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ABSTRACT

KEYWORDS: Ring amplifier; Offset voltage; Stabilization mechanism; Over-

shoot; Dead-zone; Progressive reduction; Settling; Design proce-

dure; Noise; Inter-reciprocity in LPTV systems; OTA

This report studies the steady state solution of a ring amplifier based switched capac-

itor circuit, analysing its structure and steady state mechanism in detail. An already

available first order model is extended to include effects of slewing and parasitic capac-

itances. Based on the detailed analysis, a design procedure is formulated to help fix the

transistor dimensions in the circuit.

The noise of the ring amplifier is analysed by using inter-reciprocity in LPTV net-

works with sampled outputs. The variation of noise with different parameters is studied.

A frequency domain noise analysis of OTA based switched capacitor circuits is done,

and the two noise analyses are compared.
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CHAPTER 1

INTRODUCTION

As stated in (Fiorenza et al., 2006), designing traditional switched capacitor circuits (us-

ing op-amps and OTAs) has become an increasingly demanding task in scaled CMOS

technologies. Lower supply voltages implies lower signal swing. Lower output resis-

tances in scaled circuits leads to lower DC gains for traditional operational amplifiers.

(Hershberg et al., 2012) states that technology scaling is designed to favour the world

of high-speed digital design, but not the traditional op-amp, which is fundamentally ill-

suited to scaling. A truly scalable amplifier takes the features of scaled CMOS which

favour digital design, and uses them to its advantage.

One attempt made in this regard was the CBSC, that is, comparator based switched

capacitor circuit (Fiorenza et al., 2006), which has the potential for significant power

reduction when compared to traditional op-amp based circuits. Also, CBSC designs

are more amenable to design in scaled environments and are free from feedback and

stability concerns.

Another alternative, the ring amplifier or RAMP or ring-amp (Hershberg et al.,

2012), is the focus of this discussion. It embodies all the essential elements of scal-

ability. It amplifies with nearly rail-to-rail swing, charges large capacitors efficiently by

slew-based charging, scales well according to process trends and can be built with only

a few transistors, capacitors and voltage-controlled switches.

The organization of this report is as follows:

• Chapter 2 introduces the structure of the ring amplifier, explains ring-amplification

in detail using a first-order model presented by (Hershberg et al., 2012). It then

goes on to extend the first-order model to include effects of slewing and parasitic

capacitances, and illustrates the same using suitable examples using a LEVEL 1

MOSFET model.

• Chapter 3 introduces some parasitic capacitance and delay models. It combines

these with some of the constraints derived in Chapter 2 and provides a set of



guidelines for designing a ring amplifier (choosing transistor lengths and widths).

It goes on to illustrate these guidelines with suitable examples using 0.18 µm

LEVEL 49 models.

• Chapter 4 introduces some techniques for “time-domain” noise analysis in LPTV

systems provided by (Pavan and Rajan, 2014). It then applies these techniques to

the ring amplifier based switched capacitor circuits and an approximate model is

developed to explain the noise in a ring-amplifier circuit. The variation of noise

with different circuit parameters is explored and the trends are verified by running

simulations using a LEVEL 1 model.

• Chapter 5 analyses the noise of traditional OTA based switched capacitor circuits

using traditional “frequency-domain” techniques, which cannot easily be applied

to ring amplifiers. It then goes on to state some similarities and differences in

the noise performance of the ring amplifier based switched capacitor circuit and

traditional op-amp based switched capacitor circuit.
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CHAPTER 2

Structure and Functioning of Ring Amplifier

2.1 Structure
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Figure 2.1: Ring amplifier
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Figure 2.2: Ring amplifier with switched capacitor feedback



A simple structure of a ring-amplifier described in (Hershberg et al., 2012) is first

considered to explain the fundamentals of ring-amplification. Alternate structures have

been developed for the ring amplifier like the ones mentioned in (Lim and Flynn, 2015)

and (Lim and Flynn, 2014).

As shown in figures (2.1) and (2.2), a ring amplifier (abbreviated as ring-amp) is a

ring oscillator split into two different paths and having different offset voltages embed-

ded in each path. This creates a “dead-zone” region of no conduction both by MCN and

MCP transistors. For sufficiently large values of dead-zone, the ring-amp slews, settles

(rings) and locks itself into the dead-zone region. This is illustrated in figures (2.3) and

(2.4). The large capacitor C1 is used to cancel the voltage difference between VCMX

and the trip-point of the first stage inverter A1. That is, a sufficiently large capacitor en-

sures that the voltage difference between the nodes VX and V1 during RST is the same

as the difference during RST . Sources of offset after A1 will however not be removed

by the large capacitance C1. The offset voltage VOS is embedded using capacitors C1

and C2.
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Figure 2.3: Ring amplifier behaves like a ring oscillator for VOS = 0

It is apparent that when the ring-amp settles and locks itself to its steady state value,

the node VX will be within one input-referred offset voltage more or less than VCMX .

Denoting error in the node voltage VX by ǫVX
, the following inequalities hold true,

VCMX −
VOS

A1
< VX < VCMX +

VOS

A1

|ǫVX
| <

VOS

A1

(2.1)

where A1 is the steady-state gain of the first stage inverter.

Also, it is obvious that if the circuit settles to steady state, its output value without

4



considering the error is

VOUT = VCMO +
CA

CB

VIN (2.2)

2.2 Ring Amplification
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Figure 2.4: VX , VOUT v/s time for VOS = 150 mV

Though the ring-amp has a very simple structure, analysis of its steady state is quite

daunting. The basic theory provided in (Hershberg et al., 2012) is first presented and

elaborated upon. The theory is presented in the paper using a first-order model. In this

report, this theory is extended to include effects like slewing and parasitic capacitances.

For simplicity, the voltages VCMX , VCM , VCMO in figure (2.2) and the trip-points of all

inverters are assumed to be VDD

2
; and the capacitances C1, C2 and C3 are assumed to be

infinite capacitances. The following work is done for the case of negative input voltage

VIN . It can be similarly extended to positive input voltages also.

(Hershberg et al., 2012) divides the ring amplification in RST into the following 3

phases:

• Initial Ramping (from 50 ns to 52.77 ns in figure (2.4))

• Stabilization (from 52.77 ns to 70.84 ns in figure (2.4))

• Steady State (from 70.84 ns to 100 ns in figure (2.4))

2.2.1 Initial Ramping

Just as the RST phase starts, the voltage on the left plate of CA changes from VIN , the

input voltage to 0. Consequently, there is a change in the voltage VX , V1 and VOUT ,

5



given by

∆VX = ∆V1 = −
CA∆VIN

CA +
CBCLOAD

CB + CLOAD

= −
CA(CB + CLOAD)∆VIN

CACB + CACLOAD + CBCLOAD

∆VOUT =
CB∆VX

CB + CLOAD

= −
CACB∆VIN

CACB + CACLOAD + CBCLOAD

(2.3)

+

-

+

-

Vdd

VIN

VCMX+VOS(IN)

VCMX-VOS(IN)
td

EN

EN

VOUT

COUT

IRAMP

IRAMP

Figure 2.5: Ring amplifier in ramping phase

For the case of negative input voltage considered above, VOUT , VX and V1 increase to

VOUT+∆VOUT , VX+∆VX and V1+∆V1 as soon asRST starts. After a small delay (due

to parasitic capacitances), VA goes very close to ground voltage, and V2B = VA + VOS.

Thus, VBN ≈ VDD, and the transistor MCN is maximally biased.

Now, VOUT starts ramping down towards its steady state value of VDD

2
+ CA

CB
VIN ,

as given by equation (2.2). Similarly, VX and V1 start ramping down towards VDD

2
. In

this phase, the ring amplifier behaves like a pair of bi-directional continuous time com-

parators, as shown in figure (2.5). This ramping phase is supposed to end as soon VX

6



reaches one of the comparator thresholds. (In case of negative inputs, this threshold is

VX + VOS

A1
). However, due to the parasitic capacitances in the circuit, there is a propa-

gation delay (td) from the node VX to the node VOUT of the circuit. Thus, there is an

overshoot of VX and hence V1 and VOUT beyond the comparator threshold. Denoting

the ramp rate of the output node by r0, the overshoot of VOUT is given by,

∆VOUT,overshoot = r0td (2.4)

where, r0 =
IOUT

COUT
. IOUT is calculated for a maximally biasedMCN with an output volt-

age equal to its steady state value of VDD

2
+ CA

CB
VIN . As the gate of MCN is maximally

biased with VDD and VOUT is clearly less than VDD (for the case of negative input con-

sidered here), it is obvious that MCN is in the triode region of operation. The following

are the expressions for IOUT and COUT .

IOUT = µnCOX

W

L

(

(VDD − VTN)VOUT −
V 2
OUT

2

)

COUT = CLOAD +
CACB

CA + CB

(2.5)

It is more useful (as will be seen later) to find out the input referred overshoot with

respect to the mid-rail voltage, that is the overshoot of VX with respect to VDD

2
. This is

denoted by vovershoot,0.

vovershoot,0 = r0td
CB

CA + CB

−
VOS

A1
(2.6)

2.2.2 Stabilization phase

After the initial ramping is done, the circuit oscillates/rings around its steady state value.

If there is no offset voltage, the circuit keeps ringing infinitely with amplitude vovershoot,0

given by equation (2.6). An increased offset voltage means a higher chance of settling.

The circuit settles if its final, steady state VX satisfies the inequality (2.1).

A fundamental requirement for the circuit to settle is the progressive reduction in

the gate overdrive voltages of transistors MCN and MCP . In the initial ramping phase,

the gate was maximally biased and the output current was given by equation (2.5). This

led to an overshoot of VX beyond the comparator threshold
(

VDD

2
+ VOS

A1

)

. If the VX

7



overshoots the other threshold
(

VDD

2
− VOS

A1

)

, the circuit doesn’t settle in that ring. If

the gate overdrive in the next ring doesn’t decrease and continues to remain VDD, the

rate of change of VOUT , VX and V1 remain the same. From equation (2.6) and (2.4), it is

apparent that the overshoot with respect to mid-rail voltage also continues to remain the

same. Thus, the circuit will never settle if there is no progressive reduction of overdrive

voltage. This is illustrated in figures (2.6) and (2.7). The first order model of the steady

state solution is presented before the condition for progressive reduction of overdrive

voltage is revisited.
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Figure 2.6: VX , VOUT v/s time for VOS = 50 mV. The circuit doesn’t settle
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Figure 2.7: VBN , VBP v/s time for VOS = 50 mV. The circuit doesn’t settle as there is no

progressive reduction in overdrive voltage.

