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ABSTRACT 

  The study of small-signal instability in a power system is presented. The 

formulation of a reduced model for multi-machine system is done in order to achieve 

robustness and avoid computational issues while performing numerical integration of 

machines’ non-linear ordinary differential equations. An efficient algorithm for numerical 

integration of ODE’s is also discussed.  Small-signal analysis of the system is also 

performed in order to identify the modes that lead the system to small-signal instability. 

The procedure for the design of Power System Stabilizer (PSS) is detailed. The 

participation factor method is used to select the PSS location for any given mode. The 

tuning of PSS, thus designed, is done in order to obtain an appropriate PSS gain that can 

provide adequate damping to the troublesome modes.  
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CHAPTER I: Introduction 

 Power systems in practice are subjected to various disturbances frequently. These 

disturbances occur because of various causes like faults at buses, change in mechanical 

torque and failure of transmission lines, etc. These disturbances, even of short duration, 

deviates the system behavior from steady state or worse can make the system unstable. 

So, exciters are used for regulating generator terminal voltages. Exciters mostly achieve 

this by acting as a feedback to the system taking terminal voltage of the generator as 

input. In practical purposes, the fast acting exciters are mostly used for achieving better 

results. So, these exciters generally result in low frequency modes that are not adequately 

damped. This gives rise to small-signal instability in the system. The formulation of 

system equations in order to study the small-signal instability in a multi-machine system 

is discussed in Chapter-2.  

 

Figure 1: Block Diagram of an Excitation System 

  Power system Stabilizers (PSS) are used to provide adequate damping for the 

modes that lead the system to small-signal instability. PSS is a feedback controller which 

takes speed or power signal as input and outputs a control signal Vs as an input to the 

exciter. The block diagram of an Excitation system at a generator is shown in Figure 1. 

The design of PSS is critical as the PSS doesn’t just have to provide sufficient damping 
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for troublesome modes, instead it also should not destabilize other modes. So, a detailed 

procedure for design of PSS is discussed in Chapter 3. The concepts discussed in Chapter 

2 and 3 are applied to a Single-Machine Infinite Bus (SMIB) system and a 10-bus, 4-

machine system in Chapter-4. 
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CHAPTER II: Multi-Machine System Behavior 

 Model 1.1, a field circuit with one equivalent damper on q-axis, is assumed for 

the representation of the Synchronous Machine in this chapter. This model is governed by 

non-linear ordinary differential equations given in equation (1): 
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where   is load angle of the synchronous generator,    is operating slip of the generator, 

   is the exciter’s output voltage,   
 and   

  are components of the rotor’s internal 

voltage in q-axis and d-axis respectively. The variables    
  and    

  are open-circuit 

transient time-constant of d-axis and q-axis respectively whereas     is initial operating 

slip of the generator. The variables    and    are exciter time constant and exciter gain 

respectively whereas the variable     is PSS output given to the exciter. The mechanical 

torque    and the reference voltage      are considered as inputs to the system given in 

equation (1) whereas the electrical torque    and terminal voltage    are given by: 
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The stator variables   ,   ,   and    are calculated using network equations. In a single-

machine system, the calculation of these variables is relatively easy because of simplicity 

of the network. But the complexity and bulkiness of multi-machine system brings in 

computational issues while trying to study the small-signal instability. Hence, a reduced 

model is considered and its formulation is discussed in this chapter.  

The study of small-signal instability, in other words, is studying the variation of 

the state variables        
    

      over duration of time when the system is under 

small-signal instability. Hence, the numerical integration of the ODE’s in equation (1) by 

fourth-order Runge-Kutta Method is detailed in this chapter. So, the usage of the network 

equations of the reduced model in the numerical integration of the machine equations will 

help us study the system behavior and in turn its instability.   

2.1 Reduced model 

While studying the small-signal instability in a multi-machine system, observation 

of the generators’ output is crucial. So, the reduced model must include all the generators 

in addition to components which reflect the system’s transmission line network. So, a 

reduced model where all buses except generator buses are eliminated should be 

considered. In other words, we need to reduce the admittance matrix Y. For the system of 

n buses and m generators, the i
th

 row and j
th 

column element     of the       admittance 

matrix Y is given as follows: 

                         

                                                 {

                             

   ∑    
 
   
   

        } ( 3 ) 
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where              is the summed admittance of all the power lines going from bus i 

to bus p and         is the summed admittance to ground at bus i. The admittance to 

ground    will include transmission lines’ shunt susceptance and load admittance as the 

loads are considered to be of constant impedance. The load admittance     at a particular 

bus i can be calculated as follows: 

                                                                            
   

      
 

|  
 |

  ( 4 ) 

where    
      

 ,   
  are initial values of real load power, reactive load power and voltage at 

the bus i respectively. The admittance matrix Y, so obtained, is sparse and satisfies the 

equation: 

