential drive robots, have constrained motion such as inability to

move laterally. Such constraints on the dynamics of the robots can potentially change

the outcome of the game. In this work, we validate the optimal strategies for the guard

robot proposed in (Venkatesan and Sinha, 2014) and study the effect of the vehicle

dynamics on the optimality of the proposed strategies.
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As a pre-requisite to carrying out this experimental study, we have developed a

generic testbed for studying motion planning algorithms. The testbed consists of three

differential drive robots constructed using LEGO Mindstorms EV3 kits. The versatility

offered by these kits allow for building different configurations for the robot such as

three wheeled omni-directional robots, skid-steering based car-like robots among oth-

ers. We have developed software specific to the differential drive configuration but the

same can be easily extended to other drive configurations as well. The testbed is devel-

oped following the Robot Operating System (ROS) framework thereby transforming the

Mindstorms kits into a low-cost research platform. The LEGO robots are controlled us-

ing the standard protocols followed by ROS and therefore, all the algorithms (packages)

available in ROS can be used in conjunction with the testbed. In addition to develop-

ing drivers that interface LEGO robots with ROS, we have also developed an indoor

localization system using a ceiling mounted RGB camera which can detect specially

designed coloured markers placed on top of the robots. The testbed has been developed

independently and can be used to study a variety of path planning algorithms.

1.1 Contribution of the thesis

In summary, the key contributions of this part of the thesis are:

• a generic testbed for studying path planning algorithms using multiple LEGO
EV3 differential drive robots and an indoor localization system using a ceiling
mounted camera and specially designed coloured markers

• an experimental validation of the optimal strategies for an autonomous guard
robot (target guarding problem)

• a study on the effect of vehicle dynamics on the performance of these analytic
solutions

1.2 Chapter wise Descriptions

The rest of this part of the thesis is organized as follows. In Chapter 2, following a

brief introduction in Section 2.1, Section 2.2 explains the low-level motion controllers

present in EV3 robots. In Section 2.3, we present our vision based localization algo-

rithm for determining the position and orientation of the robots. Next, in Section 2.4,

4



we explain how the robots can be controlled using the ROS framework. Finally, we

discuss some avenues for future work in Section 2.5. In Chapter 3, Section 3.1 pro-

vides a brief overview of the problem formulation and the solution provided by Raghav

et. al. In Section 3.2, we present a new localization method for the robots to improve

the performance of the testbed. The experimental results that show the performance of

the policies under the motion constraints of a real robot are presented in Section 3.3.

Finally, we conclude in Section 3.4 along with a brief on avenues for future work.
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CHAPTER 2

A Generic Testbed for Planning Algorithms

Figure 2.1: Three differential drive robots made using LEGO Mindstorms EV3 kits
with coloured markers for uniquely identifying the individual robots.

2.1 Introduction

The objective of this work is to design and build a testing platform using LEGO Mind-

storms kits that would help in validating algorithms in the fields of Artificial Intelli-

gence, Control systems and other motion planning techniques. The platform consists of

three LEGO robots and a ceiling mounted camera with a birds-eye view. Each LEGO

robot has a differential drive system and an ultrasonic range finder for obstacle detec-

tion. This system can be easily extended to more number of robots. The localization

module and low-level motion controllers are made accessible to the user. The localiza-

tion is performed using the birds-eye view camera and the low-level motion controllers

ensure that the robot tracks a prescribed reference signal. These reference signals are

typically generated using planning algorithms that need to be validated.

The entire source-code for the system is publicly available via GitHub through two

repositories



1. ev3-ros
This repository contains the client software which would run in each of the LEGO
robots.

2. LEGO Testing platform
This repository contains the master/server software which would run in the central
PC.

The system consists of three modules which would be explained in the subsequent

sections

1. Low-level motion controllers

2. Vision based localization

3. Integration with Robot Operating System(ROS) framework

2.2 Low-level motion controllers

The low-level motion controllers are directly implemented on the LEGO EV3 hardware.

For this project, a debian based OS, called ev3dev, developed specifically for EV3 has

been used. The client software takes velocity commands from the master and calculates

the required angular velocities of the individual motors. Then, a separate PID controller

for each motor tracks the desired angular velocities.

2.2.1 PID Controller

Each of the LEGO EV3 motor comes with in-built quadrature encoders which measure

the rotation of the motors. Using this information as feedback, a standard PID controller

is implemented. For this project, the default Kp, Ki, Kd values provided by ev3dev

softwere were found to be sufficient. But the ev3dev software provides enough freedom

to tune these constants or design a different type of controller as well.

The desired angular velocities for the left and right wheels are calculated from the

overall robot velocities using the following transformations

vl =
(vx + L

2
∗ ωt)

R ∗ π
180

(2.1)

vr =
(vx − L

2
∗ ωt)

R ∗ π
180

(2.2)
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where,

vl : angular velocity of left wheel in deg/s

vr : angular velocity of right wheel in deg/s

vx : required linear velocity of robot in m/s

wt : required angular velocity of robot in rad/s

R : radius of wheel in m

L : distance between wheels in m

Since a differential drive robot cannot move perpendicular to its current orientation,

the vy component of the velocity command is ignored.

2.2.2 Encoder based Odometry

The in-built encoders produce 360 ticks per revolution which amounts to a 1◦ resolution.

Using these encoder readings, a dead-reckoning based approach is adopted to localize

the robot. This is achieved using the following transformations:

∆x =
R ∗ (∆l + ∆r)

2
(2.3)

∆y = 0 (2.4)

∆θ =
R ∗ (∆l −∆r)

L
(2.5)

x← x+ ∆x ∗ cos(θ) (2.6)

y ← y + ∆x ∗ sin(θ) (2.7)

θ ← θ + ∆θ (2.8)

A major limitation of the dead-reckoning approach with low resolution sensors is

the continuous increase in error. Even a 1◦ error in the estimation of θ would lead

to a large error when the robot moves forward by 1m. In order to counter this, the

vision based localization system is used to reset the positions periodically (say once in

2 seconds).

8



2.2.3 Sensors

The LEGO EV3 kit comes with a variety of sensors including IR beacon, Ultrasonic

Rangefinder, Sound, Light and contact sensors. These sensor information can be broad-

casted through the network using ROS. An Ultrasonic rangefinder sensor is available

for obstacle avoidance. The sensor measurements are published as a LaserScan mes-

sage using ROS. The program closely resembles the example program used in the ROS

tutorial - Writing a Simple Publisher and Subscriber (C++) and can be easily extended

to other sensors. The ev3-ros package additionally has programs which enables the use

of Color sensors and Contact sensors in order to increase the scope of usage.

2.3 Vision based Localization

Vision based localization of the different robots is achieved using coloured markers.

The markers are designed to uniquely determine the identity of the robot and also de-

termine its orientation.

2.3.1 Coloured Markers

The markers are made using strips of coloured tapes on a black background. Each

marker has three colours - Green, Blue and Yellow. The relative positions of these strips

is used in uniquely identifying the robot and also to estimate the orientation of the robot.

(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Figure 2.2: Three unique coloured markers made using strips of Green, Blue and Yel-
low tapes. Many more markers can be constructed in a similar fashion.

9
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2.3.2 HSV vs. RGB color space

The default color space used for representing a pixel is RGB (Red Green Blue). But this

representation poses difficulty for color based segmentation. An alternative is the HSV

(Hue Saturation Value) color space which is suitable for color based segmentation.

Figure 2.3: Colour selection dialog box from the GIMP software.