2.3 First order model of steady state solution

2.3.1 Some Notations

Some notations which will be used in this section are introduced.
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• vovershoot,i is the amount of input referred overshoot (with respect to mid-rail volt-

age) when the NMOS transistor MCN is active for the ith time during the ringing

phase.

• v′overshoot,i is the amount of input referred overshoot with respect to mid-rail volt-

age) when the PMOS transistor MCP is active for the ith time during the ringing

phase.

• ri is the rate at which the the output node voltage VOUT falls when the NMOS

transistor MCN is active for the ith time during the ringing phase.

• r′i is the rate at which the the output node voltage VOUT falls when the PMOS

transistor MCP is active for the ith time during the ringing phase.

• tdz,i is the time for which the circuit remains in dead-zone after the NMOS tran-

sistor was active for the ith time. That is, it is the time for which the node voltage

VX stays at VDD

2
− vovershoot,i.

• t′dz,i is the time for which the circuit remains in dead-zone after the PMOS tran-

sistor was active for the ith time. That is, it is the time for which the node voltage

VX stays at VDD

2
+ vovershoot,i.

• tcr,i is the time taken by the circuit to cross from one dead-zone to another. This

is the crossing in which NMOS transistor MCN is active for the ith time. In other

words, tcr,i is the time taken for VX to go from v′overshoot,i−1 to vovershoot,i. tcr,0 is

defined as the time taken by node VX to cross from its initial threshold crossing

of VDD

2
+ VOS

A1
to vovershoot,0.

• t′cr,i is the time taken by the circuit to cross from one dead-zone to another. This

is the crossing in which PMOS transistor MCP is active for the ith time. In other

words, t′cr,i is the time taken for VX to go from vovershoot,i to v′overshoot,i.

• The index i in the above mentioned notation runs from 0.

The magnitude of the first input referred overshoot (on the negative side of mid-rail

voltage) with respect to mid-rail voltage was evaluated in equation (2.6). Now, the

circuit remains in dead-zone for tdz,i. Next, the first input referred overshoot (with

9



respect to mid-rail) on the positive side of mid-rail voltage is computed.

v′overshoot,0 = r′0td
CB

CA + CB

−
VOS

A1
(2.7)

The rate r′0 is calculated in the following manner using incremental analysis. The incre-

mental voltage at the gate of inverter A1 is the overshoot voltage calculated in equation

(2.6). Now, the incremental voltage at the gate of inverter A2, v2T is given by

v2T = vovershoot,0A1

=

(

r0td
CB

CA + CB

−
VOS

A1

)

A1

(2.8)

The incremental voltage at the gate of inverter MCP , vBP is given by

vBP = v2TA2

=

(

r0td
CB

CA + CB

−
VOS

A1

)

A1A2

(2.9)

The rate is given by

r′0 =

(

r0td
CB

CA + CB

−
VOS

A1

)

A1A2kp

kp =
gm,MCP

CL +
CACB

CA + CB

By similar arguments, a pair of difference equations for ri and r′i is constructed.

ri =

(

r′i−1td
CB

CA + CB

−
VOS

A1

)

A1A2kn

kn =
gm,MCN

CL +
CACB

CA + CB

r′i =

(

ritd
CB

CA + CB

−
VOS

A1

)

A1A2kp

kp =
gm,MCP

CL +
CACB

CA + CB

(2.10)

10



By solving above difference equations,

ri = ((A1A2td)
2kpknψ

2)i
(

r0 +
VOSA2kn(1 + kptdA1A2ψ)

1− (A1A2td)2kpknψ2

)

−
VOSA2kn(1 + kptdA1A2ψ)

1− (A1A2td)2kpknψ2

(2.11)

where, ψ is the feedback factor and is given by

ψ =
CB

CA + CB

(2.12)

Similarly for r′i, the rate of change of VOUT when the PMOS transistor MCP is active,

is given by

r′i = ((A1A2td)
2kpknψ

2)i
(

r′0 +
VOSA2kn(1 + kptdA1A2ψ)

1− (A1A2td)2kpknψ2

)

−
VOSA2kn(1 + kptdA1A2ψ)

1− (A1A2td)2kpknψ2

(2.13)

Now, for the circuit to settle to steady state, the overshoot with respect to the mid-rail

must be less than VOS

A1
.

If the NMOS transistor MCN is active during the last ring, the following condition

must hold for the circuit to settle.

ritdψ −
VOS

A1

<
VOS

A1

ri <
2VOS

A1td
×

(

1 +
CA

CB

) (2.14)

If the PMOS transistor MCP is active during the last ring, the condition changes to the

following.

r′itdψ −
VOS

A1

<
VOS

A1

r′i <
2VOS

A1td
×

(

1 +
CA

CB

) (2.15)

In the above expressions, A1 should actually be replaced by Ã1, the instantaneous gain

of the first stage inverter and is few times smaller than the actual steady state saturation

gain due to the effects of slewing which will be considered in the next section. The

inverter A1 is in the high-gain region (of the inverter characteristics) where both the

PMOS ans NMOS transistors are in saturation region.
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As observed later in figure (2.8), for most of the time , VBN > VDD − VTP and

VBP < VTN . That is, for most part of the clock cycle, the second stage inverter is in

the “low-gain region”. That is, one of the PMOS or NMOS is in saturation and the

other is in triode. Also, as discussed in detail in section 3.1.1 on delays and parasitic

capacitances, the delay of stage 2 inverter is much less than the delay of stage 1 inverter.

Hence, the slewing effects of second stage inverter can be neglected.

As stated in the previous paragraph, for most of the time VDD − VTP < VBN <

VDD. The output voltage VOUT of the circuit is VDD + CA

CB
VIN . In case of negative

input voltages being discussed here, VOUT < VDD

2
. Hence, for most of the ramping

and stabilization phases, the transistor MCN is in triode region. This has been used in

deriving the above rate expressions.

Similarly, for most of the time 0 < VBP < VTN . The output voltage VOUT of the

circuit is VDD + CA

CB
VIN . In case of small negative input voltages (such that VOUT >

VBP + VTP ), for most of the ramping and stabilization phases, the transistor MCP is

in triode region. For higher negative inputs, the calculations above can be modified

appropriately using gm,MCP
as the saturation transconductance.

Next, the expressions for time for each dead-zone crossing tdz,i, t
′

dz,i and the time

taken from one dead-zone crossing to the other tcr,i, t
′

cr,i are computed. td, the inher-

ent delay in the “comparator” is the reason for the overshoot from VDD

2
± VOS

A1
. From

the definitions of tcr,i and t′cr,i above, the above two quantities are written in terms of

v′overshoot,i and vovershoot,i.

tcr,i = td

VOS

A1

+ vovershoot,i

v′overshoot,i−1 + vovershoot,i

t′cr,i = td

VOS

A1

+ v′overshoot,i

vovershoot,i + v′overshoot,i

(2.16)

For the circuit to cross the ith dead-zone after a transition phase where the NMOS

was active, the node VA must go from VDD

2
− VOS to VDD

2
+ VOS. The incremental

current through the drain of A1 is gm1vovershoot,i. The capacitor is 2C ′

1. Therefore, by

approximating that the node voltage VA charges/discharges by a constant current which

is gm times the overshoot, the following expressions for tdz,i and t′dz,i are obtained.

12



Using a linear rate approximation, tdz,i is given as

tdz,i =
4VOSC

′

gm1vovershoot,i
(2.17)

Similarly,

t′dz,i =
4VOSC

′

gm1v
′

overshoot,i

(2.18)

2.4 Including slewing effects

The gain term A1 referred to in the previous section is not the actual steady state gain,

but is actually few times less than the actual value. This reduction in gain is due to

slewing. The presence of the parasitic capacitance is the main reason for slewing.

When there is an overshoot of vovershoot,i below VDD

2
at the node voltage VX , the

node voltage VA doesn’t shoot up by A1vovershoot,i. Node voltage VX remains at VDD

2
−

vovershoot,i for a time tdz,i. This is equivalent to a step incremental voltage of vovershoot,i

applied at node VX for time tdz,i.

gm1vovershoot,i = gds1vA + 2C ′
dvA

dt
(2.19)

It is known that the steady state gain of stage 1 inverter A1 is
gm1

gds1
. Solving the differ-

ential equation (2.19),

vA = A1(1− e−
tdz,igds,1

2C′ )vovershoot,i (2.20)

Therefore, the reduced gain Ã1 is given by

Ã1 = A1(1− e−
tdz,igds,1

2C′ ) (2.21)

It is apparent that the equations for instantaneous gain (2.21) and the equation for dead-

zone time (2.17) seem to have been derived similarly. Both are approximate expres-

sions, which work approximately as illustrated by several simulations, and provide

considerable insight. Finding exact expressions would be a very tedious task which

gives no insight, as the two quantities are highly co-dependent. A detailed explanation

of the co-dependence is provided below.

13



There is a small time delay at the second stage inverter, which has been neglected

for convenience. Thus, the actual time at which circuit enters dead-zone is a small time

delay (td2) after the time at which VA becomes VDD

2
− VOS. Similarly, the time at which

the circuit leaves dead-zone is a small time delay after the time at which VA becomes

VDD

2
+ VOS. At the time at which the circuit enters dead-zone, VA > VDD

2
− VOS , but

need not be equal to VDD

2
as assumed in the above calculation. Also, the voltage VA

continues to rise, though to a smaller extent, even after the circuit leaves dead-zone as

the sign of the incremental voltage is still same.

That is, the node voltage VX becomes VDD

2
at time

tdz,i
2

− td2. The time for which

circuit remains in dead-zone after VX reaches VDD

2
is not

tdz,i
2

, but
tdz,i
2

+ td2 after taking

into account the small delay of the second stage inverter. Thus, the actual expression

for Ã1 would look like

Ã1 = A1

(

1− e−

(

tdz,i
2 +td2+tdnz

)

gds,1

2C′

)

(2.22)

where tdnz is the factor to account for the time during which circuit leaves dead-zone,

but VA continues to rise. The equation (2.21) provides a reasonably accurate approxi-

mation of equation (2.22), as verified by several simulations.