                                                                       [ ] [
  
⃗⃗  ⃗

  
⃗⃗⃗⃗  ⃗

]  [
 ⃗⃗ 

  ⃗⃗⃗⃗ 
] ( 5 ) 

where   ⃗⃗  ⃗   ⃗⃗  ⃗ are column vectors of phasors of generators’ terminal voltages and 

generators’ currents respectively and are of order     respectively whereas   
⃗⃗⃗   is column 

vector of order       and its elements are phasors of voltages at buses other than 

generator buses . In order to obtain a reduced model, we need to understand influence of 

generator terminal voltages on the generator currents. In other words, we have to 

eliminate   
⃗⃗⃗  . So, rewriting Y as: 

                                                                          [ ]  *
  
   

+ ( 6 ) 

where       are matrices of order                         and       

respectively. So, the admittance matrix Yred satisfying the equation [    ]  ⃗⃗  ⃗    ⃗⃗  ⃗ is as 

follows: 

                                                                      [    ]           ( 7 ) 
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where Yred is a matrix of order      ,   being the number of generators in the system.  

The network equation given by [    ]  ⃗⃗  ⃗    ⃗⃗  ⃗ doesn’t give information about q-

axis and d-axis components of stator phase voltages and stator currents. But these 

components are important as they appear in ordinary differential equations of the 

generator given in equation (1). The terminal voltage     and generator current     at any 

given generator i can be expressed in terms of the stator components as follows: 

                                                                   
     (        ) 

   

    (        ) 
   

 ( 8 ) 

Substituting the above equation in the network equation[    ]  ⃗⃗  ⃗    ⃗⃗  ⃗ , we obtain: 

(        ) 
    ∑   (        ) 

   

 

   

 

or, 

                                        (        )  ∑           (        ) 
         

    ( 9 ) 

where              is k
th

 row and i
th

 column element of the reduced admittance 

matrix     . Simplifying the above equation by dividing it into real and imaginary parts, 

we obtain a relation between voltage components and current components of the 

generator as follows: 

                               
    ∑                

 
   

    ∑                
 
   

 ( 10 ) 

where 

                                             

                                            
 

Writing equation (10) in matrix form, we obtain:  
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  [
  ⃗⃗  ⃗

  ⃗⃗  ⃗
]  [

   

  
] [

  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

] ( 11 ) 

 

where   ⃗⃗⃗  ,   ⃗⃗  ⃗,   ⃗⃗  ⃗,  
⃗⃗⃗⃗  are column vectors of order m and their k

th
 element is represented by  

k
th

 generator’s stator variables    ,    ,    ,     respectively.         are elements of the 

      matrices     . Rewriting the above equation as follows:  

[
  ⃗⃗  ⃗

  ⃗⃗  ⃗
]  [  ] [

  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

] ( 12 ) 

where    is a matrix of order        ,   being the number of generators in the system.  

The network equations thus obtained doesn’t have significance unless one of 

vectors on either side is known.  So, we need to express one of these non-state vectors in 

terms of the state variables     
    

 . Considering the synchronous machine to be of 

model 1.1, we can write stator equations for any k
th

 generator as follows: 

   
     

               

   
     

               
 ( 13 ) 

where    
     

      are d-axis transient reactance, q-axis transient reactance and armature 

resistance of generator k respectively. Writing equation (13) in matrix form, we obtain:  

       [
  ⃗⃗  ⃗

  
⃗⃗⃗⃗ 

]  [
  

 ⃗⃗⃗⃗ 

  
 ⃗⃗ ⃗⃗ 
]  [

     
 

   
    

] [
  ⃗⃗⃗  

  ⃗⃗  ⃗
] 

where   
    

    are diagonal matrices of order m and its diagonal elements are    
     

    

     respectively whereas   
 ⃗⃗⃗⃗    

 ⃗⃗ ⃗⃗  are column vectors of order m and their k
th

 element is 

represented by    
     

  respectively . Rewriting the above equation as follows:  

                                                                  [
  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

]  [
  

 ⃗⃗ ⃗⃗  

  
 ⃗⃗⃗⃗  ⃗
]  [  ] [

  ⃗⃗  ⃗

  ⃗⃗  ⃗
] ( 14 ) 
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where    is a matrix of order        . Substituting equation (12) in the above equation, 

we obtain: 

[
  ⃗⃗  ⃗

  
⃗⃗⃗⃗ 

]  [
  

 ⃗⃗⃗⃗ 

  
 ⃗⃗ ⃗⃗ 
]  [  ][  ] [

  ⃗⃗  ⃗

  
⃗⃗⃗⃗ 

] 

or, 

                                                  [
  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

]  [      ]
  [

  
 ⃗⃗ ⃗⃗  

  
 ⃗⃗⃗⃗  ⃗
] ( 15 ) 

If the states variables     
    

  at any given time are known, then the network equation 

(12) and (15) will helpful in evaluating the unknown d-axis and q-axis components of 

stator phase voltages and stator currents of the generators at that time. 