The 6 sliders in Fig.2.3 represent the colors that would result in changing the corre-

sponding values. As can be observed, the HSV color space provides a clear grouping of

the color so that various shades of the same colour differ only in the Saturation or Value

component of the pixel while the RGB color space lacks this nice property. This color

based segmentation is implemented using OpenCV library.

2.3.3 Colour based Segmentation

Algorithm 1 Color based segmentation
1: procedure GETCONTOURS(frame)
2: cvtColor(frame,BGR2HSV)
3: inRange(frame,lower_limit,upper_limit) . The limits depend on colour
4: apply MORPH_OPEN filter . to remove pepper-and-salt noise
5: detect edges using Canny detector
6: find contours
7: filter contours based on area
8: calculate centroid of the contours
9: return centroids

10: end procedure

Fig.2.4 shows the different steps in color based segmentation and Alg. 1 provides

a pseudo code of the algorithm. Fig. 2.4a shows the frame after Step 3 in the GetCon-
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(a) (b)

(c) (d)

Figure 2.4: a) Pixels belonging to blue family alone are marked white b) After applying
MORPH OPEN filter c) Boundaries of computed contours d) Determined
contours are overlayed on the initial input image
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tours procedure, Fig. 2.4b shows the frame after Step 4 and Fig. 2.4c shows the frame

after Step 7. The computed contours are outlined in red in Fig. 2.4d. Once the con-

tours and their centroids are determined, the contours of different colours are grouped

together based on distance. The three centroids in each group form a unique triangle

using which the orientation of the robot is estimated. Due to noisy data, all the blobs

might not be detected in every frame. As can be seen in Fig. 2.5, the yellow blob from

one of the robot markers was not successfully detected and hence its overall position

and orientation could not be determined.

Figure 2.5: The yellow blob on the coloured marked for the robot on the right has not
been detected due to noisy data contributed by variations in lighting condi-
tions and reflections from nearby regions.

2.4 Integration with ROS framework

Robot Operating System (ROS) is a popular library used by roboticists around the

world. ROS provides a unified framework for developing and sharing Robotics soft-

ware. All the major robot manufacturers provide drivers which are compatible with

12
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ROS. Thus, the ability to interface the LEGO EV3 robots with ROS greatly expands the

scope of using LEGO EV3 kits in research and education. The ROS framework pro-

vides a robust framework for communication between the various nodes (robots and/or

PC) in the ROS network. In this project, three robot nodes and one PC node (which is

connected to the camera) are used. More robots and/or PCs can be easily added to the

same ROS network but only one node can act as the master node.

2.4.1 Sensor data visualization

A powerful feature of ROS is the Visualization tool called rviz that allows graphical vi-

sualization of the sensor data and robot movements. Fig. 2.6 shows the position of three

robots and the respective ultrasonic range finder’s readings. Refer ROS documentation

on rviz for further details.

Figure 2.6: The pose of each robot is shown as a coloured arrow with its base at the
position of the robot and the arrow head pointing along the orientation of
the robot. A single obstacle placed at the center is detected by all three
robots as can be seen by the red lines above.

2.4.2 Interfacing with LEGO EV3 using ROSSerial

ROSSerial is a ROS package that is used to communicate with each of the robots. This

package allows a ROS network to communicate with embedded linux devices, arduinos

13
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and other embedded systems. You can refer the ROS documentation for further details.

Fig. 2.7 shows the ROS network for our system. The rosserial_server node be-

haves as a proxy between the PC node and the individual LEGO EV3 robot units. Hence

to the main ROS network, all the information appears to be published and subscribed

by rosserial_server node.

Figure 2.7: The state of the ROS system visualized using rosgraph

2.4.3 Keyboard/Joystick teleoperation

The teleop_twist_keyboard and teleop_twist_joystick packages available in ROS can

be used to remotely control the individual lego robots via keyboard and joystick re-

spectively. By default, these packages publish velocity commands via cmd_vel topic.

But in order to individually control different robots in the same network, the veloc-

ity commands have to published in their respective namespace (i.e.) /robot1/cmd_vel,

/robot2/cmd_vel and /robot3/cmd_vel.
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2.4.4 Random exploration with obstacle avoidance

Now that we are capable of controlling the three robots individually and also localizing

the robots accurately as long as they remain within the field of view of the aerial cam-

era, we can use this platform to test higher level algorithms. As a simple example, a

wanderer script has been written. This script sends velocity commands to each of the

robot based on a set of rules:

1. if an obstacle is present less than 20cm ahead, turn right

2. if another robot is nearby, move backward and turn right simultaneously

3. else move forward

Fig. 2.8 displays the odometry information of the three robots as they "wandered"

based on the same simple rules. Apart from visualization, this data can be stored for

further analysis using rosbag.

Figure 2.8: The path taken by the three robots are shown using arrow marks of their
respective colours

2.5 Avenues for Future Work

The integration with ROS framework in itself greatly extends the scope of this platform.

The project can be extended in various dimensions some of which have been listed

below:
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1. Built-in behaviors (move in an arc, move forward by distance, turn by angle
etc. . . ) for the differential drive robots available as ROS services.

2. Implementing tracking to improve accuracy and speed of the vision system

3. Adding a gripper mechanism to the robots to allow for testing manipulation prob-
lems

4. Replacing the stationary birds-eye view camera with a camera mounted on Quadro-
tor for use in outdoor environments.
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CHAPTER 3

ISAACS TARGET GUARDING PROBLEM: AN

EXPERIMENTAL STUDY

3.1 Target Guarding Problem

This section discusses the target guarding problem formulated as a differential game and

the optimal strategies proposed by Raghav et. al. Note that this discussion is presented

here for completeness and our work only deals with studying the performance of these

policies on our test bed.

The objective of the opponent robot O is to enter the target area T without getting

captured by the guard robot G. In other words, O attempts to minimize the distance OT

at the end of the game while G attempts to maximize the same. The game ends if O

enters T evading capture or if G captures O before O reaches T. For simplicity, assume

that capture occurs if the two agents coincide. Let vo and vg denote the velocity of O and

G respectively and vg > vo unless stated otherwise. Let (xo, yo) be the current position

of O and (xg, yg) be the current position of G. Now the 2D plane can be partitioned

into two regions wherein each of the agent is able to reach any point in the region faster

than the other agent. Assuming the agents to be point objects that can instantaneously

move in any direction, the locus of the points that forms the boundary between these

two regions is given by:

√
(x− xo)2 + (y − yo)2

vo
=

√
(x− xg)2 + (y − yg)2

vg
(3.1)

In other words, Eqn. 3.1 represents the set of points for which both agents would

take the same amount of time to reach. Let xc =
xov2g−xgv2o
v2g−v2o

and yc =
yov2g−ygv2o
v2g−v2o

. Then,

Eqn. 3.1 becomes

(x− xc)2 + (y − yc)2 = R2 (3.2)

where R =
√
x2c + y2c −

v2g(x
2
o+y

2
o)−v2o(x2g+y2g)
v2g−v2o

. As shown in Fig. 3.1, Eqn. 3.2 represents



a circle, called the capture circle C, encompassing O. Note that if vg < vo, then the

circle would be encompassing G instead.

Figure 3.1: The red and green triangles denote the positions of O and G respectively.
The yellow star represents T and its closest point on the capture circle is I.
The shaded region is reachable by O faster than G.