2.5 Conditions for progressive reduction in overdrive

voltage

For a VOS of 150 mV, the circuit settles within TS

2
, as already seen in figure (2.4). This

happens due to the progressive reduction in gate overdrive voltages VBN and VBP . This

is illustrated in figure (2.8).

As seen before, the first overshoot of VX (on the negative side of VDD

2
with respect

to mid-rail voltage is given by

vovershoot,0 = r0td
CB

CA + CB

−
VOS

A1

(2.23)

The incremental voltage v2T was calculated in equation (2.8). The node voltage V2T is

14



0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

Time (ns)

V
ol

ta
ge

 (
V

)

 

 

V
BN

V
BP

Figure 2.8: Progressive reduction in overdrive voltages

given by

V2T =
VDD

2
+ Ã1vovershoot,0 − VOS

Hence, the voltage VBP is given by

VBP = f(V2T ) = f

(

VDD

2
+ Ã1vovershoot,1 − VOS

)

(2.24)

where, f is the inverter’s large signal transfer function.

Now, condition for the ring amplifier to settle is derived. As mentioned in section

(2.2.2), for the ring amplifier to settle, the overdrive voltages VBP and VBN must lower

progressively from the rail voltages. Therefore, VBP needs to go significantly above

ground, so that the gate overdrive voltage of the MCP transistor goes below VDD. The

condition thus required is,

VDD

2
+ Ã1vovershoot − VOS < VDD − VTP

Ã1vovershoot,1 <
VDD

2
− VTP + VOS

(2.25)

Substituting the expression for instantaneous gain obtained in equation (2.21),

A1(1− e−
tdz,igds,1

2C′ )vovershoot,0 < VDD − VTP + VOS (2.26)

The set of equations for the second overshoot of VX (on the positive side of VDD

2
with
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respect to mid-rail voltage is derived below

v′overshoot,0 = r′0td
CB

CA + CB

−
VOS

A1

VA =
VDD

2
− Ã1v

′

overshoot,0

Ã1 = A1(1− e−
t′dz,0gds,1

2C′ )

V2B =
VDD

2
− Ã1v

′

overshoot,0 + VOS

VBN = f(V2B) = f

(

VDD

2
− Ã1v

′

overshoot,0 + VOS

)

VDD

2
− Ã1v

′

overshoot,0 + VOS > VTN

Ã1v
′

overshoot,0 <
VDD

2
− VTN + VOS

A1(1− e−
t′dz,igds,1

2C′ )vovershoot,0 < VDD − VTN + VOS

(2.27)

2.6 Approximate number of rings in the circuit

From the (2.11) and (2.13), the equations of rate of change of VOUT when the NMOS

or PMOS is active for the ith time; and (2.14) and (2.15), the conditions which the rates

have to satisfy for the circuit to enter dead-zone, the following expression for number

of rings is derived.

n1 =
1

ln((A1A2tdψ)2kpkn)
ln









2VOS

A1td
+
VOSA2kn(1 + kptdA1A2ψ)

1− ((A1A2tdψ)2kpkn)

r0 +
VOSA2kn(1 + kptdA1A2ψ)

1− ((A1A2tdψ)2kpkn)









n2 =
1

ln((A1A2tdψ)2kpkn)
ln









VOS

A1td
+

2VOS

A2
1A2kpψt

2
d

+
VOSA2kn(1 + kptdA1A2ψ)

1− ((A1A2tdψ)2kpkn)

r0 +
VOSA2kn(1 + kptdA1A2ψ)

1− ((A1A2tdψ)2kpkn)









N = min(2n1, 2n2 − 1)

(2.28)

The equation for n1 gives half the number of rings if the NMOS is active during the

last ring. The equation for n2 gives half the number of rings if in the last ring, PMOS

is active. The required number of rings is the minimum of the two. In the above

expressions, if the steady state gain A1 is used, the number of rings will be much higher

than the actual number of rings. The number of rings may also turn out to be infinite
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(which would imply the circuit doesn’t settle). Using the instantaneous gain Ã1 at the

end of the first overshoot (equation (2.21)) gives a lower bound on the number of rings.

Using the instantaneous gain at the end of first overshoot and approximating the gainA2

as a constant by appropriate piece-wise linear approximations of inverter characteristics

in low-gain region gives a reasonably insightful expression of the number of rings.

2.6.1 Variation of number of rings with VOS

From equation (2.28), it is inferred that while keeping all other parameters constant and

varying only VOS, the number of rings as a function of VOS is of the form

N =

ln

(

αVOS

r0 + βVOS

)

lnγ
(2.29)

That is, for circuits which settle, the number of rings reduces with VOS in the manner
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Figure 2.9: Number of rings vs VOS

observed in figure (2.9) (since γ = (A1A2tdψ)
2kpkn < 1 for circuits which settle). The

plot in figure (2.9) shows the variation of number of rings versus VOS for a LEVEL 1

model with the following parameters.

VDD = 1.2 V

CA = 1.5 pF

CB = 1 pF

CLOAD = 0.2 pF
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For all inverters,

W

L
of NMOS =

7.2

2.4
W

L
of PMOS =

21.6

2.4

For MCN ,

W

L
=

3.2

3.2

For MCP

W

L
=

9.6

3.2

All dimensions are in µm.

Some plots of VX , VOUT versus time (in the amplification phase) are shown for

different offset voltages to illustrate the point of decreasing number of rings with VOS.
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Figure 2.10: VX , VOUT v/s time for VOS = 175 mV
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Figure 2.11: VX , VOUT v/s time for VOS = 200 mV
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Figure 2.12: VX , VOUT v/s time for VOS = 225 mV
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Figure 2.13: VX , VOUT v/s time for VOS = 250 mV

2.6.2 Variation with COUT

From equation (2.28), the expression for number of rings in terms of COUT is domi-

nated by the term in the denominator ln

(

(A1A2td)
2ψ2gm,MCN

gm,MCP

C2
OUT

)

. Also there is

a complicated dependence on COUT in the numerator of the form

ln









α +
β

C2
OUT

+
γ

COUT

r0 +
δ

C2
OUT

+
γ

COUT









The plot in figure (2.14) shows the variation of number of rings versus CLOAD (which

is directly related to COUT ) for a LEVEL 1 model with the following parameters.

VDD = 1.2 V

CA = 1.5 pF

CB = 1 pF

VOS = 0.15 V
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CHAPTER 3

Design of Ring Amplifier

Before stating the procedure to design lengths and widths of transistors in a ring ampli-

fier, some preliminaries are stated. These preliminaries are useful in rationalizing the

tweaking (in lengths and widths) required for a design which settles.

3.1 Preliminaries

3.1.1 Parasitic capacitances and delays

First, an approximate model for the various parasitic capacitances is given.

Each parasitic capacitance is modelled as proportional to the width of the transistor.

For the inverter A1,

Gate capacitance = CA1,GW1

Drain capacitance = CA1,DW1

Output resistor =
b1

W1

(3.1)

BothCA1,G andCA1,D have few components proportional to the length L1 of the transis-

tor. W1 is the sum of widths of the NMOS and PMOS transistor making up the inverter.

And b1 =
2L1

λµCOX
W
L

(

VDD

2
− VT

)2 , as the first stage inverter is in the “high-gain” region

where both NMOS and PMOS are in saturation. Also, it is observed from simulation

that CA1,D is significantly less than CA1,G. That is, the drain capacitance is significantly

less than the gate capacitance.

Similarly for inverter A2,

Gate capacitance = CA2,GW2

Drain capacitance = CA2,DW2

Output resistor =
b2

W2

(3.2)



As second stage inverter is mostly in low-gain region (1 transistor in saturation and

other in triode), the output resistor is significantly less than that of first stage. That is,

b2 is significantly less than b1.

For the MCN and MCP respectively,

NMOS Gate capacitance = CNWN

PMOS Gate capacitance = CPWP

(3.3)

Now, the delays of the stages of inverters are computed. Delay of first stage is

denoted by td,A1 , of the second stage is denoted by td,A2 .

td,A1 ∼ COUT,A1rOUT,A1

COUT,1 = CA1,DW1 + CA2,GW2

td,A1 ∼ b1CA1,D + b1CA2,G

W2

W1

td,A2 ∼ COUT,A2rOUT,A2

COUT,2 = CA2,DW2 + CNWN

td,A2 ∼ b2CA2,D + b2CN

WN

W2

(3.4)

In the case when PMOS transistor is active, the last expression of equation (3.4) be-

comes

td,A2 ∼ b2CA2,D + b2CP

WP

W2
(3.5)
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3.1.2 Steady state solution

Vdd

VOUT
A1

A2

A2

VCM-VOS

VCM+VOS

RST

RST

RST RST
VIN

VX

V1
VA

V2T

V2B

MCP

MCN

VBP

VBN

RST

VCMX

VCMO

RST

RST

CA CB

CLOAD

C1

C2

C3

The results derived in the previous chapter about progressive reduction in overdrive

voltage are restated.

The rate at which VOUT falls during the overshoot period after the initial ramping

phase is given by

r0 = µnCOX

W

L

(VDD − VTN)

COUT

(

VDD

2
+
CA

CB

VIN

)

(3.6)

The set of equations for the first overshoot of VX on the negative side of VDD

2
with

respect to mid-rail voltage is stated below

vovershoot,0 = r0td
CB

CA + CB

−
VOS

A1

VA =
VDD

2
+ Ã1vovershoot,0

Ã1 = A1(1− e
−

tdz,0gds,1
COUT,A1 )

V2T =
VDD

2
+ Ã1vovershoot,0 − VOS

VBP = f(V2T ) = f

(

VDD

2
+ Ã1vovershoot,0 − VOS

)

(3.7)

Now, using all the above equations together, a condition for the ring-amplifier to settle

is derived. For the ring amplifier to settle, the overdrive voltages VBP and VBN must

lower progressively from the rail voltages. Therefore, in the above case, VBP must

23



significantly above ground. That is, the gate overdrive voltage of the MCP transistor

must go below VDD. The condition required for this is

VDD

2
+ Ã1vovershoot,0 − VOS < VDD − VTP

Ã1vovershoot,0 <
VDD

2
− VTP + VOS

A1(1− e
−

tdz,igds,1
COUT,A1 )vovershoot,0 < VDD − VTP + VOS

(3.8)

The set of equations for the first overshoot of VX on the positive side of VDD

2
with respect

to mid-rail voltage is stated below

v′overshoot,0 = r′0td
CB

CA + CB

−
VOS

A1

VA =
VDD

2
− Ã1v

′

overshoot,0

Ã1 = A1(1− e
−

t′dz,0gds,1

COUT,A1 )

V2B =
VDD

2
− Ã1v

′

overshoot,0 + VOS

VBN = f(V2B) = f

(

VDD

2
− Ã1v

′

overshoot,0 + VOS

)

VDD

2
− Ã1v

′

overshoot,0 + VOS > VTN

Ã1v
′

overshoot,0 <
VDD

2
− VTN + VOS

A1(1− e
−

t′dz,igds,1

COUT,A1 )vovershoot,0 < VDD − VTN + VOS

(3.9)
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3.2 Requirements for design
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• The most important requirement for designing a ring amplifier which settles, is

the progressive reduction of gate overdrive voltage of final stage transistors from

the maximum possible VDD to a voltage when they get cut-off. This requirement

is given through equation (3.8) derived above.

