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Abstract

Learning and plasticity in the brain has generally been attributed to synaptic weights in
the neuronal network. But recent studies and experiments provide evidence for the fact
that axonal conduction delays are also dynamic variables that add a novel dimension to
the information processing in the brain. This is attributed to the adaptive myelination
brought about by oligodendrocytes, glial cells that myelinate the axons in the central ner-
vous system.

As a part of this project, we have proposed that these axonal conduction delays could
be trained in addition to training the synaptic weights, in response to dynamic input spike
patters. After reviewing the various mechanisms that could be underpinning the activity
dependent myelin plasticity, the role of electrical impulses and their timings was made
clear. Consequently we came up with an algorithm that is dependent on the spike timings
to train these delays. Further, we used motion perception as a tool to test the usefulness
of the algorithm in assessing and studying myelin plasticity. Our model emphasizes that
myelination is no simple electrical insulation, but rather an exquisite way of controlling
complex dynamic functions and by adding this supplementary dimension to the neuronal
network, we inch one step closer to a neuro-biologically realistic model of the brain.

Adaptive changes in myelin forming cells and myelin sheath thickness and thereby the
conduction velocity represents a type of behaviorally relevant neural plasticity that could
indeed be leveraged for interventions in diseases of myelin. Human diseases such as Multi-
ple Sclerosis (MS) and inherited leukodystrophies in which the integrity of myelin sheath
is lost, make the importance of myelin for Central Nervous System (CNS) functioning all
the more apparent. Given that recent studies are demonstrating an unprecedented level of
myelin plasticity in the adult CNS, identifying the mechanism that promotes or inhibits
myelination during development could aid in the goal of developing novel strategies to
promote repair in the demyelinated CNS. Especially if impulse activity could influence
myelination even at later stages of oligodendrocyte development, this could have immense
relevance to treating demyelinating diseases. Computational models of neuronal networks
that learn temporal delays is a major step towards modeling adaptive myelination and
consequently a way to explore the various parameters that influence myelin plasticity that
could be of relevance to treating diseases of myelin.
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Chapter 1

Background Information

1.1 Computational Neuroscience
Computational neuroscience is the study of brain function in terms of the information pro-
cessing properties of the fundamental components of our brain. It is an interdisciplinary
science that links the diverse fields of neuroscience, cognitive science, and psychology with
electrical engineering, computer science, mathematics, and physics.

It encompasses two approaches to model the brain functions. On one hand, it makes
it possible to create biophysically realistic models by writing a computer program to sim-
ulate the operation of a network of cells in the brain by making use of system of equations
that describe their electrical and chemical signaling. On the other hand, it is possible
to study how the brain performs computation by simulating, or mathematically analyz-
ing, the operations of simplified "units" that have some of the properties of neurons but
abstract out much of their biological complexity. Since the biophysically realistic models
can get extremely complex and computationally challenging, computational neuroscien-
tists constantly try to strike a balance between neurobiological realism with reliable and
convenient abstraction.

1.2 Human Brain
Like every other organ, the brain is made up of cells and the cells in the brain fall into two
broad classes: neurons and glial cells. But the brain’s network of cells forms a massively
parallel information processing system that makes understanding the brain very different
from understanding other organs in the body. Events in a silicon chip happen in nanosecond
range, whereas neural events happen in the millisecond range. However, the brain makes
up for the relatively slow rate of operation by having a truly staggering number of neurons
with massive interconnections between them. An adult brain consists of about 100 billion
neurons with each having about 1000-10,000 connections and in total 3.2 million km of
wires, all packed into 1.5 liters and weighing 1.5 kg. Yet, the brain is an enormously
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efficient structure, consuming only the same amount of electric power as a night-light!

1.3 Neuron

1.3.1 Morphology & Structure

Figure 1.1: A: A golgi stained neuron in layer II of cerebral cortex [Adapted from
http://www.siumed.edu/ dking2/ssb/BH004b.htm] B: A diagram depicting the structure
of a neuron

Neurons are a class of cells that distinguish themselves from most other cells through
the elaborate wiring that emerges from their cell body, also called soma which contains
the nucleus and other organelles necessary for cellular function. From Figure 1.1 it can be
seen that the short and densely distributed wiring known as dendrites receive signals from
other neurons and typically, a single long wire known as axon branches into smaller axon
terminals and transmits the signal. An axon arises from the cell body at the axon hillock
and travels for a distance, as far as 1 meter in humans. One neuron connects to another
neuron through the synapse, a small gap between the axon terminal of one neuron and
the dendrite of another. The electrical signal that travels through the axon is transmitted
as a chemical message across the synapse. It has been estimated that one neuron can
receive contacts from up to 10,000 other cells. Similarly, any one neuron can contact up to
10,000 post-synaptic cells. Thus, this fundamental component of the nervous system can
be thought of as a Multiple Input Multiple Output (MIMO) information processing unit.
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1.3.2 Electrophysiology
A voltage difference is maintained between the interior of a neuron and its extracellular
space due to the difference in the concentration of ions such as Na+, K+, Cl−, Ca2+. In
resting conditions this voltage gradient/ membrane potential is about -70 mV. But all
neurons are electrically active: On appropriate stimulation, the membrane potential varies,
carrying signals that can be transmitted from one neuron to another. This is facilitated
through ion channels, membrane proteins that allow transport of specific ions. Special
types of voltage gated ion channels trigger a sharp voltage spike called an Action Potential
(AP), also known as nerve impulse or spike. Neurons exhibit a characteristic known as
excitability: APs are triggered only when the membrane is depolarized enough upto a
threshold. Once elicited, it follows a consistent trajectory lasting about a thousandth of a
second and hence it is known as the "all or none" response.

1.3.3 Stages of Neural Signaling

Figure 1.2: Neuron as a Multiple Input Multiple Output (MIMO) information processing
unit

Figure 1.2 shows a neuron as a MIMO system. Inputs are received from other neurons
by the dendritic tree and the output generated by the neuron is broadcast to other neurons
by the axon collaterals. Neural signals are both electrical and chemical depending on the
site of the signal transmission. The various stages of neural signaling are as follows (The
first three are electrical and the last one is mostly chemical):

• Propagation along the denritic tree: A lossy propagation of a voltage change
that could be both positive or negative depending on the nature of the synapse.

• Summation at the axon hillock: The voltage waves arising from the dendritic
arbor gets integrated at the soma. The summation happens both spatially (summa-
tion of voltage waves from different dendrites) and temporally (summation of voltage
waves even from the same dendrite which are overlapping in time). The axon hillock
has high concentration of Na+ and K+ channels and hence gives rise to a "all or
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none" response depending on whether the strength of the summation of the voltage
waves crosses a threshold or not.

• Action potential propagation along the axon and its collaterals: The AP
produced at the axon hillock propagates along the axon and reaches the collaterals.
Most importantly, it propagates intact, without losing amplitude or spreading in time
owing to the myelin sheath and saltatory conduction more about which can be found
in Section 1.5.2.

• Transmission of the signal across synapse: Synapses can be electrical or chemi-
cal. Electrical synapses are direct cell-cell contacts mediated by gap junctions wherein
the signaling is through exchange of ions. In a chemical synapse, when an AP arrives
at an axon terminal, a chemical called neurotransmitter is released and it diffuses
through the 20 nm gap called the synaptic cleft. The neurotransmitters could be ex-
citatory or inhibitory depending on whether they produce a positive coltage change
(Excitatory Post Synaptic Potential [EPSP])or a negative voltage change (Inhibitory
Post Synaptic Potential [IPSP])in the dendrite. The exocytosis of the neurotransmit-
ter is a probabilistic event and hence every AP needn’t necessarily produce a PSP.
Hence synaptic strength could be defined as average PSP produced in response to an
AP on the presynaptic side.

1.4 Glial Cells
For decades, physiologists focused on neurons as the brain’s prime communicators. Neu-
roglia or simply glia (latin for glue) were considered as the name suggests to hold the
nervous system together in some way. Even though they outnumber nerve cells, they were
thought to have only a maintenance role: bringing nutrients from blood vessels to neu-
rons, maintaining a physiological balance of ions in the brain, and warding off pathogens
that evaded the immune system. But it is recently being shown that glial cells may be
as critical to thinking and learning as neurons are. Without their supportive functions,
the signaling abilities of the neurons would be disrupted. Moreover comparison of brains
reveals that the proportion of glia to neurons increases greatly in certain regions of the
brain as animals move up the evolutionary ladder. It was indeed established that what
distinguished Einstein’s brain from a normal brain was the number of glial cells which was
twice as many a normal brain possessed!! Perhaps these glial cells hold the key to what
elevates certain humans to genius.

There are three major types of glial cells in the mature Central Nervous System (CNS):

• Astrocytes: Astrocytes have numerous projections that anchor neurons to their
blood supply and hence forming the blood brain barrier. They regulate the external
chemical environment of neurons by removing excess ions, the notable one being
potassium, and recycling neurotransmitters released during synaptic transmission.
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Figure 1.3: The major types of glial cells in the CNS

They also communicate with other types of glia to ultimately ensure smooth signaling
in the neuronal network.