If the initial position of T is inside C, then O can always reach T while evading cap-

ture by G if it follows pure-pursuit strategy (i.e.) move directly towards T. Therefore,

we do not investigate this case any further and focus on the case where the initial posi-

tion of T is outside C. In this scenario, the optimal strategy for both agents is to move

to the point I which is the closest point of T on C. If either of the agents deviate from

this trajectory, it plays to the favour of the other agent. This is, in essence, the defining

trait of a differential game.

Following Pontryagin’s Maximum Principle, both agents travel at their maximum

velocities vo and vg respectively. Therefore, the problem is reduced to determining

the optimal heading θg for G given the current positions of G(xg, yg), O(xo, yo) and

T (xt, yt). In order to allow for a real-time implementation of the optimal strategy, a fast

computation method for calculating θg is presented below.
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k0 =
‖ ~GT‖
‖ ~GO‖

(3.3)

k1 =
vo
vg

(3.4)

k2 = k0(1− k21) (3.5)

ψ = ∠OGT (3.6)

k3 = k22 − 2k2 cosψ + 1 (3.7)

φg = sin−1

√√√√ k21k
2
2 sin2 ψ

k3[k21 −
2k1‖k2 cosψ−1‖√

k3
+ 1]

 (3.8)

θg = ∠ ~GO − φg (3.9)

3.2 Extending the Testbed

The test platform presented in Chapter 2 uses an RGB camera to detect specially de-

signed coloured markers to compute the position and orientation of the individual robots.

Adequate performance of such a system requires maintaining optimal lighting condi-

tions and absence of reflecting surfaces. The distortions present in the captured im-

age results in a noisy estimate for the position and orientation of the robots. In order

to counter these short-comings, a new localization method was developed which uses

a depth sensor such as Microsoft Kinect to accurately determine the position of the

robots. The orientation of the individual robots are measured using gyroscope sensors

available in the LEGO Mindstorms EV3 kits.

3.2.1 Experimental Setup

The experimental setup consists of a depth sensor, such as kinect, mounted from the

ceiling at a known height Hcam above the ground plane and facing vertically down as

shown in 3.2. The Kinect for Xbox One sensor has a horizontal field of view of 70◦,

a vertical field of view of 60◦ and a range of 4.5m. The value of Hcam is then chosen

based on the amount of ground area that needs to be covered. We assume that there are

no obstacles within the field of view of the sensor and the robots are the only objects
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present. If suppose the field contains other objects, the size of the object can be used to

differentiate the robots from others.

Depth Sensor

G O

Ground Plane

Field of View

Robots

Ceiling

Figure 3.2: Sectional view of the new test bed setup

3.2.2 Localization algorithm

Algorithm 2 Depth based localization
1: procedure GETPOSE(cloud_full)
2: cloud← PCLremoveGroundPlane(cloud_full)
3: clusters← PCLeuclideanClusterExtraction(cloud)
4: for blob in clusters do
5: centroid← PCLget3DCentroid(blob)
6: id← determineID(blob)
7: heading← getHeading(id)
8: pose← constructPoseMsg(centroid,heading)
9: global_pose← transformToGlobalFrame(pose)

10: ros.publish(global_pose, id)
11: end for
12: end procedure

The pseudo-code to determine the position and orientation of the individual robots

is shown in Algorithm 2. The input to the algorithm is the current point cloud produced

by the depth sensor, see Fig. 3.3a. We use the Point Cloud Library (PCL) (Rusu and

Cousins, 2011) for fast and efficient processing of these point clouds. First, the ground

plane is removed by applying a conditional filter such that only points that satisfy z <

Hcam are retained, where Hcam is the height above the ground plane at which the depth

sensor is mounted. Next, on line 3, we apply a clustering algorithm which partitions the

point cloud such that any two points that are within δ distant from each other belong

to the same partition (or cluster). As Kinect provides a dense point cloud, the typical
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value for δ is taken to be 5cm. Note that in the absence of obstacles, each of the cluster

corresponds to an individual robot. The clusters are then processed in sequence. On line

6, the RGB values of the points in the cluster is used to identify the robot. Since there

are only two robots in our application, we use a light colour for O and a dark colour

for G. Each robot publishes its current heading, measured using a gyroscope sensor, on

separate topics in the ROS network. We obtain the heading of the robot by listening

to the appropriate topic based on the id of the robot. Finally, the complete 2D pose,

constructed on line 8, is transformed to the global frame using the known static pose of

the depth sensor. This message is then broadcast through the ROS network on the topic

corresponding to the id of the robot. Fig. 3.3b shows the computed pose vectors for

both the agents as shown in rviz.

(a) (b)

Figure 3.3: a) Registered pointcloud that is the input to the algorithm. b) Extracted
pointcloud clusters of the robots along with their pose vectors

3.3 Experiments

Recall that, the optimal strategies used in this work have been derived assuming a point

robot that can instantaneously move along any direction (i.e.) a 2D holonomic robot.

But most robots in real world are non-holonomic such as the differential drive configu-

ration of the LEGO EV3 robots used in this study. These robots require additional time

to orient themselves along the desired direction of movement. Here, we use a simple

proportional controller for each robot as shown in Fig. 3.4 to maintain the desired ori-

entation of the robots. For simplicity, we assume the robots can only move forward or
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turn but cannot move in reverse.

Figure 3.4: A proportional controller for the robot to maintain desired orientation

The initial time required to face along the desired angle could potentially shift the

game to the opponent’s favour or vice versa. In order to analyse this, the following four

experiments with different starting conditions were performed. In all these experiments,

the motion of G was controlled by the algorithm and O was manually controlled via

keyboard.

• Case A
G is aligned along ~GI , O is aligned along ~OT and T is outside C

• Case B
G is aligned along ~GI , O is anti-aligned to ~OT and T is inside C

• Case C
O is aligned along ~OT , G is anti-aligned to ~GI and T is outside C

• Case D
A pure-pursuit scenario where G is facing along O, O is facing along T and

T is outside C

3.3.1 Case A

This experiment aims to validate the optimal policies for the autonomous guard robot.

Therefore, to nullify the effects of the differential drive constraints, both the agents are

initially aligned along their respective destinations. As a result, the trajectory followed

by both agents is a straight line as shown in 3.5. Further, the red plot in Fig. 3.5

shows the optimal trajectory for G that is computed using simulations (assuming a 2D

holonomic robot) for the trajectory of O obtained from the experiment. It is clear that

the experimental results agree with the simulations.
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Figure 3.5: G successfully intercepts O before O captures T

3.3.2 Case B

In this experiment, T is initially inside C. Therefore, O will win the game following

pure-pursuit strategy if it had been a 2D holonomic robot. On the contrary, the experi-

ment portrays a scenario where G is able to protect T as it is initially aligned along ~GI

and the time taken by O to turn around is sufficient for G to pull T inside C through

the course of the game. Note that C continuously moves as the game progresses. In

summary, the initial orientations of the agents shifts the game in favour of G.

Figure 3.6: G wins even though T is initially inside C due to the time taken by O to turn
around.

23



3.3.3 Case C

In this experiment, G is at a disadvantage as it is initially anti-aligned to ~GI . But simu-

lations show that G will win the game and intercept O. On the contrary, the experiment

portrays a scenario where O is able to capture T as it is initially aligned along ~OT and

the time taken by G to turn around is sufficient for O to reach T. In summary, the initial

orientations of the agents shifts the game in favour of O.

Figure 3.7: O wins even though T is initially outside C due to the time taken by G to
turn around.

3.3.4 Case D

This experiment shows the progress of the game when O plays sub-optimally by fol-

lowing pure-pursuit strategy. As shown in Fig. 3.8, G is able to win the game. But the

initial error in the orientation of G shows that G performs better in simulation than in

the experiment.