A1(1− e
−

tdz,igds,1
COUT,A1 )v′overshoot,0 < VDD − VTN + VOS

A1(1− e
−

tdz,igds,1
COUT,A1 )vovershoot,0 < VDD − VTP + VOS

(3.10)

• Next, it is observed from equation (3.7) that the overshoot voltage from mid-rail is

proportional to delay in the circuit. The smaller the overshoot voltage, the higher

the chances of settling in half clock-cycle
(

TS

2

)

. So, it is desired to minimize the

delay of the circuit. The delay of the circuit is the sum of delays of two stages

derived above in equation (3.4). Also, it was mentioned before that the output

resistance of the first stage inverter (in high gain region) is much higher than the

second stage one. The 2 output capacitances are generally of the same order.

So, the delay in first stage (td,A1) is generally significantly higher than the delay

in second stage inverter (td,A2). So, it is important to minimize td,A1 in order to

minimize the circuit delay.

• Also, from equation (3.7), it is noticed that the overshoot voltage is proportional

to the rate at which the output node and hence the node VX fall. So, it is important
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to minimize the rate.

• The minimizations of delay and rate must be done for the first 2 overshoots. This

requires some optimization.

3.3 A qualitative design procedure

Keeping in mind the above requirements, the following design procedure to make a

ring-amp settle for a particular value of VOS, is formulated. In this discussion, lengths

and widths are chosen to make the ring amplifier settle for a fixed value of CA, CB ,

CLOAD and VOS . (The ring amplifier can be made to settle by increasing any of the

parameters mentioned above).

• Minimum W
L

ratio means the rate of change voltage VOUT is also minimum, as

seen by equation (3.6). The width of the NMOS transistorMCN is fixed at Wmin,

the minimum width allowed by the process. The length is also fixed at Wmin so

that W
L

= 1. Now, the width and length of the PMOS transistor are also fixed at

(Wmin). Though the rate of change of voltage when PMOS and NMOS are active

is asymmetric, smallest possible W
L

are ensured, thus rate of change of output

voltage is as low as possible. If symmetry is desired, the length of the NMOS

can be further increased, or the width of the PMOS can be increased. The former

option of increasing length of NMOS is preferred so as to maintain similar delay

times when NMOS and PMOS are active.

• Next, the lengths and widths of the transistors in the 2 inverters are determined.

First, all transistor lengths in both stages are fixed at minimum (Lmin) and widths

of all NMOS transistors are fixed at Wmin. Next, the PMOS width is fixed such

that the trip point of the inverter is VDD

2
. (For TSMC 0.18 µm process used in the

following examples, a good initial estimate would be L=180 nm for all transistors,

W=270 nm for NMOS and W=1.08 µm for PMOS.) On fixing the minimum

possible dimensions such that trip point is mid-rail voltage, the ring amplifier fails

to settle in most cases. This is because the delay (and hence, the overshoot) given

by equation (3.4) for the above dimensions, is too large to satisfy the condition

for progressive reduction in overdrive voltage (3.8).
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• The widths of transistors in first stage inverter and the length of the NMOS tran-

sistor of the final stage, i.e. MCN are the parameters which can be tweaked. As

seen from equation (3.4), increasing W1 (width of transistors in stage 1 inverter)

leads to smaller delay for stage 1 inverter. A good initial estimate would be ∼

2-3 Wmin for the NMOS transistor of first stage inverter, and ∼ 4 times the width

of NMOS transistor for PMOS transistor. Now, as the transistor doesn’t follow

a simple square law model, equal ratios of Wn

Wp
in 2 different inverters doesn’t

ensure equal trip point for the two inverters. So after fixing the width of stage 1

transistors, the width of stage 2 transistors must also be changed so that they have

same trip point (preferably VDD

2
). This is a must, as many calculations were done

assuming a trip point of VDD

2
for all inverters. An explanation for this necessity is

that different trip point introduces an offset after the first stage inverter, which is

not cancelled by C1 as seen in section 2.1 on the structure of ring amplifiers.

• Further increase in length of MCN leads to an decrease in rate and an increase

in delay, as the CN constant in equation (3.3) is length dependent. However, the

first factor is more dominant, and hence increasing length increases the chance of

settling.

• All the tweaking must be done for a small magnitude of input. If the circuit settles

for a small input, it will certainly settle for larger inputs. Also, it must be done for

a small value of offset voltage (VOS). If the circuit settles for a small VOS value,

it will certainly settle for larger VOS values, as illustrated in section (2.6.1).
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3.4 Some examples to illustrate these rules

Vdd

VOUT
A1

A2

A2

VCM-VOS

VCM+VOS

RST

RST

RST RST
VIN

VX

V1
VA

V2T

V2B

MCP

MCN

VBP

VBN

RST

VCMX

VCMO

RST

RST

CA CB

CLOAD

C1

C2

C3

All examples are illustrated for the following case (in TSMC 0.18 µm technology, for

a clock period of 200 ns). Only the amplifying phase of the clock cycle is shown in the

graphs.

VDD = 1.8V

CA = 2pF

CB = 1pF

CL = 2pF

VOS = 100mV

VIN = −50mV

3.4.1 Example 1

All dimensions (in nm) were chosen keeping the first 2 points of the Design procedure.

For inverter A1

W

L
=

1080

180
for PMOS

W

L
=

270

180
for NMOS
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For the 2 inverters A2

W

L
=

1080

180
for PMOS

W

L
=

270

180
for NMOS

For final stage

W

L
=

270

270
for PMOS

W

L
=

270

540
for NMOS
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0.75

0.8

0.85
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0.95

Time (ns)

V
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 (
V

)

 

 

V
OUT

V
X

Figure 3.1: Plot of VX and VOUT vs time for Example 1

It is observed from figure (3.1) that the circuit doesn’t settle.

3.4.2 Example 2

Now, the widths of transistors of stage 1 inverter are increased as mentioned in rule 3.

The ratio of
Wp

Wn
is same as before.

For inverter A1

W

L
=

2000

180
for PMOS

W

L
=

500

180
for NMOS

For the 2 inverters A2

W

L
=

1080

180
for PMOS

W

L
=

270

180
for NMOS
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For final stage

W

L
=

270

270
for PMOS

W

L
=

270

540
for NMOS
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V
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V
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V
X

Figure 3.2: Plot of VX and VOUT vs time for Example 2

We observe from figure (3.2) that the circuit doesn’t settle despite the VX value

reaching 898.5 mV. The offset voltage is 100 mV. The steady state gain A1 = 36. So,

the circuit must settle whenever
VDD

2
−
VOS

A1

< VX <
VDD

2
+
VOS

A1

. In this case, circuit

must settle whenever 897.23 mV < VX < 902.77 mV. This doesn’t happen, as the change

in width of transistors in A1 has made the trip point of A1 (897.93 mV) different from

that of A2 (870.21 mV). This is why it was stated that maintaining same trip point is

a must.

3.4.3 Example 3

Now, the width of the PMOS transistors of stage 2 inverters is increased to push the trip

point of the stage 2 inverter towards the trip point of stage 1 inverter.

For inverter A1

W

L
=

2000

180
for PMOS

W

L
=

500

180
for NMOS
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For the 2 inverters A2

W

L
=

1350

180
for PMOS

W

L
=

270

180
for NMOS

For final stage

W

L
=

270

270
for PMOS

W

L
=

270

540
for NMOS
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Figure 3.3: Plot of VX and VOUT vs time for Example 3

Now, it is observed that the circuit settles in 2 rings.

3.4.4 Example 4

Now, the length of the NMOS transistor (MCN ) is decreased. This increases the rate of

drop of VOUT , and causes asymmetry with respect to rate of voltage change.

For inverter A1

W

L
=

2000

180
for PMOS

W

L
=

500

180
for NMOS

For the 2 inverters A2

W

L
=

1350

180
for PMOS

W

L
=

270

180
for NMOS
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For final stage

W

L
=
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270
for PMOS

W

L
=

270

270
for NMOS
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Figure 3.4: Plot of VX and VOUT vs time for Example 4

Again, the circuit settles. However, the 2 rising and falling rates of VX and VOUT

change with respect to previous case, which is highlighted by the difference in dead-

zone times.

3.4.5 Example 5

In example 3, it was noticed that circuit settled in just 2 rings. This means that further

reduction in width may also lead to settling of output. Such a reduction is attempted

and widths of PMOS transistors in second stage inverter are appropriately changed to

maintain same trip point for all inverters.

For inverter A1

W

L
=

1800

180
for PMOS

W

L
=

450

180
for NMOS

For the 2 inverters A2

W

L
=

1300

180
for PMOS

W

L
=

270

180
for NMOS
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For final stage

W

L
=
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270
for PMOS

W

L
=

270

540
for NMOS
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Figure 3.5: Plot of VX and VOUT vs time for Example 5

Now, the circuit settles in 4 rings. This increase in number of rings is as expected.
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CHAPTER 4

Analysis of noise in ring amplifiers

4.1 Introduction

Looking at the “operating point” waveforms of different nodes in a ring amplifier based

switched capacitor circuit in figures (2.8) and (2.4), it is obvious that the transcon-

ductance values and the output resistance values of different devices are not constant

throughout the the clock-cycle like traditional OTA-based switched capacitor circuits.