• Oligodendrocytes: Glial cells in the CNS that are respobsible for producing
myelin that insulates axons. Anatomists of earlier centuries called these cells oligo-
dendrocytes which means "short branches" due to their small cell bodies out of which
they found several short branches were radiating out. But later, better staining meth-
ods revealed that the stubby branches did not end where the old stains failed but
rather extended like tentacles of an octopus wrapping around an axon. Each oligo-
dendrocyte can extend its processes to multiple axons and each axon can receive
processes from multiple oligodendrocytes.

• Microglia: Microglial cells as the name suggests are relatively small with changing
shapes and oblong nuclei. In a healthy brain, microglia direct the immune response
to brain damage and play an important role in the inflammation that accompanies
the damage by multiplying rapidly.

1.5 Oligodendrocytes and Myelination

1.5.1 Myelination
Myelination is the process by which oligodendrocytes (in CNS) ensheathe and electrically
insulate axons to facilitate faster conduction of electrical impulses. Myelination occurs
throughout childhood and young adulthood and is thought to be completed by the fourth
decade of human life when the frontal lobe finishes myelin formation. In interpreting
structural alterations and plasticity that the myelinated nerve fibers of the central nervous
system exhibit, it is first helpful to understand the normal appearance of myelinated nerve
fibers in electron micrographs.
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Figure 1.4: A: A confocal laser scanning microscopy image of an oligodendrocyte (blue)
that extends to form myelin sheaths (green) to encase Purkinje cell axons (red) in the devel-
oping rat cerebellum. [Adapted from http://www.anatsoc.org.uk] B: A diagram depicting
how oligodendrocytes (green) wrap myelin around axons (blue) [Adapted from [1]]

The myelin sheaths in the central nervous system are formed by a pair of layers of the
plasma membrane of the myelin forming oligodendrocyte. The paired plasma membranes
wrap around a length of the enclosed axon in a spiral fashion. During development the
cytoplasmic surfaces of the paired plasma membrane are separated by oligodendrocyte
cytoplasm, but as the sheath matures the cytoplasm is lost and the cytoplasmic surfaces
of the plasma membrane become apposed a very compressed intracellular compartment
spanning only 30 Å and appears in the electron microscope as a single line, called the
major dense line.

Sequential steps in formation of myelin and nodes of Ranvier:

1. Before glial ensheathment, sodium channels are distributed uniformly and at low
density.

2. As the axons are ensheathed by glial cells, but before the formation of compact
myelin, loose clusters of sodium channels develop at sites that will become nodes

3. Compact myelin is then formed and, as paranodal junctions are established between
the myelinating oligodendrocyte and the axon, sodium channels are excluded from
the underlying axon membrane and well defined nodal clusters of sodium channels
are established.

Not all vertebrate axons are myelinated, but in general, axons larger than 1 micron are
myelinated. Recent studies show that the axons provide a signal to the oligodendrocyte
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Figure 1.5: A: A colored version of an electron micrograph showing the transverse section
through the corpus callosum of a 6 year old monkey; Myelinated axons - pale green; astro-
cytes - yellow: paranodes and nodes - dark green: oligodendrocyte process - red. [Adapted
from http://www.bu.edu/agingbrain/chapter-3-normal-myelinated-nerve-fibers/ ] B: Trans-
mission electron micrograph of a myelinated axon at a higher magnification [generated at
the Electron Microscopy Facility at Trinity College, Hartford, CT ]

which determine the thickness of the myelin sheath. One important signaling mechanism
provided by the axon is via the growth factor neuregulin-1 which binds to ErbB receptor
tyrosine kinases expressed by oligodendrocytes. A similar signaling mechanism also exists
in Schwann cells. This interaction leads to a defined ratio between axonal diameter and
axonal diameter plus myelin sheath, the so-called g-ratio which is usually between 0.6 to
0.7 .

1.5.2 Function of Myelin
In humans, myelination begins in the 14th week of fetal development, although little myelin
exists in the brain at the time of birth. During infancy, myelination occurs quickly, leading
to a child’s fast development, including crawling and walking in the first year.

The main purpose of a myelin layer (or sheath) is to increase the speed at which im-
pulses propagate along the myelinated fiber. Along unmyelinated fibers, impulses move
continuously as waves, but, in myelinated fibers, they hop or propagate by saltatory con-
duction. Myelin decreases capacitance and increases electrical resistance across the cell
membrane (the axolemma). Thus, myelination helps prevent the electrical current from
leaving the axon, thus functioning as an electrical insulation that increases the conduction
velocity and hence decreases the propagation delay.
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Chapter 2

Literature Review

The chapter addresses the following through review of the state of art and thus presents
the motivation behind the development of the model.

• The necessity for axonal conduction delay as an added dimension to information
processing in the brain

• The fact that these delays are not merely fixed values, but rather dynamic adaptive
parameters representative of activity dependent plasticity and experimental evidences
to prove the same.

• The various mechanisms that could be underpinning adaptive myelination and espe-
cially how electrical impulses and their timings hold relevance to myelin plasticity.

• Developing an algorithm to train these adaptive delays.

• Motion perception as an ideal tool to assess the usefulness of the algorithm to model
and study adaptive myelination.

• Significance of myelin plasticity on a larger scale.

2.1 Axonal conduction delay, an added dimension to
information processing in the brain

The exact cause of human intelligence and its variations ranging from extreme mental
retardation to giftedness has always been a topic of debate, but this novel dimension to
information processing that is being proposed could potentially lead us to the answer. A
correlation between intelligence level ("IQ") and nerve Conduction Velocity (CV) has also
been demonstrated in normal individuals [5]. By determining the Reaction Time (RT)/
latency [time from a visual stimulus - checker board pattern reversal - to arrival of an
evoked potential at the scalp over the primary cortex], a correlation that had been found
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between RT-IQ and the speed of information processing was interpreted as one of the fac-
tors determining the level of intelligence and the brain CV was inferred to be the factor
affecting this "mental speed".

Typically computational models of neuronal network ignore conduction delays and con-
sider the synaptic weights as the primary set of parameters that hold the key to what the
network accomplishes. Challenging this traditional dogma, there has been a growing the-
oretical interest to consider axonal conduction delays as additional variables to influence
the functioning of neural circuits in the brain. In a simulation of a network of cortical
spiking neurons [2] conduction delays were kept as fixed parameters and it was shown that
synchronous firing in the pre synaptic side is not always effective in eliciting a potent post
synaptic response since the spikes arrive at different times in the post synaptic side. Hence,
to maximize the post synaptic response the pre synaptic neurons must fire in a temporal
pattern determined by the conduction delays as seen in Figure 2.1. Since the firing of
these pre synaptic neurons are not synchronous but time-locked to each other, such groups
are referred to as "polychronous" and the simultaneous spiking at the post synaptic side is
referred to as "isochronicity".

Figure 2.1: A: Synaptic connections from neurons b, c, and d to neurons a and e have
different fixed axonal conduction delays.B: Synchronous firing is not effective in eliciting
a potent post synaptic response (vertical bar denotes firing). C& D: Different optimal
spiking patterns excite different post synaptic neurons [Adapted from [2]]

There are various axonal factors that are crucial to establishing a proper speed of con-
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duction and hence a proper conduction delay: The thickness of myelin, axon diameter,
and the spacing and width of nodes of Ranvier (again controlled by myelination). The
two principle mechanisms for changing conduction velocity are altering axon diameter and
myelination (vertebrates) with the latter being the most effective way [3]. It has been
shown that the axons of retinal ganglion cells located at different eccentricities within the
retina show differences in conduction times that are adjusted by the myelin sheath thick-
ness to ensure simultaneous arrival within millisecond precision [4] and this strategy of
accomplishing isochronicity is expected to occur in other neural systems as well.

2.2 Experimental evidences for activity dependent myelin
plasticity

It is commonly assumed that the conduction speeds and delays are hardwired at birth
or fixed at an early developmental stage that they are assigned a constant value if con-
sidered as additional parameters in the network [2]. Synaptic weights are the only set
of parameters that are generally trained and memories were always considered to be
stored solely as synaptic efficacy. But experience driven brain plasticity exerts its in-
fluence beyond the synapse and myelin plasticity provides another cellular mechanism to
tune neuronal network functions and complement the established mechanisms of synap-
tic plasticity [6]. Small changes in myelin sheath thickness relative to the axon diameter
(g ratio = axon diameter/axon diameter + myelin sheath thickness) can indeed cause
substantial changes in the conduction speed and play a major role in functioning of neural
circuits. In addition to affecting conduction velocity, myelin is also known to cause a de-
crease in the refractory period, enabling transmission of spikes at a higher frequency [7].

Occurrence of activity dependent plasticity of action potential propagation delay, in short
"propagation plasticity" has also been experimentally proved to scale upto 4 ms or 40%
after minutes and 13 ms or 74 % after hours [8]. Thus, the activity dependent myelin plas-
ticity establishes that the axonal conduction delays are adaptive variables which can be
trained. The dynamic nature of cerebral myelin and the conspicuous role that experience
plays in modulating the brain’s infrastructure through activity dependent myelin plasticity
has also been elucidated through various experiments:

2.2.1 A DTI study on humans learning juggling
A longitudinal study was carried out on humans for a 6 week period when they learn a novel
visuo-motor skill such as juggling and Diffusion Tensor Imaging (DTI) was used to measure
the training related changes in the white matter microstructure [9]. DTI, a powerful
Magnetic Resonance Imaging (MRI) technique that noninvasively measures the preferential
diffusion of protons of water molecules is sensitive to the hindrance of water diffusion due
to local tissue boundaries and Fractional Anisotropy (FA), a DTI derived quantitative
measure of the directional dependence of water diffusion, reflects anatomical features of
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white matter, such as axon caliber, fiber density and myelination. The structurally altered
brain regions were all specialized in accurate bimanual arm movements, grasping, visual
tracking in the periphery all of which are crucial for a complex visuo-motor skill such as
juggling. Activity dependent myelo-modulation could be the potential mechanism through
which the functional properties of white matter are affected by experience.