3.4 Conclusion and Future work

Optimal strategies for the target guarding problem have been presented in literature

(Venkatesan and Sinha, 2014). But these analytical solutions do not take into consid-

eration the constraints imposed by the specific dynamics of real robots. In this work,

we have studied the performance of these analytic solutions using differential drive
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Figure 3.8: G successfully protects T

robots. We have showed that the optimal strategies perform well if the robots are ini-

tially aligned along the desired direction of movement prescribed by the algorithm. In

addition, we have also demonstrated two scenarios where the initial mis-alignment of

the robots shifts the game in favour of the opponent or vice versa. Though the analytic

solutions can be implemented in real-time on robots with differential drive constraints,

these are not necessarily the optimal solutions. Therefore, further work is required to

derive optimal strategies that consider the dynamics of the participating agents. Finally,

the extended testbed using depth based localization serves as a useful tool to study a

variety of games in the broad field of pursuit-evasion. Future work includes developing

optimal strategies that consider the vehicle dynamics and also the presence of obstacles

in the path of the robots.
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Part II

Autonomous Mapping of Unknown

Structures
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CHAPTER 4

Motion Planning Strategies for Autonomous Mapping

4.1 Introduction

Accurate 3D computer models of large structures have a wide range of practical appli-

cations, from inspecting an aging structure to providing virtual tours of cultural heritage

sites (Jacobi, 2015; El-Hakim et al., 2004). In order to autonomously build such a 3D

model in real-time, we need to address two problems. First, we need a robust map-

ping system that can build the 3D model on the fly when given a sequence of images

or depth maps as input. This is a widely researched problem called Visual Simultane-

ous Localization and Mapping (vSLAM), for which several open source packages offer

increasingly accurate and efficient solutions (Labbe and Michaud, 2014; Endres et al.,

2014). The second problem relates to active sensing (Bajcsy, 1988), as we need motion

planning strategies that can guide a mobile sensor to explore the structure of interest.

For mapping, monitoring or inspection applications, certain classical strategies such as

frontier-based exploration algorithms (Yamauchi, 1997), which guide the robot to pre-

viously unexplored regions irrespective of whether it is part of the structure of interest

or not, are not necessarily well adapted.

The goal of this work is to guide a mobile ground robot equipped with a depth sen-

sor, in order to autonomously determine the boundaries of an initially unknown struc-

ture, build a 3D model of the structure and attempt to fill holes in the model so that the

reconstruction is as accurate and complete as possible. Some recent work considers the

problem of reconstructing a 3D model of arbitrary objects by moving a depth sensor

relative to the object (Kriegel et al., 2015; Krainin et al., 2011). Typically, these sys-

tems iteratively build a complete 3D model of the object by heuristically choosing the

next best viewpoint according to some performance measure. However, much of this

work is restricted to building models of relatively small objects that are bounded by the

size of the robot workspace. In contrast, our focus is on 3D reconstruction of larger

but still bounded structures such as buildings, which can be several orders of magni-

tude larger than a mobile robot. The related problem of automated inspection deals



with large structures such as tall buildings (Lin et al., 2015) and ship hulls. Bircher

et al. (Bircher et al., 2015) assume that a prior 3D mesh of the structure to inspect is

available and compute a short path connecting viewpoints that together are guaranteed

to cover all triangles in the mesh. As they point out, the inspection problem starting

from a prior model is related to coverage path planning, see, e.g., (Acar et al., 2006;

Lim et al., 2014). In (Englot and Hover, 2012), Englot et al. begin by assuming a safe

bounding box of the hull and construct a coarse mesh of the hull by tracing along the

walls of this box in a fixed trajectory without taking feedback from the actual geometry

of the structure. Moreover, this coarse mesh is manually processed offline to yield an

accurate 3D mesh which is then used to inspect the finer structural details. Sheng et al.

(Sheng et al., 2008) use a prior CAD model of an aircraft to plan a path for a robotic

crawler such that it inspects all the rivets on the surface of the aircraft. In this work

however, we do not assume any prior information in terms of a 3D mesh, CAD model

or a bounding box around the structure, and focus on reactive path-planning to build the

model online.

(a) (b)

Figure 4.1: Comparison of the a) Simulated Model in Gazebo (Andrew Howard) that
needs to be mapped and b) Reconstructed 3D model by a mobile ground
robot using our policies. Only the bottom portion is mapped due to the
limited reachable space of the sensor.

In computer vision and photogrammetry, Structure from Motion (SfM) techniques

aim at building a 3D model of a scene from a large number of images (Frahm et al.,

2010; Wu, 2011; Furukawa and Ponce, 2010). But most of this work focuses on batch

post-processing and in any case assumes a given dataset. On the other hand, our work

focuses on actively exploring the environment to build a complete model in real-time,

with our controller taking at any time the current model as an input. Naturally, eventual

completeness of the model can be limited by the physical characteristics of the robot,

and specifically the reachable space of the sensor, see Fig. 4.1. We emphasize that we

do not discuss in details the task of actually building the model from the collected depth
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maps, which can be executed by one of the available vSLAM systems, such as the Real-

Time Appearance Based Mapping package (RTAB-Map) (Labbe and Michaud, 2014)

that we use in our simulations. This package can in fact be replaced with little change to

our algorithms by any vSLAM system based on pose-graph optimization (Kuemmerle

et al., 2011). State-of-the-art SfM systems can also be used to post-process the sequence

of images or depth maps captured using our policies in order to obtain a more accurate

model.

Finally, another line of work in informative path planning relates to autonomous

exploration and coverage of relatively large environments, using variants of frontier

based exploration algorithms for example (Shade and Newman, 2011; Shen et al., 2012;

Heng et al., 2015; Atanasov et al., 2015). While these papers focus on path planning to

quickly build models of potentially large and complex spaces, they do not address the

problem of autonomously delimiting and mapping as completely as possible a specific

bounded structure of interest.

In summary, the key contributions of this work are:

• a motion planning strategy to autonomously determine the boundaries of an un-
known structure using a ground robot;

• a novel algorithm to determine incomplete portions of the partially constructed
model;

• motion planning policies for automatically exploring and adding these missing
portions to the model;

• and an evaluation of the proposed policies via simulations.

The rest of this chapter is organized as follows. We begin with a detailed presen-

tation of the problem in section 4.2. In section 4.3 we present our policies for auto-

nomously determining the boundaries of the unknown structure. Section 4.4 describes

algorithms for detecting the missing portions and completing the model. In section

4.5, we evaluate the proposed policies via simulations and present a comparison with

the classic frontier based exploration algorithm. Finally, we discuss avenues for future

work and conclude in section 4.6.
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4.2 Problem Statement and Assumptions

Consider the problem of constructing a 3D model of a given structure of finite size,

such as a monument or a building for example. Initially, no approximate model of the

structure nor map of the environment is available, and the actual size of the structure is

also unknown. We address the following question: “How should a mobile robot carry-

ing a depth sensing camera, such as a Kinect, move in order to reconstruct a complete

3D model of this structure?”. The sensor collecting depth and luminance images of the

scene allows the robot to build the 3D model on the fly using available SLAM algo-

rithms, such as RTAB-Map Labbe and Michaud (2014) or RGBD-SLAM Endres et al.