Due to the continuous changes in regions of operation of the circuit, all the gm and gds

(or rO) values vary with time. This variation is periodic as the system is a LPTV system.

It is difficult to apply traditional frequency domain techniques for noise analysis

of ring amplifier based switched capacitor circuits. Moreover, one is not interested in

noise at all time instants in circuits which perform switched amplification. The only

time point of interest is the time at which the output is sampled. In such a case, it is

convenient to use the time-domain technique given by (Pavan and Rajan, 2014). For the

specific case of ring-amplifiers, due to the complex nature of variation of the gm and gds

with time, a proper analysis would involve solving multiple differential equations and

involved algebra. Approximating gm and gds by suitable piece-wise constants simplifies

the algebra to a large extent and provides some insights on dependence of the noise on

different parameters of the ring amplifier circuit.

The concepts of inter-reciprocity and adjoint networks are extended to LPTV net-

works and used for the time-domain analysis. The fundamental reason why this is

possible is the following.

For an LPTV network with an input x(t), if the output of this network y(t) is sam-

pled at fS , an equivalent LTI filter can be found. That is, if the LTI filter is excited by

the same input x(t) and the output is sampled at fS , the output sequence is same as the

the sequence of the LPTV network. The proof of this is provided in the appendix.

For constructing the adjoint network of an LPTV system,



• Linear elements (resistance R, capacitance C and inductance L) of the network

N remain R, C and L in the adjoint network N̂ .

• Periodic switches are time reversed. That is a switch which is one in a time

interval T in N is on in the time interval T in N̂ .

• All controlled sources transform in a similar way as the LTI networks but with an

additional time reversal.

Now, to find the heq(t), impulse response of an LTI filter equivalent to the LPTV net-

work with sampled output, an impulse is applied at the output port of N̂ at the time

instant TS − to, where to is the time of observation of output. The output waveform is

observed at the different input ports (v̂1(t), v̂2(t), ... v̂N (t)). Now, the equivalent LTI

filter impulse responses from different input ports of N to the output port are given by

h1,eq(t) = v̂1(t+ Ts − to)

....

hN,eq(t) = v̂1(t + Ts − to)

(4.1)

If the autocorrelation function of the noise process at the lth input is Rn,l(τ), the auto-

correlation function of the output noise is given by

Rl(τ) = Rn,l(τ) ∗ hl,eq(τ) ∗ hl,eq(−τ) (4.2)

where ∗ denotes the convolution operation. The output power spectral density is the

Fourier transform of Rl(mTS), where TS is the sampling period of the circuit.

If hl,eq(t) in the above equation (4.2) is time limited to TS

2
(implying the convolution

is time-limited to TS), and Rn,l(τ) is delta-correlated, Rl(mTS) evaluates to

Rl[0] = Rs,n,l

∫ TS

0

h2l,eq(t)dt

Rl[mTS] = 0 ∀m 6= 0

(4.3)

where Rs,n,l is the strength of the correlation impulse.

Using Parseval’s theorem, the integrated mean squared noise in such a case is given
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by

1

2π

∫ π

0

(

Rs,n,l

∫ TS

0

h2l,eq(t)dt

)

dω (4.4)

RST

RSTRST

RST

CA CB
RST

gm1

gm2T

gm2B

C’

C‘

C

C

gds2T

gds2B

gds1

C’
CL

gm,MCP

gm,MCN

v1 vA

vBP

vBN

vO

gds,OUT

Figure 4.1: Incremental network

CA CB

gm1

gm2T

gm2B

C’

C‘

C

C

gds2T

gds2B

gds1

C’
CL

gm,MCP

gm,MCN

v1 vA

vBP

vBN

vO

gds,OUT

CA CB

gm1

gm2T

gm2B

C’

C‘

C

C

gds2T

gds2B

gds1

C’
CL

gm,MCP

gm,MCN

v1 vA

vBP

vBN

vO

gds,OUT

CA CB

gm1

gm2T

gm2B

C’

C‘

C

C

gds2T

gds2B

gds1

C’
CL

gm,MCP

gm,MCN

v1 vA

vBP

vBN

vO

gds,OUT

RST

RST

RSTRST

RST

Figure 4.2: Adjoint incremental network
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4.2 Estimation of h(t) in the stabilization region of the

circuit

The incremental equivalent of the circuit is shown in figure (4.1). Its adjoint is con-

structed and depicted in figure (4.2).

Before moving on to evaluate the impulse response h(t), few approximations and

consequent results are stated. These approximations are justified by simulation results.

• The first stage inverter A1 is in the “high-gain region” (where both NMOS and

PMOS are in saturation) throughout the sampling phase RST and for all of the

amplification phaseRST except the initial ramping phase, where it is in the “low-

gain” region with only one of the two transistors in saturation. However, for

convenience, the autocorrelation of the noise process at the drain of the inverter is

assumed to be 8kTgm1

3
δ(t), where gm1 is the transconductance in saturation region.

That is, the noise is assumed to be white.

Rn,A1 =
8kTgm1

3
δ(t)

gm1 = µnCOX

W

L

(

VDD

2
− VTN

)

+ µpCOX

W

L

(

VDD

2
− VTP

) (4.5)

• The upper second stage inverterA2T has an output voltage, VBP close to 0 through-

out the clock cycle except for small time intervals during amplification phase

(RST ), as seen in figure (2.8). Similarly, the lower second stage inverter A2B

has an output voltage, VBN close to VDD throughout the clock cycle except for

small time intervals during amplification phase (RST ), as seen in figure (2.8).

For convenience, the autocorrelation of noise process at drains of A2 inverters

are assumed as 0 throughout. Thus, there is no contribution to noise from the

transistors in second stage inverters.

• By similar argument, there is no contribution to noise from the transistors MCP

and MCN as they remain in cut-off region for the entire clock cycle except time

of ramping and crossing from one dead-zone to another, and hence have an auto-

correlation of 0.

All that remains to be done is to find the h(t) from the drain of inverterA1 to the output.
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In the adjoint network, an impulse current δ(t + Ts − to) is injected at the output

node, and the corresponding response is computed. The vA computed corresponds to

the vo(t− TS + to) observed when an impulsive current δ(t) is injected at the node VA

of the original incremental network. In this case, time of observation of output to is TS ,

that is, the output is sampled at the end of the clock cycle.

An impulsive current is injected into the output node of the adjoint network at time

0, that is δ(t) current is injected. Now, the corresponding step increase in vo is com-

puted.

(CL + CB)
dvo

dt
− CB

dv1

dt
= δ(t)

(CA + CB)
dv1

dt
− CB

dvo

dt
= 0

(4.6)

Integrating both sides of the above equation from time t = 0 to an infinitesimal t = δt,

(CL + CB)∆vo − CB∆v1 = 1

(CA + CB)∆v1 − CB∆vo = 0
(4.7)

Thus,

∆vo =
CA + CB

CACB + CACL + CBCL

(4.8)

Now, the calculation of h(t) is done piecewise. The region of transition between two

dead-zones and the region in the dead-zone are considered separately. From incremen-

tal analysis of the adjoint incremental circuit in figure (4.2), the following differential

equations are obtained,

vBN (t) =
−gm,MCN

(Ts − t)vo(t)

gds,2(Ts − t)

vBP (t) =
−gm,MCP

(Ts − t)vo(t)

gds,2T (Ts − t)

− gm,2(Ts − t)vBN (t)− gm,2T (Ts − t)vBP (t) = 2C ′
dvA

dt
+ vAgds,1(Ts − t)

(

CL + CB

CB

−
CB

CA + CB

)

dvo(t)

dt
= −

gm1(Ts − t)vA(t)

CA + CB

−
vogds,out(Ts − t)

CB

(4.9)

It can be noted above that the parasitic capacitanceC at the nodes vBP and vBN have not

been considered. As stated in the previous chapter, the delay at this node is much less

than the delay at node vA. Thus, vBN can be considered as gm,MCN/CP
times ro,2 =

1

gds,2
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times vo. Also, the gds,out term is neglected compared to other terms in the last line of

equation (4.9)

The following notations are used in this chapter

• ten,k is the time at which the circuit enters the kth dead-zone.

• tex,k is the time at which the circuit exits the kth dead-zone.

• tcr,k is the time taken in crossing from one dead-zone to another, that is, tex,k to

ten,k+1. That is,

tcr,k = ten,k+1 − tex,k (4.10)

• tdzo,k is the time spent in the kth dead-zone, i.e., the time taken between ten,k to

tex,k. That is,

tdzo,k = tex,k − ten,k (4.11)

It may be noted that the notation for time spent in dead-zone is a bit different from the

notation used in the previous two chapters.

After injecting an impulsive current at t = 0, the time-reversed gm, gds values are

used in the adjoint network. In the “operating point” of the circuit which settles after N

rings, the circuit enters its final dead-zone at t = ten,N+1. That is, the circuit is settled

after t = ten,N+1. So, from t = ten,N+1 to t = TS , gm,MCN
= 0, gm,MCP

= 0 as the

final stage transistors are cut-off. This means, in the adjoint network from gm,MCN
= 0,

gm,MCP
= 0 from t = 0 to t = TS − ten,N+1. From the differential equation (4.9), it can

be inferred that the node voltages do not change after t = 0+ to t = TS − ten,N+1.

4.2.1 Calculation of h(t) in the time-reversed transition regions

Now, h(t) (or vA(t)) is calculated in the time-reversed kth crossing/transition region,

that is, the time between TS − ten,k+1 to TS − tex,k using the differential equations set-

up above. The solution will involve decoupling of the 2 differential equations in vA and

vo and result in a second order differential equation. Here, a transition region where

NMOS is active, is assumed. The other transition region where PMOS is active also has

a similar formulation (with only gm,MCN
being replaced by gm,MCP

).
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When eitherMCN orMCP is active, its overdrive voltage increases from 0 to a max-

imum. This is not a step increase, and a small time interval elapses during this increase.

Accounting for this change in calculations makes the algebra very involved. Thus, a

constant maximum overdrive is assumed for a simple approximation. Assuming a con-

stant maximum overdrive for the entire duration of tcr,k will obviously lead to errors.