2.2 Runge-Kutta Method 

The numerical integration of non-linear ordinary differential equations is critical 

due to its non-linearity. So, Runge-Kutta method is used for numerical integration of 

ordinary differential equations in equation (1) and the variation of state 

variables        
    

      under various disturbances is studied. Fourth-order Runge-

Kutta Method is an explicit single-step algorithm that uses intermediate points in the 

interval         to calculate state at time  . Rewriting equation (1) as follows: 

                                                                       
  ⃗⃗ 

  
    ⃗⃗   ⃗⃗   ( 16 ) 

where, 

  ⃗⃗  ⃗  [    
⃗⃗⃗⃗  ⃗   

 ⃗⃗⃗⃗   
 ⃗⃗ ⃗⃗    

⃗⃗ ⃗⃗ ⃗⃗  ]
 

   ⃗⃗  [  ⃗⃗⃗⃗  ⃗          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ] 
 

 

The value of state      at time   is given by this method as follows: 
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where  
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⃗⃗ ⃗⃗   ⃗⃗       

 

 

Implementation of an algorithm of above kind at a given time T will give us state 

variables of the system at time T. In order to evaluate the system behavior at further times 

(t>T), the system variables need to be evaluated using the equations (12), (15) and (17) at 

every instant. It’s also necessary to include the exciter’s limiter in the algorithm as the 

value of the state variable Efd depends on the limiter used. The Runge-Kutta Method can 

also be used to verify the effectiveness of PSS designed. In that case, the PSS output Vs 

and derivatives of Vs are also considered as state variables and Runge-Kutta method is 

implemented with equations (17) and PSS equations in differential form. So, the Runge-

Kutta method will be helpful in understanding the system behavior.     
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CHAPTER III: Design of Power System Stabilizer (PSS) 

The function of Power System Stabilizers (PSS) is to provide sufficient damping 

for the modes which lead to small-signal instability. These modes normally are local 

modes (0.8-1.8 Hz) for single-machine systems whereas for multi-machine systems, 

small-signal instability also occurs due to inter-area modes (0.2-0.7 Hz) in addition to the 

local modes. These modes have to be identified and its effect on each generator has to be 

analyzed in order to choose an appropriate PSS location in multi-machine system.  Usage 

of participation factors to determine a PSS location is discussed in this chapter. The 

design of PSS involves choosing appropriate parameters for its components: Washout 

block, Compensator and Limiter. The conditions involved in choosing these parameters 

are discussed in this chapter. Also, the root locus of the system including PSS is 

performed in order to select an appropriate gain for PSS. Hence, the PSS will be tuned 

such that the troublesome mode is damped.  

3.1 PSS Location 

 Eigenvalues of the system can used to determine the modes which lead the system 

to instability. So, the system equations (1) have to be written in state-space form given by 

equation (18) in order to determine eigenvalues of the system. 

 ⃗⃗ ̇  [ ] ⃗⃗  [ ] ⃗⃗  ( 18 ) 

 where   and   are matrices of order         whereas the state   and input U are 

column vectors of order    and are defined by: 
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   [                          
        

      
        

              ]
 

 ⃗⃗  [                                         ]
  

As the generator’s differential equations (1) are non-linear, they have to be linearized in 

order to represent system in state-space form. The linearized form of differential 

equations for the k
th

 generator is as follows: 

                               

          

     
 

   
[               ]

    
  

 

    
 [          

          
      ]

    
  

 

    
 [     

  (       
 )    ]

      
 

   
[          (           )]

 ( 19 ) 

where the variables     and     are exciter time constant and exciter gain of k
th

 

generator respectively whereas the variables        and      are change in reference 

voltage  and change in the mechanical torque  of the k
th

 generator respectively. The 

obtained linearized differential equations have two non-state variables (         ) that 

are linked to network properties. So, the dependence of these variables on state variables 

needs to be determined. The change in electrical torque      of k
th

 generator can be 

computed from equation (2) as follows: 

         
         

     ((   
     

 )       
 )     ((   

     
 )       

 )     ( 20 ) 

Writing equation (20) in matrix form, we obtain: 

                                            
⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [  ]   ⃗⃗ ⃗⃗ ⃗⃗   [   ]   ⃗⃗ ⃗⃗ ⃗⃗         ( 21 ) 
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where              are diagonal matrices of order   and        are k
th

 diagonal 

elements of        respectively whereas k
th

 diagonal element of matrices        is as 

follows: 

    (   
     

 )       
 

     (   
     

 )       
 

 

The change in terminal voltage      at k
th

 generator can be computed from 

equation (2) as follows: 

                                                               
   

   
     

   

   
     ( 22 ) 

Writing equation (22) in matrix form, we obtain: 