(2014). These algorithms assemble the sequence of points clouds captured by the sen-

sor (also called camera in the following), producing a registered global point cloud or

a 3D occupancy grid stored in an OctoMapHornung et al. (2013). Note that the type

of sensor (monocular camera, stereo camera rig with IMU, etc. . . ) used depends on

the SLAM algorithm. Any of these algorithms can be used with our policies as long as

the SLAM module can additionally return the sequence of point clouds and corrected

camera positions following registration. The remaining problem that we consider here

is to determine the trajectory of the camera such that the entire visible portion of the

structure is eventually captured in the model. The key challenge is to develop strategies

that are applicable for any type of structure while respecting the physical limitations of

the platform.

(a) (b)

Figure 4.2: The starting configuration of the robot needs to satisfy Initial Conditions 1
and 2. a) At the beginning, the structure and the robot can be separated by
a plane. b) The initial image as seen by the camera. Initially, the robot only
knows that the structure in the FOV of its camera is the one that should be
mapped.
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In order to specify to our system which structure is to be mapped, we require that

the initial configuration of the robot with respect to the structure satisfy the following

two basic conditions, illustrated in Fig. 4.2.

Initial Condition 1 The robot is placed fully outside the structure, so that there exists

a 2D plane separating the robot and the structure.

Initial Condition 2 The structure to be mapped is present in the field-of-view (FOV) of

the camera.

Next, note that depending on the set of all configurations that are reachable by the

mobile sensor mounted on a specific physical platform, some parts of the structure

might not be visible at all, and hence cannot be mapped by any algorithm implemented

on this platform. For concreteness, we make the following assumption to describe our

scenario and algorithms, but other situations could be handled with the generic tools

developed in this paper.

Assumption 1 The camera is mounted on a mobile ground robot such that the camera

center C lies directly above the center R of the robot’s base Frame of Reference (FoR),

at a constant height. Moreover, the relative pitch and roll of the camera with respect to

the robot FoR are kept fixed, while the relative yaw is unconstrained.

Figure 4.3: The camera is kept at a constant height above the robot’s base. The red,
green and blue lines correspond to the x, y and z axes respectively and
both the camera and robot can rotate along their z axes. The yellow region
corresponds to the view frustum of the camera.
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Based on Assumption 1, Fig. 4.3 shows our conventions for the different FoR used.

The global point cloud is assembled in a global FoR Gxgygzg. Note that we use bold

font to represent vectors. The robot FoR Rxryrzr (forward, left, up) is attached to a point

R on the base of the mobile robot and moves along with it. The camera FoR Cxcyczc,

with zc = zr, is rigidly attached to the robot except for the yaw motion, which is left

unconstrained. The imaging plane of the camera is defined by yczc, with xc pointing

towards the front of the camera on the optical axis. Coordinates in the camera, robot

and global FoR are denoted using superscripts as vc, vr and vg respectively for a vector

v.

We make two additional assumptions for simplicity of exposition. First, let ρ be the

maximum distance that we wish to allow between the structure and the camera when

capturing point clouds. This distance could be the range of the camera or a shorter

distance for which the resolution is higher. The next assumption guarantees that there

exists collision free paths around the structure.

Assumption 2 The distance of the closest obstacle from the structure is at least 2ρ.

The next assumption simplifies the problem of detecting, tracking and removing the

ground surface from point clouds.

Assumption 3 The structure and the robot are placed on a horizontal surface (so zc =

zr = zg).

A consequence of these assumptions is that relatively horizontal surfaces that are at

the same height or above the camera center cannot be mapped, and the maximum height

of the structure that can be mapped is Hmax = zgC + ρ tanψ/2, where ψ is the vertical

angle of view of the camera and zgC the height of the camera. Assumption 3 could be re-

moved by using recent classification systems that can differentiate between ground and

non-ground regions (Zhou et al., 2012) to pre-process the point clouds before sending

them to our system.

Finally, there are additional implicit assumptions that we state informally. First,

since we rely on an external mapping module to build the 3D model, the conditions that

allow this module to operate sufficiently reliably must be met. For example, vSLAM

generally requires appropriate scene illumination and the presence of a sufficiently rich
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set of visual features. Second, we concentrate on the reconstruction of the details of

the model at a scale comparable with or larger than the typical length of the robot. If

features at a smaller scale need to be included, e.g., fine structural details on a wall,

our system could be augmented with a more local planner for a robotic arm carrying

the sensor (Kriegel et al., 2015; Dornhege and Kleiner, 2013), as well as targeted com-

puter vision techniques (Furukawa and Ponce, 2010). Finally, for reasons explained in

Section 4.3.3, we assume that the robot is equipped with sensors capable of detecting

obstacles in a 180◦ region ahead of it and within a distance of ρ.

We divide our mapping process into two phases. The first phase is the Perimeter

Exploration (PE) phase, during which the robot moves clockwise around the structure

to determine its boundaries. The robot continuously moves towards previously unseen

regions of the structure, with the exploration directed towards finding the limits of the

structure rather than closely following its geometry. The PE phase ends when our algo-

rithm detects that the robot has returned to the neighborhood of its starting point O and

the vSLAM module detects a global loop closure. After completing the PE phase, the

system determines the locations of potential missing parts in the constructed 3D model.

We can then start the second phase, which we call the Cavity Exploration (CE) phase,

during which the system explores these missing parts in the model. The following sub-

sections explain each step of our process in detail.

4.3 Perimeter Exploration

In this chapter, we present our first contribution - a method to autonomously determine

the boundaries of an unknown structure. From Assumptions 2 and 3, zg = 0 and

zg = Hmax are bounding horizontal planes for the model. The remaining problem is to

determine the expansion of the structure in the xgyg plane. To do this, the robot moves

clockwise around the structure by determining online a discrete sequence of successive

goals or waypoints. It tries to keep the optical axis of the depth sensor approximately

perpendicular to the structure, which maximizes the depth resolution at which a given

portion of the structure is captured, and increases the density of captured points. It also

tries to maintain the camera center C on a smooth path at a fixed distance from the

structure.
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Algorithm 3 Algorithm for computing the next goal for the camera using the current
point cloud in camera FoR.

1: function COMPUTENEXTGOAL(cloud_full)
2: cloud← PCLremoveGroundPlane(cloud_full)
3: cloud_slice← filterForwardSlice(cloud)
4: pc ← PCLcompute3Dcentroid(cloud_slice)
5: [v1,v2,v3;λ1, λ2, λ3]← PCA(cloud_slice)
6: ñ← v3 − (v3 · zc)v3 . Projection on the xcyc plane

7: n← ñ sign(ñ ·
−−→
CpC);n← n/‖n‖

8: r← zc × n
9: goal← pc −D n + step r

10: return goal,n
11: end function

4.3.1 Determination of the next goal

The pseudo-code to determine the next position and orientation of the camera in our

perimeter exploration algorithm is shown in Algorithm 3. The algorithm takes as input

the current point cloud produced by the camera in its FoR. For its implementation we

rely on the Point Cloud Library (PCL) (Rusu and Cousins, 2011). First, the ground

plane is removed so that the resulting point cloud P contains only those points that

belong to the structure. Next, on line 3, we select a subset S of the point cloud referred

to as the forward slice, which adjoins the part of the structure that must be explored

next, see Fig. 4.4. Concretely, we choose S so that its yc-coordinates satisfy ycmax −
ycmax−ycmin

3
≤ yc ≤ ycmax, where ycmin and ycmax are the minimum and maximum yc-

coordinate values for all points in P . On line 5, following (Mitra et al., 2004), we

compute via Principal Component Analysis (PCA) the normal direction to that plane

Π which best fits S. In more details, denote S = {pci : i = 1, 2, . . . ,m} and define

the covariance matrix X = 1
m

∑m
i=1(p

c
i − pc)(pci − pc)T , where pc = 1

m

∑m
i=1 p

c
i is

the centroid of S computed on line 4. We compute the eigenvectors [v1,v2,v3] of X,

ordered here by decreasing value of the eigenvalues λ1, λ2, λ3. The eigenvector v3 for

the smallest eigenvalue corresponds to the normal to the plane Π.