Thus, this constant overdrive approximation is done only for a fraction of tcr,k, the time

taken to cross from one dead-zone to another. This fraction is chosen empirically and

hence is a source of error. This approximation works to reasonable accuracy as the rate

of change of VBN or VBP is much lower at voltages close to maximum overdrive and

much faster at lower overdrives. One approximate way to do the constant estimation

is to assume maximum overdrive for the time taken to go from κ times the maximum

overdrive to the maximum overdrive and then again come down to κ times the max-

imum overdrive. Choosing the value of κ is again empirical and may lead to errors.

This constant approximation is a must for simple expressions, as will be seen from the

following differential equations.

The resulting second order differential equation in vA and vo both take the same

form

δ
d2vA

dt2
+
δgds1

2C ′

dvA

dt
+
A2gm1gm,MCN

2C ′(CA + CB)
vA = 0

δ
d2vo

dt2
+
δgds1

2C ′

dvo

dt
+
A2gm1gm,MCN

2C ′(CA + CB)
vo = 0

(4.12)

where δ =
CL + CB

CB

−
CB

CA + CB

.

Solving the above differential equation using initial conditions derived from (4.8),

vA(t) = e−α(t−(Ts−ten,k+1)) (k1sin(β(t− (Ts − ten,k+1)) + k2cos(β(t− (Ts − ten,k+1)))

α =
gds1

4C ′

β =

√

gm1gm,MCN
A2

2δ(CA + CB)C ′

k1 =
v′A(Ts − ten,k+1) + αvA(Ts − ten,k+1)

β

k2 = vA(Ts − ten,k+1)

(4.13)
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vo(t) = e−α(t−(Ts−ten,k+1)) (l1sin(β(t− (Ts − ten,k+1)) + l2cos(β(t− (Ts − ten,k+1)))

α =
gds1

4C ′

β =

√

gm1gm,MCN
A2

2δ(CA + CB)C ′

l1 =
v′o(Ts − ten,k+1) + αvo(Ts − ten,k+1)

β

l2 = vo(Ts − ten,k+1)

(4.14)

where δ =
CL + CB

CB

−
CB

CA + CB

.

As will be seen sometime later in equation (4.17), at the beginning of every dead-

zone (time reversed), vA decays considerably towards 0. Thus, at the beginning of

every dead-zone (time-reversed), vA ≈ 0. That is vA(TS − ten,k) ≈ 0. Using this

approximation,

vA(t) = e−α(t−(Ts−ten,k+1)) (k1sin(β(t− (Ts − ten,k+1)))

vo(t) = e−α(t−(Ts−ten,k+1)) (l2cos(β(t− (Ts − ten,k+1)))

α =
gds1

4C ′

β =

√

gm1gm,MCN
A2

2δ(CA + CB)C ′

k1 =
v′A(Ts − ten,k+1) + αvA(Ts − ten,k+1)

β

=

A2gm,MCN
vo(Ts − ten,k+1)

2C ′
− αvA(Ts − ten,k+1) + αvA(Ts − ten,k+1)

β

=
A2gm,MCN

vo(TS − ten,k+1)

2βC ′

l2 = vo(Ts − ten,k+1)

(4.15)

Now, the integral of v2A (in the kth crossing region), which is a contributor to the output
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noise PSD, as proved in equation (4.3), is given by

∫ TS−tex,k

TS−ten,k+1

v2A(t) =
k21
2

(

1− e−2α(tcr,k)

2α
−

e−2αtcr,k

2(α2 + β2)
(βsin(2βtcr,k)− αcos(2βtcr,k) + α)

)
(4.16)

4.2.2 Calculation of h(t) in the time-reversed dead-zones

Now, h(t) (or vA(t)) is calculated in the kth dead-zone region, i.e., the time between

TS − tex,k to TS − ten,k using the differential equations set-up above in (4.9). Here, both

NMOS(MCN ) and PMOS(MCP ) are cut-off.

vA(t) = vA(Ts − tex,k)e
−gds(t−(Ts−tex,k))

2C′

vo(t) = vo(Ts − tex,k)−
A1C

′vA(Ts − tex,k)

δ(CA + CB)
+
A1C

′vA(Ts − tex,k)e
−

gds,1(t−(TS−tex,k))

2C′

δ(CA + CB)

vo(t) ≈ −
A1C

′vA(Ts − tex,k)

δ(CA + CB)

(

1− e−
gds,1(t−(TS−tex,k))

2C′

)

(4.17)

where δ =
CL + CB

CB

−
CB

CA + CB

.

The approximation made in the above equation is justified as follows

A1C
′vA(Ts − tex,k)

δ(CA + CB)

=
A1A2gm,MCN/CP

vo(Ts − tex,k+1)

2βδ(CA + CB)

(4.18)

For typical gm and capacitance values,

A1A2gm,MCN/CP
vo(Ts − tex,k+1)

2βδ(CA + CB)
>> e−α(tcr,k)vo(Ts − tex,k+1)cos(β(tcr,k) (4.19)

Now, the integral of v2A (in the kth dead-zone region), which is a contributor to the

output noise PSD, as proved in equation (4.3)

∫ TS−tex,k

TS−ten,k

v2A(t)

=
v2A(Ts − tex,k)(C

′)

gds,1

(

1− e−
gds,1tdzo,k

C′

)

(4.20)
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Now, integrals over all the dead-zone regions are summed to find the integral of v2A(t)

in the dead-zone region.

As there areN rings, the last entry to the time-reversed dead-zone is at TS−ten,N+1.

Thus,

vA(TS − ten,N+1) = 0

v00 = vo(TS − ten,N+1) =
CA + CB

CACB + CACL + CBCL

(4.21)

From equation (4.15),

vA(TS − tex,N) = k1e
−αtcr,N sin(βtcr,k)

=

√

A2gm,MCN/CP
δ(CA + CB)

2C ′gm1

v00e
−αtcr,N sin(βtcr,k)

(4.22)

Substituting equation (4.22) in (4.17),

vo(TS − ten,N) =
−2A1C

′γNvA(TS − tex,N)

δ(CA + CB)
(4.23)

where,

γN = 1− e
−gds,1tdzo,N

2C′ (4.24)

Now, the expression for vA(Ts−tex,k) is evaluated using the equations (4.17) and (4.15),

vA(Ts − tex,k) = −A1γk+1e
−αtcr,ksin(βtcr,k)

√

2A2gm,MCN/CP
C ′

gm1δ(CA + CB)
vA(Ts − tex,k+1)

(4.25)

γk = 1− e
−gds,1tdzo,k

2C′ (4.26)

The gm,MCN/CP
in the above formula denotes gm of either NMOS MCN or PMOS MCP

depending on which is active.

Now, the integral v2A in the dead-zone is given by,

∫

tdz

v2A =
N
∑

k=1

v2A(Ts − tex,k)
C ′

gds,1
(1− e

−gds,1tdzo,k
C′ ) (4.27)
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From equations (4.3), (4.4) and (4.5), the integrated mean squared noise is given by

4kT

3gm1

(
∫

tdz

v2A(t)dt+

∫

tcr

v2A(t)dt

)

(4.28)

It is to be noted that the contribution from vA in the initial ramping phase has been

neglected. This is very tedious to calculate as making constant gm approximations

in this region are not feasible. However, this contribution to
∫

v2A(t)dt is negligible

compared to other contributions.

4.3 Simulation and analytic for variation of integrated

mean squared noise with VOS

Vdd

VOUT
A1

A2

A2

VCM-VOS

VCM+VOS

RST

RST

RST RST
VIN

VX

V1
VA

V2T

V2B

MCP

MCN

VBP

VBN

RST

VCMX

VCMO

RST

RST

CA CB

CLOAD

C1

C2

C3

From the equations derived in the previous section, it is observed that the mean squared

output noise mainly depends on the following factors

• As the number of times the circuit rings increases, the integrated mean squared

noise increases.

• For a particular number of rings, as the time taken for each ring of the circuit

increases, the integrated mean squared noise also increases.

• Also, it is known that as VOS increases for a given number of rings, the over-

shoot with respect to mid-rail voltage also decreases. The equation for rate when
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NMOS is active (derived in (2.11)) is given by,

ri = ((A1A2td)
2kpknψ

2)i
(

r0 +
VOSA2kn(1 + kptdA1A2ψ)

1− (A1A2td)2kpknψ2

)

−
VOSA2kn(1 + kptdA1A2ψ)

1− (A1A2td)2kpknψ2

(4.29)

The overshoot vi, on the negative side, with respect to mid-rail, is given by

vovershoot,i = ritd
CB

CA + CB

−
VOS

A1

(4.30)

As VOS increases, ri decreases, since the coefficient of VOS in the above equation (4.29)

for rate is ((A1A2td)
2kpkn)

i−1 and for stable circuits which settle, ((A1A2td)
2kpkn)

i <

1. Also, it is noticed from (4.30) that as VOS increases, overshoot with respect to mid-

rail decreases.

Now,

VA =
VDD

2
+ A1vovershoot,i

V2T = VA − VOS

VCP = f(V2T )

(4.31)

where f is the inverter characteristic transfer function. In the inverter characteristic

transfer function (of figure 4.3), gain

(

dvo

dvi

)

of an output voltage close to rails is

much lower than that of output voltage close to mid-rail, where gain is maximum. As

vovershoot,i decreases, VA and hence V2T decrease. This brings V2T closer to mid-rail,

and hence VCP also closer to mid-rail. Thus, for lower overshoot values, VCP is closer

to mid-rail and hence A2 is much higher for smaller vovershoot,i. Thus, as VOS increases,

vovershoot,i decreases, hence increasing A2. Higher A2 from equations (4.22) and (4.25)

implies higher noise. However, from equation (4.13), β also becomes higher with in-

crease in A2. As there is a sinusoidal dependence on β, as seen from equation (4.22)

and (4.25), there may be some irregularities with higher β.

In the ring amplifier circuit, a constant load capacitance CL, a constant CA, CB

(hence, a constant gain) and a constant input voltage (VIN ) are maintained. Only the

offset voltage VOS embedded at the output of the first stage inverter is varied.

The following are the plots of integrated mean squared noise versus VOS and number
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Figure 4.3: Inverter characteristics

of rings (N) versus VOS. In this case, For all inverters,

W

L
of NMOS =

7.2

2.4
W

L
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21.6

2.4

For MCN ,

W

L
=

3.2

3.2

For MCP

W

L
=

9.6

3.2

All dimensions are in µm.