                                                                  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   [  ]   

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ [  ]   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( 23 ) 

where       are diagonal matrices of order   and the k
th

 diagonal element of the 

matrices       is as follows: 

    
   

   
     

   

   
 

The change in the stator components    ⃗⃗ ⃗⃗⃗⃗ ,    ⃗⃗ ⃗⃗ ⃗⃗ ,    ⃗⃗ ⃗⃗ ⃗⃗   and    
⃗⃗ ⃗⃗ ⃗⃗  ⃗ needs to be calculated 

using network equation (12). By linearizing the network equation (12), we obtain: 

[
   ⃗⃗ ⃗⃗⃗⃗ 

   ⃗⃗ ⃗⃗ ⃗⃗ 
]  [   ] [

  ⃗⃗  ⃗

  
⃗⃗⃗⃗ 

]  [  ] [
   ⃗⃗ ⃗⃗ ⃗⃗  

   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

] 

or, 

                                            [
   ⃗⃗ ⃗⃗ ⃗⃗  

   ⃗⃗ ⃗⃗ ⃗⃗  
]  [

     

    
] [

  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

]  [  ] [
   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ 

] ( 24 ) 

The k
th

 row and i
th

 column element           of       matrices    and    can be 

written as follows: 
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We can rewrite the above equation in matrix form as follows: 

                                                               

[  ]  ∑ [  
 ]   

 
   

[  ]  ∑ [  
 ]   

 
   

 ( 25 ) 

where   
    

  are matrices of order       for every k and the i
th 

row and j
th

 column 

element     
      

  of the matrices   
    

  are given by: 

     
  {

                            

                     

                 

}

    
  {

                            

                    

                 

}

 

 

Using the above equations in finding    , we obtain: 

[   ]  ∑[
  

    
 

  
   

 ]    

 

   

 

or, 

                                                                      [   ]  ∑ [  
 ]   

 
    ( 26 ) 

where   
  is a matrix of order         for every k .Substituting the above relation in 

equation (24), we obtain: 

                                                   [
   ⃗⃗ ⃗⃗ ⃗⃗  

   ⃗⃗ ⃗⃗ ⃗⃗  
]   ∑ [  

 ]   
 
    [

  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

]  [  ] [
   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ 

] ( 27 ) 
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Defining a column matrix     of order    for every k as follows: 

                                                                       [   ]  [  
 ] [

  
⃗⃗ ⃗⃗  

  
⃗⃗ ⃗⃗  

] ( 28 ) 

So, equation (27) can be rewritten as: 

                                                         [
   ⃗⃗ ⃗⃗ ⃗⃗  

   ⃗⃗ ⃗⃗ ⃗⃗  
]  [  ]  ⃗⃗⃗⃗  ⃗  [  ] [

   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ 

] ( 29 ) 

where    is a        matrix formed by the column matrices                . A 

linearized form of network equations has been obtained in equation (29) but a relation 

between non-state variables and state variables needs to be determined in linearized form. 

Hence, equation (14) needs to be linearized: 

                                                           [
   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ 

]  [
   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
]  [  ] [

   ⃗⃗ ⃗⃗ ⃗⃗  

   ⃗⃗ ⃗⃗ ⃗⃗  
] ( 30 ) 

Substituting (29) in above equation, we obtain: 

[
   ⃗⃗ ⃗⃗ ⃗⃗  

   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

]  [      ]
  [

   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗
]  [      ]

  [  ][  ]  ⃗⃗ ⃗⃗  

or, 

                                                              [
   
⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ 

]  [  ] [
   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
]  [  ]  ⃗⃗⃗⃗  ⃗ ( 31 ) 

where       are matrices of order        ,        respectively. Rearranging the 

matrices       in following manner: 

                                                            [  ]  *
    

    
+   [  ]  *

  

  
+  

where            ,       are matrices of order      . So, equation (31) can be 

rewritten as follows: 
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⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [  ]  ⃗⃗⃗⃗  ⃗

   
⃗⃗ ⃗⃗⃗⃗ ⃗⃗  [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [  ]  ⃗⃗⃗⃗  ⃗

 ( 32 ) 

So, a relation between the non-state variables         and state variables       
     

  

is obtained.  

 In order to obtain a similar relation between the non-state variables         and 

the state variables, we need to substitute equation (31) in (29): 

[
   ⃗⃗ ⃗⃗⃗⃗ 

   ⃗⃗ ⃗⃗ ⃗⃗ 
]  [  ][  ] [

   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗
]   [  ]  [  ][  ]   ⃗⃗ ⃗⃗  

Or, 

                                                          [
   ⃗⃗ ⃗⃗ ⃗⃗  

   ⃗⃗ ⃗⃗ ⃗⃗  
]  [  ] [

   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗

   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
]  [  ]  ⃗⃗⃗⃗  ⃗ ( 33 ) 

where       are matrices of order        ,        respectively. Rearranging the 

matrices       in following manner 

                                                         [  ]  *
    

    
+   [  ]  *

  

  
+  

where                   are matrices of order       .So, equation (33) can be rewritten 

as follows: 

                                                       
   ⃗⃗ ⃗⃗ ⃗⃗   [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [  ]  ⃗⃗⃗⃗  ⃗

   ⃗⃗ ⃗⃗ ⃗⃗   [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [  ]  ⃗⃗⃗⃗  ⃗
 ( 34 ) 

So, equations (32) and (34) provide the relation between non-state variables and state 

variables of the system.  