2.2.2 A correlation between piano practicing and increased myeli-
nation

Similarly, a study was conducted on pianists and non-musicians and the one region in
the brain where the difference between the two groups was found was the posterior limb
of the internal capsule which carries the corticospinal tracts which carry the descending
fibers from primary sensorimotor and premotor cortices and are of critical importance for
independent finger movements in humans and other primates. It has indeed been proposed
that increased myelination, caused by neural activity in fiber tracts during training is
one mechanism underlying the observed FA increases and training induced white matter
adaptations are likely to be important for the high level performance of mature pianists
and that the overall susceptibility of such plasticity is high in the childhood during which
a large number of fiber systems used in piano performance would have still not completed
their maturation [10].

2.2.3 Hypomyelination of PFC via social isolation

On the other hand, it has also been tested whether depriving adult mice of social contact
would reduce the adult Prefrontal cortex (PFC) myelination, a region involved in complex
emotional and cognitive behavior, given that neuroimaging studies support the concept of
ongoing PFC myelination until the third decade of life. Quantification of myelin thickness
relative to axonal diameter (g ratio) revealed statistically significant differences between
group-housed (g = 0.810 ± 0.01) and socially isolated (g = 0.876 ± 0.01) mice in PFC
[11]. Myelin changes in PFC have also been reported in a wide range of psychiatric illness
including schizophrenia, autism, anxiety, depression etc. Models of juvenile social isolation
results in myelination changes that indeed mimic conditions related to neurodevelopment
disorders and hence partially explain the long term consequences of early childhood expe-
rience on the development of psychiatric disorders in adulthood.

In short, sensory deprivation via social isolation results in a decrease in myelination of
the prefrontal cortex of mice, and learning a new language or complex motor tasks have
been shown to increase the myelin thickness and hence alter white-matter structure within
the relevant neural circuits in humans, thus emphasizing the importance of myelin plas-
ticity as an experience driven or activity dependent plasticity crucial to learning complex
information processing tasks.
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2.3 A review of the mechanisms underlying adaptive
myelination

Section 2.1 elucidates the importance of axonal conduction delays for information process-
ing in the brain. Section 2.2 addresses the role of activity dependent myelin plasticity in
modifying spike arrival timing and hence establishes the fact that these delays are not con-
stant parameters, but variables that could be trained just like synaptic weights. But then,
it raises an important question as to how the local information of temporal mismatch influ-
ences the oligodendrocytes to modify the myelination. Figuring out this cellular/molecular
mechanism that explains activity dependent myelin plasticity could in turn assist in devel-
oping the learning algorithm that the oligodendrocytes could potentially follow to modulate
the myelin thickness and hence the axonal conduction delays.

2.3.1 Signaling from axons
The observation that, even in culture, oligodendrocytes myelinate only axons, not den-
drites, suggests the existence, at the surface of axons, of a recognition signal that permits
their ensheathment by the oligodendrocyte processes. But the story is not complete with-
out answering how the myelinated fibers develop with a structure that permits them to
tune their conduction velocity as per the neuronal network functional requirements. The
axon probably also participates in the regulation of myelin thickness. Single oligodendro-
cytes can myelinate several axons with different diameters; rather than forming myelin of
a fixed diameter, these oligodendrocytes generally form thicker myelin around the larger
axon. This suggests that the axon specifies, in a localized way, the number of myelin
lamellae formed by a single oligodendrocyte process [12].

2.3.2 Effect of electrical impulses and their timings
The role of electrical activity on myelin formation has also been investigated using specific
neurotoxins and it has been shown that inhibition of electrical activity with the specific
Na+ channel blocker tetrodotoxin (TTX) prevents the initiation of myelinogenesis [13]. In
addition, with K+ that blocks action potentials by maintaining the cells in a depolarized
state, or a-scorpion toxin (a-ScTX), which induces repetitive electrical activity by slow-
ing Na+ channel inactivation, the authors have provided evidence that it is the action
potential itself which is responsible for the onset of myelination. These observations are
consistent with findings such as delayed myelination of the optic nerve in animals reared in
the dark, and highly decreased myelination in the naturally blind cape mole rat, whereas
how premature eye opening accelerates myelination in the optic nerve.

Experiments were also performed wherein theta-burst stimulation of the hippocampus,
which resembles the in-vivo activity, depolarized the oligodendrocytes to -48mV from a
resting potential of -75 mV [14]. In these experiments where the action potential latency
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had decreased after depolarizing the oligodendrocyte, the filled axon was observed to pass
through a myelinated segment extending from a depolarized oligodendrocyte. The authors
speculate that the increase in CV may be due to increase in myelin thickness due to osmotic
swelling of the myelin secondary to the transmembrane ion fluxes caused by depolarization.

Further, it has also been proved that the timing and the pattern of electrical impulses
regulate myelination. Experiments have also been conducted to determine whether differ-
ences in patterns of axonal firing could influence myelination [15]. The authors particu-
larly tested whether myelination is inhibited by a frequency of axonal firing characteristic
of firing before the onset of myelination. They also concluded that the results raised the
possibility that certain patterns of impulse activity could be inhibitory and that an activity
dependent mechanism could be involved for myelination in the CNS.

2.3.3 Sub-cellular events in myelo-modulation
If myelin could preferentially form on electrically active axons, then the electrical activity
must regulate the sub cellular events necessary for myelin induction. Both neurotrans-
mitters adenosine 5’-triphosphate (ATP) and glutamate (glu) have been implicated in
signaling to Oligodendrocyte Progenitor Cells (OPCs)[16]. Glutamatergic synapses can
form transiently between axons and some OPCs and the authors have found that release
of glutamate from synaptic vesicles along axons of mouse dorsal root ganglion neurons in
culture promotes myelin induction by stimulating formation of cholesterol-rich signaling
domains between oligodendrocytes and axons, and increasing local synthesis of the major
protein in the myelin sheath, Myelin Basic Protein (MBP). The vesicular release of glu from
axons also restricts the mobility of MBP, as would be required to wrap MBP-containing
membrane selectively around axons firing action potentials. Electrical activity also causes
nonvesicular release of the neurotransmitter ATP from axons through volume-regulated
anion channels, and ATP released from axons increases myelin formation by regulating
OPC differentiation and expression of myelin proteins.

2.3.4 Source of the new myelin
An open question is the source of the new myelin in the adult CNS, though there are
a number of possibilities: It could be generated by newly differentiated oligodendrocytes
or mature oligodendrocytes could display sufficient plasticity to respond to axonal signals
and generate additional myelin segments. Experiments have been performed to explore
both the possibilities. Electrical stimulation of the corticospinal tract at the level of the
hindbrain in the adult rat has been shown to promote the proliferation of OPCs within the
spinal cord and at least some of these OPCs differentiate into postmitotic oligodendrocytes
that go on to myelinate the corticospinal axons [17].

A series of experiments were also performed to determine if impulse activity could in-
fluence myelination even at later stages of oligodendrocyte development and a link has
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indeed been found between myelination, astrocytes and electrical impulse activity in ax-
ons mediated by cytokine leukimia inhibiting factor (LIF) [18]. It was shown that LIF is
released by astrocytes in response to ATP liberated from axons firing action potentials,
subsequently LIF promotes myelination by mature oligodendrocytes.

2.3.5 An in-vivo optogenetic study

Though the modulation of myelination by neuronal activity has mostly been supported
only by in-vitro studies so far, in-vivo optogenetic techniques were used in awake, behav-
ing mice as seen in Figure 2.2 to provide evidence that neuronal activity produces changes
in myelin forming cells and hence the myelin sheath thickness [19]. [Optogenetic techniques
wherein light is delivered at a distance from the target avoids extensive electrode related
tissue damage which might affect the Oligodendrocyte Precursor Cells (OPC) dynamics].
Optogenetic stimulation of cortical layer V projection neurons resulted in robust prolifer-
ation of OPCs within the premotor circuit, from the deep layers of the premotor cortex to
the subcortical projections through the corpus callosum. Four weeks later, an increase in
newly generated oligodendrocytes and increased myelin sheath thickness were found within
the stimulated premotor circuit and behavioral testing revealed increased swing speed of
the correlate forelimb.

Figure 2.2: An in-vivo optogenetic study on awake mice provided evidence for neuronal
impulse activity resulting in increased proliferation of oligodendrocytes and hence increased
myelin sheath thickness [Adapted from [19]].
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2.4 Training the axonal conduction delays
From Section 2.3, it has been made clear that the activity dependent myelination and the
events at a cellular level affecting it are all mediated through electrical impulses, their
timing and pattern. Moreover, maximizing the speed of conduction is not always what is
desired. In some neural systems there is only a need for precise timing of axonal conduction
so as to ensure that impulses from multiple input points separated by large distances
arrive simultaneously to elicit a spike at the output [20]. For example, while anatomically
the cerebellar cortex is deeply folded, from a temporal point of view the olivary neurons
function as if they were equidistant from all Purkinje Cells (PCs) in the cerebellar cortex
[21]. In other words despite significant differences in the length of individual olivocerebellar
axons, the conduction time along them is close to constant and this isochronicity ensures
synchrony of Purkinje cell activity with millisecond precision. Hence the best way to
model the experience/activity driven plasticity of myelination would be to train the axonal
conduction delays in a neuronal network using a spike timing dependent learning rule.