The algorithm returns n, computed from the projection of the normal vector v3 on

the xcyc plane, and taken to point in the direction of the vector
−−→
CpC. This vector n

defines the desired orientation of the camera. The algorithm also returns the next goal

point goal = pc − D n + step r for the center C of the camera, where D < ρ is the

desired distance between the camera and the structure, r = zc × n is computed on line
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8, and step =
ycmax−ycmin

6
. The term step r, which is along the plane Π, is used to shift

the goal forward so that both sections of a corner fall in the FOV of the camera, as in

the situation shown on Fig. 4.4. This prevents the algorithm from making slow progress

around corners. Finally, the computed camera pose is transformed into the global FoR

to obtain the goal point gg for the camera center C. We simplify the notation gg to g in

the following, where we work in the global reference frame.
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Figure 4.4: Top-down view illustrating the computation of the next goal. We show here
the situation for a corner section of the structure. The forward slice S is
highlighted in red and the corresponding best fit plane Π is shown as well.

4.3.2 Local path planning to the next goal

In order to move the camera center C to g while keeping it approximately at the de-

sired distance D from the structure along the way, we use a local path planner based on

potential fields (Khatib, 1986; Choset et al., 2005). A potential function encoding the

structure as obstacles in the neighborhood of the camera, as well as the goal g, is sam-

pled in the form of a cost map on local 2D grid of size 2ρ×2ρ centered on the camera’s

current position, see Fig. 4.5. Assumption 2 guarantees that all the occupied cells in

this cost map denote the structure itself. For k occupied cells centered at {xj}kj=1, the

potential function N(x) is defined as

N(x) = α‖x− g‖2 +
k∑
j=1

Ij(x)dj(x), (4.1)

35



with dj(x) =
1

β‖x− xj‖
; Ij(x) =

1 if ‖x− xj‖ ≤ D

0 otherwise,

for some scalar parameters α, β. Here dj is the repulsion from the jth occupied cell, and

is limited by Ij to a neighborhood of radius D around the cell. A path for the camera

is obtained by following the negative gradient of N , i.e., ẋ = −∇N(x). Denoting

Jx = {j : Ij(x) = 1} the occupied cells in the D-neighborhood of x, we have

−∇N(x) = 2α(g − x) +
∑
i∈Jx

1

β‖x− xi‖3
(x− xi). (4.2)

Let Q = {x : Jx 6= ∅} denote the region that is at distance at most D from the

structure. Assuming a small value of β, the summation term in (4.2) is dominant when-

ever x ∈ Q and pushes the path away from the structure. However, this term vanishes

as soon as x /∈ Q. Then, assuming that the camera starts at x0 on the boundary ∂Q

of Q, it remains approximately on ∂Q if g − x points toward the interior of Q. It

is possible that this condition is not satisfied by the point g computed in the previous

subsection, in which case we replace g by g1, which is obtained by selecting a new

goal = pc − D′ n + step r for D′ < D such that this condition is satisfied. The path

will then slide on ∂Q until it reaches its goal (Cortes, 2008). Finally, this path for the

center C of the camera is used to compute a corresponding path for the center R of the

robot that needs to be tracked using a platform specific controller.

4.3.3 Replanning due to the structure interferring

Assumption 2 guarantees that the robot can move sufficiently freely around the struc-

ture, but this does not prevent the structure itself from interfering with the path planned

above. Consider the situation shown in Fig. 4.6a. The wall ahead of the robot does

not fall into the FOV of the camera due to the limited horizontal angle of view, yet the

robot should not approach this wall closer than a distance D. Hence, if the robot detects

obstacles in its D-neighborhood, it is stopped at its current position and the yaw motion

of the camera is used to scan ahead and face the new section of the structure. More

precisely, as illustrated in Fig. 4.7, we use the costmap from the previous subsection to

turn the camera to face along the direction from the robot center R to the first occupied
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Figure 4.5: The potential field for a goal at (4, 3) with D = 3 is shown as a heat map
and the corresponding gradient vectors are shown as a vector field.

(a) (b)

Figure 4.6: a) While the robot is following the structure, its forward facing sensors de-
tect an obstacle ahead (robot configuration shown in faded colors). This
obstacle is outside the field of view of the camera, shown in b). The posi-
tion of the robot at the next waypoint along the new direction to explore,
determined by using the arm to scan ahead, is shown in bright colors.
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Figure 4.7: When the robot is currently following section A of the structure, a later
section B of the structure could interfere with the planned path. In general,
the angle ω made by section B with respect to section A satisfies ω ∈ [0, π).
Also, the two sections could be connected to form a non-convex corner.

cell in the D-neighborhood of the robot. The next goal is then recomputed using the

newly captured point cloud.

4.3.4 End of the PE phase

Figure 4.8: The angle θ subtended by the path ÔR at a reference point P inside the
structure can be used to detect the end of the PE phase.

The end of the PE phase is determined by monitoring the angle θ subtended by the

robot’s trajectory with respect to a reference point P inside the structure, see Fig. 4.8.

The point P is chosen from the first depth image at the start of the PE phase. As shown

in Fig. 4.8, the ray PR completes one full rotation in the clockwise manner with respect

to ray PO only at the end of the first pass. Note that θ need not monotonically increase

and it depends on the geometry of the structure. But since by Initial Condition 1 there
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exists a plane NN ′ that initially separates the robot and the structure, θ can complete

a full rotation only at the end of the first pass. Additionally, after θ completes a full

rotation, we continue to follow the structure until the vSLAM module achieves a global

loop closure.

Overall, our strategy attempts to maintain as much as possible a viewpoint orthogo-

nal to the structure, even though it replans for a new goal according to Algorithm 3 only

at discrete times. Note that only the computation of the next goal happens at discrete in-

stants but the vSLAM module updates the model at a higher rate as per the capabilities

of the hardware.

4.4 Completing the Model

4.4.1 Determining flaws

There are two possible types of flaws in the model obtained at the end of the PE phase.

Type I flaws correspond to holes that are present in the already explored regions. As

noted in Section II, these holes could be due to limitations of the sensor or local oc-

clusions caused by small irregularities in the structure itself, and should be filled using

a platform with a more appropriate reachable space, hence we do not consider them

further. Type II flaws, called cavities in the following, correspond to regions that were

missed during the PE phase, e.g., due to the situation depicted on Fig. 4.6, and will

be filled during the CE phase. Our exploration policies only need the location of the

entrances of the cavities and in this subsection we describe an algorithm to determine

these locations in the model.

Our algorithm to determine the entrance to the cavities uses a voxel based 3D oc-

cupancy grid constructed from the global point cloud. We use the OctoMap (Hornung

et al., 2013) library to maintain this occupancy grid in a hierarchical tree data structure.

Internally, the OctoMap library performs ray casting operations, labelling the occu-

pancy measurement of each voxel along the line segment from the camera position to

each point in the point cloud as free and the point itself as occupied. For this, we require

the vSLAM module to provide the sequence of point clouds and associated camera po-

sitions used in assembling the current model. All voxels in the occupancy grid that are
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not labeled free or occupied are called unknown.