 The linearized differential equations (19) refer only to the states of single 

generator. So, the linearized differential equations have to be formulated in matrix form 
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for multi-machine systems. Rewriting equation (19) in matrix form and substituting the 

equations (21), (23), (32), (34) in it, we obtain the system in the state-space form : 

 ⃗⃗ ̇  [ ] ⃗⃗  [ ] ⃗⃗  ( 35 ) 

where state vector   and input vector   are column vectors of order    and given by 

   [                          
        

      
        

              ]
 

 ⃗⃗  [                               ]
  

  and A and B are          matrices given by: 

 [ ]  

[
 
 
 
 
 
 ̅     ̅  ̅  ̅

             ̅

    ̅          

    ̅        ̅

    ̅          ]
 
 
 
 
 

 [ ]  

[
 
 
 
 
 ̅  ̅
    ̅

 ̅  ̅
 ̅  ̅
 ̅    ]

 
 
 
 

 

The matrix elements         of A and B are of order        and given by: 

[   ]   [ ][  ][  ]  [ ][   ][  ] [   ]  [   ][  ]

[   ]   [ ][  ]  [ ][  ][  ]  [ ][   ][  ] [   ]  [   ]  [   ][  ]

[   ]   [ ][  ]  [ ][  ][  ]  [ ][   ][  ] [   ]  [   ][  ] [   ]  [ ]

[   ]  [   ][  ][  ]  [   ][  ][  ]      [   ]   [   ] [   ]   [   ]

[   ]  [   ][  ][  ]  [   ][  ][  ] [   ]  [   ][  ] [   ]  [   ][  ]

[   ]  [   ][  ][  ]  [   ][  ][  ] [   ]  [   ]  [   ][  ]

 

where                             are diagonal matrices of order   and their k
th

 

diagonal element is as follows: 
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So, the matrix A thus obtained is of order         where m is number of 

generators in the system. As rotor angles are measured relative to reference generator, we 

need to eliminate the state corresponding to the rotor angle of the reference generator. 

Generally, the generator numbered as 1 is taken as reference generator. So, the matrix A 

is modified by entering –   in the column for      in rows corresponding to      =2, 

3…..m. So the modified matrix      is of order                and the system can 

be represented as: 

 ⃗⃗ ̇  [    ] ⃗⃗  [ ] ⃗⃗  ( 36 ) 

where state vector   and input vector   are column vectors of order        and     

respectively and they are given by 

  [                             
        

      
        

              ]
 

  [                               ]
  

  Hence, the eigenvalues of the system can be obtained using      in equation (36). 

So, the modes which lead to instability can be identified and an appropriate location for 

the PSS has to be chosen so that these modes are efficiently damped. For this purpose, we 

use participation factors method. The participation factor     of the h
th 

state variable in 

the i
th

 mode is given by: 

                                                                |   ||   | ( 37 ) 

where     and     are h
th

 entries of i
th

 right and left eigenvectors respectively. 

Participation factor is good parameter for selection of PSS location because the right 

eigenvector term     reflects the activity of h
th

 state variable when i
th

 mode is excited 

whereas left eigenvector term     weighs the contribution of this activity to the i
th

 mode. 
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So, by evaluating the participation factors for any particular mode, the PSS location for 

damping of the mode can be chosen at a generator that participates significantly in that 

mode. 

3.2 Design of PSS components 

 The main components comprising PSS are compensator and washout block. 

Washout block is used to eliminate the steady state bias in the output of PSS. Washout 

block is a high pass filter.  

                                                                         
   

     
 ( 38 ) 

It is designed such that it passes the frequencies that are of interest. So,    is chosen 

depending on the modes that are of interest. If only the local modes are of interest, the 

time constant    can be chosen in the range of 1 to 2. However, if inter area modes are 

also to be damped, then    must be chosen in the range of 10 to 20. 

 PSS with speed input is chosen for design here and the procedure mainly involves 

design of a compensator that can provide adequate damping for the troublesome mode. 