2.4.1 From Hebbian rule to STDP
Hebbian theory describes a basic mechanism for synaptic plasticity, where an increase in
synaptic efficacy arises from the presynaptic cell’s repeated and persistent stimulation of
the postsynaptic cell. The theory is often summarized as "Cells that fire together, wire
together". But actually, to take part in firing the post-synaptic neuron, the pre-synaptic
neuron should fire just before. Hence STDP is just a temporally asymmetric form of
Hebbian learning induced by tight temporal correlations between the spikes of pre- and
postsynaptic neurons.

In the STDP process, if an input spike to a neuron occurs immediately before that neuron’s
output spike, then that input is made stronger. On the other hand, if the input spike to
a neuron occurs after its output spike, then it is an acausal case and that input wouldn’t
have played a role in the generation of the output spike and hence, that synaptic strength is
made weaker. Figure 2.3 illustrates the STDP function which shows the change of synaptic
weight as a function of relative timing of post and pre synaptic spikes.

Thus the inputs that might be the cause of the post-synaptic neuron’s excitation are
made even more likely and those which might not be the cause are made less likely to
contribute in future. The process continues until only a subset of initial set of connections
remain, while the influence of all others is reduced to zero. The ultimate subset of inputs
that remain are those that tend to be well correlated in time.

2.4.2 LTP & LTD
With STDP, repeated presynaptic spike arrival a few milliseconds before postsynaptic
action potentials leads in many synapse types to long-term potentiation (LTP) of the
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Figure 2.3: The STDP Function (Learning Window)

synapses, whereas repeated spike arrival after postsynaptic spikes leads to long-term de-
pression (LTD) of the same synapse as depicted in Fig 2.4.

The long lasting increase in synaptic strength or “potentiation” is the major cellular mech-
anism underlying learning or memory. And LTD is one of the several processes that
selectively weaken specific synapses in order to make constructive use of synaptic strength-
ening caused by LTP, because if allowed continuous increase in strength, then the synapses
would reach a ceiling level of efficiency which would inhibit encoding of new information.

The cellular mechanism underlying LTP and LTD are as follows: NMDA (N-Methyl D-
asparate) receptors detect the coincidence of glutamate release due to pre-synaptic spike
and the depolarization due to post synaptic spike and result in the supra-linear rise in post
synaptic calcium during LTP. But this requires that an action potential back propagates
from the initiation zone near the axon hillock into the dendritic tree making it all the way
into the synapse. And probably the post synaptic NMDA receptors are suppressed during
STDP timings inducing LTD.

2.4.3 Spike Timing Dependent Plasticity of axonal conduction
delays

It has also been argued that regulating the speed of conduction across long fiber tracts
would have a major influence on synaptic response, by coordinating the timing of afferent
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Figure 2.4: Enhancement (LTP) and Reduction (LTD) in synaptic efficacy

input to maximize temporal summation and that the increase in synaptic amplitude could
be as large as neurotransmitter-based mechanisms of plasticity, such as Long Term Poten-
tiation (LTP) [22]. Hence we propose that these temporal delays could be trained using
the Spike Timing Dependent Plasticity (STDP) kernel, which is a temporally asymmetric
variant of Hebbian learning. The idea is to simply fit the axonal conduction delays into
the STDP learning window. Training the axonal conduction delay on the presynaptic side
using the STDP function depending on the difference in the times the pre and post spikes
occur will ultimately ensure isochronicity at the post synaptic side.

2.5 Motion perception as a tool to assess myelo-modulation
Our visual system is able to accurately enable us to perceive spatial and temporal changes
in the visual scene as the image moves across the retinal surface, despite a number of
sources of variability that can reduce the precision of the spatio-temporal mapping onto
central visual areas. Even intuitively perception of motion, for the highly dynamic visual
function it is, qualifies as a tool to assess adaptive myelination. Additionally, there are
experimental and clinical evidences for the relevance of myelin plasticity in accomplishing
the perception of motion and its direction as illustrated below. Hence in our model, we
have used perception of motion of bars of different orientations in directions perpendicular
to their orientations to study the adaptive myelination.

2.5.1 Adaptation of conduction delays in retinal ganglion axons
The axons of retinal ganglion cells comprise of two segments: Unmyelinated ones as they
course across the retina from the cell soma to to the optic disk and myelinated segments
as they leave the retina to form the optic nerve. Conduction velocity is much slower in the
unmyelinated intra-retinal segment compared to the myelinated extra-retinal one. But it
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has been found that there is a strong negative correlation between the intra-retinal and
extra-retinal conduction time for axons of individual ganglion cells of X-cell class as seen in
Figure 2.5. The net effect was to produce a nearly constant total transmission time between
the soma of the retinal X-cell and its central target site and hence time-locked signals at the
central target site. Thus the variations in the conduction velocities and hence the axonal
propagation time of the retinal ganglion axons ensure that, regardless of the constraints
induced by the retinal topography, a precise spatio-temporal central representation of the
retinal image is maintained [4].

Figure 2.5: Strong negative correlation between the intra-retinal (unmyelinated) and extra-
retinal (myelinated) conduction time for the same retinal ganglion X-cell axons, the result
of which is a constant total transmission time and hence isochronicity [Adapted from [4]].

2.5.2 An Optic Neuritis study
In a study, patients with acute Optic Neuritis (ON), a demyelinating disease of the optic
nerve were studied and dynamic visual functions such as motion perception and Visually
Evoked Potentials (VEPs) were assessed repeatedly [23]. Their results demonstrated a
close correlation between motion perception deficit and prolonged VEP latency, which is
believed to reflect the demyelination of optic nerve fibers. Conduction velocity in the visual
pathway correlated closely with dynamic visual functions, implicating a need for rapid and
isochronous transmission of visual input to perceive motion. Motion perception level may
hence serve as a tool to assess the magnitude of myelination in the visual pathways.

2.6 Significance of myelin plasticity
Traditionally learning and plasticity in a neuronal network is associated only with synap-
tic weights as far as computational models are concerned. Though it defies the reality,
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this extreme simplification reduces the computational complexity and at the same time
works well especially in accomplishing all functions that are static in nature. But taking
into account the supplementary dimension to information processing that we have intro-
duced, helps in modeling highly dynamic networks. Now that it has been established that
myelination is no simple electrical insulation but rather an exquisite way of controlling
the dynamics of complex information processing in our brain, the model is also inching
one step closer to a more neurobiologically realistic representation of our brain function.
Additionally understanding myelination and its plasticity is underpinning the treatment of
demyelinating diseases and various other cognitive disorders as elaborated below.

2.6.1 Treating diseases of myelin
Adaptive changes in myelin forming cells and myelin sheath thickness and thereby the
conduction velocity represent a type of behaviorally relevant neural plasticity that could
indeed be leveraged for interventions in diseases of myelin. Human diseases such as Multiple
Sclerosis (MS) and inherited leukodystrophies in which the integrity of myelin sheath is
lost, make the importance of myelin for CNS functioning all the more apparent. Given that
recent studies are demonstrating an unprecedented level of myelin plasticity in the adult
CNS, identifying the mechanism that promotes or inhibits myelination during development
could aid in the goal of developing novel strategies to promote repair in the demyelinated
CNS. Especially if impulse activity could influence myelination even at later stages of
oligodendrocyte development, this could have immense relevance to treating demyelinating
diseases. Computational models of neuronal networks that learn temporal delays is the first
step towards modeling adaptive myelination and consequently way to explore the various
parameters that influence myelin plasticity that could of relevance to treating diseases of
myelin.

2.6.2 Effects on brain rhythms
The importance of myelin plasticity as an activity dependent plasticity also matters a
lot to complex information processing tasks that involve coupling and synchrony among
different brain rhythms of various frequencies which have been associated with selective
attention, sleep, memory formation, emotion, and consciousness. It has been suggested
that even small changes in Conduction Velocity (CV) resulting from subtle changes in
myelination and nodal structure will have major effects on oscillatory phenomena, their
interference and coupling [3]. Disruption in brain synchronization contributes to autism
by destroying the coherence of brain rhythms and slowing overall cognitive processing
speed. Thalamocortical dysrhythmia is associated with schizophrenia, obsessive compulsive
disorder, and depressive disorder, and the natural frequency of oscillations in the prefrontal
cortex are slower in individuals with schizophrenia.
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Chapter 3

Methods, Results and Discussions

This chapter is organized as follows:

• A simplified unit with three axonal branches and one post-synaptic neuron is con-
sidered and the delays are initially kept as fixed parameters and the time pattern
with which the pre-synaptic neurons must fire in order to maximize the post-synaptic
response is characterized

• This characterization is generalized to any number of input lines preceding the post-
synaptic neuron

• Subsequently an algorithm is proposed to train the conduction delays in the axons
of the simplified unit and the process involved in implementing the algorithm and
training the delays are discussed in detail

• Finally a complete network of three layers is simulated to achieve motion perception,
a dynamic visual function that could be used to assess myelin plasticity and the
usefulness of the algorithm is tested by applying it to train the delays in the network

3.1 Input time pattern characterization
The objective is to characterize the pattern of the arrival time of the impulses at the input
lines that would give rise to a high output response with the conduction delays in the input
lines, synaptic weights and threshold of the post synaptic neuron as network parameters.
The response is considered to be the amplitude of the summed PSPs and with a given
threshold, the response is analyzed for various time patterns.