CA = 1.5pF

CB = 1pF

CL = 0.2pF

VIN = −0.1V

VOS was varied from 180 mV to 310 mV, in steps of 5 mV. A pss and pnoise analysis

was run for each of these cases using the guidelines in (Murmann, 2012). The resulting

output noise and the number of rings are plotted against the offset voltage. The general

trend from this plot looks like the mean squared noise decreases with increase in VOS

and hence the decrease in number of rings. However, on zooming in on the region with

smaller number of rings, it is noticed that there is not a uniform decrease. For some k
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Figure 4.4: Integrated mean squared noise v/s VOS
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Figure 4.5: Root mean squared noise v/s VOS

number of rings in the output, the noise increases with an increase in VOS. This shows

the dependence on the time taken for each ring and on the increase in A2 with VOS. For

the same number of rings, the time taken for each ring increases with an increase in VOS.

Also, A2 increases with increase in VOS . Therefore, the integrated mean squared noise

for a given number of rings is higher when the offset voltage VOS is higher. However, as

there is a sinusoidal dependence on β, as seen from equations (4.22) and (4.25), there

may be some irregularities in trends with higher β.
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Figure 4.6: Number of rings v/s VOS

4.4 Simulation and analytic for variation of integrated

mean squared noise with CLOAD

Vdd

VOUT
A1

A2

A2

VCM-VOS

VCM+VOS

RST

RST

RST RST
VIN

VX

V1
VA

V2T

V2B

MCP

MCN

VBP

VBN

RST

VCMX

VCMO

RST

RST

CA CB

CLOAD

C1

C2

C3

As in the previous section, it is observed that the mean squared noise mainly depends

on the following factors

• As the number of times the circuit rings increases, the integrated mean squared

noise increases.

• For a particular number of rings, as the time taken for each ring of the circuit

increases, the integrated mean squared noise also increases.

• Also, it is seen that as CLOAD increases for a given number of rings, the over-

shoot with respect to mid-rail voltage also decreases. The differential equations
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(derived in (2.10)) governing the rate are given by,

ri =

(

r′i−1td
CB

CA + CB

−
VOS

A1

)

A1A2kn

kn =
gm,MCN

CL +
CACB

CA + CB

r′i =

(

ritd
CB

CA + CB

−
VOS

A1

)

A1A2kp

kp =
gm,MCP

CL +
CACB

CA + CB

(4.32)

The overshoot, on the negative side, with respect to mid-rail vi is given by

vovershoot,i = ritd
CB

CA + CB

−
VOS

A1

(4.33)

AsCLOAD increases, it is seen from the above set of equations that, kn, kp also decrease,

therefore, ri decreases. Now, as ri decreases, from equation (4.33), it is noticed that

vovershoot,i also decreases.

Now,

VA =
VDD

2
+ A1vi

V2T = VA − VOS

VCP = f(V2T )

where f is the inverter characteristic transfer function. Now, in the inverter charac-

teristic transfer function, gain
(

dvo
dvi

)

of an output voltage close to rails is much lower

than that of output voltage close to mid-rail, where gain is maximum. As vovershoot,i de-

creases, VA and hence V2T decreases. This brings V2T closer to mid-rail, and hence VCP

also closer to mid-rail. Thus, for lower overshoot values, VCP is closer to mid-rail and

hence A2 is much higher for smaller vovershoot,i. Thus, as CLOAD increases, vovershoot,i

decreases, hence increasing A2. Higher A2 from equations (4.22) and (4.25) implies

higher noise. The variation of inverter gain is illustrated by the inverter characteristics

plotted in the figure (4.3).

However, from equation (4.13), βi also becomes higher with increase in A2. As

there is a sinusoidal dependence on βi, as seen from equation (4.22) and (4.25), there
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may be some irregularities with higher βi.

In the ring amplifier circuit, a constant offset voltage VOS , a constantCA, CB (hence,

a constant gain) and a constant input voltage (VIN ) are maintained. Only the load ca-

pacitance CLOAD is varied.

The following are the plots of integrated mean squared noise versus CLOAD and

number of rings (N) versus CLOAD. In this case, For all inverters,

W

L
of NMOS =

7.2

2.4
W

L
of PMOS =

21.6

2.4

For MCN ,

W

L
=

3.2

3.2

For MCP

W

L
=

9.6

3.2

All dimensions are in µm.

CA = 1.5pF

CB = 1pF

VOS = 0.15V

VIN = −0.1V

Also, CLOAD was varied from 300 fF to 3 pF, in appropriate steps. A pss and pnoise

analysis was run for each of these cases using the guidelines in (Murmann, 2012). The

resulting output noise and the number of rings are plotted against the load capacitance.

The general trend from this plot looks like the mean squared noise decreases with in-

crease inCLOAD and the consequent decrease in number of rings. However, on zooming

in on the region with smaller number of rings, it is noticed that there is not a uniform

decrease. This shows the dependence on the following factors:

• The time taken for each ring. For a given number of rings, this time increases with

increase in CLOAD. Increased ringing time leads to increase in noise. However,
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Figure 4.7: Integrated mean squared noise v/s CLOAD
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Figure 4.8: Integrated mean squared noise v/s CLOAD, zoomed in

this is offset by a decrease in noise due to increase in CLOAD itself. Increased

CLOAD means decreased initial rise in voltage v00 as given by equation (4.21).

Decreased v00 leads to decreased noise as given by (4.22).

• Also, the increase in A2 as explained at the start of the section.

• Similarly, as the overshoot vovershoot,i or v′overshoot,i decreases with increase in

CLOAD, there is a consequent decrease in the maximum gate overdrive voltage at

the final stage. The incremental change in overdrive voltage is given by

vBN = A1A2vi

vBP = A1A2v
′

i

(4.34)

Decrease in overdrive voltage leads to decrease in gm,MCN/CP
if the final stage

transistors are in saturation.

These are the reasons an increase followed by a decrease in noise for a given number of

rings N , is observed.
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Figure 4.9: Root mean squared noise v/s CLOAD
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Figure 4.10: Root mean squared noise v/s CLOAD, zoomed in

However, as there is a sinusoidal dependence on βi, as seen from equations (4.22)

and (4.25), there may be some irregularities in trends with higher βi.

4.5 Possible sources of deviation

• As there is a sinusoidal dependence on βi, as seen from equation (4.22) and (4.25),

any small error in the estimation of βi may lead to more significant errors in the

estimation of h(t). Also, if this error comes up in the estimation of the last (N th)

time-reversed ring, there will be an accumulation of error as we estimate the time-

reversed rings N − 1, ...., 1.

• Assuming constant (maximum) gate overdrive for the last stage NMOS/PMOS

means estimated noise is higher than actual noise.

• Also, the approximation that vA(TS−ten,k) ≈ 0 while simplifying the expressions

to a certain extent, may lead to deviation from simulation.
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Figure 4.11: Number of rings v/s CLOAD
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CHAPTER 5

Analysis of noise in traditional OTA based switched

capacitor circuits

In this chapter, the noise in traditional OTA based switched capacitor circuits is anal-

ysed. The gm gds values are constant in this circuit, as opposed to the ring amplifier

circuit. Thus, noise analysis by traditional frequency method is much simpler in this

case. This point is illustrated in this chapter and some similarities and differences be-

tween the noise in 2 circuits are noted. The traditional OTA-based switched capacitor

amplifier is shown in figure (5.1)

CL

vO

+

-
 +

-
vIN

gm1
gm2

C

CB

CA

RST RST

RST RST

v
v1

r1
r2

C1

r=1/gm2

Figure 5.1: OTA based switched capacitor circuit



5.1 Noise calculation in OTA based switched capacitor

circuits

The values used for simulation in this circuit are:

CA = 3pF

CB = 1pF

CL = 0.2pF

C1 = 10fF

r1 = r2 = ∞

gm1 = gm2 = 100µS

(5.1)

The noise transfer functions from the 2 transconductance and from the zero-cancelling

resistor to the output node are computed. The two output resistance values are assumed

to be ∞ during our calculations. The transfer function from gm1 is H1(s), from gm2 is

H2(s) and from the zero-cancelling resistor is H3(s).

5.1.1 Simulation and analytic noise due to gm1 for variation of inte-

grated mean squared noise with C

v1

(

sC1 +
gm2sC

gm2 + sC

)

− vo

(

gm2sC

gm2 + sC
+

gm1CB

CA + CB

)

= I(s)

vo

(

s(CA||CB + CL) +
sCgm2

sC + gm2

)

− v1

(

sCgm2

sC + gm2
− gm2

)

= 0

Solving the above equations,

H1(s) =

g2m2

s3CC1(CL +CA||CB) + s2(gm2C1(CL + CA||CB + C) + gm2C(CL + CA||CB)) + sg2m2C +
g2m2gm1CB

CA+CB

(5.2)

The output noise spectral density is given by

SvO(f) = |H(f)|2 ×
8kTgm1

3
(5.3)
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Capacitance C (pF) Simulated mean squared noise (V 2) Analytic mean squared noise (V 2)

0.01 1.23× 10−6 1.26× 10−6

0.02 5.95× 10−7 6.02× 10−7

0.05 2.29× 10−7 2.31× 10−7

0.1 1.13× 10−7 1.13× 10−7

0.25 4.45× 10−8 4.45× 10−8

0.5 2.22× 10−8 2.22× 10−8

0.75 1.48× 10−8 1.48× 10−8

1 1.11× 10−8 1.11× 10−8

5 2.23× 10−9 2.21× 10−9

10 1.36× 10−9 1.11× 10−9

Table 5.1: Noise due to first stage transconductance

Using appropriate contour integration and evaluating mean squared noise using the

above transfer function, the output noise comes to be

2kTgm2

3

(

CC1 + (CL + CA||CB)(C + C1)

C

)

CB

CA + CB

(

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

)

(5.4)

Table (5.1) shows analytic noise and simulated noise values (due to the first stage
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Figure 5.2: Mean squared noise v/s C

transconductance) as the Miller capacitance C is varied. As will be seen later, the first

stage contributes the maximum noise to the circuit (tillC becomes very large). Equation

(5.4) gives the exact expression for the noise only in cases where the circuit settles to its

steady state within the half the sampling period TS

2
. In cases where this doesn’t happen,

there is a deviation of analytic noise from simulated noise. (This is noticed in the case

where C=10 pF. In this case, circuit doesn’t settle to steady state within half the time

period.) In such cases, the “time-domain” approach of computing noise (which was

used in the previous chapter) can be used. However, when the circuit doesn’t settle to
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its desired steady state, there is an error in the output. So, it is sufficient to calculate

noise for cases where there is settling within the half time period.