So, a lead-lag compensator of one or two stages is used for this: 

                                                              (
     

     
)
 

          ( 39 ) 

For evaluating the time constants in compensator, we need to study how these 

compensator parameters affect the compensated phase of                  where 

       is the transfer function determining the relation between     and     of the 

generator. So,       can be written as follows: 

                                                                    
   

   
       ⃗⃗⃗⃗⃗⃗    ( 40 ) 
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In order to obtain      in terms of state variables, equation (34) is substituted in (21):  

   ⃗⃗ ⃗⃗ ⃗⃗    [  ][  ]  [   ][  ]   ⃗⃗ ⃗⃗    [  ]  [  ][  ]  [   ][  ]    
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗   [  ]  [  ][  ]  [   ][  ]    

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

or,                                           

   
⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]  ⃗⃗⃗⃗  ⃗  [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ( 41 ) 

where          are matrices of order      . By eliminating the state corresponding to 

the rotor angle of the reference generator (i.e. generator 1) in   , we obtain: 

   
⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   [  ]   
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗  [  ]   

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ( 42 ) 

where    is a matrix of order           and    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is a column matrix of order   and 

is given by 

    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  [           ]

  

Rewriting equation (42) as follows: 

   
⃗⃗ ⃗⃗ ⃗⃗  ⃗  [ ] ⃗⃗  ( 43 ) 

where C is a matrix of order            and the state vector    is column vector of 

order        . They are given by: 

  ⃗⃗  ⃗  [                             
        

      
        

              ]
 

[ ]  [    ̅         ̅]
 

So,         for a generator k in a multi-machine system can be evaluated by 

representing it in state-space form, i.e. considering      as input and      as output. 

Using equations (36) and (43), we can write:  

 ⃗⃗ ̇  [  ] ⃗⃗  [  ]    

     [  ] ⃗⃗  [  ]    

 ( 44 ) 
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where         is a square matrix of order       ,    is         th 
column of 

matrix B.     is k
th

 row of matrix C and     . So, the transfer function         can be 

written as: 

                                               
    

    
          

        ( 45 ) 

 

The transfer function        , evaluated here, has to be compensated such that the 

compensated phase lag of                   satisfies the below criteria: 

 It should pass through 90 at frequency around 3.5 Hz (22 rad/sec) 

 It should be below 45 at local mode frequency, preferably at 20  

 It is preferable to be lagging at inter-area modes 

So, the compensator parameters         are chosen such that above conditions are met. 

The PSS designed here without gain ( )()()( sTsWsPSSk  ) is used in next section to 

plot the root locus of the overall system in order to find the gain of PSS.  

 

3.3 Tuning of PSS 

The PSS designed has to be tuned so that all the critical modes are damped. So, a 

gain which provides maximum damping torque for the troublesome mode but doesn’t 

destabilize other modes must be chosen. This is obtained by analyzing the root locus of 

the system including the designed PSS. In order to plot root locus, we need to find out the 

open loop transfer function      of the system: 

                                                                 
   

    
        ( 46 ) 
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So,      for a multi-machine system can be evaluated by representing it in state-space 

form, i.e. considering      as input and     as output. Using equation (36), we can 

write: 

 ⃗⃗ ̇  [  ] ⃗⃗  [  ]    

    [  ]  [  ]    

 ( 47 ) 

where       is a square matrix of order       ,       is a column vector of 

order       ,      and    is a row matrix of order        and its i
th

 element     

is given by: 

    ,
                 
                          

- 

So,      can be written as: 

                                                                
                ( 48 ) 

   

This open loop transfer      evaluated here is used in plotting the root locus of system 

and the gains for which the real parts of all the closed loop poles are in negative X-axis 

are noted. Out of these, the gain for which the troublesome mode is most damped should 

be chosen. This gain is incorporated into the designed PSS and is verified by studying the 

system behavior using Runge-Kutta method as discussed in Chapter 2. 
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CHAPTER IV: RESULTS 

4.1 SMIB System 

The SMIB system shown in Figure 2 is chosen for small-signal analysis. Initially, 

the system’s small signal instability is studied and then the design of PSS for the same is 

discussed.  

 

Figure 2: A SMIB System 

The system and operating data are given in Tables 1 to 4. 

Table 1:Transmission Line Data of the SMIB System 

From Bus 

Number 

  To Bus 

Number 

Series 

Resistance (Rs) 

Series 

Reactance (Xs) 

Shunt 

Susceptance(B) 

2 3 0.08593 0.8125 0.1184 

2 3 0.08593 0.8125 0.1184 

 

Table 2: Machine Data of the SMIB System 

                 Table 3: Operating Data of the SMIB System 

Variable Value 

Eb 0.00327 

Pt 1.7572 

Qt 0.4245 

Vt 6.66 

Θ 21.65° 

XTh 0.13636 

Xt 0.1364 

Rt 0 

 

 

Variable Value 

Ra 0.00327 

Xd 1.7572 

Xd' 0.4245 

 Td0' 6.66 

Xq 1.5845 

Xq' 1.04 

Tq0' 0.44 

H 3.542 

D 0 
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Table 4: Excitation System Data of the SMIB System 

Variable Value 

KE 400 

TE 0.025 

Efdmin -6.0 

Efdmax 6.0 

The numerical integration of the system’s differential equations (1) using Fourth-order 

Runge-Kutta Method and h was chosen as 0.01. The initial conditions of the state 

variables are calculated from the operating data given in Table 3. Subsequently, the 

voltage fault at the generator was applied at 1 sec and cleared in 4 cycles. The variation 

of state variables was recorded up to time duration of 10sec.The results obtained are 

given in Figure 3. 