A three input line network is simulated and with time at one branch as reference, the
response is plotted for varying impulse arrival times at the other two branches. A theoret-
ical analysis is also done to explain how close spikes must occur to result in high output
response.
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3.1.1 A simplified unit

Figure 3.1: A simplified unit with the major parameters

The network as seen in Figure 3.1 has impulses arriving from axons of three neurons as
inputs and one neuron at the output. The objective is to figure out the patterns of arrival
time vector [t1 t2 t3] that results in a sufficiently high amplitude PSP which could result
in an impulse at the output depending on threshold. The following are fixed parameters
of the network:

• Delay Vector: τ1 = 50, τ2 = 20, τ3 = 0

• Weight Vector: The synaptic weights determine if there is an EPSP/IPSP at the
post synaptic side. In the current context, we have assumed unit positive weight at
all the synapses.

• Threshold at the soma: The threshold at the soma determines the number of time
patterns that give an impulse at the output.

• Constraints on the time pattern: We have assumed the arrival time of the input
impulse at the first axon to be 0. All the possible arrival times with respect to this
are constrained to be within 0 and 80 msecs.

3.1.2 Results and Analysis
For varying patterns of arrival times t2 & t3, we have found the summation of the resulting
PSPs from all the three input lines and plotted the amplitude/max of the summed PSP for
the varying arrival times as seen in Figure 3.2. Following are the the various possible time
patterns that result in an impulse on the post synaptic side for different given thresholds
vth:
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Figure 3.2: Summed PSP variation for different arrival time patterns

Case 1: 2 ≤ vth < 3 V
There are three input lines and given the fixed delay vector [τ1 = 50, τ2 = 20, τ3 = 0],
there is only one time pattern for which all the PSPs can converge to give the maximum
possible amplitude of three. Here, this case occurs for [t1 = 0, t2 = 30, t3 = 50]. This can
be seen in the Figure 3.2 as the red spot.

Case 2: vth < 2 V
Out of the 3 branches if PSPs from any two converge, we will get an amplitude of 2 for
the summed PSP. Hence there are 3 kinds of patterns which appear as green lines in the
Figure 3.2:

• t3 can be anything and t2 = 30 in which case PSPs from the first two branches will
coincide perfectly to give amplitude 2 and above.

• t2 can be anything and t3 = 50 in which case PSPs from the first and third branches
will coincide perfectly to give amplitude 2 and above.

• t3 − t2 = 20 in which case the arrival times and the delays of the branches 2 and 3
add up accordingly such that the resulting PSPs coincide exactly to give amplitude
2 and above.

Depending on the threshold, the output neuron responds to just one arrival time pattern
or multiple kinds of patterns. For example if the threshold is as high as 2.9 then only a
3 × 4 array of times t2 & t3 (out of the 50 × 50 possibilities) will give a response at the
output.
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3.1.3 Extrapolation of Results to a simplified unit with any num-
ber of branches

The results can be extended to a generic case where there are n input lines, (i.e) impulses
arriving from axons of n neurons as input and one neuron at the output. The amplitude
of summation of PSPs and the pattern the amplitude will take can be understood by the
following way:

There can be various levels of amplitudes. If PSPs from atleast two branches coincide,
the amplitude is 2 and the maximum amplitude is n when PSPs from all the n branches
coincide. There are

(
n
r

)
ways in which PSPs from r branches out of the n coincide and

there will be those many hyper planes with amplitude r. The total number of such hyper
planes is: (

n

2

)
+
(
n

3

)
+ ...+

(
n

n

)
= 2n − n− 1 (3.1)

3.1.4 Theoretical Analysis

Here, we theoretically analyze how close two post synaptic spikes should occur so that the
second one increases the amplitude of the existing summed PSP amplitude.

Let PSPs occur at times ξi = ti + τi and decay exponentially with time constant κ which
is a constant for all PSPs. If the PSPs are added to an existing variable "summed psp" as
and when they occur, there would be peaks only at ξi ∀ i = 0, 1, 2, 3... Let those peaks be
Ai ∀ i = 0, 1, 2, 3... Assuming A0 = 1, Ai ∀ i = 1, 2, 3... can be computed recursively and a
closed form expression can be obtained as follows. Note that the subscripts do not denote
the number of the branch. It is ordered according to the time at which a PSP occurs.

A1 = A0e
−(ξ1−ξ0)/κ + 1

= e−(ξ1−ξ0)/κ + 1
A2 = A1e

−(ξ2−ξ1)/κ + 1
= (e−(ξ1−ξ0)/κ + 1)e−(ξ2−ξ1)/κ + 1
= e−(ξ2−ξ0)/κ + e−(ξ2−ξ1)/κ + 1

...

...

Ai = e−(ξi−ξ0)/κ + e−(ξi−ξ1)/κ + e−(ξi−ξ2)/κ + ...+ e−(ξi−ξi−1)/κ + 1
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Now, at some time instant if I want the next PSP to cause an increase in the amplitude of
the PSP_ Sum (i.e), Ai+1 > Ai then the following condition must be satisfied:

Aie
−(ξi+1−ξi)/κ + 1 > Ai

⇒ e−(ξi+1−ξi)/κ >
Ai − 1
Ai

⇒ (ξi+1 − ξi) < κ ln( Ai
Ai − 1)

So, we get a relationship for how close two post synaptic spikes must occur so that the
second one increases the amplitude of the existing summed PSP.

Now, consider the case where there are totally n branches and there is one spike from each
branch leading to a PSP. If n-1 PSPs occur at the same time (i.e), ξ1 = ξ2 = ... = ξn−1
(Without loss of generality, assume ξ1 = 0) and just one PSP occurs at a later time (ξn),
then we get an amplitude of n-1 or above. And there are

(
n
1

)
= n ways this situation could

occur. In this case, the following analysis gives a condition for how close the last spike
must be to result in an amplitude that is more than n-1.

An−1 = n− 1
An = An−1e

−(ξn−ξn−1)/κ + 1
= (n− 1)e−ξn/κ + 1

Now, if An > An− 1
⇒ An−1e

−ξn/κ + 1 > An−1

⇒ e−ξn/κ >
An−1 − 1
An−1

⇒ ξn < κ ln( An−1

An−1 − 1)

⇒ ξn < κ ln(n− 1
n− 2)

For example, consider the case when there are 3 branches (n=3). Consider the situation
when ξ1 = ξ2. The minimum amplitude is 2 which could occur in 3 ways when spikes from
any 2 of the 3 branches coincide. The analysis done above could be used to determine how
close the third spike must be so that the net PSP has an amplitude that is more than 2.
Substituting A2 = 2, we get:

ξ3 < κ ln(2)
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3.2 Training conduction delays in a network

3.2.1 Spike Timing Dependent Myelin Plasticity (STDMP)
In order to train the conduction delays, we have used an algorithm that is depended on
impulse timings. Spike timing dependent plasticity (STDP) algorithm is typically used to
adjust the synaptic strength between neurons based on the relative timing of a particular
neuron’s output and input action potentials. Here the idea is to fit the axonal conduction
delays into the standard STDP kernel/Learning window.

3.2.2 STDMP Implementation

Figure 3.3: Implementation using local variables (traces)

Figure 3.3 represents a method of implementing STDMP using local variables as fol-
lows: Pre-synaptic spike leaves a trace x(t) read out at the moment of post synaptic spike
and a post synaptic spike also leaves out a trace y(t) read out at the moment of the pre
synaptic spike. This trace y(t) could be interpreted as the voltage at the synapse caused
by a back-propagating AP or by calcium entry due to a back-propagating AP.

We assume that the conduction delay τ caused by the myelinating glia increases at the
moment of post synaptic firing by an amount proportional to the value of trace x(t) left
by the presynaptic spike and decreases at the moment of pre-synaptic spike by an amount
proportional to the trace y(t) left by the previous post synaptic axonal spike:

dτ

dt
= A+x(t)

∑
n

δ(t− tpost)− A−y(t)
∑
f

δ(t− tpre) (3.2)

where tpre = tah + τ . In the above equation tpre refers to the time, the impulse arrives just
before the synapse, tah refers to the time, the impulse starts at the axon hillock before pass-
ing through the delay line and tpost refers to the time, the post synaptic axonal spike occurs.
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Thus, if the pre synaptic spike occurs before the post synaptic spike, the axonal con-
duction delay will increase, resulting in a scenario similar to LTP as seen in Figure 3.4.
Similarly, if the post synaptic spike occurs before pre synaptic spike, the conduction de-
lay decreases, resulting in a scenario similar to LTD as seen in Figure 3.5 and eventually
the two spikes tend to occur at the same time. This indicates convergence for the STDP
algorithm.