Using the constructed OctoMap, we compute a set of frontier voxels, whose defini-

tion is adapted from (Yamauchi, 1997).

Definition 1 A frontier voxel is a free voxel with at least one neighboring unknown

voxel.

(a) with frontier voxels (b) with cavity entrance voxels

Figure 4.9: a) The constructed OctoMap with occupied voxels shown in blue and fron-
tier voxels shown in yellow. These yellow voxels form the boundary of the
explored region and most of them lie along the top and bottom faces of the
view frustums. b) The cavity entrance voxels are shown in red.

Recall that the camera is constrained to move in a horizontal plane and the system

continuously explored the structure in the clockwise sense during the PE phase. Con-

sequently, point clouds captured before and after a cavity result in vertical planes of

frontier voxels that border it and that we want to detect as entrance of the cavity for fur-

ther exploration, see Fig. 4.9b. Therefore, we define cavity entrance voxels as frontier

voxels satisfying two additional conditions. First, the normal to the frontier voxel, com-

puted using the nearby frontier voxels(Mitra et al., 2004), must approximately lie on

the xgyg plane. This serves to remove frontier voxels that lie along the top and bottom

faces of the view frustums, See Fig. 4.9a. Second, Type I flaws can result in frontier

voxels, which we want to exclude from cavity entrance voxels. Therefore, we require

that the distance to the closest occupied voxel should be greater than some threshold

d0, which can be chosen as a small fraction of the distance maintained from the struc-

ture, say 0.1D. As the number of voxels in a typical structure is very large, we do not

perform this thresholding exactly but instead we use an estimate for the distance to the

structure obtained from OctoMap. The hierarchical structure of OctoMap allows effi-

cient multi-resolution queries, see Fig. 4.10, and thus we keep as cavity entrance voxels
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only those that are marked free at a resolution of approximately d0.

(a) Leaf size: 0.05m, depth: 16 (b) Leaf size: 0.4m, depth: 13

Figure 4.10: OctoMap queried at depth level 16 and 13 respectively. In this paper, the
value of D is 3m and the threshold d0 is chosen as 0.4m.

Finally, the cavity entrance voxels are clustered using an Euclidean clustering al-

gorithm from PCL (Rusu and Cousins, 2011) and each cluster is referred to as a cavity

entrance. Moreover, there could be some sparsely located cavity entrance voxels, which

are removed by setting a minimum size for the cavity entrances.

4.4.2 Cavity Exploration

Once the cavity entrances have been determined, we can start the CE phase. We explore

each detected cavity using an exploration strategy analogous to the PE phase. For this,

we require a starting and ending viewpoint for each cavity entrance. We assume that

there are no tunnels that go through the structure and that a robot entering a cavity can

exit via the same location only. For a given cavity entrance, the starting viewpoint is

chosen from the set of camera poses returned by the vSLAM module during the PE

phase and such that the centroid of the cavity entrance lies within the view frustum.

Additionally, the centroid should not be occluded by the structure from the camera

position. From these camera poses, the one with the earliest timestamp τ0 is chosen as

starting viewpoint and we let τ1 denote the largest timestamp. The ending viewpoint

is chosen from the set of viewpoints from the PE phase as the one with the smallest

timestamp τ2 such that τ2 > τ1 and such that no cavity entrance voxel lies within the

view frustum, see Fig. 4.11a.

The timestamps of the starting viewpoints of the cavity entrances are used to sort
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(a) at the starting viewpoint (b) end of cavity exploration

(c) mapping confined spaces

Figure 4.11: Cavity exploration. a) The robot is at the starting viewpoint for exploring
the cavity. The starting and ending viewpoints for the first cavity entrance
are shown in green and red respectively. All the cavity entrance voxels are
also shown. b) The system detects the end of the cavity after coming close
to the ending viewpoint. The blue line shows the trajectory followed by
the robot. c) The extracted model showing CE in progress.

them in increasing order and each of the cavities is explored in sequence. A typical

cavity has at least two cavity entrances bordering it and it is possible to have more

cavity entrances if there is a row of pillars, for example. During the CE phase, if the

centroid of a cavity entrance falls within the view frustum of the current camera position

and is not occluded by the structure, we remove that cavity entrance from our list.

Exploring confined regions during the CE phase requires certain modifications to

the PE policy. Recall that the system skipped the cavities during the PE phase as the

robot came closer than a distance D from the structure. Therefore during the CE phase,

only the region directly ahead of the robot and within a distance δ < D is checked for

interference of the computed path with the structure. Moreover, our local path planner

returns paths that maintain a distance δ from the structure, see Fig. 4.12. For this, using

the notation of Sections 4.3.1 and 4.3.2, we modify goal as goal ← pC − δ n + step r

and transform to the global FoR to obtain the new point g. The distance δ is chosen by

starting from a small value and increasing it until we reach a local minimum of N(g),

where N is defined in (4.1).

The system detects that it has finished exploring the current cavity by monitoring
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Figure 4.12: Costmap at the beginning of the exploration of a cavity. The robot is shown
as a black rectangle and the green arrow oriented along r has its base at the
computed next goal g such that N(g) is a local minimum. The value of δ
determined online is 2.0m while the value of D used in PE phase is 3.0m.

the loop closures obtained by the vSLAM module. When the robot exits the current

cavity, the point clouds captured by the camera correspond to parts of the structure

that are already present in the model, see Fig. 4.11b. Consequently, these result in

loop closures in the vSLAM module. We declare the cavity explored once the system

receives a loop closure with a viewpoint at timestamp τ such that τ2 < τ < τF where

τF corresponds to the last viewpoint of the PE phase. Alternatively, the number of

changes in the occupancy measurements of the OctoMap could be used to detect the

end of the cavity, since the point clouds captured after exiting the cavity do not add

new information to the OctoMap. But this solution tends to be less robust because the

localization errors and sensor noise can induce a large number of changes even when

the camera is viewing a region that is already present in the model.

4.5 Simulations and Results

We evaluate the performance of our policies via 3D simulations for different sizes of

the structure, camera range values and localization accuracy levels for the robot. The

implementation of our motion planning policies is integrated with the Robot Operat-

ing System (ROS) Navigation Stack (Marder-Eppstein), which is supported by many
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Table 4.1: Simulation results for different sizes of the structure and range of the camera

Model Perimeter Camera Range Path Length

Small Γ 42m 4.5m 72.08m

Small Γ 42m 12.0m 53.79m

Large Γ 84m 4.5m 106.23m

Large a 94m 4.5m 179.65m

mobile ground robots. All the simulations are performed using the Gazebo simulator

(Andrew Howard). The vSLAM algorithm used is RTAB-Map (Labbe and Michaud,

2014).

The simulations are carried out with publicly available models of a Clearpath Husky

A200 robot and a Kinect depth sensor whose range can be varied (Hsu), see Fig. 4.2.

A UR5 robotic arm is used to carry the sensor, but only yaw motions of the arm are

allowed, as described in Section 4.2. For illustration purposes, we consider artificial

structures made of short wall-like segments. We refer to the structure used in most

of the previous illustrations as the Small Γ model. The Large Γ model has the same

shape as Small Γ but is twice the size. We also illustrate the effectiveness of our policy

for a realistic model of a house, and compare its performance with that of the classic

Frontier-Based Exploration (FBE) algorithm (Yamauchi, 1997). We have included a

supplementary MP4 format video, which shows the simulation of a Husky robot fol-

lowing our policies for mapping the Small Γ model using a Kinect sensor with a range

of 4.5m.