 

Figure 3: Variation of state variables of SMIB System without PSS 
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From the results above, we can see that the fault at 1 sec has moved the system behavior 

from steady state. Even though the fault is cleared in a small duration, we can see that 

small signal oscillations still persist. Hence, a power system stabilizer (PSS) needs to be 

designed in order to damp the mode of oscillations.  

A state-space model was formulated for the system in the form of equation (36) 

and the eigenvalues of the system were obtained as shown in Table 5: 

Table 5: Eigenvalues of the SMIB System 

Eigenvalues 

-2.70483 

-0.06263+6.2329i 

-0.06263-6.2329i 

-20.2352+28.333i 

-20.2352-28.333i 

We observe that eigenvalue at      rad/sec has less damping and hence it is the cause for 

small-signal instability. So, the mode needs to be damped by a PSS. Let us design a PSS 

which damps the mode 6.23 rad/sec. As discussed earlier, the compensator for PSS 

should be designed such that  

1. The compensated phase lag of                  should pass through 90 at 

frequency around 3.5 Hz (22 rad/sec). 

2. The compensated phase lag of      should be below 45 at local mode frequency, 

preferably at 20 . 

3. It is preferable for the compensated phase to be lagging at inter-area modes. 

So,        is calculated using equation (45) at the generator and its Bode plot is 

obtained as shown in Figure 4. 
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Figure 4: Bode plot of GEP(s) of SMIB System 

We observe that phase angle of        at the cut-off frequency 3.5 Hz (22 rad/sec) is 

         whereas phase is          at local mode frequencies (around   rad/sec). As 

the        already satisfies the compensator design criteria by itself, a compensator is 

not needed for the system. Also as the local modes are of interest, the time constant    is 

chosen as 2. Hence, the PSS designed without the gain is        
  

    
 . The root locus 
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of the system is plotted by incorporating the designed PSS into open loop transfer 

function. The root locus is shown in Figure 5. 

 

Figure 5: Root Locus of the SMIB System including the PSS designed  

From the root locus data, we infer that at PSS gain KPSS =24, both modes (6.233, 28.333 

rad/sec) of the system are significantly damped. Hence, the PSS designed with the gain 

is        
   

    
 . The numerical integration of the system’s differential equations (1) 

and PSS equations in differential form is performed to verify the effectiveness of PSS 

designed. Subsequently, the voltage fault at the generator was applied at 1 sec and 
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cleared in 4 cycles. The variation of state variables was recorded up to time duration of 

10sec.The results obtained are given in Figure 6. 

 

Figure 6: Variation of state variables of SMIB System with the PSS designed 

We see that the system doesn’t have small signal oscillations after the designed PSS is 

incorporated. So, the effectiveness of the PSS designed is verified. 
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4.2 Multi-Machine System 

A 4-generator, 10-bus system shown in Figure 7 is chosen for small-signal 

analysis. Initially, the system’s small signal instability is studied and then the design of 

PSS for the same is discussed.  

 

Figure 7: Two-Area System  

 

The system and operating data are given in Tables 6 to 9. 

Table 6: Transmission line data on 100 MVA base of the multi-machine system 

From Bus 

Number 

  To Bus 

Number 

Series 

Resistance (Rs) 

Series 

Reactance (Xs) 

Shunt 

Susceptance(B) 

1 4 0.001 0.012 0 

2 5 0.001 0.012 0 

3 6 0.022 0.22 0.33 

3 6 0.022 0.22 0.33 

3 6 0.022 0.22 0.33 

3 5 0.002 0.02 0.03 

3 5 0.002 0.02 0.03 

9 8 0.001 0.012 0 

10 7 0.001 0.012 0 

6 7 0.002 0.02 0.03 

6 7 0.002 0.02 0.03 

4 5 0.005 0.05 0.075 

4 5 0.005 0.05 0.075 

8 7 0.005 0.05 0.075 

8 7 0.005 0.05 0.075 
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Table 7: Initial Load Flow Data of the multi-machine system 

Bus 

No. 