Figure 3.4: STDP to train conduction delays in a scenario similar to LTP

3.2.3 A simplified unit to train conduction delays
Figure 3.6 shows the model of the network implemented. Here I have considered as input
impulses from axons of three incoming neurons and a single neuron at the output. The
objective is to train the conduction delays caused by the myelin sheaths on the axons
which serve as the input lines to each of the dendritic branches of the output neuron in
an unsupervised manner to attain the optimum arrival time of post synaptic spikes at the
soma of the output neuron.

3.2.4 Process involved in training the delays
There are several batches of training of the delays each spanning consecutive 100 msecs in
time. Initially the delays in each input axon is initialized to zero and it is updated in every
iteration. The pre synaptic side is stimulated in every batch of the training. The time the
pre synaptic AP occurs in every iteration is the delay added to the initialized value relative
to that 100 msecs. The number of batches or iterations is decided based on when the pre
synaptic spikes converge together to give an impulse of very high strength. Each iteration
comprises of the following processes:
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Figure 3.5: STDP to train conduction delays in a scenario similar to LTD

3.2.5 Obtaining PSPs and summation at the soma
The pre synaptic AP at each branch gives rise to a PSP which could be excitatory or in-
hibitory depending on the synaptic weight. I have assumed unit weight at all the synapses.
As depicted in Figure 3.7 the PSP is obtained using the alpha function defined below. Fig-
ure 3.8 illustrates the summation of the various PSPs from different dendrites happening
at the soma of the output neuron.

α(t) = W.[t− t0
τ

].e
1−[
t− t0
τ

]
, t > t0 and 0 otherwise (3.3)

3.2.6 Dynamic Threshold
The summed PSP is fed as the input current to a Leaky Integrate and Fire neuron (LIF)
and to determine when its membrane potential must be reset, a threshold is updated in
every iteration. Initially the threshold is kept zero so that there is an AP at every point even
if the PSP is very small in magnitude. This would ensure that there are enough number
of changes in delay in the first iteration owing to STDMP every time a pre synaptic or
a post synaptic AP occurs. As a simplified approach, the threshold is then increased in
every new iteration linearly at a constant rate so that the number of post synaptic APs
keep decreasing so that the STDP algorithm converges.

3.2.7 STDMP Algorithm
With the pre synaptic and post synaptic APs computed in every iteration as described
above, the STDMP rule is applied to obtain the traces for each of the spike and accordingly
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Figure 3.6: The simplified unit used to demonstrate training of conduction delays using
STDMP

Figure 3.7: Alpha Function to obtain PSP

modulate the conduction delays. The updated delay is used to change the pre synaptic
spike time in the next batch of training. Coefficients that modulate the rate of increase and
decrease in delay (A+ & A− in Equation 3.2) are important parameters that determine
whether there is a net increase or decrease in delay at the end of all batches of training.

3.2.8 STDMP Results
Figure 3.9 shows the results of STDMP rule applied to all the three input lines to modulate
the delays over 8 batches of training each spanning 100 msecs. It can be seen that at the
end of the training, the delays decrease in certain lines and increase in other lines.

Figure 3.10 shows the pre synaptic and post synaptic APs over the various batches
of training. As mentioned before, the threshold is dynamically adjusted to ensure that
initially there are a large number of post synaptic APs so that even pre synaptic spikes
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Figure 3.8: Summation of PSPs from different dendrites at the soma

which are initially placed very far off could also be accommodated for training of the de-
lays. Eventually as the threshold increases, it can be seen that the number of post synaptic
spikes decreases and the pre synaptic spikes converge.

Figure 3.11 shows the summation of PSPs at each batch of the training and also the
linearly increasing threshold levels against which the summed PSP is compared. It can be
seen that the amplitude of the summed PSP increases with training since the pre synaptic
spikes converge as the conduction delays are accordingly trained.

By training the conduction delays, we have seen how the plasticity of the myelinating
glia could affect the arrival time of an input through an axon. In a simple network level
we have showed that this could affect the simultaneous arrival of multiple inputs in neu-
ral circuits. It can hence be interpreted that the conduction delays increase or decrease
(possibly because the myelin sheath thickness decrease or increase) to ensure that there is
optimum conduction velocity resulting in isochronicity of impulses for critical information
flow.
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Figure 3.9: STDMP over 8 batches of training each for 100 msecs

Figure 3.10: Pre synaptic and Post synaptic APs over the batches of training
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Figure 3.11: Amplitude of the summed PSP increasing with training
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3.3 Motion perception model to assess myelin plas-
ticity

3.3.1 Model Overview

Figure 3.12: Motion Perception Model Architecture

The simulated network consists of three layers as shown in Figure 3.12. The input layer
represents different motions of bars of various orientations across the receptive field and
the subsequent layer is a 10× 10 lattice of neurons wherein a particular neuron maximally
responds to a bar of a particular orientation at a particular location on the receptive
field. The weights are trained such that the topology is preserved in this transformation
of the incoming signal pattern resulting in a Self Organizing Map (SOM). For every bar
orientation considered, the various static outputs of SOM for different locations of the bar
are cascaded together along with a time stamp as the bar of the particular orientation
moves from one location in the receptive field to other. This time varying spike pattern is
fed to the third layer which is a 20× 1 lattice of Leaky Integrate and Fire (LIF) neurons.
The weights and the delays are trained between the second and the third layer. The
weights are trained using the hebbian rule and the delays are trained using the proposed
STDMP algorithm as elaborated in Section 3.2 and thus different neurons in this output
layer are tuned to respond to a unique dynamic spike pattern and hence a unique direction
of motion of a bar of a particular orientation. Additionally, since a neighborhood of the
winner is trained every time similar to the technique used in a traditional SOM, there is a
topological ordering such that for a particular bar orientation, the two directions of motion
perpendicular to the orientation always elicit neurons in the neighborhood of each other.

3.3.2 Layer I: Inputs over the receptive field

The layer I represents the input presented to the SOM, which is the motions of bars of
different orientations across the receptive field. Four orientations θ = 0◦, 45◦, 90◦, 135◦ are
considered and the directions of motions are presumed to be only perpendicular to the bar
orientation. Hence, there are eight cases of bar motions in all as seen in Figure 3.13.

39



Figure 3.13: Cases 1-8 depicting the bars of different orientations and their directions of
motion with time

3.3.3 Layer II: Self Organizing Map
A bar of a particular orientation at a particular location in the receptive field is taken as
one input fed to the SOM. The output lattice here is a 10×10 2D lattice and one neuron in
the lattice maximally responds to one input. But the principal goal of SOM is to preserve
the topological ordering of the incoming signal patterns. In other words, weights would
be trained accordingly so that nearby inputs elicit spikes in nearby neurons in the output
lattice. Here, the various spatial locations of bars of each orientation are all mapped closely
together in the output lattice such that they form separate clusters as illustrated in Figure
3.14.

Figure 3.14: Pictorial representation of (A) the input patterns and (B) the output of
the SOM corresponding to each input pattern [The SOM is a 10 × 10 lattice wherein red
denotes the neuron with maximal response and blue the neuron with minimal response for
each input pattern]
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The algorithm responsible for formation of SOM proceeds first by initializing the synap-
tic weights in the network. For each input pattern, the neuron whose weight vector has
the minimum euclidean distance from the input vector is declared the "winner neuron".
The winner neuron is (i∗,j∗) for which yi∗j∗ > yij ∀ (i, j) 6= (i∗, j∗). The winning neuron
determines the spatial location of a topological neighborhood of excited neurons, thereby
providing the basis for cooperation among such neighboring neurons. As in competitive
learning, the weight vector of the winner should be moved closer towards the input x . In
addition, the weights of the neurons close to the winner are also moved towards the input
but with a lower learning rate that decays exponentially as the distance of the neuron from
the winning neuron increases:

4wi∗j∗ = η(x− wi∗j∗) (3.4)

4wij = ηλ(i, j, i∗, j∗)(x− wij) (3.5)

where (i, j) ∈ N where N is the neighborhood that decreases exponentially with time as
the training progresses and λ(i, j, i∗, j∗) = exp(−(i− i∗)2 − (j − j∗)2).

3.3.4 Processing of layer II output
The layer II, self organizing map’s response is processed before being fed into the output
layer, layer III. Currently we have obtained a separate response from the SOM for every
spatial location of the bar on the receptive field. But to perceive motion, we would like
to encode the variation in spatial locations over time for every bar orientation. Hence we
interpret the input patterns of bars of each orientations as they move across the receptive
field to be cascaded one after the other with a time stamp each. The 10×10 SOM is viewed
as a 100 × 1 SOM for simplicity and for each time step, only the neuron that maximally
responds is considered to elicit a spike. Figure 3.15 shows the processing for 2 cases of
bar motions. It can be seen that for the two directions of motion for a bar of a particular
orientation, the spikes elicited in the 100× 1 lattice over time is just a mirror image with
respect to the time axis. In other words, motion in opposite directions excite the same
neurons but in the reverse order with respect to time.

3.3.5 Layer III: Output layer of spiking neurons
Figure 3.16 pictorially demonstrates how the SOM output is processed into dynamic spike
trains and subsequently fed to the output layer to train the weights (w) and the delays
(τ) between layer II and layer III. Here, unlike the previous layers the delay is a crucial
parameter that must be trained in order to encode the dynamics in the neuronal activity.
Additionally, to make the network more realistic, this is a layer of spiking neurons.