4.5.1 Structure Size and Camera Range

The relative size of the structure with respect to the range of the camera affects the

trajectory determined by our algorithms. Fig. 4.13 shows simulation results for 4 sce-

narios. With a camera range of 4.5m, the Large Γ model is completely mapped at the

end of the PE phase. For the Small Γ model a cavity remains, which is subsequently

explored during the CE phase. Increasing the camera range to say 12m allows the Small

Γ structure to be mapped at the end of the PE phase as well, see Fig. 4.13b. Fig. 4.13d

shows that the robot following our policies is able to map large structures with multiple

cavities of different sizes. Table 4.1 lists the path lengths obtained for the different test
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Table 4.2: Simulation results for different levels of localization accuracy

k nk µ σ max

0.00 65520 0.05m 0.04m 0.20m

0.25 72636 0.08m 0.06m 0.27m

0.50 82728 0.11m 0.09m 0.40m

0.75 111321 0.16m 0.13m 0.94m

cases.

4.5.2 Localization accuracy

The Husky robot combines data from an Inertial Measurement Unit (IMU), a GPS mod-

ule and wheel odometry to achieve a relatively small localization error overall. In order

to evaluate the impact of localization accuracy on our algorithms, we simulate the ef-

fect of large wheel slippage by introducing a zero mean additive Gaussian white noise

to each of the wheel encoder measurements, with a variance equal to k(vx + ωz)/2,

where vx is the linear velocity of the robot, ωz is its yaw rate and k is a proportional-

ity constant, also called noise level in the following. Increasing k results in a poorer

alignment of the point clouds, but all portions of the structure, except the horizontal

faces, are still captured in the reconstructed model, see Fig. 4.14. Note that our poli-

cies compute the next waypoint at discrete times and therefore assume that the drift in

localization between waypoints is sufficiently small so that the robot reaches the next

waypoint with the camera facing the structure.

We use the CloudCompare(Girardeau-Montaut) software to compute the distortion

in the reconstructed model Ck, for a noise level k, with respect to a reference point

cloud CR which is generated using a different mobile platform with almost perfect lo-

calization. First, we register Ck to CR using an Iterative Closest Point (ICP) algorithm

(Rusinkiewicz and Levoy, 2001). We then define for every point in Ck, its error to be the

distance to the nearest neighbor in CR. Table 4.2 lists the simulation results for mapping

the Small Γ model with different noise levels k, where nk is the number of points in Ck
and µ, σ,max are respectively the mean, standard deviation and maximum value of the

errors of all points in Ck. The table indicates that both the mean and standard deviation

of the errors increase with the noise level.
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(a) Model: Small Γ, Range: 4.5m (b) Model: Small Γ, Range: 12m

(c) Model: Large Γ, Range: 4.5m (d) Model: Large a, Range: 4.5m

Figure 4.13: The projection of the reconstructed model on the xgyg plane is shown in
black and the trajectory followed by the robot based on our policies is
shown in blue.
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(a) Reconstructed model with k = 0.75 (b) Model: Small Γ, Range: 4.5m

Figure 4.14: a) Large errors in localization results in poor alignment, although all por-
tions of the structure have been captured in the model, see Fig. 4.15a for
comparison. b) The projection of the reconstructed model on the xgyg

plane, when compared to Fig. 4.13a, shows the distortion introduced due
to the noisy wheel odometry.

4.5.3 Comparing with Frontier-based Exploration

The Frontier Exploration(Bovbel) package available in ROS relies on a 2D LIDAR to

build an occupancy grid that is used to compute the frontiers. The package requires the

user to define a 2D polygon that encloses the structure. The algorithm then explores

until there are no more frontiers inside the user-defined polygon. In comparison to the

FBE algorithm, our algorithms

• do not require a user defined bounding polygon;

• maintain as much as possible a fixed distance from the structure (during the PE
phase), thereby ensuring that all portions up to a height of Hmax are mapped;

• consistently explore the structure in the clockwise direction, which can be impor-
tant from a user perspective to understand the behavior of the robot. On the other
hand, the trajectory prescribed by the FBE algorithm depends on the size of the
user-defined bounding polygon. A large bounding polygon will cause the robot
to explore areas far away from the structure and will possibly not maintain a fixed
direction of exploration.

• produces the same path every time for a given structure whereas the path com-
puted by the FBE algorithm could differ greatly between two trials. Also, the
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Table 4.3: Comparison between our policy and frontier based exploration

Proposed Policy FBE

Small Γ

Path Length 72.08m 49.78m

Unique closest point set size 6, 063 5, 398

Mean Error 0.05m 0.12m

House
Path Length 59.89m 47.55m

Unique closest point set size 9, 182 7, 402

Mean Error 0.05m 0.12m

robot often gets stuck while using the FBE algorithm as the computed waypoints
are often too close to the structure.

In order to get a quantitative measure of the structure coverage, we use again the

CloudCompare software to compute essentially the projection of the reconstructed model

C on the reference point cloud CR. Namely, for each point in C we compute the closest

point in CR. Note that multiple points in C can have the same closest point in CR. In this

case, we remove these duplicate points to obtain the unique closest point set. Then, as

long as the reconstructed model aligns relatively well with the reference model, the car-

dinality of the unique closest point set is taken as our estimate of the structure coverage.

Table 4.3 compares the level of structure coverage achieved by our policies and FBE

with a camera range of 4.5m for two of the environments considered. For the Small Γ

model, our reference point cloud has 6, 116 points with a minimum distance of 0.1m

between points. For the House model, our reference point cloud has 10, 889 points with

a minimum distance of 0.1m between points. Since the height of the House model is

more than Hmax, we only take the portion of the reconstructed model up to the height

Hmax for computing the structure coverage and mean error for the two algorithms.

Table 4.3 shows that our policies achieve a higher level of structure coverage than

FBE for the environments considered and our proposed coverage metric. Note also that

the smooth trajectory prescribed by our policies is beneficial to the vSLAM module to

achieve a better alignment and a lower value for the mean error in the reconstructed

model, especially if the robot localization accuracy is poor. A visual inspection of Fig.

4.15a and Fig. 4.15b shows the improvement in performance of the vSLAM module

when using our algorithms compared to FBE.
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(a) Proposed Policy (b) Frontier based Exploration

(c) Proposed Policy (d) Frontier based Exploration

(e) Model: Small Γ, Range: 4.5m (f) Model: House, Range: 4.5m

Figure 4.15: (a-d) Comparison of the reconstructed model using our policies and FBE.
(e,f) The trajectory prescribed by FBE for the Small Γ and House structure
is shown in blue.
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4.6 Conclusion and Future Work

This work presents novel motion planning policies that guide a mobile ground robot

carrying a depth sensor to autonomously explore the visible portion of a bounded three-

dimensional structure. The proposed policies do not assume any prior information about

the size or geometry of the structure. Coupled with state-of-art vSLAM systems, our

strategies are able to achieve high coverage in the reconstructed model, given the phys-

ical limitations of the platform. We have illustrated the efficacy of our approach via

3D simulations for different structure sizes, camera range and localization accuracy. In

addition, a comparison of our policies with the classic frontier based exploration algo-

rithms clearly shows the improvement in performance for a realistic structure such as a

house.

This work opens interesting questions such as combined vehicle and 6-DOF arm

motion planning to map fine structural details. Extending our algorithms to aerial plat-

forms and hybrid teams of robots, for example, would also allow for autonomous in-

spection of tall structures such as wind turbines or telecom towers.
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