Voltage  

(mag) 

Angle 

(deg) 

Real 

Power 

Gen 

Reactive 

Power 

Gen 

Real 

Power 

Load 

Reactive 

Power 

Load 

Shunt 

Susceptance 

1 1.03 8.2154 7 1.3386 0 0 0 

2 1.01 -1.504 7 1.592 0 0 0 

9 1.03 0 7.2172 1.4466 0 0 0 

10 1.01 -10.2051 7 1.8083 0 0 0 

4 1.0108 3.6615 0 0 0 0 0 

5 0.9875 -6.2433 0 0 0 0 0 

8 1.0095 -4.6977 0 0 0 0 0 

7 0.985 -14.9443 0 0 0 0 0 

3 0.9761 -14.4194 0 0 11.59 2.12 3 

6 0.9716 -23.2922 0 0 15.75 2.89 4 

 

Table 8: Machine Data of the multi-machine system 

Variable Machine at 

Bus 1 

Machine at 

Bus 2 

Machine at 

Bus 9 

Machine at 

Bus 10 

Xl 0.022 0.022 0.022 0.022 

Ra 0.00028 0.00028 0.00028 0.00028 

Xd 0.2 0.2 0.2 0.2 

Xd' 0.033 0.033 0.033 0.033 

Td0' 8 8 8 8 

Xq 0.19 0.19 0.19 0.19 

Xq' 0.061 0.061 0.061 0.061 

Tq0' 0.4 0.4 0.4 0.4 

H 54 54 63 63 

D 0 0 0 0 

 

 
Table 9: Excitation System Data of multi-machine system 

Variable Bus 1 Bus 2 Bus 9 Bus 10 

KE 200 200 200 200 

TE 0.02 0.02 0.02 0.02 

 

 

The numerical integration of the system’s differential equations was done after reducing 

the network equations to equations (12) and (15) and h was chosen as 0.01. The initial 
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conditions of the state variables are calculated from the load flow data given in Table 2. 

Subsequently, the voltage fault at generator 1 was applied at 1 sec and cleared in 4 cycles. 

The variation of state variables was recorded up to time duration of 10sec.The results 

obtained are given in Figure 8. 

 

Figure 8: Variation of state variables of the multi-machine system without PSS 
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 From the results above, we can see that the fault at 1 sec has moved the system 

behavior from steady state. Even though the fault is cleared in a small duration, we can 

see that small signal oscillations still persist. Hence, a power system stabilizer (PSS) 

needs to be designed in order to damp the modes of oscillations. We can also observe 

from the results that each generator is affected differently by each mode. So, we also 

need to study the effect of an unstable mode on each generator by which an appropriate 

PSS location can be chosen which in turn will be followed by designing of a PSS at that 

location. 

A state-space model was formulated for the system in the form of equation (36) 

and the eigenvalues of the system were obtained as shown in Table 10: 

Table 10: Eigenvalues of the multi-machine system  

Eigenvalues 

-40.023 

-39.527 

-11.556 

-11.148 

-4.570 

-4.477 

-4.242 

-4.109 

-9.111e-016 

-0.00428-4.456i 

-0.00428+4.456i 

-0.734-6.71i 

-0.734+6.71i 

-0.755-7.316i 

-0.755+7.316i 

-25.0383-11.959i 

-25.0383+11.959i 

-24.506-20.629i 

-24.506+20.629i 
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We observe that eigenvalues at                 rad/sec has less damping and hence they 

are the cause for small-signal instability. So, these modes are needed to be damped by the 

PSS. Hence, the participation factors of state variables     of all four generators in all 

the three modes (                rad/sec) were calculated and obtained as shown in 

Table 6: 

Table 11: Participation Factors of state variable  Sm in a multi-machine system 

 Mode 1 (4.456 rad/sec) Mode 2 (6.71 rad/sec) Mode 3 (7.31 rad/sec) 

Generator 1 0.1375 0.00341 0.1763 

Generator 2 0.0852 0.00048 0. 228 

Generator 3 0.131 0.188 0.000282 

Generator 4 0.0849 0.239 0.0033 

 

We can see that for the swing mode of      rad/sec, only generators 3 and 4 

participate pre-dominantly whereas in the case of swing mode of 7.31 rad/sec, generators 

1 and 2 participate pre-dominantly. But in the case of swing mode of 4.456 rad/sec, all 

the generators participate significantly. This implies that the first swing mode (4.45 

rad/sec) is an inter-area mode.  So, for each mode, location of PSS should be at either of 

the generators that participate in the mode significantly. 
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CHAPTER V: CONCLUSION 

A reduced model is formulated and Fourth-order Runge-Kutta method is used for 

study of small-signal instability in a SMIB and a 10-bus, 4-machine system. A linearized 

model in state-space form is formulated in order to identify the modes that lead the 

system to small-signal instability for two systems. The lead compensator and washout 

block in PSS for the SMIB system are designed to provide adequate damping to the local 

mode 6.23 rad/sec. The effectiveness of the PSS designed for SMIB system is verified by 

using Runge-Kutta method. The PSS location for damping each of the troublesome 

modes in the 10-bus, 4-machine system is determined using participation factors. 
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