The eight cases of bar motions and their resultant dynamic spike patterns can also be
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Figure 3.15: A: Two directions of motion for a bar oriented at θ = 0◦ B: Output of the
10 × 10 SOM corresponding to each input pattern wherein red denotes the neuron with
maximal response and blue the neuron with minimal response C: Processed layer II output;
White bar denotes the spike elicited by the neuron that maximally responds to the input
at any given time step

represented as shown in Figure 3.17. Color coding and representing such higher dimen-
sional data in lower dimensions makes visualization easier as it will be seen later. Here
for each of the 8 cases, the occurrence of spikes over the ten time steps is captured in one
vertical each using the color coding. The weights are trained using hebbian rule unlike
the delays which are trained using STDMP. Since the training of conduction delays under-
pins the entire encoding of the spike dynamics, stringent temporal correlation is necessary,
whereas training the weights is merely to suppress the connections from the many neurons
in the second layer that are not excited at all. Hence the simple hebbian rule is sufficient
to train the weights to achieve the required results. An important point to be noted is that
the synaptic weights must be normalized after applying hebb’s law:

4wi = η.y.xi (3.6)

where
y =

n∑
i=1

wixi (3.7)

and normalization is done following that as:

w ←− w/||w|| (3.8)

This prevents the weights from growing without bound and constraints the weight vector
to be of unit norm. Additionally, it also introduces competition between the input neurons
that results in pruning of the unnecessary weights: for one weight to grow, another must
shrink. Figure 3.18 B shows the synaptic weights from all the neurons in layer II to the
corresponding winner neuron in each case. It can be seen that except for the neurons that
are excited in layer II, all other neurons have their synaptic efficacy pruned.
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Figure 3.16: Processed second layer output is fed to the third layer to train the delays (τ)
and the weights (w)

Furthermore, the delays are simultaneously trained using the STDMP algorithm. The
pre synaptic spikes are the dynamic spikes processed from the layer II output, delayed
by the initialized values of the axonal conduction delays between layer II and III. PSPs
are calculated from these spikes by modeling the synapse using an alpha function with the
weights as coefficients. The PSPs are temporally summed at the soma and this is the input
current I(t) fed to the LIF neurons of the output layer. The neuron in the output layer for
which the integrated PSP sum is maximum is considered as the winner. The post synaptic
spikes are subsequently calculated from the membrane potential of the LIF neuron, which
is modeled as just a "leaky integrator" of its input I(t):

τm
dv

dt
= −v(t) +RI(t) (3.9)

where v(t) denotes the membrane potential at time t, τm is the membrane time constant
and R is the membrane resistance. The equation describes a simple RC circuit where the
leakage term is due to the resistor and the integration of I(t) is due to the capacitor in
parallel with the resistor. The spiking event is not explicitly modeled in the above equa-
tion. Instead, when the membrane potential v(t) reaches a certain threshold vth (spiking
threshold), it is instantaneously reset to a lower value vr (reset potential) and the leaky
integration process starts anew. In this model, the threshold is also dynamic and trained
along with the weights and delays in a linear fashion with every epoch of training. As
STDP proceeds, the PSP amplitude increases and this would result in more number of
post synaptic spikes had threshold been constant and as a result, STDP would never con-
verge. Hence increasing the threshold is necessary.

Figure 3.19 shows the tight correlation between the input spike patterns (A) and the
trained delays (B). It can be seen that input AP arrival time added with the correspond-
ing delay for every line from the active neurons in layer II would result in the same value
implying isochronicity/synchrony at the post synaptic side attained after training. From
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Figure 3.17: A: Dynamic spike patterns after processing layer II output B: Alternative
representation of A using color coding to represent timings of spikes [Blue denotes the
neuron that spikes at the first time step and red denotes the neuron which spikes at the
last time step]

(B) it can also be noted how the delays are randomly initialized for all lines and owing to
STDP, only the delays in the lines where spikes occur are appropriately trained.

Thus for every case of bar motions, a winner having the maximum summed PSP am-
plitude is identified. Figure 3.20 (B) shows the integrated PSP amplitude for the various
neurons of the output layer and (C) shows the winner alone in each case. Similar to the
technique used in training SOMs, the delays of the neighbors of the winners are also trained
using STDP in every iteration. Thus, as seen in the figure the integrated PSP amplitude
varies gradually around the winner in each case. This results in a topological ordering in
the output as it can be seen in (C). The winner neurons of cases I & V, II & V1, III &
VII, IV & VIII are always in the neighborhood of each other. In other words, the two
directions of motion for bars of every orientation always excite neurons that are adjacent
to each other.
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Figure 3.18: A: SOM output as dynamic spike patterns whose timings are color coded
[Blue denotes the neuron that spikes at the first time step and red denotes the neuron
which spikes at the last time step] B: Synaptic weights from all neurons in layer II to the
corresponding winner neuron for each case of bar motions [black denotes weight = 0 and
white tends to a weight of 1]

Figure 3.19: A: SOM output as dynamic spike patterns whose timings are color coded
[Blue denotes the neuron that spikes at the first time step and red denotes the neuron
which spikes at the last time step] B: Conduction delays in the axons from all neurons in
layer II to the corresponding winner neuron for each case of bar motions [color denotes the
value of the delay ]
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Figure 3.20: A: The various cases of bar orientations and directions of motionB: Integrated
PSP amplitude for every neuron in the output layer for each case C: Winner neurons in
the output layer which are the neurons with maximum PSP amplitude in each case
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Chapter 4

Conclusion

• Until recently, learning and plasticity in the brain has been associated only with
synaptic weights. Here, we primarily emphasize the importance of axonal conduction
delays as an added dimension to information processing in the brain.

• We have considered simplified units of few axonal branches, a post synaptic neuron
and the time pattern of firing of the pre-synaptic neurons that results in maximum
post-synaptic response has been characterized computationally and theoretically as
shown in Section 3.1

• The review of the state of art has also revealed experimental evidence for the fact
that these delays are not merely hard-wired values but time varying variables as seen
in Section 2.2. The dynamics of these delays are attributed to the myelin plasticity
brought about by the oligodendrocytes, glial cells that are responsible for myelination
in the CNS.

• The various mechanisms that could be underpinning adaptive myelination has been
reviewed and especially how electrical impulses and their timings hold relevance to
myelin plasticity has been analyzed as shown in Section 2.3

• Subsequently we have developed an algorithm as demonstrated in Section 3.2 that
is dependent on the spike timings to train the delays. This algorithm is motivated
from the traditional STDP algorithm that results in LTP and LTD of the synaptic
efficacy.

• Motion perception, a highly dynamic visual function is considered to assess the myelin
plasticity. As illustrated in Section 3.3, a three layered network is used to achieve
motion perception of bars of various orientations and the algorithm developed is
used to train the axonal conduction delays and consequently the usefulness of the
algorithm in characterizing adaptive myelination is analyzed.
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4.1 Scope and Future Work
• Currently, the motion perception model used to assess myelin plasticity is a three

layered network wherein the output layer is a one-dimensional layer of twenty neurons.
This layer could be extended into a two-dimensional layer to make it more realistic
since a very thin slice of our cerebral cortex can be considered to be two-dimensional.

• Apart from direction sensing, even velocity sensing can be used as a tool to assess the
myelin plasticity and the usefulness of the proposed algorithm. The input patterns
to be presented to the SOM must be bars of various orientations with different rates
of motion.

• The STDMP algorithm that we have proposed here states that the myelin thickness
varies on an appropriate time scale depending on the relative pre-post spikes tim-
ings. This proposition if experimentally verified could lead us to the answer to the
precise molecular mechanisms underlying myelin plasticity which would in-turn aid
in development of novel strategies to treat demyelinating disorders.
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Appendix

Code for motion perception model: layer II SOM

1 c l e a r a l l ;
2 inp_cases=40;
3 %Input to the SOM
4 [ inp , inp_dimn]= input_to_spatial_som ( inp_cases ) ;
5 inp_plot=modify_input_for_plott ing ( inp ) ;
6

7 m_latt ice=10;
8 n_la t t i c e =10;
9 %i n i t i a l i z a t i o n o f weights

10 w=in i t i a l i z e_we i g h t s ( m_lattice , n_lat t i ce , inp_dimn ) ;
11

12 etao=5;
13 do=10;
14 T=1000;
15 t=1;
16

17 whi le ( t<=T)
18 eta=etao ∗exp(−t /T) ;%l e a rn i ng ra t e
19 d=round ( do∗exp(−t /T) ) ;%neighborhood
20 wstar=ze ro s ( inp_cases , 2 ) ;
21 f o r i =1: inp_cases
22 wstar=find_winner_spatial_som ( i , inp ,w, m_lattice , n_lat t i ce

, inp_dimn , wstar ) ;
23 w = train_wts_spatial_som ( inp , i ,w, wstar , inp_dimn , eta , d ,

m_lattice , n_ la t t i c e ) ;
24 end
25 t=t+1;
26 end
27

28 y = fn_plot ( inp_plot , inp , m_lattice , n_lat t i ce ,w, inp_dimn , inp_cases
) ;
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29 %Convert the 10∗10 2d output l a t t i c e s t imu la t i on in to a sequence
o f time