5.1.2 Simulation and analytic noise due to gm2 for variation of inte-

grated mean squared noise with C

v1

(

sC1 +
gm2sC

gm2 + sC

)

− vo

(

gm2sC

gm2 + sC
+

gm1CB

CA + CB

)

= 0

vo

(

s(CA||CB + CL) +
sCgm2

sC + gm2

)

− v1

(

sCgm2

sC + gm2
− gm2

)

= I(s)

(5.5)

Solving the above equations,

H2(s) =

s(C + C1)gm2 + s2CC1

s3CC1(CL +CA||CB) + s2(gm2C1(CL + CA||CB + C) + gm2C(CL + CA||CB)) + sg2m2C +
g2m2gm1CB

CA+CB

(5.6)

The output noise spectral density is

SvO(f) = |H(f)|2 ×
8kTgm2

3
(5.7)

Using appropriate contour integration and evaluating mean squared noise using the

above transfer function, the output noise comes to be

2kTgm2

3

(

(C + C1)
2

C

)

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

+

2kTg2m2

3

CC1

CA||CB + CL

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

≈

2kTgm2

3

(

(C + C1)
2

C

)

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

(5.8)

Table (5.2) shows analytic noise and simulated noise values (due to the second stage

transconductance) as the Miller capacitance C is varied.
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Capacitance C (pF) Simulated mean squared noise (V 2) Analytic mean squared noise (V 2)

0.01 6.44× 10−9 6.60× 10−9

0.02 4.61× 10−9 4.72× 10−9

0.05 3.56× 10−9 3.63× 10−9

0.1 3.21× 10−9 3.27× 10−9

0.25 3.00× 10−9 3.08× 10−9

0.5 2.93× 10−9 2.98× 10−9

0.75 2.91× 10−9 2.97× 10−9

1 2.89× 10−9 2.95× 10−9

5 2.87× 10−9 2.91× 10−9

10 2.85× 10−9 2.91× 10−9

Table 5.2: Noise due to second stage transconductance

5.1.3 Simulation and analytic noise due to the zero-cancelling resis-

tor for variation of integrated mean squared noise with C

By proceeding along similar lines, the noise transfer function from the zero-cancelling

resistor (H3(s)) is,

H3(s) =

sCgm2 + s2CC1

s3CC1(CL +CA||CB) + s2(gm2C1(CL + CA||CB + C) + gm2C(CL + CA||CB)) + sg2m2C +
g2m2gm1CB

CA+CB

(5.9)

The output noise spectral density is

SvO(f) = |H(f)|2 × 4kTgm2 (5.10)

Using appropriate contour integration and evaluating mean squared noise using the

above transfer function, the output noise comes to be

kTgm2C

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

+

kTg2m2

CC1

CA||CB + CL

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

≈
kTgm2C

gm2(CC1 + (CL + CA||CB)(C + C1))− gm1
CB

CA + CB

C1(CL + CA||CB)

(5.11)
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Capacitance C (pF) Simulated mean squared noise (V 2) Analytic mean squared noise (V 2)

0.01 2.41× 10−9 2.51× 10−9

0.02 3.08× 10−9 3.18× 10−9

0.05 3.71× 10−9 3.80× 10−9

0.1 3.97× 10−9 4.06× 10−9

0.25 4.16× 10−9 4.27× 10−9

0.5 4.22× 10−9 4.30× 10−9

0.75 4.24× 10−9 4.33× 10−9

1 4.26× 10−9 4.33× 10−9

5 4.28× 10−9 4.33× 10−9

10 4.28× 10−9 4.33× 10−9

Table 5.3: Noise due to zero-cancelling resistor

Table (5.3) shows analytic noise and simulated noise values (due to the second stage

transconductance) as the Miller capacitance C is varied.

5.2 Comparison with noise of ring amplifier

As the Miller capacitance C increases in the OTA based switched capacitor circuit of

figure (5.1), the quality factor reduces. That is, there is less ringing in the circuit. For

less ringing, the noise contribution due to the first stage OTA gm1 goes down. In the

OTA based circuit, there is an additional noise contribution from the zero-cancelling

resistor and the second stage OTA gm2.

The number of rings in the ring amplifier based switched capacitor circuits can

roughly be treated as an equivalent of the quality factor. The general trend of the in-

tegrated mean squared noise decreases with decrease in number of rings. Thus, the

general trend of the integrated mean squared noise decreases with increasing VOS and

CLOAD. In case of ring-amp based switched capacitor circuits, only the first inverter

contributes to noise, other transistors don’t. Also, as stated in the previous chapter,

decrease in integrated mean squared noise is not uniform as in the case of traditional

OTA based switched capacitor circuits. Also, the steady state solution or the “operating

point” depends on the input in the ring-amp circuit. Therefore, noise also varies with

input in the ring-amp based switched capacitor circuits.
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CHAPTER 6

Conclusion and Future Scope

In this work, an existing model for the steady state solution of a ring amplifier was

studied in detail and was extended to include the effects of slewing and parasitic ca-

pacitances. The effect of different parameters like offset voltage and capacitances on

the number of rings (during settling) was studied and the trends were verified by sim-

ulation. Based on the model developed and some constraints mentioned in (Hershberg

et al., 2012), a design procedure was formulated to help fix the transistor dimensions

for a ring amplifier circuit which settles.

“Time-domain” techniques mentioned in (Pavan and Rajan, 2014) were used to

analyse the noise in ring amplifier circuits. Various simplifying assumptions were made

to explain the trends in noise variation with offset voltage and capacitances. The result-

ing model, though matches with simulation as far as the trends are concerned, gives only

a rough (few 10s of percent error) point by point match for the integrated mean squared

noise values. The model can be further improved and better approximations may be

used to develop more accurate expressions without loss of intuition. An improvement

may lead to prediction of the exact parameter values which minimize noise.



APPENDIX A

LPTV Networks with Sampled Outputs

The results of the (Pavan and Rajan, 2014) were used for the time-domain method of

noise analysis in the ring-amplifier circuit. The proofs and other details of the (Pavan

and Rajan, 2014) are explained in this appendix.

A linear periodic time varying (LPTV) network, with an input x(t) is considered. It

is shown that if the output of this network y(t) is sampled at fS , an equivalent LTI filter

can be found. That is, if the LTI filter is excited by the same input x(t) and the output is

sampled at fS , the output sequence is same as the the sequence of the LPTV network.

Also, inter-reciprocity is extended to LPTV systems and used to find equivalent LTI

filters from multiple inputs.

A impulse is applied at the input of a system at time t−τ and the output is observed

at time t, where τ is the time difference between the observation of output and appli-

cation of the input impulse. The impulse response of such a system is h(t, τ). When a

complex exponential x(t) = ejωt is applied to such a system,

y(t) =

∫

∞

−∞

x(t− τ)h(t, τ)dτ = ejωth(t, τ)dτ

= H(jω, t)ejωt
(A.1)

In a LPTV system with period TS , h(t) = h(t + TS) and H(jω, t) = H(jω, t + TS).

Thus, the “transfer function” can be written as a Fourier series

H(jω, t) =

k=∞
∑

k=−∞

Hk(jω)e
(jωSt) (A.2)

where ωS =
2π

TS

The sequence obtained by exciting an LPTV system with ejωt and sampling the



output at TS with an offset of to (< TS), is considered

y[m, to] = y(mTS + to)
[

k=∞
∑

k=−∞

Hk(jω)e
(jωSto)

]

ejω(mTS+to)

= Heq(jω)e
jω(mTS+to)

(A.3)

Thus, the output samples of an LPTV system are same as the output samples of an

LTI system with transfer function Heq(jω) excited by the exponential ejωt. As any

arbitrary signal x(t) can be written as a sum of complex exponentials through Fourier

Transforms, by virtue of linearity the above property must hold for any input signal.

If an input is applied to a LPTV system at t = ti and output is sampled at offset of

to, resulting sequence is h(mTS + to, mTS + to− ti), and the equivalent LTI sequence is

heq(mTS + to − ti). To find heq(t) , an impulse is applied to the system at ti = to −∆t,

and output sequence is recorded. This yields heq(mTS + ∆t). ∆t is swept from 0 to

TS in sufficiently fine steps, and heq(mTS +∆t) is obtained for all values of ∆t. Thus,

heq(t) is found.

Inter-reciprocity can be extended to LPTV systems. Inter-reciprocity in LPTV net-

works implies the following. The sequence obtained by periodically sampling the out-

put at the output port of N at a timing offset to, in response to a input impulse δ(t− ti)

applied to input port is identical to the sequence that would be obtained by applying the

input impulse to the output port of N̂ at time TS − to, and sampling the output (at the

input port of N̂ ) at a timing offset TS − ti. This result is proved using Zak transforms

in the (Pavan and Rajan, 2014). The adjoint network is then constructed as follows:

• Linear elements (resistance R, capacitance C and inductance L) of the network

N remain R, C and L in the adjoint network N̂ .

• Periodic switches are time reversed. That is a switch which is one in a time

interval T in N is on in the time interval T in N̂ .

• All controlled sources transform in a similar way as the LTI networks but with an

additional time reversal.

Now, the adjoint network is used to compute heq(t) in a more efficient manner. A
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network N whose output is sampled at offset to and its adjoint N̂ are considered.

heq(mTS + ∆t) from input to output port of N , is the sequence obtained by sampling

the output at an offset of to when an impulse is applied at to − ∆t. By LPTV inter-

reciprocity stated above, it is noted that exactly the same sequence is obtained when an

impulse is applied at time TS − to at the output port of the adjoint N̂ and sampling is

done at the input port of the adjoint N̂ at timing offset of TS − to +∆t. Sweeping the

time of input impulse application at input port of N for a constant output observation

offset of to at the output port of N is equivalent to keeping the input application at the

output port of N̂ constant at Ts−to and sweeping the timing offset of output observation

at input port of N̂ . Hence, heq(t− (TS − to)) is obtained. heq(t) is only a time-shifted

version of the same.
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