30 %frames o f 100∗1 po in t s s t imu la t i on to f e ed i t i n to the next
l ay e r

31 inp_2=input_for_next_layer ( m_lattice , n_lat t i ce , wstar ) ;
32 save ( ’ inp_2 .mat ’ , ’ inp_2 ’ ) ;
33 f i g u r e (2 ) ;
34 f o r i =1:4
35 subplot (1 , 4 , i ) ;%4 d i r e c t i o n s o f movement
36 imagesc ( inp_2 ( : , : , i ) ) ;
37 end
38 colormap ( gray ) ;

Code for motion perception model: output layer

1 c l e a r a l l ;
2 %The output o f the s p a t i a l SOM given as input
3 load ( ’ inp_2 ’ ) ;
4 n=length ( inp_2 ) ;
5 T=10;
6 n_op=20;
7 n_epoch=10;
8 t_max=50;
9 eta =0.05;

10 eta_nbhr=0.02;
11 d=6;
12 v_thresh =0.5 ;
13 n_cases=80;%Reverse movements f o r each o f the d i r e c t i o n s
14 winner = ze ro s ( n_epoch , n_cases ) ;
15 tau = round(1+rand (n , n_op) ∗(10−1) ) ;
16 wt = ones (n , n_op) ;
17 %Input to t r a i n the de lays
18 input = input_to_temporal_map ( inp_2 , n_cases , n ,T) ;%Just appending

the re sponse f o r r e v e r s e movement
19 f i g u r e (1 ) ;
20 f o r i =1:8
21 subplot (1 , 8 , i ) ;
22 imagesc ( input ( : , : , i ∗10) ) ;
23 colormap ( gray ) ;
24 end
25

26 %Input to t r a i n the weights
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27 inp_wt = input_to_train_wts ( input , n ,T, n_cases ) ;%average over time
frames

28

29 f o r epoch=1:n_epoch
30 f p r i n t f ( ’ Epoch : %d\n ’ , epoch ) ;
31 pre_trace=ze ro s (n_op , n) ;
32 post_trace=ze ro s (n_op , n) ;
33 max_psp_sum=ze ro s ( n_cases , n_op) ;
34 v_thresh=v_thresh +0.1 ;
35 d=d−2;
36 f o r t r a i n =1: n_cases
37 f p r i n t f ( ’ Train ing Case : %d\n ’ , t r a i n ) ;
38 psp_sum = ze ro s (n_op , t_max) ;
39

40 input_del=ze ro s (n , t_max , n_op) ;
41 f o r neuron=1:n_op
42 %Delay the inputs by tau ’ s f o r each l i n e f o r each

neuron
43 input_del = delay_the_input ( input_del , t ra in , neuron ,

input , tau , n ,T) ;
44 %Calcu la te psps and t h e i r summation f o r each neuron
45 [ psp_sum ,max_psp_sum ] = psp_summation ( input_del , wt , n ,

T, t_max , neuron , psp_sum ,max_psp_sum , t r a i n ) ;
46 end
47 %Find the winner neuron with the h i ghe s t psp_sum

amplitude
48 winner = find_the_winner (max_psp_sum , winner , epoch , t ra in ,

n_op) ;
49 win=winner ( epoch , t r a i n ) ;
50 V=l i f_neuron (psp_sum , t_max , n_op , v_thresh ) ;
51

52 %Train weights us ing hebbian to suppres s l i n e s with no
pre sp i k e s

53 y_avg=1;
54 wt ( : , win )=wt ( : , win )+eta ∗y_avg∗ inp_wt ( : , t r a i n ) ;
55 wt ( : , win )=wt ( : , win ) . / norm(wt ( : , win ) ) ;
56 %Train the de lays o f the winner us ing STDP
57 tau = stdp_for_winner_li f_neuron (V, pre_trace , post_trace ,

input_del , tau , n , t_max , win ) ;
58

59 j s t a r=win ;
60 f o r dd=1:d
61 j j=j s t a r−dd ;
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62 i f ( j j >=1)
63 tau = stdp_for_nbhr_lif_neuron (V, pre_trace ,

post_trace , input_del , tau , n , t_max , j j ) ;
64 y_avg=1;
65 wt ( : , j j )=wt ( : , j j )+eta_nbhr∗y_avg∗ inp_wt ( : , t r a i n ) ;
66 wt ( : , j j )=wt ( : , j j ) . / norm(wt ( : , j j ) ) ;
67 end
68

69 j j=j s t a r+dd ;
70 i f ( j j <=n_op)
71 tau = stdp_for_nbhr_lif_neuron (V, pre_trace ,

post_trace , input_del , tau , n , t_max , j j ) ;
72 y_avg=1;
73 wt ( : , j j )=wt ( : , j j )+eta_nbhr∗y_avg∗ inp_wt ( : , t r a i n ) ;
74 wt ( : , j j )=wt ( : , j j ) . / norm(wt ( : , j j ) ) ;
75 end
76 end
77 end
78 end
79 %Plot time a r r i v a l at a l l the branches f o r each o f the 8 motions
80 t ime_arr iva l=ze ro s (100 ,8 ) ;
81 f o r k=1:8
82 f o r i =1:10
83 f o r j =1:100
84 i f input ( j , i , k∗10)==1
85 t ime_arr iva l ( j , k )=i ;
86 end
87 end
88 end
89 end
90 f i g u r e (2 ) ;
91 imagesc ( t ime_arr iva l ) ;
92 co l o rba r ( ) ;
93

94 %Plot cor re spond ing de lays
95 tau_fin=ze ro s (100 ,8 ) ;
96 f o r i =1:8
97 winn=winner ( n_epoch , i ∗10) ;
98 tau_fin ( : , i )=tau ( : , winn ) ;
99 end

100 f i g u r e (3 ) ;
101 imagesc ( tau_fin ) ;
102 co l o rba r ( ) ;
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103

104 %Plot cor re spond ing weights
105 wt_fin=ze ro s (100 ,8 ) ;
106 f o r i =1:8
107 winn=winner ( n_epoch , i ∗10) ;
108 wt_fin ( : , i )=wt ( : , winn ) ;
109 end
110 f i g u r e (4 ) ;
111 imagesc ( wt_fin ) ;
112 colormap ( gray ) ;
113

114 %Plot the winner out o f the 20 output neurons f o r each o f the 8
motions

115 winner_f ina l = winner_final_epoch ( winner , n_epoch , n_cases , n_op) ;
116 f i g u r e (5 ) ;
117 imagesc ( winner_f ina l ) ;
118 colormap ( gray ) ;
119 x l ab e l ( ’Output neuron number ’ , ’ f o n t s i z e ’ ,12) ;
120 y l ab e l ( ’ Train ing case number ’ , ’ f o n t s i z e ’ , 12) ;
121 t i t l e ( ’The winner neuron f o r each t r a i n i n g case ’ , ’ f o n t s i z e ’ , 14) ;
122

123 f i g u r e (6 ) ;
124 imagesc (max_psp_sum) ;
125 x l ab e l ( ’Output neuron number ’ , ’ f o n t s i z e ’ ,12) ;
126 y l ab e l ( ’ Train ing case number ’ , ’ f o n t s i z e ’ , 12) ;
127 t i t l e ( ’The output (max psp sum) f o r each t r a i n i n g case ’ , ’ f o n t s i z e

’ ,14) ;
128 co l o rba r ( ) ;

Code for an STDMP implemtation

1 f unc t i on tau = stdp_for_winner_li f_neuron (V, pre_trace_del ,
post_trace_del , input_del , tau , n , t_max , win )

2

3 xh i s t = ze ro s (n , t_max) ;
4 yh i s t = ze ro s (n , t_max) ;
5 d e l h i s t = ze ro s (n , t_max) ;
6 [ pks , l o cn s ]= f indpeaks (V(win , : ) ) ;
7 post_spikes_time=locn s . / 1 0 0 ;
8 dt=1;
9 a=0.65;b=0.65;%This va lue g i v e s the p e r f e c t de lay p l o t

10 f o r i =1:1 :n
11 x=pre_trace_del (win , i ) ;
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12 y=post_trace_del (win , i ) ;
13 de l=tau ( i , win ) ;
14 f o r t =1:1 :t_max
15 x = x∗exp(−dt /80) ;% tau_{+} = 80
16 y = y∗exp(−dt /30) ;% tau_{−} = 30
17 i f ( input_del ( i , t , win )==1)
18 x=x+1;
19 end
20 f o r z = 1 : l ength ( post_spikes_time )
21 post = post_spikes_time ( z ) ;
22 i f ( t == round ( post ) )
23 y = y + 1 ;
24 end
25 end
26 xh i s t ( i , t )=x ;
27 yh i s t ( i , t )=y ;
28 % Dynamics o f de lay
29 i f ( input_del ( i , t , win )==1)
30 de l = de l − b∗ yh i s t ( i , t ) ;
31 end
32 f o r z = 1 : l ength ( post_spikes_time )
33 post = post_spikes_time ( z ) ;
34 i f ( t == round ( post ) )
35 de l = de l + a∗ xh i s t ( i , t ) ;
36 end
37 end
38 d e l h i s t ( i , t ) = de l ;
39 end
40 tau ( i , win )=round ( de l ) ;
41 pre_trace_del (win , i )=x ;
42 post_trace_del (win , i )=y ;
43 end
44

45 end
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